TW200938481A - Carbon nanotube yarn strucutre - Google Patents

Carbon nanotube yarn strucutre Download PDF

Info

Publication number
TW200938481A
TW200938481A TW97108088A TW97108088A TW200938481A TW 200938481 A TW200938481 A TW 200938481A TW 97108088 A TW97108088 A TW 97108088A TW 97108088 A TW97108088 A TW 97108088A TW 200938481 A TW200938481 A TW 200938481A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
long
layer
carbon
line structure
Prior art date
Application number
TW97108088A
Other languages
Chinese (zh)
Other versions
TWI380949B (en
Inventor
Kai-Li Jiang
Liang Liu
Kai Liu
Qing-Yu Zhao
Yong-Chao Zhai
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97108088A priority Critical patent/TWI380949B/en
Publication of TW200938481A publication Critical patent/TW200938481A/en
Application granted granted Critical
Publication of TWI380949B publication Critical patent/TWI380949B/en

Links

Abstract

The present invention relates to a carbon nanotube yarn structure. The carbon nanotube yarn structure includes a plurality of carbon nanotubes. The carbon nanotubes have a same length and are joined end to end by van der Waals attractive force. The carbon nanotube yarn structure further includes at least one conductive material coated on a surface of the carbon nanotubes.

Description

200938481 九、發明說明: •【發明所屬之技術領域】 • 本發明涉及一種長線結構,尤其涉及一種基於奈米碳 管的長線結構。 【先前技術】 奈米碳管係一種由石墨烯片卷成的中空管狀物,其具 有優異的力學、熱學及電學性質。奈米碳管應用領域非常 ❹廣闊,如,它可用於製作場效應晶體管、原子力顯微鏡針 尖、場發射電子搶、奈米模板等等。然,目前基本上都係 t微觀尺度下應用奈米碳管,操作較困難。故,將奈米碳 管組裝成宏觀尺度的結構對於奈米碳管的宏觀應用具= 要意義。 范守善等人於 Nature,2002,419:8〇1,5ρίηη_ (^〇ntin_s CNT Yams -文中揭露了從—超順排奈米碳管 陣列十可以拉出一根連續的純奈米碳管線,這種奈米碳管 ©'線包括多個於凡德瓦爾力作用下首尾相接的奈米碳管束片 二::=!碳管束片段具有大致相等的長度,且每個奈 二又由多個相互平行的奈来碳管構成、然而,由 碳管線,導致接觸點心雪㈣以、取逆㈣不水 管線的電導率較低,2 ’進而導致上述奈米碳 電氣傳輸領域。無法代替金屬導線,用於信號傳輸及 有#於此,提供一種且有 械性能、較輕的質量及較:二:的m較强的機 平乂』旳罝徑,並且易於製造,適於 7 200938481 低成本大量生產的奈米碳管長線結構及其製備方法實為必 • 要。 . 【發明内容】 一種奈米碳管長線結構,包括多個奈米碳管,該多個 奈米碳管具有相等的長度並通過凡德瓦爾力首尾相連,其 中,該奈米碳管長線結構進一步包括導電材料包覆於奈米 碳管表面。 〇 相較於先前技術,本技術方案中的奈米碳管長線結構 具有j下優點:其一,採用導電材料包覆的奈米碳管形成 的奈米碳管長線結構比採用純奈米碳管形成的奈米碳管長 線具有更好的導電性。其二,由於奈米碳管爲中空的管狀 =構,且形成於奈米碳管表面的導電層厚度一般只有幾個 奈米,故,電流於通過金屬導電材料層時基本不會産生趨 膚應從而避免了彳§號於奈米碳管長線結構傳輸過程中 的ΪΪ。其三,由於奈米碳管具有優異的力學性能及較輕 〇的貝畺故,該奈米碳管長線結構比純金屬導線具有更高 的機械强度及更輕的質量,適合特殊領域,如航天領域及 空間設備的應用。 【實施方式】 以下將結合附圖詳細說明本技術方案實施例奈米碳管 長線結構的結構及其製備方法。 处請參閱圖1,本技術方案實施例提供一種奈米碳管長 ^結構1〇〇 ’該奈米碳管長線結構100由奈米碳管lu和 V電材料(圖未不)構成。具體地,該奈米碳管長線結構 8 200938481 100包括多個奈米碳管,並且,每個奈米碳管U1表面 •均包覆至少一導電材料層。其中,每個奈米碳管111具有 ,大致相等的長度,並且,多個奈米碳管m通過凡德瓦爾 力首尾相連形成一奈米碳管長線結構1〇〇。具體地,多個 奈米碳官111有序排列形成一奈米碳管束片段,多個奈米 石反官束片段通過凡德瓦爾力首尾相連形成一奈米碳管長線 結構100。於該奈米碳管長線結構1〇〇中,所述奈米碳管 ❹111可以沿奈米碳管長線結構1〇〇的轴向擇優取向排列。 或者,該奈米碳官長線結構100於製備過程中可經過一扭 轉過耘,形成一絞線結構。於上述絞線結構中,奈米碳管 繞絞線結構的軸向螺旋狀旋轉排列。該奈米碳管長線結構 的直徑可以爲4.5奈米〜00微米,優選地,該奈米碳 管長線結構1〇〇的直徑爲1〇〜3〇微米。 "月參見圖2,該奈米碳管長線結構丨〇〇中每一根奈米 碳管111表面均包覆至少一導電材料層。具體地,該導電 © ^料層包括與奈米碳管lu表面直接結合的潤濕層112、 設置於潤濕層外的過渡層113、設置於過渡層ιΐ3外的導 電層114及設置於導電層m夕卜的抗氧化層115。 由於奈米奴官111與大多數金屬之間的潤濕性不好, 4:上述满濕層112的作用爲使導電層j j 4與奈米碳管11 i ^好的結合。形成該潤濕層112的材料可以麟、把或欽 思與不米石反官111潤濕性好的金屬或它們的合金,該潤濕 112的厚度爲1〜10奈米。本實施例中,該潤濕層112 的材料爲鎳’厚度約爲2奈米。可以理解,該潤濕層112 9 200938481 爲可選擇結構。 上述過渡層113的作用爲使潤濕層U2與導電層 •更好的結合。形成該過渡層113的材料可以爲與潤濕層112 材料及導電層114材料均能較好結合的材料,該過渡層 的厚度爲1〜ίο奈米。本實施例中,該過渡層113的材料 爲銅,厚度爲2奈米。可以理解,該過渡層U3爲可選擇 結構。 〇 上述導電層U4的作用爲使奈米碳管長線結構100具 有較好的導電性能。形成該導電層114的材料可以爲銅Γ 銀或金等導電性好的金屬或它們的合金,該導電層114的 厚度爲1〜20奈米。本實施例中,該導電層114的材 銀,厚度約爲5奈米。 β 上述抗氧化層115的作用爲防止於奈米碳管長線結構 的製造過程中導電層114於空氣中被氧化,從而使奈 米碳管長線結構100的導電性能下降。形成該抗氧化層115 〇的材料可以爲金或#等於空氣中不易氧化的敎金屬或它 們的合金,該抗氧化層115的厚度爲卜1〇奈米。本實施 例中,該抗氧化層115的材料爲鉑,厚度爲2奈米。可以 理解,該抗氧化層115爲可選擇結構。 進一步地’爲提高奈米碳管長線結構丨〇〇的强度,可 於該抗氧化層115外進-步設置一强化層116。形成該强 化層116的材料可以爲聚乙烯醇(pvA)、聚苯撑苯並二噁 坐(PBO)、聚乙婦(pe)或聚氣乙烯(pVc)等强度較高 的聚合物,該强化層116的厚度爲微米。本實施例 200938481 中,該强化層116的材料爲聚乙烯醇(pVA),厚度爲〇 f *微米。可以理解,該强化層Πό爲可選擇結構。 . 請參閱圖3及圖4,本技術方案實施例中奈米碳管長 線結構100的製備方法主要包括以下步驟: 步驟一:提供一奈米碳管陣列216,優選地,該陣列 爲超順排奈米碳管陣列。 本技術方案實施例提供的奈米碳管陣列216爲單壁奈 ❹米碳管陣列,雙壁奈来碳管陣列,及多壁奈米碳管陣列中 的一種或多種。本實施例中,該超順排奈米碳管陣列的製 備方法採用化學氣相沈積法,其具體步驟包括:(a)提供 一平整基底,該基底可選用p型或N型矽基底,或選用形 成有氧化層的矽基底,本實施例優選爲採用4英寸的矽基 底’(b )於基底表面均勻形成一催化劑層,該催化劑層材 料可選用鐵(Fe)、始(C。)、鎳(Ni)或其任意組合的合 金之一,(c)將上述形成有催化劑層的基底於7〇〇〜9〇〇〇c ❹的空氣中退火約30分鐘〜9〇分鐘;(d)將處理過的基底置 於反應爐中,於保護氣體環境下加熱到5〇〇〜74〇cC,然後 通入碳源氣體反應約5〜30分鐘,生長得到超順排奈米碳 官陣列,其局度爲200〜400微米。該超順排奈米碳管陣列 爲^個彼此平行且垂直於基底生長的奈米碳管形成的純奈 米碳W陣列。通過上述控製生長條件,該超順排奈米碳管 陣列中基本不含有雜質,如無定型碳或殘留的催化劑金屬 顆粒等。該超順排奈米碳管陣列中的奈米碳管彼此通過凡 德瓦爾力緊密接觸形成陣列。該超順排奈米碳管陣列與上 11 200938481 述基底面積基本相同。 . 本實施例中碳源氣可選用乙炔、乙烯、曱烷等化學性 .質較活潑的石炭氫化合物,本實施例優選的碳源氣爲乙块; 保護氣體爲氮氣或惰性氣體,本實施例優選的保護氣體爲 氬氣。 步驟二:採用一拉伸工具從所述奈米碳管陣列中 拉取獲得一奈米碳管結構214。 ❹ 所述奈米碳管結構214的製備方法包括以下步驟:(a) 從上述奈米碳管陣列216中選定一定寬度的多個奈米碳管 束片段,本實施例優選爲採用具有一定寬度的膠帶或一針 尖接觸奈米碳管陣列216以選定一定寬度的多個奈米碳管 束片段;(b)以一定速度沿基本垂直於奈米碳管陣列216 生長方向拉伸該多個奈米碳管束片段,以形成一連續的奈 米碳管結構214。 於上述拉伸過程中,該多個奈米碳管束片段於拉力作 ©用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 用,該選定的多個奈米碳管束片段分別與其它奈米碳管束 片段首尾相連地連續地被拉出,從而形成一奈米碳管結構 214/。該奈米碳管結構214包括多個首尾相連且定向排列的 奈米碳管束。該奈米碳管結構214中奈米碳管的排列方向 基本平行於奈米碳管結構214的拉伸方向。 該奈米碳管結構214爲一奈米碳管薄膜或一奈米碳管 線。具體地,當所選定的多個奈米碳管束片段的寬度較大 時,所獲得的奈米碳管結構214爲一奈米碳管薄膜,其微 12 200938481 觀結構請參閱圖5;當所選定的多個奈米碳管束片段的寬 •度幸乂小時’所獲得的奈米碳管結構214可近似爲一奈米碳 .管線。 該直接拉伸獲得的擇優取向排列的奈米碳管結構214 比無序的奈米碳管結構具有更均句的厚度。同時該直接拉 伸獲得奈米碳管結構2H的方法簡單快速,適宜進行工業 化應用。 ^ ❹ ν驟一 ·形成至少一導電材料層於所述奈米碳管結構 214表面,形成一奈米碳管長線結構222。 本實施例採用物理氣相沈積法(pVD)如真空蒸鍍或 f子濺射等沈積導電材料層。優選地,本實施例採用真空 蒸鍍法形成至少一層導電材料層。 