TW200938728A - Fluid transmission device with multi flow channels - Google Patents

Fluid transmission device with multi flow channels Download PDF

Info

Publication number
TW200938728A
TW200938728A TW97107716A TW97107716A TW200938728A TW 200938728 A TW200938728 A TW 200938728A TW 97107716 A TW97107716 A TW 97107716A TW 97107716 A TW97107716 A TW 97107716A TW 200938728 A TW200938728 A TW 200938728A
Authority
TW
Taiwan
Prior art keywords
valve
valve body
delivery device
channel fluid
fluid delivery
Prior art date
Application number
TW97107716A
Other languages
Chinese (zh)
Other versions
TWI359233B (en
Inventor
Shin-Chen Chang
Chiang-Ho Cheng
Ying-Lun Chang
Rong-Ho Yu
Shih-Che Chiu
Original Assignee
Microjet Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microjet Technology Co Ltd filed Critical Microjet Technology Co Ltd
Priority to TW97107716A priority Critical patent/TWI359233B/en
Publication of TW200938728A publication Critical patent/TW200938728A/en
Application granted granted Critical
Publication of TWI359233B publication Critical patent/TWI359233B/en

Links

Landscapes

  • Multiple-Way Valves (AREA)

Abstract

A fluid transmission device with multi flow channels for transmitting a fluid is disclosed. The fluid transmission device comprises a valve base having an output passage and an input passage, a valve cover disposed on the valve base, a valve membrance disposed between the valve base and the valve cover and having a plurality of valve structures with the same material and thickness, wherein the rigidity of at least one of the valve structures is different from that of the other, a plurality of temporary chambers disposed between the valve membrance and the valve cover and between the valve membrance and the valve base, and a vibrating device. The edge of the vibrating device is fixed on the valve cover.

