TW201109275A - Mehtod for manufacturing carbon nanotube linear structure - Google Patents

Mehtod for manufacturing carbon nanotube linear structure Download PDF

Info

Publication number
TW201109275A
TW201109275A TW98130458A TW98130458A TW201109275A TW 201109275 A TW201109275 A TW 201109275A TW 98130458 A TW98130458 A TW 98130458A TW 98130458 A TW98130458 A TW 98130458A TW 201109275 A TW201109275 A TW 201109275A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
nanocarbon line
line
nanocarbon
carbon
Prior art date
Application number
TW98130458A
Other languages
Chinese (zh)
Other versions
TWI391323B (en
Inventor
Chen Feng
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW98130458A priority Critical patent/TWI391323B/en
Publication of TW201109275A publication Critical patent/TW201109275A/en
Application granted granted Critical
Publication of TWI391323B publication Critical patent/TWI391323B/en

Links

Abstract

The invention relates to a method for manufacturing carbon nanotube linear structure. The method includes the following steps: providing a plurality of substrates each having a growing surface where a carbon nanotube array is formed, the growing surfaces of the substrates being located in different planes; obtaining a plurality of carbon nanutube films by pulling the carbon nanotube arrays along a direction having an angle of about 0 DEG to 50 DEG with respect to the growing surface of each of the substrate; providing a benchmark and obtaining a carbon nanotube linear structure by combining the carbon nanutube films at the benchamark.

Description

201109275 六、發明說明: • 【發明所屬之技術領域】 [0001] 本發明涉及一種奈米碳管結構的製備方法’尤其涉及一 種奈米碳管線狀結構的製備方法。 C先前技術】 [0002] 奈米碳管係1991年由日本科學家飯島澄男教授發現的一 種由石墨烯片卷成的中空管狀物’其具有優異的力學、 熱學及電學性質。奈米碳管應用領域非常廣闊,例如, 它可用於製作場效應電晶體、原子力顯微鏡針尖、場發 〇 射電子搶、奈米模板等。然,目前奈米碳管的應用基本 上都是在微觀尺度下,因此操作較困難。所以’將奈米 碳管組裝成具有宏觀尺度的結構對於奈米碳管的應用具 有重要意義。 '201109275 VI. Description of the Invention: • [Technical Field] The present invention relates to a method for preparing a carbon nanotube structure, and particularly relates to a method for preparing a nanocarbon line-like structure. C Prior Art [0002] The carbon nanotube system was discovered in 1991 by a Japanese scientist, Professor Iijima, a hollow tubular material rolled from a graphene sheet, which has excellent mechanical, thermal and electrical properties. Nano carbon nanotubes are used in a wide range of applications, for example, in the production of field effect transistors, atomic force microscope tips, field emission electron capture, nano templates, and the like. However, at present, the application of carbon nanotubes is basically at the microscopic scale, so the operation is difficult. Therefore, assembling the carbon nanotubes into a macroscopic scale structure is of great significance for the application of carbon nanotubes. '