所述採用真空蒸鍍法形成至少一層導電材料層的方法 包括以下步驟:首先,提供一真空容器21〇,該真空容器 210具有一沈積區間,該沈積區間底部和頂部分別放置至 ❹ 個蒸發源212,該至少一個蒸發源212按形成至少一 層導電材料層的先後順序依次沿奈米碳管結構的拉伸方向 設置,且每個蒸發源212均可通過一個加熱裝置(圖未示) 加熱。上述奈米碳管結構214設置於上下蒸發源212中間 並間隔一定距離’其中奈米碳管結構214正對上下蒸發源 212設置。該真空容器21〇可通過外接一真空泵(圖未示) 抽氣達到預定的真空度。所述蒸發源212材料爲待沈積的 導電材料。其次,通過加熱所述蒸發源212,使其溶融後 蒸發或升華形成導電材料蒸汽’該導電材料蒸汽遇到冷的 13 200938481 奈米碳管結構214後,於奈米碳管結構214上下表面凝聚, .形成導電材料層。由於奈米碳管結構214中的奈米碳管之 .間存在間隙,並且奈米碳管結構214厚度較薄,導電材料 可以滲透進入奈米碳管結構214之中,從而沈積於每根奈 米碳管表面。沈積導電材料層後的奈米碳管結構214的微 觀結構照片請參閱圖6和圖7。 可以理解’通過調節奈米碳管結構214和每個蒸發源 ❹212的距離及蒸發源212之間的距離,可使每個蒸發源212 具有一個沈積區。當需要沈積多層導電材料層時,可將多 個蒸發源212同時加熱,使奈米碳管結構214連續通過多 個蒸發源的沈積區,從而實現沈積多層導電材料層。 爲提南導電材料蒸汽密度並且防止導電材料被氧化, 真空容器210内真空度應達到1帕(Pa)以上。本技術方 案實施例中,真空容器中的真空度爲4xl〇-4Pa。 可以理解,也可將步驟一中的奈米碳管陣列216直接 ❹放入上述真空容器210中。首先,於真空容器21〇中採用 一拉伸工具從奈米碳管陣列中拉取獲得一奈米碳管結構 214。然後,加熱上述至少一個蒸發源212,沈積至少一層 电材料於所述奈米碳管結構214表面。以一定速度不斷 地從所述奈米碳管陣列216中拉取奈米碳管結構214,且 使所述奈米碳管結構214連續地通過上述蒸發源212的沈 積區間’進而形成奈米碳管長線結構222。故該真空容器 210可實現奈米碳管長線結構222的連續生産。 本技術方案實施例中,所述採用真空蒸鍍法形成至少 14 200938481 層導電材料層的方法具體包括以下步驟:形成一層潤濕 ;斤述不米碳官表面;形成一層過渡層於所述潤濕層的 卜表面形成層導電層於所述過渡層的外表面;形成一 層抗氧化層於所述導電層的外表面。其中,上述形成潤濕 曰過渡層及抗氧化層的步驟均爲可選擇的步驟。具體地, 可將^述奈米碳管結構214連續地通過上述各層材料所形 成的蒸發源212的沈積區間。 © —另外,於所述形成至少一層導電材料層於所述奈米碳 g、、’。構214表面之後’可進一步包括於所述奈米碳管結構 214表面形成强化層的步驟。具體地,可將形成有至少一 層導電材料層的奈米碳管結構214通過一裝有聚合物溶液 的裝置220,使聚合物溶液浸潤整個奈米碳管結構214,該 聚合物溶液通過分子間作用力黏附於所述導電材料層外表 面’待聚合物凝固後形成一强化層。 當所述奈米碳管結構214爲一奈米碳管線時,所述形 ❹成有至少一個導電材料層的奈米碳管線即爲—奈米碳管長 線結構222,不需要做後續處理。 當所述奈米碳管結構214爲一奈米碳管薄膜時,所述 形成奈米碳管長線結構222的步驟可進一步包括對所述奈 米碳管結構214進行機械處理的步驟。該機械處理步驟^ 通過以下兩種方式實現:對所述形成有至少一個導電材料 層的奈米碳管結構214進行扭轉,形成奈米碳管長線結構 222或切割所述形成有至少一個導電材料層的奈米碳管辞 構214,形成奈米碳管長線結構222。 15 200938481 對所述奈米碳管結構214進行扭轉,形成奈米碳其200938481 IX. Description of the invention: • Technical field to which the invention pertains • The present invention relates to a long-line structure, and more particularly to a long-line structure based on a carbon nanotube. [Prior Art] A carbon nanotube is a hollow tubular body rolled from a graphene sheet having excellent mechanical, thermal and electrical properties. The application of carbon nanotubes is very broad, for example, it can be used to make field effect transistors, atomic force microscope tips, field emission electrons, nano templates, and so on. However, at present, it is basically difficult to operate the carbon nanotubes at the t-micro scale. Therefore, the assembly of nano-carbon tubes into macro-scale structures is of great significance for the macroscopic application of carbon nanotubes. Fan Shoushan et al., Nature, 2002, 419:8〇1,5ρίηη_ (^〇ntin_s CNT Yams - the article reveals that a continuous pure nanocarbon pipeline can be pulled out from the super-shunned carbon nanotube array. The carbon nanotubes©' line includes a plurality of carbon nanotube bundles that are connected end to end under the action of Van der Valli. Two::=! The carbon tube bundle segments have approximately equal lengths, and each nanometer has multiple The parallel carbon nanotubes are formed, however, the carbon line leads to contact with the snow (4), and the reverse (iv) water line has lower conductivity, and 2' leads to the above-mentioned nano-carbon electrical transmission field. For signal transmission and there are #, providing a kind of mechanical performance, lighter quality and comparison: two: m strong machine level, easy to manufacture, suitable for 7 200938481 low cost The long-term structure of the carbon nanotubes produced in large quantities and the preparation method thereof are indispensable. [Invention content] A long-line structure of a carbon nanotube, comprising a plurality of carbon nanotubes, the plurality of carbon nanotubes having the same Length and connected end to end by Van der Valli The nano-carbon tube long-line structure further comprises a conductive material coated on the surface of the carbon nanotube. The 〇 phase is compared with the prior art, the nano-carbon tube long-line structure in the technical solution has the following advantages: First, the conductive material is used. The long carbon nanotube structure formed by the coated carbon nanotubes has better conductivity than the long carbon nanotube formed by pure carbon nanotubes. Second, because the carbon nanotubes are hollow tubular = structure The thickness of the conductive layer formed on the surface of the carbon nanotube is generally only a few nanometers. Therefore, the current does not substantially cause skinning when passing through the metal conductive material layer, thereby avoiding the long-term structure of the carbon nanotubes. In the process of transmission, the third principle is that the carbon nanotube long-line structure has higher mechanical strength and lighter quality than the pure metal wire because of its excellent mechanical properties and lighter beryllium. It is suitable for special fields, such as the aerospace field and the application of space equipment. [Embodiment] Hereinafter, the structure of a long-line structure of a carbon nanotube of the embodiment of the present technical solution and a preparation method thereof will be described in detail with reference to the accompanying drawings. Referring to FIG. 1 , an embodiment of the present technical solution provides a carbon