Description

200938728 • 九、發明說明: 【發明所屬之技術領域】 本案係關於一種流體輸送裝置,尤指一種適用於微泵 浦結構之多流道流體輸送裝置。 【先前技術】 目前於各領域中無論是醫藥、電腦科技、列印、能源 〇 等工業,產品均朝精緻化及微小化方向發展,其中微泵 浦、喷霧器、喷墨頭、工業列印裝置等產品所包含之流體 輸送結構為其關鍵技術,是以,如何藉創新結構突破其技 術瓶頸,為發展之重要内容。 請參閱第一圖,其係為習知微泵浦結構之結構示意 圖,習知微泵浦結構10係由閥體座11、閥體蓋體12、閥 體薄膜13、微致動器14及蓋體15所組成,其中,閥體薄 ❿ 膜13係包含入口閥門結構131及出口閥門結構132,閥體 座11包含入口通道111及出口通道112、閥體蓋體12與 微致動器14間定義形成一壓力腔室123,閥體薄膜13設 置在閥體座11與閥體蓋體12之間。 當一電壓作用在微致動器14的上下兩極時,會產生 一電場,使得微致動器14在此電場之作用下產生彎曲, 當微致動器14朝箭號X所指之方向向上彎曲變形,將使 ' 得壓力腔室123之體積增加,因而產生一吸力,使閥體薄 * 膜13之入口閥門結構131開啟,使液體可自閥體座11上 6 200938728 * 之入口通道111被吸取進來,並流經閥體薄膜13之入口閥 門結構131及閥體蓋體12上之入口閥片通道121而流入 壓力腔室123内,反之當微致動器14因電場方向改變而 朝箭號X之反方向向下彎曲變形時,則會壓縮壓力腔室123 之體積,使得壓力腔室123對内部之流體產生一推力,並 使閥體薄膜13之入口閥門結構131、出口閥門結構132承 受一向下推力,而出口閥門結構132將開啟,並使液體由 φ 壓力腔室123經由閥體蓋體12上之出口閥門通道122、閥 體薄膜13之出口閥門結構132,而從閥體座11之出口通 道112流出流體輸送裝置10外,因而完成流體之傳輸過 程。 雖然習知微泵浦結構10能夠達到輸送流體的功能, 但是其係使用單一壓力腔室配合單一流通管道、單一進出 口以及單一對的閥門結構設計,若使用習知微泵浦結構10 進行兩種不同液體之不同比例的混合時,需先藉由兩個泵 Ο 浦依照不同比例汲取再攪拌混合,然後才將混合後之流體 傳送至微泵浦結構10進行流體輸送的方式,或是僅使用 一個泵浦,但是必須要搭配外接之流量調節閥門,如此的 實施方式將會增加整個泵浦系統的複雜度。 因此,如何發展一種可改善上述習知技術缺失之多流 道流體輸送裝置,實為目前迫切需要解決之問題。 • 【發明内容】 _ 本案之主要目的在於提供一種多流道流體輸送裝 7 200938728 置’俾解決以習知微泵浦結構進行兩種不同液體之不 例的混合,需先蕤由忐彻石虫 裡个』饮體之不同比 $ B M a ,/翁依照不同比例汲取再授拌混 σ β疋用—贿浦’但是必須要搭配外接之流量, 節闊門、,將増加整個嶋統的複雜度等缺點。-里調 述目的’本案之—較廣施樣 多流道流體輸送裝置,用以傳 乃敌供種 , 得送机體,其係包含:閥體座, :係設置於二庙口通道及至少—入口通道;閥體蓋體, 體蓋體之間,且具’其係設置於闕體座及間 it 間門結構,複數個闕門結構係 同厚度^同材料製成,且其中至少一個閥門結構的剛性與 其它的閥門結構不同;禮數彻嶄 、 薄膜與闕體座之間;以及振動 裝置’其週邊係固設於閥體蓋體。 【實施方式】 體現本案㈣與優點的—些制實_將在後段的 說明中詳細敘述。應_岐本案㈣在不同的態樣上且 有各種的變化’其皆不脫離本案的_,且其中的說明及 圖示在本質上係當作說明之用,而非用以限制本案。 本案之多流道流體輸送裝置主要係藉由單一壓力腔 室及致動器配合多個流通管道、多個進出口及其多個閥門 结構之配置概念,能夠在不增加整體尺寸下,使流量及揚 程大為增加,非常適合用於流量及揚程需求相對較高之應 200938728 • 用場合。 請參閲第二圖(a),其係本案較佳實施例之多流道流 體輸送裝置之分解結構示意圖,如圖所示,本實施例之多 流道流體輸送裝置20係由閥體座21、閥體蓋體22、閥體 薄膜23、致動裝置24及蓋體25所組成,閥體蓋體22及 致動裝置24之間形成一壓力腔室225(如第二圖(c)所 示),主要用來儲存流體,多流道流體輸送裝置20之組裝 φ 方式係將閥體薄膜23設置於閥體座21及閥體蓋體22之 間,並使閥體薄膜23與閥體座21及閥體蓋體22相對應 設置,且在閥體薄膜23與閥體蓋體22之間形成第一暫存 室,而在閥體薄膜23與閥體座21之間形成第二暫存室, 並且於閥體蓋體22上之相對應位置更設置有致動裝置 24,致動裝置24係由一振動薄膜241以及一致動器242 組裝而成,用以驅動多流道流體輸送裝置20之作動,最 後,再將蓋體25設置於致動裝置24之上方,故其係依序 Ο 將閥體座21、閥體薄膜23、閥體蓋體22、致動裝置24及 蓋體25相對應堆疊設置,以完成多流道流體輸送裝置20 之組裝(如第二圖(e)所示)。 其中,閥體座21及閥體蓋體22係為本案多流道流體 輸送裝置20中導引流體進出之主要結構,請再參閱第二 圖(b)並配合第二圖(a),其中第二圖(b)係為第二圖 (a)所示之閥體座的背面結構示意圖,如第二圖(a)所 示,閥體座21係具有入口通道211a、211b及出口通道 ’ 212a、212b,但並不以此為限,多流道流體輸送裝置20 9 200938728 • 所設置之入口通道及出口通道的數量可分別為一個或多 個,流體係可由外界輸入,經由入口流道211a、211b分別 傳送至閥體座21之開口 213a、213b,並且,於本實施例 中,閥體薄膜23及閥體座21之間所形成的第二暫存室即 為圖中所示之出口暫存腔215a、215b,但不以此為限,其 係由閥體座21於與出口流道212a、212b相對應之位置產 生部分凹陷而形成,並分別與出口流道212a、212b相連 ❹ 通’該出口暫存腔215a、215b係用以暫時儲存流體,並使 流體由出口暫存腔215a、215b經由開口 214a、214b而輸 送至出口通道212a、212b流出。以及,在闕體座21上更 具有複數個凹槽結構,用以供一密封環26(如第三圖(a)及 第四圖(a)所示)設置於其上’於本實施例中,閥體座21 係具有環繞開口 213a、213b週邊之凹槽216a、216b,及 環繞於出口暫存腔215a、215b週邊之凹槽217a、217b。 請參閱第二圖⑻並配合第二圖(a),其中第二圖(c) φ 係為第二圖(a)所示之閥體蓋體之背面結構示意圖,如圖 所示,閥體蓋座22係具有一上表面220及一下表面221, 以及在閥體蓋座22上亦具有貫穿上表面220至下表面221 之入口閥門通道222a、222b及出口閥門通道223a、223b, 且該入口閥門通道222a、222b係分別設置於與閥體座21 之開口 213a、213b相對應之位置,而出口閥門通道223a、 223b則分別設置於與閥體座21之出口暫存腔215a、215b 内之開口 214a、214b相對應之位置’並且,於本實施例中, • 閥體薄膜23及閥體蓋體22之間所形成之複數個第一暫存 200938728 . 室即為圖中所示之入口暫存腔224a、224b ’且不以此為 限,其係由閥體蓋體22之下表面221於與入口闕門通道 222a、222b相對應之位置產生部份凹陷而形成,且其係連 通於入口閥門通道222a、222b。 請再參閲第二圖(c),如圖所示’閥體蓋體22之上表 面220係部份凹陷,以形成一壓力腔室225 ’其係與致動 裝置24之致動器242相對應設置’壓力腔室225係經由 _ 入口閥門通道222a、222b分別連通於入口暫存腔224a、 響 224b,並同時與出口閥門通道223a、223b相連通’因此, 當致動器242受電壓致動使致動裝置24上凸變形’造成 壓力腔室225之體積膨脹而產生負壓差,可使流體經入口 閥門通道222a、222b流至壓力腔室225内’其後’當施加 於致動器242的電場方向改變後’致動器242將使致動裝 置24下凹變形壓力腔室225收縮而體積減小’使壓力腔 室225與外界產生正壓力羞’促使流體由出口閥門通道 ❹ 223a、223b流出壓力腔室225之外’於此同時’同樣有部 分流體會流入入口閥門通道222a、222b及入口暫存室 224a、224b内,然而由於此時的入口閥門結構231a、 231b(如第三圖(c)及第四圖(c)所示)係為使受壓而關閉的 狀態’故該流體不會通過入口閥片2313a、2313b而產生倒 流的現象,至於暫時儲存於入口暫存腔224a、224b内之流 體,則於致動器242再受電歷致動,重複使致動裝置24 再上凸變形而增加壓力腔室225體積時,再由入口暫存腔 224a、224b經至入口閥門通道222a、222b而流入壓力腔 200938728 • 室225内,以進行流體的輸送。 另外,閥體蓋體22上同樣具有複數個凹槽結構,以 本實施例為例,在閥體蓋座22之上表面220係具有環繞 壓力腔室225而設置之凹槽226,其係供一密封環28(如第 三圖(a)及第四圖(a)所示)設置於其中,而在下表面221 上則具有環繞設置於入口暫存腔224a、224b之凹槽227a、 227b,以及環繞設置於出口閥門通道223a、223b之凹槽 ❹ 228a、228b,同樣地’上述凹槽結構係用以供一密封環27(如 第三圖(a)及第四圖(a)所示)設置於其中。 請參閱第二圖(d)並配合第二圖(a),其中第二圖(d) 係為第二圖(a)所示之閥體薄膜之結構示意圖,如圖所示, 闊體薄膜23主要係以傳統加工、或黃光姓刻、或雷射加 工、或電鑄加工、或放電加工等方式製出,且為一厚度實 質上相同之薄片結構’其上係具有複數個鏤空閥開關,包 含第'間開關以及第-一闕開關,於本實施例中,第一間開 Ο 關係為入口閥門結構231a、231b,而第二閥開關係為出口 閥門結構232a、232b ’但並不以此為限,多流道流體輸送 裝置20所設置之入口閥門結構及出口閥門結構的數量可 分別為一個或多個,其中,入口閥門結構231a、231b係分 別具有入口閥片2313a、2313b以及複數個環繞入口閥片 2313a、2313b週邊而設置之鏤空孔洞2312a、2312b,另外, 在孔洞2312a、2312b之間更分別具有與入口閥片2313a、 2313b相連接之延伸部2311a、2311b,當閥體薄膜23承受 一自壓力腔室225傳遞而來之應力時,如第三圖(c)及第四 12 200938728 * 圖(c)所示,入口閥門結構231a、231b係整個平貼於閥體 座21之上,此時入口閥片2313a、2313b會緊靠凹槽216a、 216b上密封環26突出部分,而密封住閥體座21上之開口 213a、213b,且其外圍的鏤空孔洞2312a、2312b及延伸部 2311a、2311b則順勢浮貼於閥體座21之上,故因此入口 閥門結構231a、231b之關閉作用,使流體無法流出。 而當閥體薄膜23受到壓力腔室225體積增加而產生 φ 之吸力作用下,由於設置於間體座21之凹槽216a、216b 内的密封環26已提供入口閥門結構231a、231b —預力 (Preforce),因而入口閥片2313a、2313b可藉由延伸部 2311a、2311b的支撐而產生更大之預蓋緊效果,以防止逆 流,當因壓力腔室225之負壓而使入口閥門結構231a、231b 產生位移(如第三圖(b)及第四圖(b)所示),此時,流體則 可經由鏤空之孔洞2312a、2312b由閥體座21流至閥體蓋 體22之入口暫存腔224a、224b,並經由入口暫存腔224 a、 ❹ 224b及入口閥門通道222a、222b傳送至壓力腔室225内, 如此一來,入口閥門結構231a、231b即可因應壓力腔室 225產生之正負壓力差而迅速的開啟或關閉,以控制流體 之進出,並使流體不會回流至閥體座21上。 同樣地’位於同一閥體薄膜23上的另一闕門結構則 為出口閥門結構232a、232b,其中之出口閥片2323a、 2323b、延伸部 2321a、2321b 以及孔洞 2322a、2322b 之作 動方式均與入口閥門結構231a、231b相同,因而不再贅 κ 述’惟出口閥門結構232a、232b週邊之密封環27設置方 13 200938728 • 向係與入口閥門結構231a、231b之密封環26反向設置, 因而當麗力腔室225壓縮而產生一推力時,設置於間體蓋 體22之凹槽228a、228b内的密封環27將提供出口閥門結 構 232a、232b— 預力(Preforce)’使得出 口閥片 2323a、2323b 可藉由延伸部2321a、2321b之支樓而產生更大之預蓋緊效 果’以防止逆流(如第三圖(b)及第四圖(b)所示),當因壓 力腔室225之正壓而使出口閥門結構232a、232b產生向上 ❹ 位移’此時,流體則可經由鏤空之孔洞2322a、2322b由壓 力腔室225經間體蓋體22而流至閥體座21之出口暫存腔 215a、215b内’並可經由開口 214a、214b及出口流道212a、 212b排出,如此一來’則可經由出口閥門結構232a、232b 開啟之機制,將流體自壓力腔室225内洩出,以達到流體 輸送之功能(如第三圖(c)及第四圖(c)所示 請參閱第三圖(a)及第四圖(a),其係分別為第二圖(e) 所示之多流道流體輸送裝置之未作動狀態之A-A及B-B剖 ❹ 面結構示意圖,於本實施例中,所有的密封環26、27、28 其材質可為可耐化性佳之橡勝材料,但不以此為限,其 中,設置於閥體座21上環繞開口 213a、231b之凹槽216a、 216b内的密封環26可為一圓環結構,其厚度係大於凹槽 216a、216b深度’使得設置於凹槽216a、216b内之密封 環26係部分凸出於閥體座21之表面構成一微凸結構,因 而使得貼合設置於閥體座21上之閥體薄膜23之入口闕尸, 結構231a、231b之入口閥片2313a、2313b因密封環26 鲁 之微凸結構而形成一向上隆起,而閥體薄膜23之其餘部 14 200938728 * 分係與閥體蓋體22相抵頂,如此微凸結構對入口閥門結 構231a、231b頂推而產生一預力(Preforce)作用,有助於 產生更大之預蓋緊效果,以防止逆流,且由於密封環26 向上隆起之微凸結構係位於閥體薄膜23之入口閥門結構 231a、231b處,故使入口閥門結構231a、231b在未作動 時使入口閥片2313a、2313b與閥體座21之表面間具有一 間隙,同樣地,當密封環27設置於環繞出口閥門通道 φ 223a、223b之凹槽228a、228b内時,由於其密封環27係 設置於閥體蓋體22之下表面221,因而該密封環27係使 閥體薄膜23之出口閥門結構232a、232b凸出而形成一向 下隆起於閥體蓋體22之微凸結構,此微凸結構僅其方向 與形成於入口閥門結構231a、231b之微凸結構係為反向設 置’然而其功能均與前述相同,因而不再贅述。 至於其餘分別設置於凹槽結構217a,217b、227a227b 及226内之密封環26、27及28,主要用來分別使閥體座 © 21與閥體薄膜23、閥體薄臈23與閥體蓋體22以及閥體 蓋體22與致動裝置24之間緊密貼合時,防止流體外洩。 當然,上述之微凸結構除了使用凹槽及密封環來搭配 形成外,於一些實施例中,閥體座21及閥體蓋體22:微 凸結構亦可採用半導體製程,例如:黃光蝕刻或錢膜或電 鑄技術’直接在閥體座21及閥體蓋體22上形成广 請同時參閱第三圖(a)〜(c)以及第四圖(&)〜(c), 如圖所示,當蓋體25、致動裴置24、閥體蓋體22、閥體 薄膜23、密封環26、27、28以及閥體座21彼此對應組裝 15 200938728 • 設置後,閥體座21上之開口 213a、213b係分別與閥體薄 膜23上之入口閥門結構231a、231b以及閥體蓋體22上之 入口閥門通道222a、222b相對應,且閥體座21上之開口 214a、214b則與閥體薄膜23上之出口閥片結構232a、232b 以及閥體蓋體22上之出口閥門通道223a、223b相對應, 並且,由於密封環26設置於凹槽216a、216b内,使得閥 體薄膜23之入口閥門結構231a、231b微凸起於閥體座21 ❹ 之上,並藉由位於凹槽216a、216b内之密封環26頂觸閥 體薄膜23而產生一預力(Preforce)作用,使得入口閥門結 構231a、231b在未作動時則與閥體座21之表面形成一間 隙,同樣地’出口閥門結構232a、232b亦藉由將密封環 27設至於凹槽228a、228b中的相同方式與閥體蓋體22之 下表面221形成一間隙。 當以一電壓驅動致動器242時,致動裝置24產生彎 曲變形,如第三圖(b)及第四圖(b)所示,致動裝置24係 © 朝箭號b所指之方向向下彎曲變形,使得壓力腔室225之 體積增加,因而產生一吸力,使閥體薄膜23之入口閥門 結構231a、231b、出口閥門結構232a、232b均承受一向 下之拉力,並使已具有一預力之入口閥門結構231a、231b 之入口閥片2313a、2313b迅速開啟(如第三圖(b)及第四圖 (b)所示)’使液體可大量地自閥體座21上之入口通道 211a及211b被吸取進來,並流經閥體座21上之開口 213a、213b、閥體薄膜23上之入口閥門結構231a、231b 之孔洞2312a、2312b、閥體蓋體22上之入口暫存腔224a、 16 200938728 • 224b、以及入口閥片通道222a、222b而流入壓力腔室225 之内,此時,由於閥體薄膜23之入口閥門結構231a、231b、 出口閥門結構232a、232b承受該向下拉力,故位於另一端 之出口閥門結構232a、232b係因該向下拉力使得位於閥體 薄膜23上之出口闊片2323a、2323b密封住出口閥門通道 223a、223b,而使得出口閥門結構232a、232b關閉。 當致動裝置24因電場方向改變而如第三圖(c)及第四 φ 圖(c)所示之箭號a向上彎曲變形時,則會壓縮壓力腔室 225之體積,使得壓力腔室225對内部之流體產生一推力, 並使間體薄膜23之入口閥門結構231a、231b、出口閥門 結構232a、232b承受一向上推力,此時,設置於凹槽228a、 228b内之密封環27上出口閥門結構232a、232b的出口閥 片2323a、2323b其可迅速開啟(如第三圖(c)及第四圖(c) 所示),並使液體瞬間大量宣洩,由壓力腔室225經由閥體 蓋體22上之出口閥門通道223a、223b、閥體薄膜23上之 ❹ 出口閥門結構232a、232b之孔洞2322a、2322b、閥體座 21上之出口暫存腔215a、215b、開口 214a、214b及出口 通道212a、212b而流出多流道流體輸送裝置20之外,因 而完成流體之傳輸過程。 同樣地,此時由於入口閥門結構231a、231b係承受該 向上之推力,因而使得入口閥片2313a、2313b密封住開口 213a、213b,因而關閉入口閥門結構231a、231b,使得流 體不逆流,並且,藉由入口閥門結構231a、231b及出口閥 ' 門結構232a、232b配合設置於閥體座21及閥體蓋體22 17 200938728 • 上之凹槽216a、216b以及凹槽228a、228b内的密封環26、 27之設計,可使流體於傳送過程中不會產生回流的情形, 達到高效率之傳輸,且本案多流道流體輸送裝置於尺寸大 小不變之閥體薄膜上設置多個入口閥門結構及出口閥門 結構,以及於閥體座上設置不同多個入口通道及出口通 道,可形成多個流通管道以進行兩種不同流體之混合及分 流輸出。 ^ 本案多流道流體輸送裝置可藉由將閥體薄膜上所設 置入口閥門結構及出口閥門結構的配置進行變化,以因應 不同流體之混合及/或分流輸出,請參閱第五圖(a)〜(e), 其係為本案多流道流體輸送裝置所包含之閥體薄膜之多 種實施例之結構示意圖,如圖所示,本案多流道流體輸送 裝置之閥體薄膜可選擇配置二進二出的混合及分流閥門 結構(如第五圖(a)所示)、三進一出的混合閥門結構配置 (如第五圖(b)所示)、一進三出的分流閥門結構配置(如 〇 第五圖(c)所示)、一進四出的分流閥門結構配置(如第 五圖(d)所示)或是四進一出的混合閥門結構配置(如 第五圖(e)所示),但本案多流道流體輸送裝置之閥體薄 膜的進出閥門結構的配置方式並不以此為限,只要是閥體 薄膜的進出閥門結構的配置方式可達到多流道以進行流 體之混合及/或分流輸出的功效均為本案所保護之範圍。 本案之多流道流體輸送裝置之閥體薄膜的入口閥門 結構及出口閥門結構的實施態樣並不僅侷限於第二圖(a) 及第二圖(d)所示之入口閥門結構231a、231b及出口閥 18 200938728 門結構232a、232b的型態,亦可使用具古 、为相同原唐,相同 材料’但是剛性不同的閥門結構,其中, 岡門纟i·;丨盖的剛性 取決於閥門結構的外觀型態、所包含之证 。 &伸部的官麼及數 量’並配合控制致動裝置之震動頻率來調整 、a/ β 合流體的比例,請參閱第六圖(a )〜(e、 行刀"丨L或 其係為本案較 佳實施例之閥門結構之結構示意圖,如筮人 乐,、圖(a )所示,200938728 • IX. INSTRUCTIONS: [Technical field to which the invention pertains] The present invention relates to a fluid delivery device, and more particularly to a multi-channel fluid delivery device suitable for use in a micropump structure. [Prior Art] At present, in various fields, such as medicine, computer technology, printing, energy and other industries, the products are developing in the direction of refinement and miniaturization, among which micro pump, sprayer, inkjet head, industrial column The fluid transport structure contained in products such as printing devices is its key technology. It is how to break through its technical bottleneck with innovative structure and is an important part of development. Please refer to the first figure, which is a schematic structural view of a conventional micro-pump structure. The conventional micro-pump structure 10 is composed of a valve body seat 11, a valve body cover 12, a valve body film 13, a microactuator 14 and The cover body 15 is composed of a valve body membrane 13 including an inlet valve structure 131 and an outlet valve structure 132. The valve body seat 11 includes an inlet passage 111 and an outlet passage 112, a valve body cover 12 and a microactuator 14. A pressure chamber 123 is defined therebetween, and a valve body film 13 is disposed between the valve body seat 11 and the valve body cover 12. When a voltage is applied to the upper and lower poles of the microactuator 14, an electric field is generated, causing the microactuator 14 to bend under the action of the electric field, as the microactuator 14 is directed upward in the direction indicated by the arrow X. The bending deformation will increase the volume of the pressure chamber 123, thereby generating a suction force, so that the valve body is thin* the inlet valve structure 131 of the membrane 13 is opened, so that the liquid can be supplied from the valve body seat 6 to the inlet passage 111 of the 200938728*. It is sucked in and flows into the pressure chamber 123 through the inlet valve structure 131 of the valve body film 13 and the inlet valve passage 121 on the valve body cover 12, and vice versa when the microactuator 14 changes direction due to the electric field direction. When the arrow X is bent downward in the opposite direction, the volume of the pressure chamber 123 is compressed, so that the pressure chamber 123 generates a thrust to the internal fluid, and the inlet valve structure 131 and the outlet valve structure of the valve body film 13 are formed. 132 is subjected to a downward thrust, and the outlet valve structure 132 is opened and the liquid is passed from the φ pressure chamber 123 via the outlet valve passage 122 on the valve body cover 12, the outlet valve structure 132 of the valve body membrane 13, and the valve body Exit of seat 11 Channel 112 out of the fluid delivery device 10, the transport fluid thereby completing the process. Although the conventional micropump structure 10 is capable of functioning to transport fluids, it uses a single pressure chamber with a single flow conduit, a single inlet and outlet, and a single pair of valve structure designs, using conventional micropump structures 10 for two When mixing different ratios of different liquids, it is necessary to first mix and mix by two pumping pumps according to different ratios, and then transfer the mixed fluid to the micro-pump structure 10 for fluid transportation, or only A pump is used, but it must be paired with an external flow regulating valve. Such an implementation would increase the complexity of the entire pumping system. Therefore, how to develop a multi-channel fluid delivery device that can improve the above-mentioned conventional techniques is an urgent problem to be solved. • [Summary] _ The main purpose of this case is to provide a multi-channel fluid transport device. 