[0003] 范守善等人在Spinning Continuous CNT • Yarns(Nature,2002,4ia:8,01) 一文中揭露了從一超 順排奈米碳管陣列中可以拉出一根連續的純奈来碳管線 〇 的方法,這種方法所製得的奈米碳管線包括複數在凡德 瓦爾力作用下首尾相接的奈米碳管束片段,每個奈米碳 管束片段具有大致相等的長度,且每個奈米碳管束片段 由複數相互平行的奈米碳管束構成。如圖1所示為一個從 —超順排奈米碳管陣列1拉出一根連續奈米碳管線4的簡 單模型。複數奈米碳管束片段2在凡德瓦爾力的作用下首 尾相接構成連續的奈米碳管線4。但這種單根奈米碳管線 4的機械強度及韌性等都比較差,例如,拉出一根2〇〇微 米寬的線需要0.1毫牛頓的力,而只要0.5毫牛頓的力就 098130458 表單編號A0101 第3頁/共28頁 0982052263-0 201109275 將其折斷了。 [0004] [0005] [0006] 098130458 范寸善等人於2005年12月16日申請,於2009年07月21 日公告的公告號為1312337的中華民國專利中揭示了一種 奈米碳管絲及其製備方法。其巾,所述奈米碳管絲包括 複數首尾相接的奈米碳管束片段,每個奈米碳管束片段[0003] Fan Shoushan et al., in Spinning Continuous CNT • Yarns (Nature, 2002, 4ia: 8, 01), discloses that a continuous pure Nai carbon pipeline can be pulled from a super-sequential carbon nanotube array. The method of niobium, the nanocarbon pipeline produced by the method comprises a plurality of carbon nanotube bundle segments which are connected end to end under the action of van der Waals force, each of the carbon nanotube bundle segments having substantially equal lengths, and each The carbon nanotube bundle segment is composed of a plurality of carbon nanotube bundles which are parallel to each other. A simple model of a continuous nanocarbon line 4 drawn from the super-sequential carbon nanotube array 1 is shown in FIG. The plurality of carbon nanotube bundle segments 2 are connected end to end to form a continuous nanocarbon line 4 under the action of van der Waals force. However, the mechanical strength and toughness of the single nanocarbon line 4 are relatively poor. For example, pulling a 2 〇〇 micron wide line requires a force of 0.1 millinewton, and as long as a force of 0.5 millinewton is 098130458. No. A0101 Page 3 of 28 0982052263-0 201109275 Broken it. [0004] [0006] [0006] [0006] 098130458 Fan Xiangshan et al. applied on December 16, 2005, and disclosed a nano carbon tube wire in the Republic of China patent number 1312337 announced on July 21, 2009. And its preparation method. In the towel, the carbon nanotube wire comprises a plurality of end-to-end carbon nanotube bundle segments, each of the carbon nanotube bundle segments

具有大致相等的長度,且每個奈米碳管束片段由複數相 互平行的奈米碳管束構成。該種奈米碳管絲的製作方法 包括以下步驟:提供一超順排奈米碳管陣列;採用一拉 伸工具從該超順排奈米碳管陣列拉取—奈米碳管膜;將 拉出的奈米碳管膜經過-有機溶劑浸潤處理後收縮成為 :奈米碳管絲;收集所製得的奈米碳營.絲。該種奈米碳 管絲的機械強度相較於奈米碳管線有較大的增加,然, U碳管絲的直徑受到奈米衫陣列大小的限制,^ 米破管陣列制基底大小的_,使得料奈求碳管表 的機械強度及韌性依然受到限制They have approximately equal lengths, and each carbon nanotube bundle segment is composed of a plurality of bundles of carbon nanotubes that are parallel to each other. The method for preparing the nano carbon nanotube wire comprises the steps of: providing a super-sequential carbon nanotube array; pulling a carbon nanotube film from the super-sequential carbon nanotube array by using a stretching tool; The drawn carbon nanotube film is subjected to an organic solvent infiltration treatment and then shrunk into a carbon nanotube wire; the obtained nano carbon camp wire is collected. The mechanical strength of this kind of nano-carbon tube wire is larger than that of the nano-carbon line. However, the diameter of the U-carbon tube wire is limited by the size of the nano-shirt array, and the size of the base of the tube-breaking tube array is _ , so that the mechanical strength and toughness of the carbon tube is still limited.