nanotube long structure 1 〇〇 ' The carbon nanotube long-line structure 100 is composed of a carbon nanotube lu and a V electrical material (not shown). Specifically, the nano The carbon nanotube long-line structure 8 200938481 100 includes a plurality of carbon nanotubes, and each of the carbon nanotube U1 surfaces is coated with at least one layer of conductive material, wherein each of the carbon nanotubes 111 has substantially equal The length and the plurality of carbon nanotubes m are connected end to end by a van der Waals force to form a long carbon nanotube structure of the carbon nanotubes. Specifically, a plurality of nano carbon directors 111 are arranged in an order to form a carbon nanotube bundle segment. The plurality of nano-stone anti-official fragments are connected end to end by a van der Waals force to form a long carbon nanotube structure 100. In the long-line structure of the nano carbon tube, the carbon nanotubes 111 can be along the nai The long-line structure of the carbon tube is arranged in an axially preferred orientation. Alternatively, the nanocarbon permanent long-line structure 100 can be twisted and twisted during the preparation to form a stranded structure. In the above twisted wire structure, the carbon nanotubes are arranged in an axial spiral shape around the strand structure. The carbon nanotube long-line structure may have a diameter of 4.5 nm to 00 μm. Preferably, the carbon nanotube long-line structure has a diameter of 1 〇 to 3 μm. "Month Referring to Fig. 2, the surface of each of the carbon nanotubes 111 in the long-chain structure of the carbon nanotubes is coated with at least one layer of a conductive material. Specifically, the conductive layer comprises a wetting layer 112 directly bonded to the surface of the carbon nanotubes, a transition layer 113 disposed outside the wetting layer, a conductive layer 114 disposed outside the transition layer ι3, and a conductive layer. The layer of anti-oxidation layer 115. Since the wettability between the nano slave 111 and most metals is not good, 4: the above wet layer 112 functions to bond the conductive layer j j 4 to the carbon nanotube 11 i ^. The material forming the wetting layer 112 may be a metal, or an alloy thereof, which has a wettability with the non-meter stone reverse 111, and the wetting 112 has a thickness of 1 to 10 nm. In this embodiment, the wetting layer 112 is made of nickel having a thickness of about 2 nm. It will be appreciated that the wetting layer 112 9 200938481 is an optional structure. The role of the transition layer 113 described above is to provide a better bond between the wetting layer U2 and the conductive layer. The material forming the transition layer 113 may be a material which is better combined with the material of the wetting layer 112 and the material of the conductive layer 114, and the thickness of the transition layer is 1 to ίο nanometer. In this embodiment, the transition layer 113 is made of copper and has a thickness of 2 nm. It will be appreciated that the transition layer U3 is an optional structure. 〇 The above conductive layer U4 functions to make the carbon nanotube long-line structure 100 have good electrical conductivity. The material for forming the conductive layer 114 may be a conductive metal such as copper iridium or gold or an alloy thereof, and the conductive layer 114 has a thickness of 1 to 20 nm. In this embodiment, the conductive layer 114 has a silver thickness of about 5 nm. The action of the above-mentioned antioxidant layer 115 is to prevent the conductive layer 114 from being oxidized in the air during the manufacturing process of the carbon nanotube long-line structure, thereby degrading the conductivity of the carbon nanotube long-line structure 100. The material forming the anti-oxidation layer 115 可以 may be gold or # equal to bismuth metal or alloys thereof which are not easily oxidized in the air, and the thickness of the anti-oxidation layer 115 is 1 〇 nanometer. In this embodiment, the material of the oxidation resistant layer 115 is platinum and has a thickness of 2 nm. It will be appreciated that the oxidation resistant layer 115 is of an alternative construction. Further, in order to increase the strength of the long-chain structure 奈 of the carbon nanotube, a strengthening layer 116 may be further disposed outside the oxidation-resistant layer 115. The material forming the strengthening layer 116 may be a polymer having higher strength such as polyvinyl alcohol (pvA), polyphenylene benzophenanthrene (PBO), polyethylene (pe) or polyethylene (pVc). The thickness of the strengthening layer 116 is micrometers. In the embodiment 200938481, the reinforcing layer 116 is made of polyvinyl alcohol (pVA) and has a thickness of 〇 f * micron. It will be appreciated that the strengthening layer is an alternative structure. Referring to FIG. 3 and FIG. 4, the method for preparing the nano tube long-line structure 100 in the embodiment of the present technical solution mainly includes the following steps: Step 1: providing a carbon nanotube array 216, preferably, the array is super-shun Row of