200938728 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾 俾The difference between the worms and the body is $ BM a , / Weng draws according to different proportions and then remixes σ β — 贿 贿 贿 贿 但是 但是 但是 但是 但是 但是 但是 但是 但是 但是 贿 贿 贿 贿 贿 贿 贿 贿 贿 贿 贿 贿 贿 贿 贿 贿 贿 贿 贿 贿 贿 贿 贿Disadvantages such as complexity. - The purpose of the description of the 'this case' - a wider application of multi-channel fluid transport device for the transmission of the enemy to the seed, to be sent to the body, including: valve body seat: : is installed in the two temple mouth and At least the inlet passage; the valve body cover body, the body cover body, and the 'the system is disposed on the body block and the inter-it door structure, and the plurality of door structures are made of the same thickness and the same material, and at least The rigidity of a valve structure is different from that of other valve structures; the number of rituals is between the film and the body seat; and the vibration device's periphery is fixed to the valve body cover. [Embodiment] Some of the solidifications that embody the (4) and advantages of this case will be described in detail in the description of the latter paragraph. There should be _ 岐 案 案 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 在 四 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 。 。 。 。 。 。 The multi-channel fluid conveying device of the present invention mainly adopts a configuration concept of a plurality of flow pipes, a plurality of inlet pipes and a plurality of valve structures thereof by a single pressure chamber and an actuator, and can make the flow rate without increasing the overall size. And the lift is greatly increased, it is very suitable for the relatively high demand for flow and lift. 200938728 • Use occasions. Please refer to FIG. 2( a ), which is a schematic exploded view of the multi-channel fluid transport device of the preferred embodiment of the present invention. As shown in the figure, the multi-channel fluid transport device 20 of the present embodiment is composed of a valve body seat. 21, the valve body cover 22, the valve body film 23, the actuating device 24 and the cover body 25, a pressure chamber 225 is formed between the valve body cover 22 and the actuating device 24 (as shown in the second figure (c) As shown, mainly for storing fluid, the assembly φ mode of the multi-channel fluid delivery device 20 is such that the valve body film 23 is disposed between the valve body seat 21 and the valve body cover 22, and the valve body film 23 and the valve are provided. The body seat 21 and the valve body cover 22 are correspondingly disposed, and a first temporary storage chamber is formed between the valve body film 23 and the valve body cover body 22, and a second space is formed between the valve body film 23 and the valve body seat 21. The temporary storage chamber is further provided with an actuating device 24 at a corresponding position on the valve body cover 22. The actuating device 24 is assembled by a vibrating membrane 241 and an actuator 242 for driving multi-channel fluid transport. The device 20 is activated, and finally, the cover body 25 is disposed above the actuating device 24, so that the valve body seat 21 is sequentially The film body 23, valve cover 22, the actuating means 24 and the cover 25 in a stacked arrangement corresponding to complete a multi-manifold assembly 20 of the fluid delivery device (e.g., a second FIG. (E),). Wherein, the valve body seat 21 and the valve body cover body 22 are the main structures for guiding fluid in and out of the multi-channel fluid transport device 20 of the present case, please refer to the second figure (b) and cooperate with the second figure (a), wherein The second figure (b) is a schematic view of the back structure of the valve body seat shown in the second figure (a). As shown in the second figure (a), the valve body seat 21 has inlet passages 211a, 211b and an outlet passage' 212a, 212b, but not limited thereto, multi-channel fluid delivery device 20 9 200938728 • The number of inlet channels and outlet channels provided may be one or more, respectively, and the flow system may be input from the outside through the inlet flow channel 211a, 211b are respectively transmitted to the openings 213a, 213b of the valve body seat 21, and in the present embodiment, the second temporary storage chamber formed between the valve body film 23 and the valve body seat 21 is as shown in the figure. The outlet temporary chambers 215a, 215b, but not limited thereto, are formed by the valve body seat 21 at a position corresponding to the outlet flow passages 212a, 212b, and are respectively connected to the outlet flow passages 212a, 212b. The outlet temporary chambers 215a, 215b are used to temporarily store fluids and Body from the outlet buffer cavity 215a, 215b through the openings 214a, 214b and the input to the outlet channel 212a, 212b flows. And a plurality of groove structures on the body seat 21 for providing a sealing ring 26 (as shown in the third figure (a) and the fourth figure (a)) on the present embodiment. The valve body seat 21 has grooves 216a, 216b surrounding the periphery of the openings 213a, 213b, and grooves 217a, 217b surrounding the periphery of the outlet temporary chambers 215a, 215b. Please refer to the second figure (8) and cooperate with the second figure (a), wherein the second figure (c) φ is the schematic diagram of the back structure of the valve body cover shown in the second figure (a), as shown in the figure, the valve body The cover 22 has an upper surface 220 and a lower surface 221, and also has inlet valve passages 222a, 222b and outlet valve passages 223a, 223b extending through the upper surface 220 to the lower surface 221 on the valve body cover 22, and the inlet The valve passages 222a, 222b are respectively disposed at positions corresponding to the openings 213a, 213b of the valve body seat 21, and the outlet valve passages 223a, 223b are respectively disposed in the outlet temporary chambers 215a, 215b of the valve body seat 21, respectively. The openings 214a, 214b correspond to the position 'and in the present embodiment, the plurality of first temporary storages formed between the valve body film 23 and the valve body cover 22 are 200938728. The room is the entrance shown in the figure. The temporary storage chambers 224a, 224b' are not limited thereto, and are formed by partial depression of the lower surface 221 of the valve body cover 22 at a position corresponding to the entrance door passages 222a, 222b, and are connected to each other. At the inlet valve passages 222a, 222b. Referring again to the second diagram (c), as shown, the upper surface 220 of the valve body cover 22 is partially recessed to form a pressure chamber 225' which is coupled to the actuator 242 of the actuator 24. Correspondingly, the 'pressure chamber 225 communicates with the inlet temporary chamber 224a, the ring 224b via the inlet valve passages 222a, 222b, respectively, and simultaneously communicates with the outlet valve passages 223a, 223b. Thus, when the actuator 242 is subjected to a voltage Actuation causes the actuator device 24 to be convexly deformed to cause the volume of the pressure chamber 225 to expand to create a negative pressure differential that allows fluid to flow through the inlet valve passages 222a, 222b into the pressure chamber 225 'subsequent' when applied to After the direction of the electric field of the actuator 242 is changed, the actuator 242 will cause the actuator device 24 to contract and deform the pressure chamber 225 to reduce the volume, causing the pressure chamber 225 to generate positive pressure with the outside world, causing the fluid to pass through the outlet valve passage. ❹ 223a, 223b flow out of the pressure chamber 225 'at the same time' and some of the fluid will flow into the inlet valve passages 222a, 222b and the inlet temporary chambers 224a, 224b, however, due to the inlet valve structure 231a, 231b ( As shown in the third figure (c) and (c) is a state in which the pressure is closed, so that the fluid does not flow backward through the inlet valve pieces 2313a, 2313b, and the fluid temporarily stored in the inlet temporary chambers 224a, 224b, Then, the actuator 242 is again actuated by the electric power, and when the actuator 24 is repeatedly deformed to increase the volume of the pressure chamber 225, the inlet temporary chambers 224a, 224b flow into the inlet valve passages 222a, 222b. Pressure chamber 200938728 • In chamber 225 for fluid delivery. In addition, the valve body cover 22 also has a plurality of groove structures. In the embodiment, the upper surface 220 of the valve body cover 22 has a recess 226 disposed around the pressure chamber 225. A sealing ring 28 (shown in Figures 3(a) and 4(a)) is disposed therein, and on the lower surface 221, there are grooves 227a, 227b disposed around the inlet temporary chambers 224a, 224b. And a groove 228 228a, 228b disposed around the outlet valve passages 223a, 223b, and similarly the groove structure is used for a sealing ring 27 (as shown in the third figure (a) and the fourth figure (a) ) is set in it. Please refer to the second figure (d) and cooperate with the second figure (a), wherein the second figure (d) is the structural diagram of the valve body film shown in the second figure (a), as shown in the figure, the wide body film 23 is mainly produced by conventional processing, or Huang Guangxing, or laser processing, or electroforming processing, or electric discharge machining, and is a sheet structure having substantially the same thickness, which has a plurality of hollow valves thereon. The switch includes an 'inter switch' and a first one switch. In this embodiment, the first opening relationship is the inlet valve structure 231a, 231b, and the second valve opening relationship is the outlet valve structure 232a, 232b 'but Without limitation, the number of inlet valve structures and outlet valve structures provided by the multi-channel fluid delivery device 20 may be one or more, respectively, wherein the inlet valve structures 231a, 231b have inlet valve plates 2313a, 2313b, respectively. And a plurality of hollow holes 2312a, 2312b disposed around the periphery of the inlet valve pieces 2313a, 2313b, and further having extensions 2311a, 2311b connected to the inlet valve pieces 2313a, 2313b between the holes 2312a, 2312b, respectively, when the valve Body film 23, when subjected to a stress transmitted from the pressure chamber 225, as shown in the third figure (c) and the fourth 12 200938728 * (c), the inlet valve structures 231a, 231b are entirely flat against the valve body seat 21 Above, at this time, the inlet valve pieces 2313a, 2313b abut against the protruding portions of the sealing ring 26 on the grooves 216a, 216b, and seal the openings 213a, 213b of the valve body seat 21, and the hollow holes 2312a, 2312b at the periphery thereof The extending portions 2311a and 2311b are floated on the valve body seat 21, so that the inlet valve structures 231a and 231b are closed to prevent the fluid from flowing out. When the valve body film 23 is subjected to the suction of the volume of the pressure chamber 225 to generate φ, the inlet valve structure 231a, 231b is provided by the seal ring 26 provided in the grooves 216a, 216b of the intermediate seat 21. (Preforce), thus the inlet valve plates 2313a, 2313b can be made to have a greater pre-tightening effect by the support of the extensions 2311a, 2311b to prevent backflow, when the inlet valve structure 231a is caused by the negative pressure of the pressure chamber 225. 