JP5523918B2 - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
JP5523918B2
JP5523918B2 JP2010100883A JP2010100883A JP5523918B2 JP 5523918 B2 JP5523918 B2 JP 5523918B2 JP 2010100883 A JP2010100883 A JP 2010100883A JP 2010100883 A JP2010100883 A JP 2010100883A JP 5523918 B2 JP5523918 B2 JP 5523918B2
Authority
JP
Japan
Prior art keywords
refrigeration
temperature
flow rate
load
secondary refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010100883A
Other languages
Japanese (ja)
Other versions
JP2011231955A (en
Inventor
裕次郎 萩原
正教 上倉
良和 石木
慎一 杉山
耕士 樋口
佳子 高瀬
浩和 石毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Hitachi Appliances Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Appliances Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2010100883A priority Critical patent/JP5523918B2/en
Publication of JP2011231955A publication Critical patent/JP2011231955A/en
Application granted granted Critical
Publication of JP5523918B2 publication Critical patent/JP5523918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、1次側に並列に複数台設けられた冷凍装置により2次冷媒を冷却または加熱して2次側に設けられた負荷に供給する冷凍システムに関し、特に2次側の流量が負荷の増減に応じて可変する2次側変流量システムに好適なものである。   The present invention relates to a refrigeration system in which a secondary refrigerant is cooled or heated by a refrigeration apparatus provided in parallel on the primary side and supplied to a load provided on the secondary side, and in particular, the flow rate on the secondary side is a load. It is suitable for a secondary side variable flow rate system that is variable according to the increase / decrease of.

1次側に並列に複数台設けられた冷凍装置により2次冷媒(例えば、水、ブライン或いは空気など)を冷却または加熱して2次側に設けられた負荷に供給する冷凍システム、特に2次側の流量が負荷の増減に応じて可変する2次側変流量システムとしては特許文献1に記載されたものがある。   A refrigeration system that cools or heats a secondary refrigerant (for example, water, brine, or air) by a plurality of refrigeration units provided in parallel on the primary side and supplies the refrigerant to a load provided on the secondary side, particularly the secondary As a secondary side variable flow rate system in which the flow rate on the side changes in accordance with the increase or decrease of the load, there is one described in Patent Document 1.

上記特許文献1に記載の冷凍システムでは、1次側に並列に複数台設けられた冷凍装置からの2次冷媒が流入すると共に負荷の上流側に設けられた上流側ヘッダ、前記負荷の下流側に設けられ負荷からの前記2次冷媒を前記複数台の冷凍装置に分配するための下流側ヘッダと、この下流側ヘッダの前記2次冷媒を前記各冷凍装置に個々に供給するための1次側ポンプと、前記上流側ヘッダの前記2次冷媒を前記負荷に供給するための2次側ポンプと、前記上流側ヘッダと下流側ヘッダを接続するバイパス配管とを備えている。また、負荷側の2次冷媒の出入口温度差、負荷機器への流量、及び負荷熱量に基づいて冷凍装置の運転台数を決定することが記載されている。   In the refrigeration system described in Patent Literature 1, an upstream header provided on the upstream side of the load and a secondary refrigerant from a plurality of refrigeration apparatuses provided in parallel on the primary side, the downstream side of the load A downstream header for distributing the secondary refrigerant from the load to the plurality of refrigeration devices, and a primary for individually supplying the secondary refrigerant in the downstream header to the refrigeration devices. A side pump, a secondary pump for supplying the secondary refrigerant of the upstream header to the load, and a bypass pipe connecting the upstream header and the downstream header. In addition, it is described that the number of operating refrigeration units is determined based on the temperature difference between the inlet and outlet of the secondary refrigerant on the load side, the flow rate to the load device, and the amount of load heat.

特開2003−294290号公報JP 2003-294290 A

特許文献1に記載のものは、前記2次側ポンプは負荷を流れる2次冷媒の出入口温度差に応じて増減されるため、負荷増加時には2次側ポンプの流量が増加して必要な熱量を確保しようとする。このため、前記バイパス配管を流れる流量が増加するが、負荷からの戻り温度は直ちには上昇しないため、冷凍装置入口側水温の上昇は遅れる。従って、1次側の2次冷媒流量及び冷凍装置の容量はなかなか増加しない。このため、前記バイパス配管を流れる流量が多くなり、その分2次側ポンプの仕事量が増大し、システム全体の効率低下を引起すという課題があった。また負荷の減少時には2次側ポンプの流量が低下するため冷凍装置からの余った流量は前記バイパス配管を流れて再び1次側ポンプで圧送されるため、1次側ポンプは余分な動力を消費し、やはりシステム全体の効率低下を引起す。   Since the secondary pump is increased or decreased according to the inlet / outlet temperature difference of the secondary refrigerant flowing through the load, the flow rate of the secondary pump increases to increase the amount of heat required when the load increases. Try to secure. For this reason, although the flow volume which flows through the said bypass piping increases, since the return temperature from load does not rise immediately, the raise of refrigeration apparatus entrance side water temperature is delayed. Therefore, the secondary refrigerant flow rate on the primary side and the capacity of the refrigeration apparatus do not increase easily. For this reason, the flow volume which flows through the said bypass piping increases, The work amount of the secondary side pump correspondingly increases, and the subject that the efficiency reduction of the whole system was caused occurred. Also, when the load is reduced, the flow rate of the secondary pump decreases, so the excess flow from the refrigeration system flows through the bypass pipe and is pumped again by the primary pump, so the primary pump consumes extra power. However, this also causes a decrease in the efficiency of the entire system.

本発明の目的は、バイパス配管を流れる流量を低減できるようにして省エネ化を図ることができる冷凍システムを得ることにある。   An object of the present invention is to obtain a refrigeration system that can save energy by reducing the flow rate through the bypass pipe.

上記目的を達成するため、本発明は、1次側に並列に複数台設けられた冷凍装置からの2次冷媒が流入すると共に負荷の上流側に設けられた上流側ヘッダと、前記負荷の下流側に設けられ負荷からの前記2次冷媒を前記複数台の冷凍装置に分配するための下流側ヘッダと、この下流側ヘッダの前記2次冷媒を前記各冷凍装置に個々に供給するための1次側ポンプと、前記上流側ヘッダの前記2次冷媒を前記負荷に供給するための2次側ポンプと、前記上流側ヘッダと下流側ヘッダを接続するバイパス配管とを備えた冷凍システムにおいて、前記各冷凍装置を流れる前記2次冷媒の流量を検出するための流量検出手段と、前記各冷凍装置に流入する前記2次冷媒の温度を検出するための入口側温度検出手段と、前記各冷凍装置から流出した前記2次冷媒の温度を検出するための出口側温度検出手段と、前記上流側ヘッダと前記負荷との間の前記2次冷媒の温度を検出する負荷上流側温度検出手段と、前記負荷上流側温度検出手段で検出された温度が、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記出口側温度検出手段で検出された温度よりも高い場合、前記1次側を流れる前記2次冷媒全体の流量が増大するように制御し、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記入口側温度検出手段で検出された温度が所定温度よりも低い場合、前記1次側を流れる前記2次冷媒の流量全体の流量が減少するように制御する制御手段とを備えていることを特徴とする。   In order to achieve the above object, the present invention provides an upstream header provided on the upstream side of a load and a downstream header from a plurality of refrigeration units provided in parallel on the primary side, and downstream of the load. A downstream header for distributing the secondary refrigerant from a load to the plurality of refrigeration devices, and a 1 for individually supplying the secondary refrigerant in the downstream header to the refrigeration devices In the refrigeration system comprising a secondary pump, a secondary pump for supplying the secondary refrigerant of the upstream header to the load, and a bypass pipe connecting the upstream header and the downstream header, Flow rate detection means for detecting the flow rate of the secondary refrigerant flowing through each refrigeration apparatus, inlet side temperature detection means for detecting the temperature of the secondary refrigerant flowing into each refrigeration apparatus, and each refrigeration apparatus Said spilled from Outlet side temperature detection means for detecting the temperature of the secondary refrigerant, load upstream temperature detection means for detecting the temperature of the secondary refrigerant between the upstream header and the load, and load upstream temperature detection When the temperature detected by the means is higher than the temperature detected by the outlet-side temperature detection means in the operating refrigeration apparatus among the plurality of refrigeration apparatuses, the entire secondary refrigerant flowing through the primary side When the temperature detected by the inlet side temperature detection means in the refrigeration apparatus in operation among the plurality of refrigeration apparatuses is lower than a predetermined temperature, the first flow is performed. And a control means for controlling the overall flow rate of the secondary refrigerant to decrease.