carbon nanotube arrays. The carbon nanotube array 216 provided by the embodiment of the present technical solution is one or more of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a p-type or N-type germanium substrate, or The ruthenium substrate formed with the oxide layer is selected. In this embodiment, a 4 inch ruthenium substrate (b) is preferably used to uniformly form a catalyst layer on the surface of the substrate. The catalyst layer material may be iron (Fe) or Si (C). One of nickel (Ni) or an alloy of any combination thereof, (c) annealing the substrate on which the catalyst layer is formed in air of 7 〇〇 to 9 〇〇〇 c 约 for about 30 minutes to 9 minutes; (d) The treated substrate is placed in a reaction furnace, heated to 5 〇〇 74 〇 cC under a protective gas atmosphere, and then reacted with a carbon source gas for about 5 to 30 minutes to grow to obtain a super-aligned carbon carbon array. Its degree is 200~400 microns. The super-sequential carbon nanotube array is a pure nanocarbon W array formed of carbon nanotubes that are parallel to each other and perpendicular to the substrate. The super-sequential carbon nanotube array is substantially free of impurities such as amorphous carbon or residual catalyst metal particles by the above controlled growth conditions. The carbon nanotubes in the super-sequential carbon nanotube array are in close contact with each other to form an array by van der Waals forces. The super-sequential carbon nanotube array is substantially the same as the substrate area of the above 11 200938481. In this embodiment, the carbon source gas may be selected from the group consisting of acetylene, ethylene, decane and other chemically active carbonaceous hydrogen compounds. The preferred carbon source gas in this embodiment is a block; the shielding gas is nitrogen or an inert gas. An example of a preferred shielding gas is argon. Step 2: A carbon nanotube structure 214 is obtained by drawing from the carbon nanotube array using a stretching tool. The method for preparing the carbon nanotube structure 214 includes the following steps: (a) selecting a plurality of carbon nanotube bundle segments of a certain width from the carbon nanotube array 216, and the embodiment preferably adopts a certain width. Tape or a tip contact with the carbon nanotube array 216 to select a plurality of carbon nanotube bundle segments of a certain width; (b) stretching the plurality of nanocarbons at a rate substantially perpendicular to the growth direction of the nanotube array 216 The tube bundle segments are formed to form a continuous carbon nanotube structure 214. During the above stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate by the tensile force in the direction of stretching, and the selected plurality of carbon nanotube bundle segments are respectively associated with the van der Waals force. The other carbon nanotube bundle segments are continuously drawn end to end to form a carbon nanotube structure 214/. The carbon nanotube structure 214 includes a plurality of bundles of carbon nanotubes that are connected end to end and oriented. The arrangement of the carbon nanotubes in the carbon nanotube structure 214 is substantially parallel to the direction of stretching of the carbon nanotube structure 214. The carbon nanotube structure 214 is a carbon nanotube film or a carbon nanotube wire. Specifically, when the width of the selected plurality of carbon nanotube bundle segments is larger, the obtained carbon nanotube structure 214 is a carbon nanotube film, and the micro 12 200938481 viewing structure is shown in FIG. 5; The carbon nanotube structure 214 obtained by the width and degree of the selected plurality of carbon nanotube bundle segments can be approximated as a nanocarbon. The preferred orientation aligned carbon nanotube structure 214 obtained by direct stretching has a more uniform thickness than the disordered carbon nanotube structure. At the same time, the method of directly drawing the carbon nanotube structure 2H is simple and rapid, and is suitable for industrial application. ^ ν 骤 · · 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 · · · · · · · · · · · · · · · · · This embodiment deposits a layer of a conductive material by physical vapor deposition (pVD) such as vacuum evaporation or f-sputtering. Preferably, this embodiment forms at least one layer of a conductive material by vacuum evaporation. The method for forming at least one layer of conductive material by vacuum evaporation comprises the following steps: First, a vacuum vessel 21 is provided, the vacuum vessel 210 having a deposition interval, and the bottom and top of the deposition interval are respectively placed to the evaporation source 212. The at least one evaporation source 212 is sequentially disposed along the stretching direction of the carbon nanotube structure in the order of forming at least one layer of the conductive material, and each of the evaporation sources 212 can be heated by a heating device (not shown). The carbon nanotube structure 214 is disposed between the upper and lower evaporation sources 212 and spaced