J。因此,—定程度上R 制了其應用。 【發明内容】 有鑒於此,提供一種具有較好的機械強度及祕的夺米 碳管線狀結構及其製備方法實為必要。 、 所述奈米碳管線狀結構的製備方土 次,其包括以下步驟: 提供複數基底,每一基底均具有— ^生長有奈米碳管陣列 的生長表面,所述複數基底的夺且生 ^ 王長表面處於不同的平面 ;沿與每—基底的生長表面成GS至,的拉膜角度拉取夺 米碳管陣列以獲得複數奈米碳營瓶.# ,、 联,提供一基準位置, 在該基準位置合併所述複數奈半#其时 卞反官膜,以形成一個奈 表單編號Α0101 第4頁/共28頁 0982052263-0 201109275 [0007] Ο [0008] [0009] [0010] G [0011] [0012] [0013] 098130458 米碳管線狀結構。 與先前技術相比較,本發明提供的奈米碳管線狀結構的 製備方法採用複數奈米碳管陣列拉膜製得複數奈求碳管 膜,之後合併所述複數奈米碳管膜,以形成一個奈米碳 管線狀結構。該奈米碳管線狀結構具有較大的直徑因 此具有較好的機械強度及韌性。由於可通過控製用於拉 膜的生長有奈米碳管陣列的基底的個數,因此該奈米碳 官線狀結構的直徑可控’故’該奈米碳管線狀結構應用 範圍較廣。 【實施方式】 下面將結合附圖,對本發明實施例提供的奈米碳管線狀 結構的製備方法作進一步的詳細說明。 請一併參閱圖2、圖3及圖4,本發明第一實施例提供一奈 米石厌官線狀結構的製備方法,其包括以下步驟: 步驟S101 :提供複數基底12,每一基底η均具有一生長 有奈米碳管陣列10的生長表面122,所述複數基底12的生 長表面122處於不同的平面; 步驟S102 :沿與每一基底12的生長表面122成〇2至5〇2的 拉膜角度拉取奈米碳管陣列10以獲得複數奈米碳管膜2〇 t 步驟S103 :提供一基準位置22,在該基準位置22合併所 述複數奈米碳管膜20,以形成一個奈米碳管線狀結構26 〇 在步驟S101中,所述複數基底12處於不同的平面,其可 表單編號A0101 第5頁/共28頁 0982052263-0 201109275 以排列成各種形狀,例如直線形,扇形或鋸齒形。本實 施例中,所述三個基底1 2沿垂直於基底1 2的生長表面1 2 2 的方向重疊排列即呈直線形排列。此時,複數基底12的 生長表面122均相互平行,且處於不同_的平面。 [0014] 所述奈米碳管陣列1 0包括複數大致沿其同一個生長方向 排列的奈米碳管。在這裡還需要進一步說明的是,所述 “大致”的意思係由於奈米碳管在生長過程中受各種因 素的制約,如碳源氣氣流的流動速度不一致,碳源氣的 濃度的不均勻及催化劑的不平整,不可能也不必使奈米 碳管陣列10中的每根奈米碳管完全沿其生長方向排列, 即每根奈米碳管完全平行。本實施例中所述奈米碳管陣 列10為超順排奈米碳管陣列。所述超順排奈米碳管陣列 為複數彼此平行且垂直於基底生長的奈米碳管形成的純 奈米碳管陣列。所述超順排奈米碳管陣列中的奈米碳管 為單壁奈米碳管、雙壁奈米碳管或多壁奈米碳管。所述 單壁奈米碳管的直徑優選為0. 5奈米〜50奈米。所述雙壁 奈米碳管的直徑優選為1. 0奈米〜50奈米。所述多壁奈米 碳管的直徑優選為1. 5奈米〜50奈米。本實施例中,超順 排奈米碳管陣列的製備方法採用化學氣相沈積法。所述 採用化學氣相沈積法製備超順排奈米碳管陣列的方法包 括以下步驟: [0015] 首先,在一基底12的生長表面122上形成一層均勻的催化 劑薄膜層14,該催化劑薄膜層14可通過熱沈積法、電子 束沈積法或濺射法實現。該基底12的材料為玻璃、石英 、矽或氧化鋁。本實施例採用4英寸的平滑矽基底。該催 098130458 表單編號A0101 第6頁/共28頁 0982052263-0 201109275 [⑻ 16] [0017] 〇 [0018] ❹[0019] 匕劑薄膜層14的材料為鐵(F e )、録(c〇 )、錦(N i ) 等金屬或其任意組合的合金。