本発明の他の特徴は、1次側に並列に複数台設けられた冷凍装置からの2次冷媒が流入すると共に負荷の上流側に設けられた上流側ヘッダと、前記負荷の下流側に設けられ負荷からの2次冷媒を前記複数台の冷凍装置に分配するための下流側ヘッダと、この下流側ヘッダの2次冷媒を前記各冷凍装置に個々に供給するための1次側ポンプと、前記上流側ヘッダの2次冷媒を前記負荷に供給するための2次側ポンプと、前記上流側ヘッダと下流側ヘッダを接続するバイパス配管とを備えた冷凍システムにおいて、前記各冷凍装置を流れる2次冷媒の流量を検出するための流量検出手段と、前記各冷凍装置に流入する2次冷媒の温度を検出するための入口側温度検出手段と、前記各冷凍装置から流出した2次冷媒の温度を検出するための出口側温度検出手段と、前記上流側ヘッダと前記負荷との間の2次冷媒の温度を検出する負荷上流側温度検出手段と、前記負荷上流側温度検出手段で検出された温度と、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記出口側温度検出手段で検出された温度を比較すると共に、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記入口側温度検出手段で検出された温度と予め決められている所定温度または負荷出口側温度とを比較して、前記バイパス配管を流れる2次冷媒の流量が減少するように1次側を流れる前記2次冷媒の流量を制御する制御手段とを備えていることにある。   Another feature of the present invention is that an upstream header provided on the upstream side of the load and a secondary refrigerant from a plurality of refrigeration units provided in parallel on the primary side, and provided on the downstream side of the load A downstream header for distributing the secondary refrigerant from the load to the plurality of refrigeration devices, and a primary pump for individually supplying the secondary refrigerant of the downstream header to the refrigeration devices, In a refrigeration system including a secondary pump for supplying the secondary refrigerant of the upstream header to the load, and a bypass pipe connecting the upstream header and the downstream header, the refrigerant flows through the refrigeration devices 2 A flow rate detecting means for detecting the flow rate of the secondary refrigerant, an inlet side temperature detecting means for detecting the temperature of the secondary refrigerant flowing into each refrigeration apparatus, and the temperature of the secondary refrigerant flowing out from each refrigeration apparatus Outlet side temperature to detect Detecting means; load upstream temperature detecting means for detecting a temperature of the secondary refrigerant between the upstream header and the load; temperatures detected by the load upstream temperature detecting means; and the plurality of refrigeration units The temperature detected by the outlet side temperature detecting means in the operating refrigeration apparatus of the apparatus is compared, and the temperature detected by the inlet side temperature detecting means in the operating refrigeration apparatus of the plurality of refrigeration apparatuses is compared. The flow rate of the secondary refrigerant flowing through the primary side is controlled such that the flow rate of the secondary refrigerant flowing through the bypass pipe decreases. And a control means.

本発明によれば、バイパス配管を流れる流量を低減できるので、冷凍システムの省エネ化を図ることができる効果が得られる。   According to the present invention, since the flow rate flowing through the bypass pipe can be reduced, an effect that energy saving of the refrigeration system can be achieved is obtained.

本発明の冷凍システムの実施例1を示す系統図。The systematic diagram which shows Example 1 of the refrigeration system of this invention. 本発明の実施例1における制御フローを示すフローチャート。The flowchart which shows the control flow in Example 1 of this invention.

まず、本発明の実施形態の基本的な構成を説明する。
本実施形態では、1次側に並列に複数台設けられた冷凍装置からの2次冷媒が流入すると共に負荷の上流側に設けられた上流側ヘッダと、前記負荷の下流側に設けられ負荷からの前記2次冷媒を前記複数台の冷凍装置に分配するための下流側ヘッダと、この下流側ヘッダの前記2次冷媒を前記各冷凍装置に個々に供給するための1次側ポンプと、前記上流側ヘッダの前記2次冷媒を前記負荷に供給するための2次側ポンプと、前記上流側ヘッダと下流側ヘッダを接続するバイパス配管とを備えた2次側変流量システムの構成とされている。
First, the basic configuration of the embodiment of the present invention will be described.
In this embodiment, secondary refrigerant from a plurality of refrigeration units provided in parallel on the primary side flows in, and an upstream header provided on the upstream side of the load, and a load provided on the downstream side of the load. A downstream header for distributing the secondary refrigerant of the plurality of refrigeration devices, a primary pump for individually supplying the secondary refrigerant of the downstream header to the refrigeration devices, The secondary variable flow rate system includes a secondary pump for supplying the secondary refrigerant of the upstream header to the load, and a bypass pipe connecting the upstream header and the downstream header. Yes.

前記冷凍装置は、連続的に運転容量の変化が可能な圧縮機を備え、前記圧縮機から吐出される冷媒(1次冷媒)により2次冷媒(水など)を冷却または加熱する熱交換器を有している。前記熱交換器の入口側には2次冷媒の入口温度を検知する入口側温度検出手段(入口温度検知用サーミスタ)が設けられ、また出口側には出口温度を検知する出口側温度検出手段(出口温度検知用サーミスタ)が設けられている。また、各冷凍装置に前記2次冷媒を供給するための1次側ポンプが各冷凍装置毎に備えられており、この1次側ポンプは連続的に流量の変化が可能な構成となっている。   The refrigeration apparatus includes a compressor capable of continuously changing an operating capacity, and includes a heat exchanger that cools or heats a secondary refrigerant (such as water) by a refrigerant (primary refrigerant) discharged from the compressor. Have. An inlet side temperature detecting means (inlet temperature detecting thermistor) for detecting the inlet temperature of the secondary refrigerant is provided on the inlet side of the heat exchanger, and an outlet side temperature detecting means for detecting the outlet temperature on the outlet side ( An outlet temperature detection thermistor) is provided. Moreover, the primary side pump for supplying the said secondary refrigerant | coolant to each refrigeration apparatus is provided for every refrigeration apparatus, and this primary side pump becomes a structure which can change a flow volume continuously. .

前記上流側ヘッダでは、前記複数台の冷凍装置から流入する2次冷媒と前記バイパス配管から流入する2次冷媒が合流し、その後前記2次側ポンプを介して前記負荷に供給されるが、この上流側ヘッダには合流後の2次冷媒の温度を検知するための負荷上流側温度検出手段(合流後温度検知用サーミスタ)が設けられている。更に、前記複数台の冷凍装置のそれぞれを流れる2次冷媒の流量(一次側流量)を検出する流量検出手段も有している。   In the upstream header, the secondary refrigerant flowing in from the plurality of refrigeration units and the secondary refrigerant flowing in from the bypass pipe merge and are then supplied to the load via the secondary pump. The upstream header is provided with a load upstream temperature detection means (a post-merging temperature detection thermistor) for detecting the temperature of the secondary refrigerant after merging. Furthermore, it has a flow rate detection means for detecting the flow rate (primary side flow rate) of the secondary refrigerant flowing through each of the plurality of refrigeration apparatuses.

前記冷凍装置の圧縮機は、前記熱交換器の出口温度が一定となるように容量制御が行なわれる。また、前記負荷上流側温度検出手段で検出された温度と、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記出口側温度検出手段で検出された温度を比較すると共に、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記入口側温度検出手段で検出された温度と予め決められている所定温度とを比較して、前記バイパス配管を流れる2次冷媒の流量が減少するように1次側を流れる前記2次冷媒の流量を制御する制御手段(コントローラ)を備えている。   The capacity of the compressor of the refrigeration apparatus is controlled so that the outlet temperature of the heat exchanger is constant. In addition, the temperature detected by the load upstream side temperature detecting means and the temperature detected by the outlet side temperature detecting means in the operating refrigeration apparatus among the plurality of refrigeration apparatuses are compared, and the plurality of units The temperature of the secondary refrigerant flowing through the bypass pipe is reduced by comparing the temperature detected by the inlet-side temperature detection means in the refrigeration apparatus in operation among the refrigeration apparatuses with a predetermined temperature. Thus, a control means (controller) for controlling the flow rate of the secondary refrigerant flowing on the primary side is provided.