apart by a distance 'where the carbon nanotube structure 214 is disposed opposite the upper and lower evaporation sources 212. The vacuum vessel 21 can be evacuated to a predetermined degree of vacuum by an external vacuum pump (not shown). The evaporation source 212 material is a conductive material to be deposited. Next, by heating the evaporation source 212, causing it to melt, evaporating or sublimating to form a conductive material vapor. The conductive material vapor encounters a cold 13 200938481 carbon nanotube structure 214, and then condenses on the upper and lower surfaces of the carbon nanotube structure 214. , forming a layer of conductive material. Since there is a gap between the carbon nanotubes in the carbon nanotube structure 214, and the thickness of the carbon nanotube structure 214 is thin, the conductive material can penetrate into the carbon nanotube structure 214 and deposit on each of the nanotubes. Carbon tube surface. See Figure 6 and Figure 7 for a photomicrograph of the carbon nanotube structure 214 after deposition of a layer of conductive material. It will be understood that each evaporation source 212 can have a deposition zone by adjusting the distance between the carbon nanotube structure 214 and each evaporation source 212 and the distance between the evaporation sources 212. When it is desired to deposit a plurality of layers of the conductive material, the plurality of evaporation sources 212 may be simultaneously heated to continuously pass the carbon nanotube structure 214 through the deposition regions of the plurality of evaporation sources, thereby realizing deposition of the plurality of layers of the conductive material. In order to increase the vapor density of the conductive material and prevent the conductive material from being oxidized, the vacuum in the vacuum vessel 210 should be above 1 Pa (Pa). In the embodiment of the technical solution, the degree of vacuum in the vacuum vessel is 4 x 1 〇 -4 Pa. It will be appreciated that the carbon nanotube array 216 of step one can also be directly placed into the vacuum vessel 210 described above. First, a carbon nanotube structure 214 is obtained by drawing from a carbon nanotube array using a stretching tool in a vacuum vessel 21 crucible. Then, the at least one evaporation source 212 is heated to deposit at least one layer of electrical material on the surface of the carbon nanotube structure 214. The carbon nanotube structure 214 is continuously drawn from the carbon nanotube array 216 at a constant speed, and the carbon nanotube structure 214 is continuously passed through the deposition interval of the evaporation source 212 to form a nanocarbon. The tube long line structure 222. Therefore, the vacuum vessel 210 can realize continuous production of the carbon nanotube long-line structure 222. In the embodiment of the technical solution, the method for forming at least 14 200938481 layer of conductive material by vacuum evaporation comprises the following steps: forming a layer of wetting; smearing a surface of the carbon-free surface; forming a transition layer in the run The surface of the wet layer forms a layer of conductive layer on the outer surface of the transition layer; an anti-oxidation layer is formed on the outer surface of the conductive layer. Wherein, the steps of forming the wetting enthalpy transition layer and the anti-oxidation layer are all optional steps. Specifically, the carbon nanotube structure 214 can be continuously passed through the deposition zone of the evaporation source 212 formed by the respective layers of materials. In addition, at least one layer of a conductive material is formed on the nanocarbon g, ,. The step 214 after the surface 214 may further include the step of forming a strengthening layer on the surface of the carbon nanotube structure 214. Specifically, the carbon nanotube structure 214 formed with at least one layer of conductive material may be passed through a device 220 containing a polymer solution to infiltrate the entire carbon nanotube structure 214 with the polymer solution, and the polymer solution passes through the intermolecular The force adheres to the outer surface of the conductive material layer to form a strengthening layer after the polymer is solidified. When the carbon nanotube structure 214 is a nanocarbon line, the nanocarbon line formed into a layer of at least one conductive material is a carbon nanotube long-line structure 222, which does not require subsequent processing. When the carbon nanotube structure 214 is a carbon nanotube film, the step of forming the carbon nanotube long-line structure 222 may further comprise the step of mechanically treating the carbon nanotube structure 214. The mechanical processing step is achieved by twisting the carbon nanotube structure 214 formed with at least one layer of conductive material to form a carbon nanotube long-line structure 222 or cutting the at least one conductive material. The layer of carbon nanotubes 214 forms a carbon nanotube long-line structure 222. 15 200938481 The carbon nanotube structure 214 is twisted to form a nanocarbon