本實施例採用 〇 其次,將所述形成有催化劑薄膜層14的基底12在言、w介 氣中退火約30分鐘至90分鐘,以形成催化劑顆粒。二 符次,退火冷卻後,再將分佈有催化劑顆粒的基底^放 入反應爐中,在氬氣保護氣體環境下,加熱至70(Γ(: ~1〇〇〇。〇 最後通入碳源氣’持續5分鐘至30分鐘,得到一高度為 2〇0微米至40:0微米的超順排奈米碳管陣列1 〇。該超順排 条米碳管陣列10包含複數彼此平行且垂直於基底的生 長表面122生長的複數奈米碳管。通過控制所述生長條件 ,該奈米碳管陣列10中基本不含有雜質,如無定型碳咬 殘留的催化劑金屬顆粒等。其中,碳源氣可為乙炔、乙 烯、甲烷等碳氫化合物。本實施例中,所述碳源氣為乙 妹。 , <選擇地,請參閱圖5,所述複數基底12呈鋸齒形排列。 所述複數呈鋸齒形排列的基底12可由一鋸齒形承栽裝置 13支撐。所述鋸齒形承載裝置13具有複數鋸齒,每個鑛 齒均具有兩個相交的鋸齒面130,奈米碳管陣列10的基底 12可位於該兩個相交的鋸齒面130的表面。 在步驟S102中,本實施例中,從任一奈米碳管陣列1〇拉 取獲得奈米碳管膜20的方法可以相同。以下詳細說明從 一個奈米碳管陣列10拉取奈米碳管膜的方法,所述從— 098130458 表單編號A0101 第7頁/共28頁 0982052263-0 [0020] 201109275 個奈米碳管陣列10拉取一奈米碳管膜20的方法具體包括 以下步驟: [0021] 首先,提供一拉伸工具,採用該拉伸工具與一個奈米碳 管陣列10中的複數奈米碳管相粘結。本實施例中,所述 拉伸工具優選為一具有一定寬度的膠帶,該膠帶的寬度 略大於該膠帶與奈米碳管陣列10粘結處的寬度。 [0022] 其次,以一定速度沿與該奈米碳管陣列1 0的基底1 2的生 長表面122成一定角度且向一基準位置22靠近的方向拉取 該複數奈米碳管。該複數奈米碳管在拉力作用下沿該拉 取方向逐漸脫離基底12的生長表面122的同時,由於凡德 瓦爾力作用,該選定的複數奈米碳管分別與其他奈米碳 管首尾相連地連續地被拉出,從而形成一連續的奈米碳 管膜20。該奈米碳管膜20中的奈米碳管的排列方向基本 平行於該奈米碳管膜20的拉取方向。 [0023] 所述一定角度可記為拉膜角度α,所述拉膜角度的範圍 為大於0°,小於等於50°,優選為大於0°,小於等於5° 。本實施例中,所述三個奈米碳管陣列的拉膜角度依次 為S、α2、α3,其中α/α〆%,其中介於0。至5 。,α9介於5°至10°,介於10°至15°。若基底12的長 度為L,拉膜角度為α,則任一奈米碳管陣列與其上方 的奈米碳管陣列的距離應大於L/tana,以保證在拉膜過 程中每一奈米碳管陣列均不被其上方的奈米碳管陣列阻 擋。 [0024] 可以理解,採用複數拉伸工具依次從所述複數奈米碳管 098130458 表單編號A0101 第8頁/共28頁 0982052263-0 201109275 [0025] [0026] Ο [0027] Ο [0028] [0029] 陣列10拉膜可獲得複數奈米碳管膜2〇。 在步驟S103中’本實施例中,提供一基準位置22,在該 基準位置22合併所述複數奈米碳管膜2〇,以形成一個奈 米石厌管線狀結構2 6可以通過下述方法實現。該方法包括 以下步驟: (1) 提供一匯聚裝置設置於所述基準位置22處;在該基準 位置22通過所述匯聚裝置將所述複數奈米碳管膜2〇合併 為一個預處理奈米碳管線狀結構24。所述匯聚裝置為一 滑輪或一漸縮結構,該漸縮結構包括一入口和一出口。 該入口具有較大的面積從而使所摊多個奈米碳管膜2〇從 該入口進入該漸縮結構《所述出口具有較小的面積從而 使所述多個奈米碳管膜20從該出口離開該漸縮結構並合 併為一個預處理奈米碳管線狀結構24。 