例えば、負荷を冷却する運転の場合、前記制御手段は、前記負荷上流側温度検出手段で検出された温度が、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記出口側温度検出手段で検出された温度よりも高い場合、前記1次側を流れる前記2次冷媒全体の流量が増大するように制御し、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記入口側温度検出手段で検出された温度が所定温度よりも低い場合、前記1次側を流れる前記2次冷媒全体の流量が減少するように制御する。   For example, in the case of an operation for cooling a load, the control means is configured such that the temperature detected by the load upstream temperature detection means is the outlet side temperature detection means in the operating refrigeration apparatus among the plurality of refrigeration apparatuses. When the temperature is higher than the temperature detected in the above, the flow rate of the entire secondary refrigerant flowing on the primary side is controlled to increase, and the inlet side temperature in the operating refrigeration apparatus among the plurality of refrigeration apparatuses. When the temperature detected by the detection means is lower than the predetermined temperature, control is performed so that the flow rate of the entire secondary refrigerant flowing through the primary side is reduced.

また、前記負荷を加熱する運転の場合、前記制御手段は、前記負荷を冷却する場合とは逆の動作となる。即ち、前記負荷上流側温度検出手段で検出された温度が、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記出口側温度検出手段で検出された温度よりも低い場合には前記バイパス管を通じて下流側ヘッダから上流側ヘッダへの流れが生じているから、前記1次側を流れる前記2次冷媒全体の流量が増大するように制御し、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記入口側温度検出手段で検出された温度が所定温度よりも高い場合には前記バイパス管を通じて上流側ヘッダから下流側ヘッダへの流れが生じているから、前記1次側を流れる前記2次冷媒全体の流量が減少するように制御する。   Further, in the case of an operation for heating the load, the control means performs an operation opposite to that for cooling the load. That is, when the temperature detected by the load upstream side temperature detecting means is lower than the temperature detected by the outlet side temperature detecting means in the operating refrigeration apparatus of the plurality of refrigeration apparatuses, the bypass Since the flow from the downstream header to the upstream header is generated through the pipe, the flow rate of the entire secondary refrigerant flowing through the primary side is controlled so as to increase and during the operation of the plurality of refrigeration apparatuses. When the temperature detected by the inlet side temperature detecting means in the refrigeration apparatus is higher than a predetermined temperature, a flow from the upstream header to the downstream header occurs through the bypass pipe, and therefore flows through the primary side. Control is performed so that the flow rate of the entire secondary refrigerant decreases.

以上のように制御することにより、前記バイパス配管を流れる2次冷媒流量を低減することができるから、前記1次側ポンプや2次側ポンプの動力を低減することができ冷凍システムの省エネ化を図ることができる。
以下、本発明の具体的実施例を、図面に基づいて説明する。
By controlling as described above, the flow rate of the secondary refrigerant flowing through the bypass pipe can be reduced, so that the power of the primary side pump and the secondary side pump can be reduced and energy saving of the refrigeration system can be achieved. Can be achieved.
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施例1を示す冷凍システムの系統図である。この実施例では、前記2次冷媒が水であり、この水を冷凍装置で冷却して負荷に供給する水冷却設備としての冷凍システムとして説明する。   FIG. 1 is a system diagram of a refrigeration system showing Embodiment 1 of the present invention. In this embodiment, the secondary refrigerant is water, and it will be described as a refrigeration system as water cooling equipment that cools the water with a refrigeration apparatus and supplies the water to a load.

図1において、Aは1次側、Bは2次側である。1次側Aには複数台(この例では4台)の冷凍装置1a〜1dが並列に設けられ、それぞれの冷凍装置には連続的に回転数を制御して2次冷媒を圧送する1次側ポンプ5a〜5dも設けられ、この1次側ポンプ5a〜5dの回転数を変化させることで前記各冷凍装置1a〜1dを流れる2次冷媒の流量を制御する。   In FIG. 1, A is the primary side and B is the secondary side. On the primary side A, a plurality of (in this example, four) refrigeration apparatuses 1a to 1d are provided in parallel, and each of the refrigeration apparatuses continuously controls the rotation speed and pumps the secondary refrigerant. Side pumps 5a to 5d are also provided, and the flow rate of the secondary refrigerant flowing through the refrigeration apparatuses 1a to 1d is controlled by changing the rotational speed of the primary side pumps 5a to 5d.

前記2次側Bには前記2次冷媒で冷却される負荷20と、該負荷20の上流側に設けられた上流側ヘッダ7及び前記負荷20の下流側に設けられた下流側ヘッダ8が設けられ、上流側ヘッダ7からの2次冷媒は複数台の2次側ポンプ6a〜6dにより圧送され、中間ヘッダ9を介して前記負荷20に供給されて負荷20を冷却する。負荷20を冷却後の2次冷媒は前記下流側ヘッダ8に送られる。2次側Bを流れる2次冷媒の流量は、前記複数台の2次側ポンプ6a〜6dの台数制御か、或いは少なくとも1台の2次側ポンプを回転数制御することにより制御される。13は負荷20への2次冷媒の入口温度を検出する負荷入口温度検出器(サーミスタ)、14は負荷20から出た2次冷媒の出口温度を検出する負荷出口温度検出器(サーミスタ)であり、これら温度検出器13,14で検出された2次冷媒の温度差に応じて前記2次側ポンプ6a〜6dが制御され、前記温度差が設定値(所定の温度差)より大きければ負荷20に供給される2次冷媒の流量を増加させ、前記温度差が設定値より小さければ負荷20に供給される2次冷媒の流量を減少させるようにして、前記温度差が設定値に近づくように制御される。   The secondary side B is provided with a load 20 cooled by the secondary refrigerant, an upstream header 7 provided on the upstream side of the load 20, and a downstream header 8 provided on the downstream side of the load 20. The secondary refrigerant from the upstream header 7 is pumped by a plurality of secondary pumps 6 a to 6 d and supplied to the load 20 via the intermediate header 9 to cool the load 20. The secondary refrigerant after cooling the load 20 is sent to the downstream header 8. The flow rate of the secondary refrigerant flowing through the secondary side B is controlled by controlling the number of the plurality of secondary pumps 6a to 6d or by controlling the rotational speed of at least one secondary pump. Reference numeral 13 denotes a load inlet temperature detector (thermistor) that detects the inlet temperature of the secondary refrigerant to the load 20, and reference numeral 14 denotes a load outlet temperature detector (thermistor) that detects the outlet temperature of the secondary refrigerant output from the load 20. The secondary pumps 6a to 6d are controlled in accordance with the temperature difference of the secondary refrigerant detected by the temperature detectors 13 and 14, and if the temperature difference is larger than a set value (predetermined temperature difference), the load 20 The flow rate of the secondary refrigerant supplied to the load 20 is increased, and if the temperature difference is smaller than the set value, the flow rate of the secondary refrigerant supplied to the load 20 is decreased so that the temperature difference approaches the set value. Be controlled.

なお、15は流量制御弁、16は中間ヘッダ9の圧力が上昇した際に圧力を下流側ヘッダ7に逃すための逃し弁である。この2次側Bの2次側ポンプ6a〜6dや流量制御弁15などの制御は2次側に設けられた2次側コントローラ(図示せず)により制御される。   In addition, 15 is a flow control valve, 16 is a relief valve for letting a pressure escape to the downstream header 7 when the pressure of the intermediate header 9 rises. Control of the secondary side B secondary pumps 6a to 6d and the flow rate control valve 15 is controlled by a secondary controller (not shown) provided on the secondary side.