231b generates displacement (as shown in the third figure (b) and the fourth figure (b)). At this time, the fluid can flow from the valve body seat 21 to the inlet of the valve body cover 22 via the hollow holes 2312a, 2312b. The temporary chambers 224a, 224b are transferred into the pressure chamber 225 via the inlet buffer chambers 224a, 224b and 222b, 222b, such that the inlet valve structures 231a, 231b can be adapted to the pressure chamber 225. The positive and negative pressure differences are generated and quickly turned on or off to control the ingress and egress of fluid and prevent fluid from flowing back to the valve body seat 21. Similarly, the other door structure on the same valve body film 23 is the outlet valve structure 232a, 232b, wherein the outlet valve pieces 2323a, 2323b, the extension portions 2321a, 2321b, and the holes 2322a, 2322b are operated in the same manner as the inlet. The valve structures 231a, 231b are identical, so that the sealing ring 27 around the outlet valve structures 232a, 232b is no longer arranged. 13 200938728 • The sealing ring 26 of the inlet valve structure 231a, 231b is reversed, thus When the Lili chamber 225 is compressed to generate a thrust, the seal ring 27 disposed in the recesses 228a, 228b of the interbody cover 22 will provide the outlet valve structure 232a, 232b - Preforce' such that the outlet valve 2323a , 2323b can produce a larger pre-covering effect by the extensions of the extensions 2321a, 2321b to prevent backflow (as shown in the third (b) and fourth (b)), when the pressure chamber The positive pressure of 225 causes the outlet valve structures 232a, 232b to be displaced upwardly. At this time, the fluid can flow from the pressure chamber 225 through the intervening cover 22 to the outlet of the valve body seat 21 via the hollow holes 2322a, 2322b. Temporary cavity 2 15a, 215b' can be discharged through the openings 214a, 214b and the outlet flow channels 212a, 212b, such that the fluid can be vented from the pressure chamber 225 via the opening mechanism of the outlet valve structures 232a, 232b to To achieve the function of fluid transport (as shown in the third figure (c) and the fourth figure (c), please refer to the third figure (a) and the fourth figure (a), which are shown in the second figure (e). In the embodiment, all the sealing rings 26, 27, 28 are made of rubber and rubber materials with good chemical resistance, but Without limitation, the seal ring 26 disposed in the groove 216a, 216b of the valve body seat 21 surrounding the openings 213a, 231b may be a ring structure having a thickness greater than the depth of the grooves 216a, 216b. The sealing ring 26 disposed in the recesses 216a, 216b protrudes from the surface of the valve body seat 21 to form a micro-convex structure, thereby fitting the entrance corpse of the valve body film 23 disposed on the valve body seat 21, The inlet valve pieces 2313a, 2313b of the structures 231a, 231b are shaped by the micro-convex structure of the seal ring 26 An upward bulge, and the remaining portion 14 of the valve body film 23 200938728 * sub-system with the valve body cover 22, such that the micro-convex structure pushes the inlet valve structure 231a, 231b to generate a pre-force effect, Helping to create a greater pre-covering effect to prevent backflow, and because the micro-convex structure of the upwardly swelled seal ring 26 is located at the inlet valve structure 231a, 231b of the valve body membrane 23, the inlet valve structures 231a, 231b are When there is no movement, there is a gap between the inlet valve pieces 2313a, 2313b and the surface of the valve body seat 21, and similarly, when the seal ring 27 is disposed in the grooves 228a, 228b surrounding the outlet valve passages φ 223a, 223b, The sealing ring 27 is disposed on the lower surface 221 of the valve body cover 22, so that the sealing ring 27 protrudes from the outlet valve structures 232a, 232b of the valve body film 23 to form a micro-convex bulge downward from the valve body cover 22. The structure, the micro-convex structure only has its direction opposite to the micro-convex structure formed on the inlet valve structures 231a, 231b. However, its functions are the same as those described above, and thus will not be described again. The remaining seal rings 26, 27 and 28 respectively disposed in the groove structures 217a, 217b, 227a227b and 226 are mainly used to respectively form the valve body seat 21 and the valve body film 23, the valve body thin body 23 and the valve body cover. When the body 22 and the valve body cover 22 are in close contact with the actuating device 24, fluid leakage is prevented. Of course, the above-mentioned micro-convex structure is formed by using a groove and a sealing ring. In some embodiments, the valve body seat 21 and the valve body cover 22: the micro-convex structure may also be a semiconductor process, for example, yellow light etching. Or the money film or electroforming technology is formed directly on the valve body seat 21 and the valve body cover 22, please refer to the third figure (a) to (c) and the fourth figure (&) to (c), such as As shown, when the cover body 25, the actuating device 24, the valve body cover 22, the valve body film 23, the seal rings 26, 27, 28 and the valve body seat 21 are assembled to each other, 15 200938728 • After installation, the valve body seat The openings 213a, 213b on the 21 are corresponding to the inlet valve structures 231a, 231b on the valve body membrane 23 and the inlet valve passages 222a, 222b on the valve body cover 22, respectively, and the openings 214a, 214b in the valve body seat 21 Then corresponding to the outlet valve plate structures 232a, 232b on the valve body film 23 and the outlet valve passages 223a, 223b on the valve body cover 22, and since the seal ring 26 is disposed in the grooves 216a, 216b, the valve body The inlet valve structures 231a, 231b of the membrane 23 are slightly raised above the valve body seat 21 , by The sealing ring 26 in the grooves 216a, 216b touches the valve body film 23 to generate a pre-force effect, so that the inlet valve structures 231a, 231b form a gap with the surface of the valve body seat 21 when not in operation. Similarly, the 'exit valve structures 232a, 232b also form a gap with the lower surface 221 of the valve body cover 22 in the same manner that the seal ring 27 is disposed in the recesses 228a, 228b. When the actuator 242 is driven by a voltage, the actuating device 24 generates a bending deformation. As shown in the third (b) and fourth (b), the actuating device 24 is in the direction indicated by the arrow b. The downward bending deformation causes the volume of the pressure chamber 225 to increase, thereby generating a suction force, so that the inlet valve structures 231a, 231b of the valve body film 23 and the outlet valve structures 232a, 232b are subjected to a downward pulling force and have a The inlet valve plates 2313a, 2313b of the pre-filled inlet valve structures 231a, 231b are rapidly opened (as shown in Figures 3(b) and 4(b)) to allow a large amount of liquid to enter the valve body seat 21 The passages 211a and 211b are sucked in, and flow through the openings 213a, 213b on the valve body seat 21, the holes 2312a, 2312b of the inlet valve structures 231a, 231b on the valve body film 23, and the inlets on the valve body cover 22 are temporarily stored. The chambers 224a, 16 200938728 • 224b, and the inlet valve passages 222a, 222b flow into the pressure chamber 225, at which time the inlet valve structures 231a, 231b and the outlet valve structures 232a, 232b of the valve body membrane 23 are subjected to the direction. Pull down force, so the outlet valve at the other end The structure 232a, 232b is such that the outlet tabs 2323a, 2323b on the valve body film 23 seal the outlet valve passages 223a, 223b due to the pull-down force, causing the outlet valve structures 232a, 232b to close. When the actuating device 24 is bent upwardly due to the change of the electric field direction as shown by the arrows (a) of the third figure (c) and the fourth figure (c), the volume of the pressure chamber 225 is compressed, so that the pressure chamber 225 generates a thrust to the internal fluid, and causes the inlet valve structures 231a, 231b and the outlet valve structures 232a, 232b of the intermediate film 23 to withstand an upward thrust, and at this time, is disposed on the seal ring 27 in the recesses 228a, 228b. The outlet valve plates 2323a, 2323b of the outlet valve structures 232a, 232b can be quickly opened (as shown in the third figure (c) and the fourth figure (c)), and the liquid is instantaneously vented in a large amount, from the pressure chamber 225 via the valve The outlet valve passages 223a, 223b on the body cover 22, the holes 2322a, 2322b of the 出口 outlet valve structures 232a, 232b on the valve body film 23, the outlet temporary chambers 215a, 215b, the openings 214a, 214b on the valve body seat 21. And the outlet passages 212a, 212b exit the multi-channel fluid delivery device 20, thereby completing the fluid transfer process. Similarly, at this time, since the inlet valve structures 231a, 231b are subjected to the upward thrust, the inlet valve pieces 2313a, 2313b are sealed to the openings 213a, 213b, thereby closing the inlet valve structures 231a, 231b so that the fluid does not flow backward, and The inlet valve structure 231a, 231b and the outlet valve 'door structure 232a, 232b cooperate with the sealing ring disposed in the groove 216a, 216b of the valve body seat 21 and the valve body cover 22 17 200938728 and the grooves 228a, 228b. The design of 26, 27 can make the fluid not generate recirculation during the conveying process, and achieve high efficiency transmission, and the multi-channel fluid conveying device of the present case is provided with a plurality of inlet valve structures on the valve body film of constant size. And the outlet valve structure, and a plurality of inlet passages and outlet passages are provided on the valve body seat to form a plurality of flow conduits for mixing and splitting the two different fluids. ^ The multi-channel fluid transfer device of this case can be changed by the configuration of the inlet valve structure and the outlet valve structure provided on the valve body film to respond to the mixing and/or shunt output of different fluids, please refer to the fifth figure (a) ~(e), which is a schematic structural view of various embodiments of the valve body film included in the multi-channel fluid conveying device of the present invention, as shown in the figure, the valve body film of the multi-channel fluid conveying device of the present invention can be optionally configured. Two-out mixing and diverting valve structure (as shown in Figure 5 (a)), three-in-one-out mixing valve structure configuration (as shown in Figure 5 (b)), one-in and three-out split valve structure configuration ( As shown in Figure 5 (c), the structure of the split valve in one-in and four-out (as shown in Figure 5 (d)) or the configuration of the hybrid valve in four-in and one-out (as shown in Figure 5 (e) The arrangement of the inlet and outlet valve structures of the valve body membrane of the multi-channel fluid delivery device of the present invention is not limited thereto, as long as the inlet and outlet valve structures of the valve body membrane are arranged in a manner to achieve multiple fluid passages for fluid Mixing and / or shunting The effectiveness of the protection of both the scope of the case. The embodiment of the inlet valve structure and the outlet valve structure of the valve body film of the multi-channel fluid transfer device of the present invention is not limited to the inlet valve structures 231a, 231b shown in the second (a) and second (d) drawings. And the outlet valve 18 200938728 The type of the door structure 232a, 232b can also be used with the same valve structure of the same material, but the same material, but the rigidity is different, wherein the rigidity of the sill cover depends on the valve The appearance of the structure and the evidence contained therein. & the number and number of extensions and the vibration frequency of the control actuator to adjust the ratio of a / β fluid, please refer to the sixth figure (a) ~ (e, row knife " 丨L or The structural schematic diagram of the valve structure of the preferred embodiment of the present invention, such as the 筮人乐, and (a),