.線結構222的步驟可通過以下兩種方式 :。反S ^ ^ '兄.其一,通過 .將黏附於上述奈米碳管結構214 —端的拉伸工具固定於— 旋轉電機上’扭轉該奈米碳管結構214,從而形成:太 :炭管長線結構222。其二,提供一個尾部可以黏住奈:碳 管結構214的紡紗軸,將該妨紗軸的尾部與奈米碳管結才= 214結合後,將該紡紗軸以旋轉的方式扭轉該二处 ^構2丨4’形成一奈米碳管長線結構222。可以理解,上二: 紗軸的旋轉方式不限,可以正轉,可以反轉,或者正轉和 反轉相結合。優選地,所述扭轉該奈米碳管結構214的步 驟爲將所述奈米碳管結構214沿奈米碳管結構214 = 方向以螺旋方式扭轉。扭轉後所形成的奈米碳管長線結構 222爲一絞線結構,其掃描電鏡照片請參見圖8。 所述切割奈米碳管結構214,形成奈米碳管長線結構 222的步驟爲:沿奈米碳管結構214的拉伸方向切割所述 ❹奈米碳官結構214,形成多個奈米碳管長線結構222。上述 多個奈米碳管長線結構222可進一步進行重叠、扭轉,以 形成一較大直徑的奈米碳管長線結構222。 可以理解’本技術方案並不限於上述方法獲得奈米碳 官長線結構222,只要能使所述奈米碳管結構214形成奈 米碳官長線結構222的方法都於本技術方案的保護範圍之 内。 所製得的奈米碳管長線結構222可進一步收集於捲筒 224上。收集方式爲將奈米碳管長線結構222纏繞於捲筒 200938481 224 上。 * 可選擇地’上述奈米碳管結構214的形成步驟、形成 •至少一個導電材料層的步驟、奈米碳管結構214的扭轉步 驟及奈米碳管長線結構222的收集步驟均可於上述真空容 器中進行’進而實現奈米碳管長線結構222的連續生産。 本技術方案實施例提供的採用導電材料包覆奈米碳管 所製造的奈米碳管長線結構及其製備方法具有以下優點: ❹其一,採用導電材料包覆的奈米碳管形成的奈米碳管長線 結構比純奈米碳管長線具有更好的導電性。其二,奈米碳 管長線結構中包含多個通過凡德瓦爾力首尾相連的奈米碳 管束片段,且每個奈米碳管表面均形成有導電材料層,其 中,奈米碳管束片段起導電及支撑作用,於奈米碳管上沈 積導電材料層後所形成的奈米碳管長線結構比採用先前技 術中的金屬拉絲方法得到的金屬導電絲更細,適合製作超 細微線鏡。其二,由於奈米碳管爲中空的管狀結構,且形 ❹成於奈米碳管外表面的金屬導電層厚度只有幾個奈米, 故,電流於通過金屬導電層時基本不會産生趨膚效應,從 而避免了信號於絞線傳輸過程中的衰减。其四,由於奈米 碳管具有優異的力學性能,且具有中空的管狀結構,故, 該奈米碳管長線結構比純金屬導線具有更高的機械强度及 更輕的質量,適合特殊領域,如航天領域及空間設備的應 用。其五,所述奈米碳管長線結構係通過對所述奈米碳管 線或奈米碳管薄膜進行拉取而製造,製造方法簡單方便、 成本較低。其六,所述從奈米碳管陣列直接拉伸獲得奈米 17 200938481 碳管薄膜或奈米碳管線的步驟及形成至少一層導電材料層 •的步驟均可於一真空容器中進行,有利於奈米碳管長線結 • 構的規模化生産。 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡習知本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 ❾蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本技術方案實施例奈米碳管長線結構示意圖。 圖2係本技術方案實施例奈米碳管長線結構中單根奈 米碳管的結構示意圖。 3 3係本技術方案實施例奈米碳管長線結構的製造方 法的流程圖。 圖4係本技術方案實施例奈米碳管長線結構的製造裝 ©置的結構示意圖。 圖5係本技術方案實施例奈米碳管薄膜的掃描電鏡照 —圖6係本技術方案實施例沈積導電材料層後的奈米 官溥膜的掃描電鏡照片。 圖7係本技術方案實施例沈積㈣材料層後的奈米 & '膜中的奈米碳管的透射電鏡照片。 2 8係本技術方案實施例對奈米碳管薄膜進行扭轉 乂 、紋線結構的掃描電鏡照片。 200938481 【主要元件符號說明】 奈米碳管長線結構 100, 222 奈米碳管 111 潤濕層 112 過渡層 113 導電層 114 抗氧化層 115 强化層 116 真空容器 210 蒸發源 212 奈米碳管結構 214 奈米碳管陣列 216 裝置 220 捲筒 224 ❹ 19The steps of the line structure 222 can be performed in the following two ways: The anti-S ^ ^ 'brother. First, the stretching tool attached to the end of the above-mentioned carbon nanotube structure 214 is fixed on the rotating electric machine to 'twist the carbon nanotube structure 214, thereby forming: too: the length of the carbon tube Line structure 222. Secondly, a spinning shaft is provided which can adhere to the naphthalene: carbon tube structure 214, and the tail of the yarn-shielding shaft is combined with the carbon nanotube knot = 214, and the spinning shaft is twisted in a rotating manner. The two structures 2丨4' form a carbon nanotube long-line structure 222. It can be understood that the above two: the rotation mode of the yarn axis is not limited, it can be forward rotation, can be reversed, or combined with forward rotation and reverse rotation. Preferably, the step of twisting the carbon nanotube structure 214 is to twist the carbon nanotube structure 214 in a helical manner along the carbon nanotube structure 214 = direction. The long-line structure 222 of the carbon nanotube formed after twisting is a twisted wire structure, and the scanning electron micrograph is shown in Fig. 8. The step of cutting the carbon nanotube structure 214 to form the nano carbon tube long-line structure 222 is: cutting the tantalum carbon carbon structure 214 along the tensile direction of the carbon nanotube structure 214 to form a plurality of nano carbons. The tube long line structure 222. The plurality of carbon nanotube long-line structures 222 may be further overlapped and twisted to form a larger diameter carbon nanotube long-line structure 222. It can be understood that the present technical solution is not limited to the above method to obtain the nano carbon official long-line structure 222, as long as the method for forming the carbon nanotube structure 214 to form the nano-carbon official long-line structure 222 is within the protection scope of the technical solution. Inside. The resulting carbon nanotube long wire structure 222 can be further collected on a reel 224. The collection method is to wind the nano carbon tube long-line structure 222 on the reel 200938481 224. * Optionally, the step of forming the carbon nanotube structure 214 described above, the step of forming the at least one layer of the conductive material, the step of twisting the carbon nanotube structure 214, and the step of collecting the carbon nanotube long-line structure 222 may be performed as described above. Continuous production of the carbon nanotube long-line structure 222 is carried out in a vacuum vessel. The nanowire long-length structure manufactured by using the conductive material coated carbon nanotube provided by the embodiment of the technical solution and the preparation method thereof have the following advantages: First, the nano tube formed by the conductive material coated carbon nanotube The long carbon wire structure of the carbon nanotubes has better conductivity than the long carbon nanotubes. Second, the long carbon nanotube structure includes a plurality of carbon nanotube bundle segments connected end to end by van der Waals force, and each carbon nanotube surface is formed with a conductive material layer, wherein the carbon nanotube bundle segment Conductive and supporting action, the long-term structure of the carbon nanotube formed by depositing a layer of conductive material on the carbon nanotube is finer than the metal conductive wire obtained by the metal wire drawing method in the prior art, and is suitable for making an ultra-fine microwire mirror. Second, since the carbon nanotube is a hollow tubular structure, and the thickness of the metal conductive layer formed on the outer surface of the carbon nanotube is only a few nanometers, the current does not substantially flow when passing through the metal conductive layer. The skin effect, thereby avoiding the attenuation of the signal during the transmission of the strand. Fourth, since the carbon nanotube has excellent mechanical properties and has a hollow tubular structure, the long carbon nanotube structure has higher mechanical strength and lighter quality than the pure metal wire, and is suitable for a special field. Such as the application of aerospace and space equipment. Fifthly, the long carbon nanotube structure is manufactured by drawing the carbon nanotube wire or the carbon nanotube film, and the manufacturing method is simple and convenient, and the cost is low. Sixth, the step of directly stretching from the carbon nanotube array to obtain the nano 17 200938481 carbon tube film or the nano carbon line and the step of forming at least one layer of the conductive material can be carried out in a vacuum container, which is beneficial to The large-scale production of nano-carbon tubes and long-line structures. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Any equivalent modifications or variations made by those skilled in the art to the spirit of the present invention are intended to be within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing the structure of a long carbon nanotube of the embodiment of the present technical solution. 2 is a schematic view showing the structure of a single carbon nanotube in a long-line structure of a carbon nanotube according to an embodiment of the present technical solution. 3 3 is a flow chart of a method for manufacturing a long carbon nanotube structure of the embodiment of the present technical solution. 4 is a schematic structural view of a manufacturing apparatus of a carbon nanotube long-length structure according to an embodiment of the present technical solution. Fig. 5 is a scanning electron micrograph of a carbon nanotube film according to an embodiment of the present technical solution. Fig. 6 is a scanning electron micrograph of a nano-manifold film after depositing a conductive material layer in the embodiment of the present technical solution. Figure 7 is a transmission electron micrograph of a carbon nanotube in a nano & 'film after depositing a (four) material layer in an embodiment of the present technical solution. 2 8 is a scanning electron micrograph of the twisted and ridge structure of the carbon nanotube film in the embodiment of the present technical solution. 200938481 [Explanation of main component symbols] Nano carbon tube long-line structure 100, 222 carbon nanotubes 111 Wetting layer 112 Transition layer 113 Conductive layer 114 Anti-oxidation layer 115 Strengthening layer 116 Vacuum vessel 210 Evaporation source 212 Carbon nanotube structure 214 Carbon nanotube array 216 device 220 reel 224 ❹ 19