前記下流側ヘッダ8の2次冷媒は前記1次側ポンプ5a〜5dを介して冷凍装置1a〜1dに圧送される。前記各冷凍装置1a〜1dには、1次冷媒を圧縮するための圧縮機(図示せず)が備えられ、この圧縮機は連続的に運転容量を制御可能な構成となっている。また、1次冷媒と前記2次冷媒を熱交換させるための熱交換器2a〜2d、前記熱交換器への2次冷媒の入口側温度を検出する入口側温度検出手段(入口温度検知用サーミスタ)3a〜3d、前記熱交換器の出口側温度を検出する出口側温度検出手段(出口温度検知用サーミスタ)4a〜4dが備えられている。冷凍装置1a〜1dは前記出口側温度検出手段4a〜4dで検出された温度が所定の一定温度になるように前記圧縮機の容量(例えば回転数)が制御される。前記各冷凍装置1a〜1dに流れる2次冷媒の流量を検出するために、本実施例では、前記1次側ポンプ5a〜5dの回転数に基づいて流量を算出する流量検出手段を備えている。なお、この流量検出手段としては各冷凍装置に流出入する配管を流れる2次冷媒の量を直接流量計で測定するように構成しても良い。   The secondary refrigerant in the downstream header 8 is pumped to the refrigeration apparatuses 1a to 1d via the primary pumps 5a to 5d. Each of the refrigeration apparatuses 1a to 1d is provided with a compressor (not shown) for compressing the primary refrigerant, and the compressor has a configuration capable of continuously controlling the operation capacity. In addition, heat exchangers 2a to 2d for exchanging heat between the primary refrigerant and the secondary refrigerant, inlet side temperature detection means for detecting the inlet side temperature of the secondary refrigerant to the heat exchanger (thermistor for detecting the inlet temperature) ) 3a to 3d, outlet side temperature detecting means (outlet temperature detecting thermistors) 4a to 4d for detecting the outlet side temperature of the heat exchanger are provided. In the refrigeration apparatuses 1a to 1d, the capacity (for example, the rotation speed) of the compressor is controlled so that the temperatures detected by the outlet side temperature detecting means 4a to 4d become a predetermined constant temperature. In this embodiment, in order to detect the flow rate of the secondary refrigerant flowing through each of the refrigeration apparatuses 1a to 1d, the flow rate detection means for calculating the flow rate based on the rotation speed of the primary pumps 5a to 5d is provided. . The flow rate detection means may be configured to directly measure the amount of the secondary refrigerant flowing through the pipe flowing into and out of each refrigeration apparatus with a flow meter.

11は前記上流側ヘッダ7と下流側ヘッダ8とを接続するバイパス配管で、前記2次側Bを流れる2次冷媒の流量が1次側Aを流れる2次冷媒の流量よりも多いときには、前記バイパス配管11を介して、2次冷媒の一部が下流側ヘッダ8から上流側ヘッダ7側へ流れ、逆に1次側Aを流れる2次冷媒の流量が前記2次側Bを流れる2次冷媒の流量よりも多いときには、上流側ヘッダ7の2次冷媒の一部がバイパス配管11を介して下流側ヘッダ8に流れる。10は前記上流側ヘッダ7における2次冷媒の温度を検出する負荷上流側温度検出手段(合流部温度検知用サーミスタ)で、この負荷上流側温度検出手段10では、各冷凍装置1a〜1dから流入する2次冷媒と前記バイパス配管11を介して流入する2次冷媒が合流して混合された温度を検出するものである。この負荷上流側温度検出手段10で検出される値は、前記負荷入口温度検出器13で検出される温度と略同一となるから、負荷入口温度検出器13で代用することも可能である。前記負荷上流側温度検出手段10で検出される温度は、バイパス配管11から上流側ヘッダ8に流入する2次冷媒がない場合、前記複数台の冷凍装置1a〜1dのうちの動作中の冷凍装置における前記出口側温度検出手段4a〜4dで検出された温度の平均値と同じになる。即ち、本実施例では、動作中の冷凍装置の1次側ポンプ5a〜5dの流量は同じになるように制御されるので、動作中の冷凍装置の前記出口側温度検出手段4a〜4dで検出された温度の平均値は、動作中の前記冷凍装置から流出した2次冷媒を混合した温度と等しくなる。   11 is a bypass pipe connecting the upstream header 7 and the downstream header 8, and when the flow rate of the secondary refrigerant flowing through the secondary side B is larger than the flow rate of the secondary refrigerant flowing through the primary side A, A part of the secondary refrigerant flows from the downstream header 8 to the upstream header 7 side via the bypass pipe 11, and conversely, the flow rate of the secondary refrigerant flowing through the primary side A flows through the secondary side B. When the flow rate is higher than the refrigerant flow rate, a part of the secondary refrigerant in the upstream header 7 flows to the downstream header 8 via the bypass pipe 11. Reference numeral 10 denotes a load upstream temperature detection means (a junction temperature detection thermistor) that detects the temperature of the secondary refrigerant in the upstream header 7. The load upstream temperature detection means 10 flows in from the refrigeration apparatuses 1 a to 1 d. The temperature at which the secondary refrigerant flowing through and the secondary refrigerant flowing in via the bypass pipe 11 merge and are mixed is detected. Since the value detected by the load upstream temperature detecting means 10 is substantially the same as the temperature detected by the load inlet temperature detector 13, the load inlet temperature detector 13 can be substituted. The temperature detected by the load upstream side temperature detection means 10 is the operating refrigeration apparatus among the plurality of refrigeration apparatuses 1a to 1d when there is no secondary refrigerant flowing into the upstream header 8 from the bypass pipe 11. It becomes the same as the average value of the temperature detected by the said outlet side temperature detection means 4a-4d. That is, in this embodiment, since the flow rates of the primary side pumps 5a to 5d of the operating refrigeration apparatus are controlled to be the same, they are detected by the outlet side temperature detecting means 4a to 4d of the operating refrigeration apparatus. The average value of the obtained temperatures becomes equal to the temperature at which the secondary refrigerant flowing out of the refrigeration apparatus in operation is mixed.

バイパス配管11から上流側ヘッダ7に流入する2次冷媒がある場合には、前記負荷上流側温度検出手段10で検出される温度は、前記複数台の冷凍装置1a〜1dのうちの動作中の冷凍装置における前記出口側温度検出手段4a〜4dで検出された温度の平均値よりも高くなる。その理由は、冷凍装置で冷却されずに、下流側ヘッダ8からバイパス配管11を介して温度の高い2次冷媒が、上流側ヘッダ7で混合されるためである。   When there is a secondary refrigerant flowing into the upstream header 7 from the bypass pipe 11, the temperature detected by the load upstream temperature detection means 10 is the operating temperature of the plurality of refrigeration apparatuses 1 a to 1 d. It becomes higher than the average value of the temperatures detected by the outlet side temperature detecting means 4a to 4d in the refrigeration apparatus. The reason is that the secondary refrigerant having a high temperature is mixed in the upstream header 7 from the downstream header 8 through the bypass pipe 11 without being cooled by the refrigeration apparatus.

一方、前記上流側ヘッダ7から下流側ヘッダ8へバイパス配管11を介して流入する2次冷媒がない場合、冷凍装置1a〜1dの入口側温度検出手段3a〜3dで検出された温度は前記負荷出口温度検出器14で検出された温度と略等しくなる。負荷出口側の温度は所定温度(設定温度)になるように制御されるから、入口側温度検出手段3a〜3dで検出された温度は前記所定温度(設定温度)とも略等しくなる。   On the other hand, when there is no secondary refrigerant flowing from the upstream header 7 to the downstream header 8 through the bypass pipe 11, the temperatures detected by the inlet side temperature detecting means 3a to 3d of the refrigeration apparatuses 1a to 1d are the load. It becomes substantially equal to the temperature detected by the outlet temperature detector 14. Since the temperature on the load outlet side is controlled to be a predetermined temperature (set temperature), the temperatures detected by the inlet side temperature detecting means 3a to 3d are substantially equal to the predetermined temperature (set temperature).