在步驟S102中的拉膜過程中,所述複數奈米碳管的拉膜 方向即係朝向該基準位置22拉膜。所述複數奈米碳管膜 20匯聚至基準位置22後,即可將其合併。相比於將複數 奈米碳管膜20先後合併的情況,在該基準位置22合併複 數奈米碳管膜20可簡化製備奈米碳管線狀結構的方法, 提高生產效率。 將所述複數奈米碳管膜20進行合併加工處理,使該複數 奈米碳管膜20合併為一預處理奈米碳管線狀結構24 »由 於每個奈米碳管膜20都有較強的粘性,所以所述複數奈 米碳管膜20合併之後將會相互粘結在一起。 (2) 用有機溶劑32處理所述預處理奈米碳管線狀結構24, 098130458 表單編號Α0101 第9頁/共28頁 0982052263-0 201109275 得到一個奈米碳管線狀結構26。 [0030] [0031] 具體地,可以通過試管或滴瓶3 〇將有機溶劑3 2滴落在所 述預處理奈米碳管線狀結構2 4的表面,浸潤整個預處理 奈米碳管線狀結構24。本實施例中,將一滴瓶3〇放置於 預處理奈米碳管線狀結構24上方,滴瓶30底部具有一滴 口 34,有機溶劑32從滴口 34滴落於預處理奈米碳管線狀 結構24的表面。該有機溶劑32為易揮發性的有機溶劑, 如乙醇、甲醇、丙酮、二氣乙烷或氣仿,本實施例中所 述有機溶劑採用乙醇。該預處理奈米碳管線狀結構24經 有機溶劑32浸潤處理後,在揮發性有機溶劑32的表面張 力的作用下,該預處理奈米,管%線狀結構24收縮成一奈 米碳管線狀結構26。該奈米表管蘇狀結構26.包括複數奈 米碳管,該複數奈米碳管通過凡德瓦爾力首尾相連且沿 奈米碳管線狀結構26的長度方向平行且緊密排列;且從 °玄不米破管線狀結構2 6的橫截面分不出該奈米碳管線狀 結構26係由幾個奈米碳管膜組成的,各個奈米碳管膜均 勻分散其中,且各個奈米碳管膜之間沒有明顯的界面。 進一步地,還可以採用一烘幹步驟烘幹該採用有機溶劑 處理後的奈米碳管線狀結構26 ^具體地,可以使所述經 有機溶劑處理後的奈米碳管線狀結構26通過—烘幹箱36 ,該烘幹箱36的溫度為80。〇100。(:,使該奈米碳管線狀 、、、α構2 6中的有機溶劑迅速揮發,使得奈米碳管線狀結構 26中的奈米碳管更緊密排列。另外,也可以採用—吹風 機將該經過有機溶劑處理的奈米碳管線狀結構26中的有 機溶劑吹幹。該烘幹後的奈米碳管線狀結構26的直徑不 098130458 表單編號Α0101 第10頁/共28頁 0982052263-0 201109275 [0032] [0033] 〇 [0034] [0035] [0036]Ο [0037] 098130458 小於1 2 0微米。本實施例中,所述烘幹後的奈米碳管線狀 結構26的直徑為200微米。 進一步,收集所製得的奈米碳管線狀結構26。具體為採 用電機38將該奈米碳管線狀結構26纏繞到該電機38的卷 轴28上。可以理解,也可採用手工的方法將該奈米碳管 線狀結構26卷到卷軸28上。 可以理解,上述製備奈米碳管線狀結構26的過程係連續 進行的。 請參閱圖6,本發明第二實施例提供一種奈米碳管線狀結 構的製備方法,該製備方法主要包括以下步驟: 步驟S201 :提供複數基底42,;每一基底42均具有一生長 有奈来碳管陣列40的生長表面422,所述複數基底42的生 長表面422處於不同的平面。 所述提供複數生長有奈米碳管陣列4〇的基底42的製備方 法及該奈米碳管陣列4 0的結構與本發明第一實施例步驟 S101中提供的生長有奈米减管陣列,丨〇的基底12的製備方 法及奈米碳管陣列10的結構相似。不同之處在於,該第 二實施例中的複數生長有奈米碳管陣列40的基底42成扇 形排列。該複數基底42的數量為四個,採用扇形的排列 方式,其中’該四個基底42的生長表面422均位於不同的 平面。 