閥門結構61具有閥片611、環繞閥片611週邊而^置之縷 空孔洞612,以及在孔洞612之間更分別具有= 相連接之延伸部613’於本實施例中閥片611為一圓形辞 構’孔洞612的數量為3,至於,延伸部gig ^數量可為 3且其形狀可呈現切線型態’但闕片611的形狀;孔=°612 以及延伸部613的數量及形狀並不以此為限。 請再參閱第六圖(b)’於一些實施例中,閥門結構62 同樣具有閥片621、環繞閥片621週邊而設置之鐘空孔洞 622 ’以及在孔洞622之間更分別具有與閥片621相連接 之延伸部623,於本實施例中閥片621為—圓形結構,孔 洞622的數量可為4,至於,延伸部623的數量為4且其 形狀可呈現直線型態,但上述閥片621形狀、孔洞622以 及延伸部623的數量及形狀並不以此為限。 請再參閱第六圖(c )’於一些實施例中,閥門結構63 同樣具有閥片631、孔洞632以及延伸部633,至於閥片 631、孔洞632以及延伸部633之間的連接關係係於上述 相同,因此不在述贅述,於本實施例中,閥片631為一圓 形結構,孔洞632的數量可為4,至於’延伸部633的敦 200938728 量為4且其形狀可呈現長S形型態,但閥片631形狀、孔 洞632以及延伸部633的數量及形狀並不以此為限。 請再參閱第六圖(d),於一些實施例中’閥門結構64 同樣具有閥片641、孔洞642以及延伸部643 ’至於閥片 641、孔洞642以及延伸部643之間的連接關係係於上述 相同,因此不在述贅述,於本實施例中,閥片641為一圓 形結構,孔洞642的數量可為5,至於,延伸部643的數 瘳 量為5且其形狀可呈現短S形型態,但閥片64卜孔洞642 以及延伸部643的數量及形狀並不以此為限。 請再參閱第六圖(e),於一些實施例中,閥門結構65 同樣具有閥片651、孔洞652以及延伸部653,至於閥片 651、孔洞652以及延伸部653之間的連接關係係於上述 相同,因此不在述贅述,於本實施例中,閥片651為一類 似圓形結構且其周圍具有齒狀結構6511,孔洞652的數量 可為3,至於,延伸部653的數量為3且其形狀可呈現切 ❹ 線型態,但閥片651形狀、孔洞652以及延伸部653的數 量及形狀並不以此為限。 當然,本案之多流道流體輸送裝置之閥體薄膜上所適 用之閥門結構的實施態樣並不僅限於第六圖(a)〜(e) 所揭露的型態,亦可由其它的變化,只要是使用具有相同 厚度,相同材料,但是剛性不同的閥門結構均為本案所保 . 護之範圍。 本案多流道流體輸送裝置之閥體薄臈上可藉由配置 m 第六圖(a )〜(e )所示之閥門結構及其變化型態,利用 20 200938728 小㈣賊計之_結構組合 同艙體壓力下產生不同一鬆緊度不同造成在相 合。並且,亦可透過/又,造成不同比例之液體混 置,進行Μ料道與進出項門結構配 置進仃4分流並分配至不同容器中,The valve structure 61 has a valve piece 611, a hollow hole 612 around the periphery of the valve piece 611, and a further connecting portion 613' between the holes 612. In the present embodiment, the valve piece 611 is a circle. The number of holes 612 is 3, and the number of extensions gig ^ may be 3 and its shape may assume a tangential shape 'but the shape of the cymbal 611; the hole = ° 612 and the number and shape of the extensions 613 and Not limited to this. Referring again to FIG. 6(b)', in some embodiments, the valve structure 62 also has a valve plate 621, a bell hole 622' disposed around the periphery of the valve plate 621, and a valve plate between the holes 622. In the embodiment, the valve piece 621 is a circular structure, and the number of the holes 622 can be 4, and the number of the extending portions 623 is 4 and the shape thereof can assume a straight line shape, but the above The shape and shape of the valve piece 621, the hole 622, and the extending portion 623 are not limited thereto. Referring again to FIG. 6(c)', in some embodiments, the valve structure 63 also has a valve plate 631, a hole 632, and an extension 633. The connection between the valve piece 631, the hole 632, and the extension 633 is tied to The same applies to the above, so it is not described in the above description. In the present embodiment, the valve piece 631 has a circular structure, and the number of the holes 632 can be 4, and the number of the holes 633 of the extension portion 633 is 4 and its shape can be long S shape. The shape, but the shape of the valve piece 631, the hole 632 and the number and shape of the extension 633 are not limited thereto. Referring again to FIG. 6(d), in some embodiments the 'valve structure 64 also has a valve plate 641, a hole 642 and an extension 643'. The connection between the valve piece 641, the hole 642 and the extension 643 is tied to The same applies to the above description. Therefore, in the present embodiment, the valve piece 641 has a circular structure, and the number of the holes 642 can be 5. As for the extension portion 643, the number of turns 为 is 5 and the shape can be short S-shaped. The type, but the number and shape of the valve 64 hole 642 and the extension 643 are not limited thereto. Referring again to FIG. 6(e), in some embodiments, the valve structure 65 also has a valve plate 651, a hole 652, and an extension 653. The connection between the valve plate 651, the hole 652, and the extension 653 is tied to The same applies to the above description. Therefore, in the present embodiment, the valve piece 651 has a circular structure and has a toothed structure 6511 around it. The number of the holes 652 can be three, and the number of the extensions 653 is three. The shape may be a cut line shape, but the shape and shape of the valve piece 651, the hole 652, and the extension 653 are not limited thereto. Of course, the embodiment of the valve structure applied to the valve body film of the multi-channel fluid transport device of the present invention is not limited to the type disclosed in the sixth figure (a) to (e), and may be changed by other It is the use of valve structures of the same thickness and the same material, but different rigidity, which is the scope of protection in this case. In the case of the valve body of the multi-channel fluid conveying device, the valve structure shown in the sixth figure (a) to (e) and its variation type can be used, and the structure of the structure is utilized by the 20 200938728 small (four) thief. Different in the same cabin pressure, a different degree of tightness is caused by the difference. Moreover, it is also possible to transmit/distribute liquids in different proportions, and to carry out the splitting of the feed channel and the entry and exit door structure into four streams and distribute them to different containers.