バイパス配管11から下流側ヘッダ8に流入する2次冷媒がある場合には、前記入口側温度検出手段3a〜3dで検出された温度は前記負荷出口温度検出器14で検出された温度或いは前記所定温度(設定温度)よりも低くなる。その理由は、冷凍装置で冷却された温度の低い2次冷媒の一部が、上流側ヘッダ7からバイパス配管11を介して下流側ヘッダ8に流入し、負荷20により昇温されている2次冷媒と混合されるためである。   When there is a secondary refrigerant flowing into the downstream header 8 from the bypass pipe 11, the temperature detected by the inlet side temperature detecting means 3 a to 3 d is the temperature detected by the load outlet temperature detector 14 or the predetermined value. It becomes lower than the temperature (set temperature). The reason is that a part of the low-temperature secondary refrigerant cooled by the refrigeration apparatus flows into the downstream header 8 from the upstream header 7 via the bypass pipe 11 and is heated by the load 20. This is because it is mixed with the refrigerant.

従って、前記負荷上流側温度検出手段10で検出された温度と、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記出口側温度検出手段4a〜4dで検出された温度を比較すると共に、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記入口側温度検出手段3a〜3dで検出された温度と予め決められている所定温度(或いは前記負荷出口温度検出器14で検出された温度)とを比較すれば、前記バイパス配管11を2次冷媒が流れているかどうか、またどちらの方向に流れているかを知ることができる。本実施例では、バイパス配管11を流れる2次冷媒の流量が減少または無くするように1次側を流れる前記2次冷媒の流量を制御するコントローラ12(制御手段)を備えている。   Therefore, the temperature detected by the load upstream side temperature detecting means 10 is compared with the temperature detected by the outlet side temperature detecting means 4a to 4d in the operating refrigeration apparatus among the plurality of refrigeration apparatuses. The temperature detected by the inlet side temperature detecting means 3a to 3d in the operating refrigeration apparatus among the plurality of refrigeration apparatuses and a predetermined temperature (or detected by the load outlet temperature detector 14). If the secondary refrigerant is flowing through the bypass pipe 11, it can be determined in which direction the secondary refrigerant is flowing. In this embodiment, a controller 12 (control means) is provided for controlling the flow rate of the secondary refrigerant flowing on the primary side so that the flow rate of the secondary refrigerant flowing in the bypass pipe 11 is reduced or eliminated.

次に、上記コントローラ12による制御の例を図2に示すフローチャートで説明する。 図1に示すコントローラ12は、負荷上流側温度検出手段10、冷凍装置1a〜1dの出口側温度検出手段4a〜4d、入口側温度検出手段3a〜3d、流量検出手段からの検出値に基づいて、1次側Aに設けられた冷凍装置1a〜1d及び1次側ポンプ5a〜5dを制御するものである。なお、2次側Bに設けられている2次側ポンプ6a〜6dや流量制御弁15などは、前述したように、2次側コントローラ(図示せず)で制御される。   Next, an example of control by the controller 12 will be described with reference to the flowchart shown in FIG. The controller 12 shown in FIG. 1 is based on detected values from the load upstream side temperature detecting means 10, the outlet side temperature detecting means 4a to 4d of the refrigeration apparatuses 1a to 1d, the inlet side temperature detecting means 3a to 3d, and the flow rate detecting means. The refrigerating apparatuses 1a to 1d and the primary pumps 5a to 5d provided on the primary side A are controlled. The secondary pumps 6a to 6d and the flow rate control valve 15 provided on the secondary side B are controlled by a secondary controller (not shown) as described above.

図2において、ステップ101では、最初に起動される冷凍装置が設定され、また冷凍装置への入口温度Ta及び出口温度Tbが設定され、更に1次側ポンプ5a〜5dの最大流量Umaxと最小流量Uminも設定される。   In FIG. 2, in step 101, the refrigeration apparatus to be activated first is set, the inlet temperature Ta and the outlet temperature Tb to the refrigeration apparatus are set, and the maximum flow rate Umax and the minimum flow rate of the primary pumps 5a to 5d. Umin is also set.

次に、ステップ102では、コントローラ12は、冷凍装置1a〜1dの入口側温度検出手段3a〜3dから各冷凍装置への入口水温Ti〜Tiを検知する。また、出口側温度検出手段4a〜4dから各冷凍装置からの出口水温To〜Toを検知する。更に、負荷上流側温度検出手段10から上流側ヘッダ内の2次冷媒水温(合流部水温)Tjを検知する。また、1次側ポンプ5a〜5dの回転数から各冷凍装置1a〜1dを流れている2次冷媒の流量Uを算出して検知する。 Next, in step 102, the controller 12 detects the inlet water temperatures Ti 1 to Ti 4 from the inlet side temperature detection means 3a to 3d of the refrigeration apparatuses 1a to 1d to the refrigeration apparatuses. Further, to detect the outlet water temperature To 1 ~To 4 from the refrigeration system from the outlet side temperature detection means 4 a to 4 d. Further, the secondary refrigerant water temperature (merging portion water temperature) Tj in the upstream header is detected from the load upstream temperature detection means 10. Further, the flow rate U of the secondary refrigerant flowing through the refrigeration apparatuses 1a to 1d is calculated and detected from the rotation speed of the primary pumps 5a to 5d.

ステップ103では、コントローラ12は、動作中の冷凍装置における出口水温To〜Toの平均温度Toを算出し、この平均温度Toと上流側ヘッダ内の2次冷媒水温Tjとを比較する。「Tj>To」の条件を満足すれば、ステップ104に移り、現在の1次側を流れている2次冷媒の前記流量Uと、動作中の1次側ポンプ5a〜5dの最大流量Umaxとを比較する。 In step 103, the controller 12 calculates the average temperature To of the outlet water temperatures To 1 to To 4 in the operating refrigeration apparatus, and compares this average temperature To with the secondary refrigerant water temperature Tj in the upstream header. If the condition of “Tj> To” is satisfied, the routine proceeds to step 104 where the flow rate U of the secondary refrigerant flowing on the current primary side and the maximum flow rate Umax of the primary pumps 5a to 5d in operation are Compare

「U=Umax」の条件を満足すれば、駆動する冷凍装置の運転台数を増段することで1次側を流れる2次冷媒全体の流量を増加させる(ステップ105)。「U=Umax」の条件を満足していない場合は、動作中の1次側ポンプ5a〜5dの流量を増量させるように制御する(ステップ106)。   If the condition of “U = Umax” is satisfied, the flow rate of the entire secondary refrigerant flowing on the primary side is increased by increasing the number of operating refrigeration units to be driven (step 105). If the condition of “U = Umax” is not satisfied, control is performed to increase the flow rate of the primary pumps 5a to 5d during operation (step 106).

前記ステップ103で、「Tj>To」の条件を満足しない場合、ステップ107に移り、ステップ101で設定されている入口温度(設定温度)Taと、動作中の冷凍装置への前記入口水温Ti(Ti〜Tiの平均値でも良いし、Ti〜Tiの何れかの入口水温でも良い)とを比較し、「Ta>Ti」の条件を満足すれば、動作中の冷凍装置を流れている2次冷媒の流量Uと、動作中の1次側ポンプ5a〜5dの最小流量Uminとを比較する(ステップ108)。「U=Umin」の条件を満足すれば、運転台数を減段することで1次側全体を流れる2次冷媒の流量を減少させる(ステップ109)。「U=Umin」の条件を満足しない場合、動作中の1次側ポンプ5a〜5dの流量を減少させるように制御する(ステップ110)。 If the condition of “Tj> To” is not satisfied in step 103, the process proceeds to step 107, and the inlet temperature (set temperature) Ta set in step 101 and the inlet water temperature Ti ( may be an average value of Ti 1 ~Ti 4, compare also good) and either of the inlet water temperature Ti 1 ~Ti 4, to satisfy the condition "Ta>Ti", flows a refrigeration apparatus in operation The flow rate U of the secondary refrigerant is compared with the minimum flow rate Umin of the operating primary pumps 5a to 5d (step 108). If the condition of “U = Umin” is satisfied, the flow rate of the secondary refrigerant flowing through the entire primary side is decreased by reducing the number of operating units (step 109). When the condition of “U = Umin” is not satisfied, control is performed so as to decrease the flow rate of the primary pumps 5a to 5d during operation (step 110).

なお、前記ステップ107において、「Ta>Ti」の条件を満足しない場合は、前記バイパス配管11を2次冷媒が流れていないか微小量であるから、1次側ポンプ5a〜5dの流量はそのまま維持する(ステップ111)。   In step 107, if the condition of “Ta> Ti” is not satisfied, the flow rate of the primary pumps 5a to 5d remains as it is because the secondary refrigerant is not flowing through the bypass pipe 11 or is very small. Maintain (step 111).