Claims (1)

200938481 十、申請專利範圍 .1 · 一種奈米碳管長線結構,包括多個奈米碳管,該多個奈 米碳官具有相等的長度並通過凡德瓦爾力首尾相連,其 改良在於,該奈米碳管長線結構進一步包括導電材料, 該導電材料包覆於奈米碳管表面。 2·如申请專利範圍第1項所述的奈米碳管長線結構,其 中,所述母一奈米碳管表面設置有一導電層。 3.如申請專利範圍第2項所述的奈米碳管長線結構,其 ©中,所述奈米碳管沿該奈米碳管長線結構的轴向擇優取 向排列。 4·如申請專利$1圍f 2項所述的奈米碳管長線結構,其 中,所述奈米碳管繞該奈米碳管長線結構的軸向螺旋狀 旋轉排列。 5. 如申清專利範圍第1項所述的奈米碳管長線結構,其 中°亥不米石反管長線結構的直徑爲4.5奈米 〜100微米。 6. 如申请專利範圍g丨項所述的奈米碳管長線結構,其 ©中,所述奈米碳管包括單壁奈米破管,雙壁奈米碳管或 多壁奈米碳管,所述單壁奈米碳管的直徑爲Q 5奈米〜% 奈米,雙壁奈米碳管的直徑爲1奈米〜5〇奈米,多壁奈 米碳管的直徑爲1.5奈米〜%奈米。 ’、 7. 如申請專利範圍第2項所述的奈㈣管長線結構,其 中’所述‘電層的材料爲銅、銀、金或其合金,所述導 電層的厚度爲1〜20奈米。 8·如申請㈣範圍第2項所述的奈米營長線結構,其 中°玄不米碳官長線結構進一步包括一潤濕層設置於所 20 200938481 述導電層與奈米碳管表面之間 9:申範圍第8項所‘的奈米碳管長線結構,其 :二斤,層的材料爲鎳、鈀、鈦或其合金,戶斤述潤 濕層的厚度爲U0奈米。 10:申f 5第8項所述的奈米碳管長線結構,其 所、f a s長線結構進—步包括—過渡層設置於 所述導電層與潤濕層之間。 ❹ ❹ ^申?專利範圍第10項所述的奈米碳管長線結構,其 中,所述過渡層的材料爲銅、銀或其合金,所述過渡 層的厚度爲1〜10奈米。 12·:申:ί利範!第2項所述的奈米碳管長線結構,其 k不米奴官長線結構進—步包括一抗氧化層設置 於所述導電層外表面’所述抗氧化層的材料爲金、鉑 或其合金,所述抗氧化層的厚度爲1〜10奈米。 13’:申::利範圍第2項所述的奈米碳管長線結構,其 管長線結構進一步包括-强化層設置於 所述導電層外表面,所祕£3: S 4斤21强化層的材料爲聚乙烯醇、 == 聚乙歸或聚氣乙烯,所述强化層 的尽度爲0.1〜1微米。 21200938481 X. Patent application scope. 1 · A long carbon nanotube structure, comprising a plurality of carbon nanotubes, the plurality of carbon carbons having equal lengths and connected end to end by van der Waals force, the improvement is that The carbon nanotube long-line structure further includes a conductive material coated on the surface of the carbon nanotube. 2. The nano carbon tube long-line structure according to claim 1, wherein a surface of the mother-carbon nanotube is provided with a conductive layer. 3. The carbon nanotube long-line structure according to claim 2, wherein the carbon nanotubes are arranged along the axial direction of the long-line structure of the carbon nanotubes. 4. The nanocarbon tube long-line structure according to claim 2, wherein the carbon nanotubes are arranged in an axial spiral shape around the long-line structure of the carbon nanotubes. 5. If the long-term structure of the carbon nanotubes described in the first paragraph of the patent scope is ascertained, the diameter of the long-distance structure of the hemi-meter-iron counter-pipe is 4.5 nm to 100 μm. 6. In the long-term structure of the carbon nanotubes described in the patent application scope, the carbon nanotubes include a single-walled nanotube, a double-walled carbon nanotube or a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is Q 5 nm~% nanometer, the diameter of the double-walled carbon nanotube is 1 nm to 5 〇 nanometer, and the diameter of the multi-walled carbon nanotube is 1.5 奈Meter ~% nano. ', 7. The long-term structure of the nematic (four) tube as described in claim 2, wherein the material of the 'the' electric layer is copper, silver, gold or an alloy thereof, and the thickness of the conductive layer is 1 to 20 Meter. 8. The application of (4) in the scope of the second phase of the nano-long-line structure, wherein the structure of the semi-constant carbon line further comprises a wetting layer disposed between the conductive layer and the surface of the carbon nanotube. 9: The long-term structure of the carbon nanotubes in the eighth item of the scope of the application, which is: two kilograms, the material of the layer is nickel, palladium, titanium or its alloy, and the thickness of the wetting layer is U0 nanometer. 10: The carbon nanotube long-line structure according to Item 8 of claim 5, wherein the f a s long-line structure further comprises a transition layer disposed between the conductive layer and the wetting layer. The nano carbon tube long-line structure according to claim 10, wherein the material of the transition layer is copper, silver or an alloy thereof, and the transition layer has a thickness of 1 to 10 nm. 12·: Shen: ί 利范! The long-term structure of the carbon nanotube tube according to item 2, wherein the k-bino slave long-line structure further comprises an anti-oxidation layer disposed on the outer surface of the conductive layer, wherein the anti-oxidation layer is made of gold, platinum or In the alloy, the anti-oxidation layer has a thickness of 1 to 10 nm. 13': Shen:: The long-term structure of the carbon nanotube tube described in item 2 of the benefit range, the long line structure of the tube further comprises a reinforcing layer disposed on the outer surface of the conductive layer, the secret layer: 3: S 4 kg 21 strengthening layer The material is polyvinyl alcohol, == polyethyl or polystyrene, and the strength of the strengthening layer is 0.1 to 1 micron. twenty one
TW97108088A 2008-03-07 2008-03-07 Carbon nanotube yarn strucutre TWI380949B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97108088A TWI380949B (en) 2008-03-07 2008-03-07 Carbon nanotube yarn strucutre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97108088A TWI380949B (en) 2008-03-07 2008-03-07 Carbon nanotube yarn strucutre