It:,閥門結構設置來達成 a)至第十八圖(a),其係為本案閥體 薄膜組合不同剛性設計平頂 意圖,且第七圖(a)至第:二圖°,,多所種實施例結構示 以等比例剛性設計之雨Γ 0 (a)所示之_薄膜係 口閥門結構搭配不同剛性比例 之兩出口閥門結構分流的結構,另外第七圖⑴至第十 八圖⑴係分別為第七圖(a)至第十八圖⑷所示之不 同剛性之兩出π閥門結構的實驗數據圖,由第七圖⑴ 至第十八圖(b)的各別實驗數據可知,第七圖(a)至第 十八圖(a)所示之閥體薄膜藉由以相同剛性之兩入口閥門 結構搭配不同剛性之兩出口閥門結構分流的配置方式,一 旦致動裝置的震動頻率(Frequency)改變時,由於兩出口閥 門結構的剛性不同,因此兩出口閥門結構所排出的流體流 里明顯亦不同,因此即可使本案之多流道流體輸送裝置達 到不同比例之分流輸出的功效。 另外,閥體薄膜的配置方式亦可以以相同剛性設計之 兩出口閥門結構搭配不同剛性之兩入口閥門結構,可使本 案之多流道流體輸送裝置達到進行兩種不同液體之不同 比例的混合功效。 請參閲第十九圖並搭配第二圖(a),其申第十九圖係 21 200938728 - 為本案較佳實施例之多流道流體輸送裝置之製造流程 圖,首先需形成一閥體層’即如第二圖(a)所示之闕體座 21(如步驟S191所示)’其後,形成一閥體蓋層’於本實施 例中,該閥體蓋層即為第二圖(a)所示之閥體蓋體22 ’ 且其係具有一壓力腔室225(如步驟S192所示),接著’於 閥體座21及閥體蓋體22上分別形成一微凸結構(如步驟 S193所示),該微凸結構之形成方式可有兩種方式’且不 ❸ 以此為限:一、請參考第二圖(a)、第三圖(a)、第四圖 (a)及本案之實施例,需先於閥體座21及閥體蓋體22 上分別形成至少一個凹槽’如圖中所示之閥體座21上即 具有凹槽216a、216b,並於凹槽216a、216b内分別設置 一密封環26,由於設置於凹槽216a、216b内之密封環26 係部份凸出於閥體座21之表面,因而可於閥體座21之表 面形成一微凸結構,同樣地,凹槽228a、228b及密封環 ❸ 亦可以上述方式於閥體蓋體22之下表面221上形成一 ,、、^構’ 一、可採用半導體製程,例如:黃光钱刻或鏡 ,或電鱗技術’但不以此為限,直接於閥體座21及閥體 蓋體22上形成一微凸結構。 接著’形成一可撓薄膜,其係具有複數個閥門結構, 複數個閥門結構係同厚度及同材料製成且其中至少一個 ^門結構的剛性與其它的閥門結構不同,即為本案之閥體 • 4 、23以及所具有之入口閥門結構及出口闕門結構(如步 驟 S194 斛-、 ^ - W不),接者,再形成一致動薄膜,即為本案之振 薄膜241(如步驟S195所示),以及形成一致動II 242(如 22 200938728 • 步驟S196所示),之後,將致動器242貼附定位於振動薄 膜241之上,以組裝構成一致動裝置24,並使致動器242 與壓力腔室225相對應設置(如步驟S197所示)’在步驟 S197之後將閥體薄膜23設置於閥體座21與閥體蓋體22 之間,並且使閥體座21、閥體薄膜23以及閥體蓋體22彼 此相對應設置(如步驟S198所示),最後’將致動裝置24 對應設置於閥體蓋體22上,並使闕體薄膜23封閉閥體蓋 φ 體22之壓力腔室225,以形成一多流道流體輸送裝置(如 步驟S199所示)。 綜上所述,本案之多流道流體輸送裝置係適用於微泵 浦結構,主要由閥體座、闊體薄膜、閥體蓋體、振動薄膜 及致動器堆疊而成,藉由單一壓力腔室及致動器配合多個 流通管道、多個進出口及其多個閥門結構之配置概念,能 夠在不增加整體尺寸下,使流量及揚程大為增加,非常適 合用於流量及揚程需求相對較高之應用場合; ❹ 另外,本案之多流道流體輸送裝置之閥體薄膜所具有 之複數個閥門結構係同厚度及同材料製成,且其中至少一 個閥門結構的剛性與其它的闕門結構不同,藉由不同剛性 設計之閥門組合,因其鬆緊度不同造成在相同艙體壓力下 產生不同閥Π開度,造成不同比例之液體混合。並且,亦 可透過適當流體管道與閥門結構配裏,進行流體分流並分 配至不同容器中’至於分配所需比例亦可透過前述之不同 剛性閥門設置來達成。是以,本案之多流道流體輪送裝置 極具產業之價值,爰依法提出申請。 23 200938728 本案得由熟知此技術之人士任施匠思而為諸般修 飾,然皆不脫如附申請專利範圍所欲保護者。 200938728 【圖式簡單說明】 第-圖:其㈣習知微泵浦 第二圖⑴:其係為本案;構-意圖。 置之分解結構示意圖。 之多流道流體輪送裝 第二圖(b):其係為第二圖( 示意圓。 _所不之閥體座的背面結構 ❹ 第二圖(c):其係為第 構示意圖。 第二圖(d):其係為第 意圖。 圖(a)所示之閥體蓋體之背面結 圖(a)所示之閥體薄膜之結構示 第二圖(Ο:其係為第二圖(a)之組裝結構示意圖。 第三圖(a):其係為第二圖(e)所示之多流道流體輸送裝 置之未作動狀態之A-A剖面結構示意圖。 第二圖(b)·其係為第三圖(a)之壓力腔室膨脹狀態示意 圖。 ❹ 第三圖(c)·其係為第三圖(b)之壓力腔室壓縮狀態示意 圖。 第四圖(a):其係為第二圖(e)所示之多流道流體輸送裝 置之未作動狀態之B-B剖面結構示意圖。 第四圖(b):其係為第四圖(a)之壓力腔室膨脹狀態示意 圖。 第四圖(c):其係為第四圖(b)之壓力腔室壓縮狀態示意 圖。 第五圖(a)〜(e):其係為本案多流道流體輸送裝置所包 200938728 . 含之閥體薄膜之多種實施例之結構示意圖。 第六圖(a)〜(e)’其係為本案較佳實施例之閥門結構之 結構示意圖。 第七圖(a)至第十八圖(a):其係為本案闕體薄膜組合不 同剛性設計之閥門結構的多種實施例結構示意圖。 第七圖(b)至第十八圖(b):其係分別為第七圖(a)至 第十八圖(a)所示之不同剛性之兩出口閥門結構的實驗數 ❹據圖。 第十九圖:其係為本案較佳實施例之多流道流體輸送裝置 之製造流程圖。 【主要元件符號說明】 微泵浦結構:10 閥體座:11、21 入 口通道:111、211a、211b 出 口通道:112、212a、212b 閥體蓋體:12、22 壓力腔室:123、225 籲 閥體薄膜:13、23 微致動器:14 多流道流體輸送裝置:20 蓋體:15、25 致動裝置.24 振動薄膜:241 致動器:242 齒狀結構:6511 出口暫存腔·· 215a、215b上表面·· 220 下表面:221 入口暫存腔:224a、224b 入 口闕片:2313a、2313b 出 口閥片:2323a、2323b _ 方向:a、b、x 密封環:26、27、28 • 入口闕門結構:231a、231b出口閥門結構:232a、232b 26 200938728 27 ' 28 入口閥門通遘:221 壓力腔室: 入口閥片:013 出口閥門通道:222 密封環:26、27、2 出口閥月:023 開口 : 213a、213b、214a、214b 入口閥片通道:121、222a、222b 出口閥門通道:122、223a、223b 出口閥門結構:132、232a、232b φ 入口閥門結構J31、231a、231b 凹槽:216a、216b ' 217a、217b、226、227a、227b、 228a、228b 延伸部:2311a、2311b、2321a、2321b 閥門結構:61、62、63、64、65 閥片:611、621、631、641、651 孔洞:2312a、2312b、2322a、2322b、612、622、632、 642、652 ❹ 延伸部:613、623、633、643、653 S191~S199:多流道流體輸送裝置之製造流程 27It:, the valve structure is set up to achieve a) to 18th (a), which is the flat-top design of the different rigid design of the valve body film combination of this case, and the seventh figure (a) to the second: °, more The structure of the embodiment shows the structure of the membrane valve port structure shown in the equal-rigidity design of the rain Γ 0 (a) and the two outlet valve structures of different rigidity ratios, and the seventh figure (1) to the eighteenth figure. (1) Experimental data of two different π valve structures of different rigidity shown in the seventh (a) to eighteenth (4), respectively, and the respective experimental data from the seventh figure (1) to the eighteenth figure (b) It can be seen that the valve body film shown in the seventh figure (a) to the eighteenth figure (a) is divided by the two inlet valve structures of the same rigidity and the two outlet valve structures of different rigidity, once the device is actuated When the vibration frequency (Frequency) is changed, the fluid flow discharged from the two outlet valve structures is obviously different due to the different rigidity of the two outlet valve structures, so that the multi-channel fluid conveying device of the present invention can achieve different proportions of the split output. The effect. In addition, the valve body film can be arranged in the same rigid design with two outlet valve structures and two rigid inlet valve structures, so that the multi-channel fluid delivery device of the present invention can achieve the mixing effect of different ratios of two different liquids. . Please refer to the nineteenth figure and the second figure (a), which is a nineteenth embodiment of the system. 2009 200928 - The manufacturing flow chart of the multi-channel fluid conveying device of the preferred embodiment of the present invention firstly forms a valve body layer 'That is as shown in the second figure (a) of the body seat 21 (as shown in step S191) 'and thereafter, forming a valve body cover layer' in this embodiment, the valve body cover layer is the second figure (a) The valve body cover 22' is shown and has a pressure chamber 225 (as shown in step S192), and then a micro-convex structure is formed on the valve body seat 21 and the valve body cover 22, respectively. As shown in step S193, the micro convex structure can be formed in two ways 'and not limited to this: First, please refer to the second figure (a), the third figure (a), the fourth figure ( a) and in the embodiment of the present invention, at least one groove is formed on the valve body seat 21 and the valve body cover body 22 respectively. The valve body seat 21 shown in the figure has grooves 216a, 216b, and A sealing ring 26 is disposed in each of the grooves 216a and 216b. The sealing ring 26 disposed in the grooves 216a and 216b protrudes from the surface of the valve body seat 21, so that the valve body seat 2 can be disposed. The surface of 1 forms a micro-convex structure. Similarly, the grooves 228a, 228b and the sealing ring 亦 can also be formed on the lower surface 221 of the valve body cover 22 in the above manner. For example, the yellow light money engraving or mirroring, or the electric scale technology 'but not limited thereto, forms a micro convex structure directly on the valve body seat 21 and the valve body cover body 22. Then 'forming a flexible film, which has a plurality of valve structures, a plurality of valve structures are made of the same thickness and the same material and at least one of the door structures is different in rigidity from the other valve structures, that is, the valve body of the present invention • 4, 23 and the inlet valve structure and the exit door structure (such as step S194 斛-, ^ - W), and then form an actuating film, which is the diaphragm 241 of this case (as in step S195) And forming an actuator II 242 (as shown in 22 200938728 • step S196), after which the actuator 242 is attached and positioned on the diaphragm 241 to assemble the actuator 24 and the actuator 242 is disposed corresponding to the pressure chamber 225 (as shown in step S197). 'The valve body film 23 is disposed between the valve body seat 21 and the valve body cover 22 after the step S197, and the valve body seat 21 and the valve body are provided. The film 23 and the valve body cover 22 are disposed corresponding to each other (as shown in step S198), and finally, the actuator device 24 is correspondingly disposed on the valve body cover 22, and the body film 23 is closed to the valve body cover φ body 22. Pressure chamber 225 to form a multi-flow The channel fluid delivery device (as shown in step S199). In summary, the multi-channel fluid delivery device of the present invention is suitable for a micro-pump structure, which is mainly composed of a valve body seat, a wide body film, a valve body cover body, a vibration film and an actuator, and is formed by a single pressure. The configuration concept of the chamber and the actuator combined with a plurality of flow pipes, a plurality of inlets and outlets and a plurality of valve structures thereof can greatly increase the flow rate and the lift without increasing the overall size, and is very suitable for the flow and lift requirements. The relatively high application; ❹ In addition, the valve body film of the multi-channel fluid transfer device of the present invention has a plurality of valve structures which are made of the same thickness and the same material, and the rigidity of at least one of the valve structures and other flaws Different door structures, due to the different rigid design of the valve combination, due to the different degrees of tightness, different valve opening degrees under the same cabin pressure, resulting in different proportions of liquid mixing. Also, the fluid can be shunted and dispensed into different containers through a suitable fluid conduit and valve structure. The proportion required for dispensing can also be achieved by the different rigid valve settings described above. Therefore, the multi-channel fluid transfer device in this case is of great industrial value and is submitted in accordance with the law. 23 200938728 This case has been modified by people who are familiar with this technology, but it is not to be protected as claimed. 200938728 [Simple description of the diagram] Figure-Figure: (4) Conventional micro-pumping Figure 2 (1): This is the case; A schematic diagram of the decomposition structure. The multi-channel fluid wheel is loaded with the second figure (b): it is the second figure (schematic circle. _ the back structure of the valve body seat ❹ second figure (c): it is a schematic view of the structure. Figure 2 (d): This is the first intention. The structure of the valve body film shown in the back view of the valve body cover shown in Figure (a) is shown in Figure 2 (Ο: its system is 2(a) is a schematic view of the assembled structure of the multi-channel fluid transport device shown in the second figure (e). Fig. 3 is a schematic view showing the state of expansion of the pressure chamber in the third diagram (a). ❹ The third diagram (c) is a schematic diagram of the compression state of the pressure chamber in the third diagram (b). : It is a schematic diagram of the BB cross-sectional structure of the multi-channel fluid transport device shown in the second figure (e). Figure 4 (b): This is the pressure chamber expansion of the fourth figure (a). State diagram. Figure 4 (c): This is a schematic diagram of the pressure chamber compression state of the fourth diagram (b). Figure 5 (a) ~ (e): This is the case of the multi-channel fluid delivery device 200938728 A schematic structural view of various embodiments of the valve body film. Fig. 6(a) to (e)' are schematic structural views of the valve structure of the preferred embodiment of the present invention. Fig. 7(a) to 18th Figure (a): It is a structural schematic diagram of various embodiments of the valve structure of different rigid designs of the body film combination of the present invention. The seventh figure (b) to the eighteenth figure (b): the system is the seventh figure (a The experimental data of the two different outlet valve structures shown in Fig. 18(a) are shown in Fig. 19. Fig. 19 is a manufacturing flow chart of the multi-channel fluid transport device of the preferred embodiment of the present invention. [Main component symbol description] Micro-pump structure: 10 valve body seat: 11, 21 inlet channel: 111, 211a, 211b outlet channel: 112, 212a, 212b valve body cover: 12, 22 pressure chamber: 123, 225 valve body film: 13, 23 microactuator: 14 multi-channel fluid delivery device: 20 cover: 15, 25 actuators. 24 diaphragm: 241 actuator: 242 tooth structure: 6511 export Storage chamber · 215a, 215b upper surface · · 220 lower surface: 221 inlet temporary cavity: 224a, 224b inlet sepal: 23 13a, 2313b outlet valve: 2323a, 2323b _ direction: a, b, x sealing ring: 26, 27, 28 • inlet door structure: 231a, 231b outlet valve structure: 232a, 232b 26 200938728 27 ' 28 inlet valve遘: 221 Pressure chamber: inlet valve: 013 outlet valve passage: 222 seal ring: 26, 27, 2 outlet valve month: 023 opening: 213a, 213b, 214a, 214b inlet valve passage: 121, 222a, 222b outlet Valve passage: 122, 223a, 223b Outlet valve structure: 132, 232a, 232b φ inlet valve structure J31, 231a, 231b Groove: 216a, 216b ' 217a, 217b, 226, 227a, 227b, 228a, 228b Extension: 2311a , 2311b, 2321a, 2321b Valve structure: 61, 62, 63, 64, 65 Valves: 611, 621, 631, 641, 651 Holes: 2312a, 2312b, 2322a, 2322b, 612, 622, 632, 642, 652 ❹ Extension: 613, 623, 633, 643, 653 S191~S199: Manufacturing process of multi-channel fluid delivery device 27