次に、ステップ112に移り、効果待ち時間を経過した後に、再び前記ステップ102に移り、前回と同様に、入口水温Ti1〜Ti4、出口水温To〜To、上流側ヘッダ内の2次冷媒水温Tj、各冷凍装置1a〜1dを流れている2次冷媒の流量Uを検知し、以下、上記と同様の動作を繰り返す。 Turning now to step 112, after a lapse of effective latency, proceeds to the step 102 again, as before, inlet water temperature Ti1~Ti4, outlet water temperature To 1 ~To 4, 2-order refrigerant in the upstream side header The water temperature Tj and the flow rate U of the secondary refrigerant flowing through each of the refrigeration apparatuses 1a to 1d are detected, and thereafter, the same operation as described above is repeated.

なお、図1では、上記コントローラ(制御手段)12が冷凍装置1a〜1dの外部に設置されている例で説明したが、冷凍装置1a〜1dにはそれぞれの冷凍装置を制御するための制御基板が備えられているので、冷凍装置1a〜1dのうちの何れかの冷凍装置の制御基板に対し、図1に示すコントローラ12と同様の制御機能を組み込むようにすれば、図1に示す外付けのコントローラ12は不要となり、冷凍装置に備えられている制御基板に前記制御手段としての機能を組み込ませることができるから安価に製造できる。   In addition, in FIG. 1, although the said controller (control means) 12 demonstrated in the example installed in the exterior of freezing apparatus 1a-1d, the control board for controlling each freezing apparatus is provided in freezing apparatus 1a-1d. Therefore, if a control function similar to that of the controller 12 shown in FIG. 1 is incorporated in the control board of any of the refrigeration apparatuses 1a to 1d, the external attachment shown in FIG. The controller 12 is not necessary, and the function as the control means can be incorporated into the control board provided in the refrigeration apparatus, so that it can be manufactured at low cost.

本実施例によれば、負荷上流側温度検出手段10、冷凍装置1a〜1dの出口側温度検出手段4a〜4d、入口側温度検出手段3a〜3d、及び流量検出手段からの検出値に基づいて、1次側Aに設けられた冷凍装置1a〜1d及び1次側ポンプ5a〜5dを図2に示したような制御フローで制御するので、2次側B(負荷側)での2次冷媒の流量の変動に対して、すばやく1次側Aにおける2次冷媒の流量も調節することが可能となるから、バイパス配管11を流れる2次冷媒の流量を短時間で無くすることができる。従って、1次側ポンプ5a〜5dや2次側ポンプ6a〜6dが余分な動力を消費しないので、省エネ化を図れる冷凍システムを実現できる。   According to the present embodiment, based on the detected values from the load upstream side temperature detection means 10, the outlet side temperature detection means 4a to 4d of the refrigeration apparatuses 1a to 1d, the inlet side temperature detection means 3a to 3d, and the flow rate detection means. Since the refrigeration apparatuses 1a to 1d and the primary pumps 5a to 5d provided on the primary side A are controlled by the control flow as shown in FIG. 2, the secondary refrigerant on the secondary side B (load side) Since the flow rate of the secondary refrigerant on the primary side A can be quickly adjusted with respect to the fluctuation of the flow rate, the flow rate of the secondary refrigerant flowing through the bypass pipe 11 can be eliminated in a short time. Therefore, since the primary pumps 5a to 5d and the secondary pumps 6a to 6d do not consume extra power, a refrigeration system that can save energy can be realized.

なお、冷凍装置における圧縮機の容量制御は、段階的に容量制御するものでも良いが、圧縮機を段階的に容量制御するものである場合、冷凍装置では、出口温度を一定に保つ必要があるため、1次側ポンプの流量も一定幅でしか制御できない。このため、1次側ポンプと2次側ポンプの流量を等しくすることが困難で、バイパス配管11を流れる流量を無くすることはできず、ポンプが余分な動力を消費して搬送動力に無駄が発生する。   In addition, although the capacity | capacitance control of the compressor in a refrigeration apparatus may be what controls a capacity | capacitance in steps, in the case of a capacity | capacitance control of a compressor in stages, it is necessary to keep outlet temperature constant in a refrigeration apparatus Therefore, the flow rate of the primary pump can also be controlled only within a certain range. For this reason, it is difficult to equalize the flow rates of the primary pump and the secondary pump, the flow rate flowing through the bypass pipe 11 cannot be eliminated, and the pump consumes extra power and wastes conveyance power. Occur.

上記実施例では、圧縮機は連続的に容量制御されるものであるため、1次側ポンプと2次側ポンプの流量を等しくすることができる。このため、圧縮機を段階的に容量制御する場合に比べて、2次側ポンプの搬送動力の無駄をより低減できる。   In the above embodiment, since the compressor is continuously capacity-controlled, the flow rates of the primary pump and the secondary pump can be made equal. For this reason, compared with the case where the capacity of the compressor is controlled in stages, waste of the conveyance power of the secondary pump can be further reduced.

また、上記実施例を用いることにより、冷凍システムの1次側Aの機器を制御するコントローラ(制御手段)12は、2次側Bの機器を制御する2次側コントローラとは独立した制御とすることができるので、冷凍システムの冷凍装置1a〜1dだけを新しい冷凍装置と交換する場合でも、交換前の冷凍装置と同一のものである必要はなく、適宜好みの冷凍装置に交換することができ、省エネ性の高い最適な冷凍装置を選択できるという効果もある。   Further, by using the above embodiment, the controller (control means) 12 for controlling the primary side A equipment of the refrigeration system is controlled independently of the secondary side controller for controlling the secondary side B equipment. Therefore, even when only the refrigeration apparatus 1a to 1d of the refrigeration system is replaced with a new refrigeration apparatus, it is not necessary to be the same as the refrigeration apparatus before the replacement, and can be appropriately replaced with a favorite refrigeration apparatus There is also an effect that an optimum refrigeration apparatus with high energy saving can be selected.

なお、上述した実施例では、1次側ポンプ5a〜5dの流量は、それぞれ等しく増減されるように制御される例で説明したが、1次側ポンプ5a〜5dの流量が各々異なって増減する場合であっても、各冷凍装置を流れる流量とその出口側温度を考慮すれば、複数台の冷凍装置のうちの動作中の冷凍装置における出口側温度の平均値(複数台の冷凍装置から出た2次冷媒を混合した温度)を求めることは可能である。従って、1次側ポンプ5a〜5dの流量が異なる冷凍システムにも本発明は適用できる。   In the above-described embodiment, the flow rate of the primary pumps 5a to 5d is controlled to be increased or decreased equally. However, the flow rates of the primary pumps 5a to 5d are increased or decreased differently. Even in this case, if the flow rate flowing through each refrigeration unit and the outlet side temperature thereof are taken into consideration, the average value of the outlet side temperatures in the operating refrigeration unit among the plurality of refrigeration units (from the plurality of refrigeration units) It is possible to determine the temperature at which the secondary refrigerant is mixed. Therefore, the present invention can also be applied to refrigeration systems in which the flow rates of the primary pumps 5a to 5d are different.

また、上記実施例では、2次冷媒が水で、この水を冷凍装置で冷却して負荷に供給する冷凍システムとして説明したが、2次冷媒は水の他に、ブラインや空気なども使用可能である。   Moreover, in the said Example, the secondary refrigerant | coolant was water, and it demonstrated as a refrigeration system which cools this water with a refrigeration apparatus, and supplies it to a load, but a secondary refrigerant | coolant can also use brine, air, etc. It is.

更に、本発明は負荷を冷却する場合だけでなく、負荷を加熱する冷凍システムとしても、前述した通り、同様に適用できる。   Furthermore, the present invention can be similarly applied not only to cooling a load but also to a refrigeration system for heating a load as described above.