Publications (2)

Publication Number Publication Date
TW200938481A true TW200938481A (en) 2009-09-16
TWI380949B TWI380949B (en) 2013-01-01

Family

ID=44867359

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97108088A TWI380949B (en) 2008-03-07 2008-03-07 Carbon nanotube yarn strucutre

Country Status (1)

Country Link
TW (1) TWI380949B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407092B (en) * 2009-09-24 2013-09-01 Hon Hai Prec Ind Co Ltd Raman scattering substrate and detecting system having same
TWI408357B (en) * 2009-09-24 2013-09-11 Hon Hai Prec Ind Co Ltd Raman detecting system and method for using the same
TWI424954B (en) * 2009-12-18 2014-02-01 Hon Hai Prec Ind Co Ltd Carbon nanotube composite structure
US8804116B2 (en) 2009-09-15 2014-08-12 Tsinghua University Surface-enhanced Raman scattering substrate and Raman detecting system having the same
TWI474358B (en) * 2012-10-10 2015-02-21 Hon Hai Prec Ind Co Ltd Field emitter and the field emission device
TWI485099B (en) * 2012-05-04 2015-05-21 Hon Hai Prec Ind Co Ltd Carbon nanotube structure and method for making the same
TWI557060B (en) * 2014-04-23 2016-11-11 北京富納特創新科技有限公司 Carbon nanotube composite wire
US11637406B2 (en) * 2017-05-18 2023-04-25 Shin-Etsu Polymer Co., Ltd. Electrical connector and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336566B (en) * 2014-06-27 2018-10-02 清华大学 A kind of preparation method of nanoscale microstructures

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI303239B (en) * 2002-11-05 2008-11-21 Hon Hai Prec Ind Co Ltd A method for making carbon nanotube yarn
TWI317143B (en) * 2005-09-30 2009-11-11 Hon Hai Prec Ind Co Ltd A field meission device and method for making the same
TWI320026B (en) * 2006-06-30 2010-02-01 Field emission componet and method for making same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8804116B2 (en) 2009-09-15 2014-08-12 Tsinghua University Surface-enhanced Raman scattering substrate and Raman detecting system having the same
TWI407092B (en) * 2009-09-24 2013-09-01 Hon Hai Prec Ind Co Ltd Raman scattering substrate and detecting system having same
TWI408357B (en) * 2009-09-24 2013-09-11 Hon Hai Prec Ind Co Ltd Raman detecting system and method for using the same
TWI424954B (en) * 2009-12-18 2014-02-01 Hon Hai Prec Ind Co Ltd Carbon nanotube composite structure
TWI485099B (en) * 2012-05-04 2015-05-21 Hon Hai Prec Ind Co Ltd Carbon nanotube structure and method for making the same
TWI474358B (en) * 2012-10-10 2015-02-21 Hon Hai Prec Ind Co Ltd Field emitter and the field emission device
US9666400B2 (en) 2012-10-10 2017-05-30 Tsinghua University Field emission electron source and field emission device
TWI557060B (en) * 2014-04-23 2016-11-11 北京富納特創新科技有限公司 Carbon nanotube composite wire
US11637406B2 (en) * 2017-05-18 2023-04-25 Shin-Etsu Polymer Co., Ltd. Electrical connector and method for producing same

Also Published As

Publication number Publication date
TWI380949B (en) 2013-01-01

Similar Documents

Publication Publication Date Title
CN101499328B (en) Stranded wire
CN101499338B (en) Stranded wire production method
JP4589438B2 (en) Carbon nanotube composite
JP4589439B2 (en) Method for producing carbon nanotube composite
TWI380949B (en) Carbon nanotube yarn strucutre
CN105244071B (en) cable
Inoue et al. One-step grown aligned bulk carbon nanotubes by chloride mediated chemical vapor deposition
US8247036B2 (en) Method for making coaxial cable
JP5243478B2 (en) Nanomaterial thin film
JP5091278B2 (en) Method for producing carbon nanotube linear structure
CN102001641B (en) Method for preparing carbon nanotube linear structure
US9708189B2 (en) Carbon fiber film
US10011488B2 (en) Method for making carbon fiber film
TWI342027B (en) Method for making twisted yarn
JP2010222244A (en) Carbon nanotube particle composite material and method for producing the same
TW200939252A (en) Cable
KR101276898B1 (en) Carbon nanotube composite material and methods for making the same
TWI342266B (en) Carbon nanotube composite film
TW201109275A (en) Mehtod for manufacturing carbon nanotube linear structure
TWI421365B (en) Method for making carbon nanotube composite film
WO2022137950A1 (en) Modified carbon nanotube forest, carbon nanotube aligned aggregate, gas-permeable sheet, catalyst electrode for fuel cells, electroconductive member, thread-like electroconductive member, interlayer heat-conductive material, and method for producing modified carbon nanotube forest
TWI345794B (en) Method for making cable
TW200926902A (en) Method for locally heating object