Claims (1)

200938728 十、申請專利範圍: 1. 一種多流道流體輸送裝置,用以傳送一流體,其係包 含: 一閥體座,其係具有至少一出口通道及至少一入口通 道; 一閥體蓋體,其係設置於該閥體座上; 一閥體薄膜,其係設置於該閥體座及該閥體蓋體之 © 間,且具有複數個閥門結構,該複數個閥門結構係同厚度 及同材料製成,且其中至少一個閥門結構的剛性與其它的 閥門結構的剛性不同; 複數個暫存室,設置於該閥體薄膜與該閥體蓋體之 間,以及於該閥體薄膜與該閥體座之間;以及 一振動裝置,其週邊係固設於該閥體蓋體。 2. 如申請專利範圍第1項所述之多流道流體輸送裝置, 其中該流體包括氣體及液體。 3. 如申請專利範圍第1項所述之多流道流體輸送裝置, 其中該複數個閥門結構係分別具有一閥片、複數個孔洞以 及複數個延伸部,該複數個孔洞係環繞閥片週邊設置,複 數個延伸部係與該閥片連接且設置於該複數個孔洞之間。 4. 如申請專利範圍第3項所述之多流道流體輸送裝置, 其中該閥片實質上係為圓形結構。 . 5.如申請專利範圍第4項所述之多流道流體輸送裝置, 其中該閥片周圍係包含一齒狀結構。 28 200938728 • 6.如申請專利範圍第3項所述之多流道流體輸送裝置, 其中該延伸部實質上係為切線型態。 7. 如申請專利範圍第3項所述之多流道流體輸送裝置, 其中該延伸部實質上係為直線型態。 8. 如申請專利範圍第3項所述之多流道流體輸送裝置, 其中該延伸部實質上係為長S形型態。 9. 如申請專利範圍第3項所述之多流道流體輸送裝置, ^ 其中該延伸部實質上係為短S形型態。 10. 如申請專利範圍第3項所述之多流道流體輸送裝置, 其中該閥門結構的剛性條件取決於該閥門結構之外觀型 態。 11. 如申請專利範圍第3項所述之多流道流體輸送裝置, 其中該閥門結構的剛性條件取決於該閥門結構之該延伸 部之寬度。 12. 如申請專利範圍第3項所述之多流道流體輸送裝置, 〇 其中該閥門結構的剛性條件取決於該闊門結構之該延伸 部之數量。 13. 如申請專利範圍第1項所述之多流道流體輸送裝置, 其中該複數個閥門結構係藉由控制該致動裝置之震動頻 率來調整進行分流或混合流體的比例。 14. 如申請專利範圍第1項所述之多流道流體輸送裝置, 其中該閥體薄膜與該閥體蓋體之間係形成至少一第一暫 存室,以及於該閥體薄膜與該閥體座之間形成至少一第二 ' 暫存室。 29 200938728 . 15.如申請專利範圍第1項所述之多流道流體輸送裝置, 其中該閥體薄膜之複數閥門結構可為至少一入口閥門及 至少一個出口閥門。 16. 如申請專利範圍第15項所述之多流道流體輪送裝置, 其中該閥體薄膜係配置二個入口閥門及二個出口閥門的 混合及分流閥門結構。 17. 如申請專利範圍第15項所述之多流道流體輸送裝置, @ 其中該閥體薄膜係配置三個入口閥門及一個出口閥門的 混合閥門結構。 18. 如申請專利範圍第15項所述之多流道流體輸送裝置, 其中該閥體薄膜係配置一個入口閥門及三個出口閥門的 分流閥門結構。 19. 如申請專利範圍第15項所述之多流道流體輸送裝置, 其中該閥體薄膜係配置一個入口閥門及四個出口閥門的 分流閥門結構配置。 ❹ 20.如申請專利範圍第15項所述之多流道流體輸送裝 置,其中該閥體薄膜係配置四個入口閥門及一個出口閥門 的混合閥門結構配置。200938728 X. Patent application scope: 1. A multi-channel fluid conveying device for conveying a fluid, comprising: a valve body seat having at least one outlet passage and at least one inlet passage; a valve body cover And a valve body film disposed between the valve body seat and the valve body cover, and having a plurality of valve structures, the plurality of valve structures being the same thickness and Made of the same material, and at least one of the valve structures has rigidity different from that of the other valve structures; a plurality of temporary storage chambers are disposed between the valve body film and the valve body cover, and the valve body film and Between the valve body seats and a vibrating device, the periphery thereof is fixed to the valve body cover. 2. The multi-channel fluid delivery device of claim 1, wherein the fluid comprises a gas and a liquid. 3. The multi-channel fluid delivery device of claim 1, wherein the plurality of valve structures each have a valve plate, a plurality of holes, and a plurality of extensions surrounding the periphery of the valve plate. A plurality of extensions are connected to the valve plate and disposed between the plurality of holes. 4. The multi-channel fluid delivery device of claim 3, wherein the valve plate is substantially circular in shape. 5. The multi-channel fluid delivery device of claim 4, wherein the valve sheet comprises a toothed structure. The multi-channel fluid delivery device of claim 3, wherein the extension is substantially tangential. 7. The multi-channel fluid delivery device of claim 3, wherein the extension is substantially linear. 8. The multi-channel fluid delivery device of claim 3, wherein the extension is substantially a long S-shaped configuration. 9. The multi-channel fluid delivery device of claim 3, wherein the extension is substantially a short S-shaped configuration. 10. The multi-channel fluid delivery device of claim 3, wherein the rigid condition of the valve structure is dependent on the appearance of the valve structure. 11. The multi-channel fluid delivery device of claim 3, wherein the rigid condition of the valve structure is dependent on the width of the extension of the valve structure. 12. The multi-channel fluid delivery device of claim 3, wherein the rigid condition of the valve structure is dependent on the number of the extensions of the wide door structure. 13. The multi-channel fluid delivery device of claim 1, wherein the plurality of valve structures adjust the ratio of the split or mixed fluid by controlling the frequency of vibration of the actuator. 14. The multi-channel fluid delivery device of claim 1, wherein the valve body film and the valve body cover form at least a first temporary storage chamber, and the valve body film and the At least one second 'storage chamber is formed between the valve body seats. The multi-channel fluid delivery device of claim 1, wherein the plurality of valve structures of the valve body membrane can be at least one inlet valve and at least one outlet valve. 16. The multi-channel fluid transfer device of claim 15, wherein the valve body film is provided with a mixing and diverting valve structure of two inlet valves and two outlet valves. 17. The multi-channel fluid delivery device of claim 15, wherein the valve body membrane is provided with a mixing valve structure of three inlet valves and one outlet valve. 18. The multi-channel fluid delivery device of claim 15, wherein the valve body membrane is provided with an inlet valve and a diverter valve structure of three outlet valves. 19. The multi-channel fluid delivery device of claim 15, wherein the valve body membrane is configured with an inlet valve and a diverter valve configuration of four outlet valves. 20. The multi-channel fluid delivery device of claim 15, wherein the valve body membrane is configured with a mixing valve configuration of four inlet valves and one outlet valve.
TW97107716A 2008-03-05 2008-03-05 Fluid transmission device with multi flow channels TWI359233B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97107716A TWI359233B (en) 2008-03-05 2008-03-05 Fluid transmission device with multi flow channels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97107716A TWI359233B (en) 2008-03-05 2008-03-05 Fluid transmission device with multi flow channels