1a〜1d…冷凍装置
2a〜2d…熱交換器
3a〜3d…入口側温度検出手段(入口温度検知用サーミスタ)
4a〜4d…出口側温度検出手段(出口温度検知用サーミスタ)
5a〜5d…1次側ポンプ
6a〜6d…2次側ポンプ
7…上流側ヘッダ、8…下流側ヘッダ、9…中間ヘッダ
10…負荷上流側温度検出手段(合流部温度検知用サーミスタ)
11…バイパス管
12…コントローラ(制御手段)
13…負荷入口温度検出器
14…負荷出口温度検出器
15…流量制御弁
16…逃し弁
20…負荷。
1a to 1d ... refrigeration devices 2a to 2d ... heat exchangers 3a to 3d ... inlet side temperature detection means (thermistor for inlet temperature detection)
4a to 4d: outlet side temperature detection means (outlet temperature detection thermistor)
5a to 5d ... primary side pumps 6a to 6d ... secondary side pump 7 ... upstream header, 8 ... downstream header, 9 ... intermediate header 10 ... load upstream side temperature detection means (thermistor for detecting junction temperature)
11 ... Bypass pipe 12 ... Controller (control means)
13 ... Load inlet temperature detector 14 ... Load outlet temperature detector 15 ... Flow control valve 16 ... Relief valve 20 ... Load.

Claims (12)

1次側に並列に複数台設けられた冷凍装置からの2次冷媒が流入すると共に負荷の上流側に設けられた上流側ヘッダと、前記負荷の下流側に設けられ負荷からの前記2次冷媒を前記複数台の冷凍装置に分配するための下流側ヘッダと、この下流側ヘッダの前記2次冷媒を前記各冷凍装置に個々に供給するための1次側ポンプと、前記上流側ヘッダの前記2次冷媒を前記負荷に供給するための2次側ポンプと、前記上流側ヘッダと下流側ヘッダを接続するバイパス配管とを備えた冷凍システムにおいて、
前記各冷凍装置を流れる前記2次冷媒の流量を検出するための流量検出手段と、
前記各冷凍装置に流入する前記2次冷媒の温度を検出するための入口側温度検出手段と、
前記各冷凍装置から流出した前記2次冷媒の温度を検出するための出口側温度検出手段と、
前記上流側ヘッダと前記負荷との間の前記2次冷媒の温度を検出する負荷上流側温度検出手段と、
前記負荷上流側温度検出手段で検出された温度が、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記出口側温度検出手段で検出された温度よりも高い場合、前記1次側を流れる前記2次冷媒全体の流量が増大するように制御し、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記入口側温度検出手段で検出された温度が所定温度よりも低い場合、前記1次側を流れる前記2次冷媒の流量全体の流量が減少するように制御する制御手段と
を備えていることを特徴とする冷凍システム。
Secondary refrigerant from a plurality of refrigeration units provided in parallel on the primary side flows in, an upstream header provided on the upstream side of the load, and the secondary refrigerant from the load provided on the downstream side of the load A downstream header for distributing the refrigerant to the plurality of refrigeration devices, a primary pump for individually supplying the secondary refrigerant of the downstream header to the refrigeration devices, and the upstream header In a refrigeration system comprising a secondary pump for supplying a secondary refrigerant to the load, and a bypass pipe connecting the upstream header and the downstream header,
Flow rate detection means for detecting the flow rate of the secondary refrigerant flowing through each of the refrigeration devices;
Inlet-side temperature detection means for detecting the temperature of the secondary refrigerant flowing into each refrigeration apparatus;
Outlet side temperature detection means for detecting the temperature of the secondary refrigerant flowing out from each of the refrigeration devices;
Load upstream side temperature detection means for detecting the temperature of the secondary refrigerant between the upstream header and the load;
When the temperature detected by the load upstream side temperature detection means is higher than the temperature detected by the outlet side temperature detection means in the operating refrigeration apparatus among the plurality of refrigeration apparatuses, the primary side is When the temperature detected by the inlet side temperature detection means in the refrigeration apparatus in operation among the plurality of refrigeration apparatuses is lower than a predetermined temperature, the flow rate of the entire secondary refrigerant flowing is controlled to increase. And a control means for controlling the overall flow rate of the secondary refrigerant flowing on the primary side to decrease.
請求項1に記載の冷凍システムにおいて、前記制御手段は、前記負荷上流側温度検出手段で検出された温度が、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記出口側温度検出手段で検出された温度の平均値よりも高い場合で、動作中の冷凍装置における流量がその最大流量よりも少ない状態であれば、流量を増大させ、動作中の冷凍装置における流量が最大流量の状態であれば、停止中の冷凍装置を動作させるように制御することを特徴とする冷凍システム。   2. The refrigeration system according to claim 1, wherein the temperature detected by the load upstream-side temperature detection means is the outlet-side temperature detection means in the refrigeration apparatus in operation among the plurality of refrigeration apparatuses. If the flow rate in the operating refrigeration system is lower than the maximum flow rate when the temperature is higher than the average value detected in step 3, the flow rate is increased and the flow rate in the operating refrigeration unit is at the maximum flow rate. Then, the refrigeration system characterized by controlling to operate the frozen refrigeration apparatus. 請求項1または2に記載の冷凍システムにおいて、前記制御手段は、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記入口側温度検出手段で検出された温度が所定温度よりも低い場合で、動作中の冷凍装置における流量がその最小流量よりも多い状態であれば、流量を減少させ、動作中の冷凍装置における流量が最小流量の状態であれば、動作中の冷凍装置を停止させるように制御することを特徴とする冷凍システム。   3. The refrigeration system according to claim 1, wherein the control means has a temperature detected by the inlet side temperature detection means in the operating refrigeration apparatus of the plurality of refrigeration apparatuses being lower than a predetermined temperature. If the flow rate in the operating refrigeration apparatus is higher than the minimum flow rate, the flow rate is decreased, and if the flow rate in the operating refrigeration apparatus is the minimum flow rate, the operating refrigeration apparatus is stopped. A refrigeration system characterized by being controlled as follows. 1次側に並列に複数台設けられた冷凍装置からの2次冷媒が流入すると共に負荷の上流側に設けられた上流側ヘッダと、前記負荷の下流側に設けられ負荷からの2次冷媒を前記複数台の冷凍装置に分配するための下流側ヘッダと、この下流側ヘッダの2次冷媒を前記各冷凍装置に個々に供給するための1次側ポンプと、前記上流側ヘッダの2次冷媒を前記負荷に供給するための2次側ポンプと、前記上流側ヘッダと下流側ヘッダを接続するバイパス配管とを備えた冷凍システムにおいて、
前記各冷凍装置を流れる2次冷媒の流量を検出するための流量検出手段と、
前記各冷凍装置に流入する2次冷媒の温度を検出するための入口側温度検出手段と、
前記各冷凍装置から流出した2次冷媒の温度を検出するための出口側温度検出手段と、
前記上流側ヘッダと前記負荷との間の2次冷媒の温度を検出する負荷上流側温度検出手段と、
前記負荷上流側温度検出手段で検出された温度と、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記出口側温度検出手段で検出された温度を比較すると共に、前記複数台の冷凍装置のうちの動作中の冷凍装置における前記入口側温度検出手段で検出された温度と予め決められている所定温度または負荷出口側温度とを比較して、前記バイパス配管を流れる2次冷媒の流量が減少するように1次側を流れる前記2次冷媒の流量を制御する制御手段と
を備えていることを特徴とする冷凍システム。
Secondary refrigerant from a plurality of refrigeration units provided in parallel on the primary side flows in, an upstream header provided on the upstream side of the load, and secondary refrigerant from the load provided on the downstream side of the load. A downstream header for distribution to the plurality of refrigeration apparatuses, a primary pump for individually supplying the secondary refrigerant of the downstream header to the refrigeration apparatuses, and a secondary refrigerant of the upstream header In a refrigeration system comprising a secondary pump for supplying the load to the load, and a bypass pipe connecting the upstream header and the downstream header,
Flow rate detection means for detecting the flow rate of the secondary refrigerant flowing through each of the refrigeration devices;
Inlet side temperature detection means for detecting the temperature of the secondary refrigerant flowing into each refrigeration apparatus;
Outlet side temperature detection means for detecting the temperature of the secondary refrigerant flowing out from each of the refrigeration devices;
Load upstream side temperature detection means for detecting the temperature of the secondary refrigerant between the upstream header and the load;
The temperature detected by the load upstream side temperature detecting means is compared with the temperature detected by the outlet side temperature detecting means in the operating refrigeration apparatus of the plurality of refrigeration apparatuses, and the plurality of refrigeration units The flow rate of the secondary refrigerant flowing through the bypass pipe by comparing the temperature detected by the inlet side temperature detecting means in the operating refrigeration unit of the device with a predetermined temperature or load outlet side temperature determined in advance. And a control means for controlling the flow rate of the secondary refrigerant flowing on the primary side so as to decrease the refrigeration system.
請求項1〜4の何れかに記載の冷凍システムにおいて、前記負荷に流入する前記2次冷媒の温度と、前記負荷から流出する前記2次冷媒の温度との温度差に応じて前記2次側ポンプの流量が制御されることを特徴とする冷凍システム。   The refrigeration system according to any one of claims 1 to 4, wherein the secondary side according to a temperature difference between a temperature of the secondary refrigerant flowing into the load and a temperature of the secondary refrigerant flowing out of the load. A refrigeration system in which the flow rate of the pump is controlled. 請求項5に記載の冷凍システムにおいて、前記2次側ポンプは複数台のポンプで構成され、前記負荷に流入する前記2次冷媒の温度と、前記負荷から流出する前記2次冷媒の温度との温度差が所定の温度差になるように前記2次側ポンプ全体の流量が制御されることを特徴とする冷凍システム。   6. The refrigeration system according to claim 5, wherein the secondary pump includes a plurality of pumps, and includes a temperature of the secondary refrigerant flowing into the load and a temperature of the secondary refrigerant flowing out of the load. The refrigeration system, wherein the flow rate of the entire secondary pump is controlled so that the temperature difference becomes a predetermined temperature difference. 請求項5または6に記載の冷凍システムにおいて、前記2次側ポンプは連続的に回転数が制御されるポンプを有することを特徴とする冷凍システム。   7. The refrigeration system according to claim 5, wherein the secondary pump has a pump whose rotation speed is continuously controlled. 請求項1〜7の何れかに記載の冷凍システムにおいて、前記冷凍装置は、連続的に運転容量の変化が可能な圧縮機を備え、該冷凍装置の出口側温度が所定の温度になるように前記圧縮機容量が制御されることを特徴とする冷凍システム。   The refrigeration system according to any one of claims 1 to 7, wherein the refrigeration apparatus includes a compressor capable of continuously changing an operation capacity so that an outlet side temperature of the refrigeration apparatus becomes a predetermined temperature. The refrigeration system, wherein the compressor capacity is controlled. 請求項1〜8の何れかに記載の冷凍システムにおいて、前記1次側ポンプは連続的に回転数が制御されるポンプであり、該1次側ポンプの回転数を変化させることで前記各冷凍装置を流れる流量を制御することを特徴とする冷凍システム。   The refrigeration system according to any one of claims 1 to 8, wherein the primary pump is a pump whose rotation speed is continuously controlled, and each refrigeration is performed by changing the rotation speed of the primary pump. A refrigeration system characterized by controlling a flow rate through the apparatus. 請求項1〜9の何れかに記載の冷凍システムにおいて、前記負荷上流側温度検出手段は前記上流側ヘッダにおける2次冷媒の温度を検出するものであることを特徴とする冷凍システム。   The refrigeration system according to any one of claims 1 to 9, wherein the load upstream side temperature detecting means detects a temperature of a secondary refrigerant in the upstream header. 請求項1〜10の何れかに記載の冷凍システムにおいて、前記各冷凍装置を流れる2次冷媒の流量を検出するための流量検出手段は、各冷凍装置に2次冷媒を供給する前記1次側ポンプの回転数に基づいて流量を算出するものであることを特徴とする冷凍システム。   The refrigeration system according to any one of claims 1 to 10, wherein the flow rate detection means for detecting the flow rate of the secondary refrigerant flowing through each refrigeration apparatus supplies the secondary refrigerant to each refrigeration apparatus. A refrigeration system for calculating a flow rate based on a rotational speed of a pump. 請求項1〜11の何れかに記載の冷凍システムにおいて、前記制御手段は、各冷凍装置に備えられて各冷凍装置を制御するための制御基板の中に組み込まれていることを特徴とする冷凍システム。   12. The refrigeration system according to claim 1, wherein the control means is provided in each refrigeration apparatus and is incorporated in a control board for controlling each refrigeration apparatus. system.
JP2010100883A 2010-04-26 2010-04-26 Refrigeration system Active JP5523918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010100883A JP5523918B2 (en) 2010-04-26 2010-04-26 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010100883A JP5523918B2 (en) 2010-04-26 2010-04-26 Refrigeration system