Publications (2)

Publication Number Publication Date
TW200938728A true TW200938728A (en) 2009-09-16
TWI359233B TWI359233B (en) 2012-03-01

Family

ID=44867409

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97107716A TWI359233B (en) 2008-03-05 2008-03-05 Fluid transmission device with multi flow channels

Country Status (1)

Country Link
TW (1) TWI359233B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016008154A1 (en) * 2014-07-18 2016-01-21 科际精密股份有限公司 Negative pressure wound therapy apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016008154A1 (en) * 2014-07-18 2016-01-21 科际精密股份有限公司 Negative pressure wound therapy apparatus

Also Published As

Publication number Publication date
TWI359233B (en) 2012-03-01

Similar Documents

Publication Publication Date Title
TWI431195B (en) Fluid transmission device capable of generating micro drop fluid
CN206129568U (en) Miniature fluid controlling means
JP4793442B2 (en) Micro pump
CN101550925B (en) Fluid transporting device with a plurality of dual-cavity actuating structures
US8157549B2 (en) Multi-channel fluid conveying apparatus
TW201500151A (en) Micro-gas pressure driving apparatus
US20090242061A1 (en) Dual-cavity fluid conveying apparatus
TW200909684A (en) Manufacturing method of fluid transmission device
TWI324531B (en)
TW200938728A (en) Fluid transmission device with multi flow channels
TW200948622A (en) Fluid transmission device
TW201335483A (en) Fluid transmission device
TWI398577B (en) Fluid transmission device cable of transmitting fluid at relatively large fluid rate
TWI332557B (en) Fluid transmission device having flow way board
TWI359234B (en) Manufacturing method of fluid transmission device
TW200944657A (en) Fluid transmission device with multi flow channels
JP2007198147A (en) Diaphragm pump
JP5826009B2 (en) Substrate for mounting micro pump and micro pump assembly
TWI353891B (en) Fluid transmission device having a plurality of do
TWI353890B (en) Fluid transmission device with multi flow channels
TW200942330A (en) Asymmetric double-chambered fluid transmission device
CN101520040A (en) Manufacturing method of multi-flow passage fluid conveying device
TW201430217A (en) Piezoelectric micropump structure with valves
TWI379040B (en) Fluid transmission device
CN101566145A (en) Multiple-sprue fluid conveying appliance