Publications (2)

Publication Number Publication Date
JP2011231955A JP2011231955A (en) 2011-11-17
JP5523918B2 true JP5523918B2 (en) 2014-06-18

Family

ID=45321454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010100883A Active JP5523918B2 (en) 2010-04-26 2010-04-26 Refrigeration system

Country Status (1)

Country Link
JP (1) JP5523918B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511377B2 (en) * 2015-09-29 2019-05-15 三機工業株式会社 Heat medium conveyance system in heat medium piping system or heat medium piping system
JP6832732B2 (en) * 2017-02-10 2021-02-24 日立ジョンソンコントロールズ空調株式会社 Refrigeration system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3405426B2 (en) * 1995-03-31 2003-05-12 高砂熱学工業株式会社 Refrigerator unit control device
JP3365997B2 (en) * 2000-09-18 2003-01-14 ダイダン株式会社 Primary / secondary pump type heat source variable flow system
JP4173981B2 (en) * 2002-09-11 2008-10-29 株式会社山武 Secondary pump type heat source variable flow rate control method and secondary pump type heat source system
JP2004257707A (en) * 2003-02-27 2004-09-16 Hitachi Plant Eng & Constr Co Ltd Method and device for controlling proper capacity of heat source apparatus
JP4600139B2 (en) * 2004-10-06 2010-12-15 パナソニック株式会社 Air conditioner and control method thereof
JP3972342B2 (en) * 2004-12-17 2007-09-05 日本エンジニアリング株式会社 Control method and control apparatus for air conditioning system and air conditioning system
JP5495499B2 (en) * 2008-02-27 2014-05-21 三菱重工業株式会社 Turbo refrigerator, refrigeration system, and control method thereof
US8939196B2 (en) * 2009-02-13 2015-01-27 Toshiba Carrier Corporation Secondary pump type heat source and secondary pump type heat source control method

Also Published As

Publication number Publication date
JP2011231955A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
US9562701B2 (en) Temperature control system and air conditioning system
JP6570746B2 (en) Heat medium circulation system
US8701424B2 (en) Turbo chiller, heat source system, and method for controlling the same
US20130274948A1 (en) Heat source system and method for controlling the number of operated devices in heat source system
JP4422572B2 (en) Cold / hot water control method for cold / hot heat source machine
WO2012057263A1 (en) Heat source apparatus
JP2007240131A (en) Optimization control of heat source unit and accessory
JP6644559B2 (en) Heat source control system, control method and control device
JP2011064438A (en) Cold water circulating system
JP5227247B2 (en) Heat source system operating method and heat source system
JP2003294290A (en) Unit number control device of heat source and unit number control method
JP2004278884A (en) Control device
JP3828485B2 (en) Control device
JP5523918B2 (en) Refrigeration system
JP2014145493A (en) Pump operation unit number decision control method in two-pump type heat source equipment
JP6422590B2 (en) Heat source system
JP4440147B2 (en) Operation control method for two-pump heat source equipment
JP2005127586A (en) Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method
JP5286479B2 (en) Cold water circulation system
JP6832732B2 (en) Refrigeration system
JP2009019842A (en) Water delivery control system and water delivery control method
JP2011226680A (en) Cooling water producing facility
US11585578B2 (en) Refrigeration cycle apparatus
US9664426B2 (en) System and method for improving efficiency of a refrigerant based system
US20220228766A1 (en) Device management apparatus, heat source system, management apparatus, and device management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140409

R150 Certificate of patent or registration of utility model

Ref document number: 5523918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250