步驟S202 :以一定速度沿與每一奈米碳管陣列4〇的基底 42的生長表面成0°至50°的拉膜角度拉取奈米碳管陣列 40以獲得複數奈米碳管膜50。 表單編號Α0101 第11頁/共28頁 0982052263-0 201109275 圆所述步驟S2〇2中的奈来碳管膜5〇的製備方法與第―每施 例中步驟S1〇2的製備方法相似。其不同之處在於,^實 施例中四個奈米碳管陣列4〇的拉膜角度”及 r4的大小相等且均大於〇。小於5。。由於:奈米2碳管:列 拉膜的角度優選為大於〇。小於5。。因此,採用扇形排列 的方式可以使奈米料陣列的拉膜角度變小,有助於提 高奈米碳管陣列的拉膜品質,進而提高所製備的奈米碳 管線狀結構的品質。若基底42的長度為L,其拉膜角度為 T ’則任-奈米碳管陣列4〇與其上方的奈米碳管陣列 的距離應大於L/taBr,以保證在拉膜過程中每_奈米碳 〇 管陣列40均不樣其上方的奈米碳管陣十】4〇阻擋。 _9] #驟S203 :提供-基準位置52,在該基準位置52合併所 述複數奈米碳管膜50,以形成-個奈米碳管線狀結構54 〇 [0040] 該步驟S203具體包括以下步驟:(u提供一基準位置52 ,在該基準位置52,將所述複數奈米碳管膜5〇合併為一 個預處理奈米碳管線狀結構54 ; (2)扭轉所述預處理奈米 ❹ 石反管線狀結構5 4 ;( 3 )用有機溶劑6 2處理所述扭轉後的預 處理奈来碳管線狀結構55,得到一個奈米碳管線狀結構 56 ° [0041] 所述步驟(1)提供一基準位置52 ’在該基準位置52,將 所述複數奈米碳管膜50合併為一個預處理奈米碳管線狀 結構5 4的步驟與第一實施例中在一基準位置2 2,將所述 複數奈米碳管膜20合股從而合併為一個預處理奈米碳管 線狀結構24的步驟相似。 098130458 表單編號A0101 第12頁/共28頁 0982052263-0 201109275 [0042] 在步驟S2G2中的拉膜過財,所述複數奈《管膜50的 拉膜方向即係朝向-基準位置52_。所述複數奈米破 管嫉50匯聚至基準位置μ德, 置後即可將其合併。相比於將 複數奈米碳管㈣先後合併的情況,在—基準位置⑽ 併複數奈米碳管膜50可簡化製傷奈米碳管線狀結構的方 法,提高生產效率。 [0043] Ο ❹ 所述步驟⑴中’採用—機械力扭轉所述預處理奈米碳 管線狀、”。構54 ’得到—扭轉的預處理奈米碳管線狀結構 55其中料扭轉的預處理奈氣碳管線狀結構55包括 複數繞該扭轉的預處理奈来碳管線狀結構55的轴向螺旋 排列的奈米姆;且從雜餐_處絲轉管線狀結 構55的橫截面分不出該扭轉的預處理奈米碳管線狀結構 55係由幾個奈米碳管膜5〇組成的,各個奈米碳管膜5〇均 勻分散其中,且各個奈米碳管膜5〇之間沒有明顯的界面 。具體地’該扭轉的預處琿奈米碳管線狀結構55包括複 數奈米碳管片段,該複數奈米碳管片段通過凡德瓦爾力 首尾相連,每一奈米碳管片段包杇複數相互平行並通過 凡德瓦爾力緊密結合的奈米碳管。該奈米碳管片段具有 任意的長度、厚度、均勻性及形狀。該扭轉的預處理奈 米碳管線狀結構55長度不限。 [0044] 所述步驟(3)用有機溶劑62處理所述扭轉後的預處理奈 米碳管線狀結構55,得到一個扭轉的奈米碳管線狀結構 56的方法與第一實施例中用有機溶劑32處理所述預處理 奈米碳管線狀結構24,得到一個奈米碳管線狀結構26的 方法相同。 098130458 表單編號A0101 第13頁/共28頁 0982052263-0 201109275 [0045]進—步地,可以採用一烘幹步驟烘幹該採用有機溶劑62 處理後的奈米碳管線狀結構56 ;及一收集所製得的奈米 碳管線狀結構56的步驟。其中,所述烘幹步驟及收集步 驟與本發明第一實施例提供的烘幹步驟及收集步驟相似 。可以理解,所述拉取及處理該複數奈米碳管膜5〇的步 驟可連續進行。 [0046]本發明第三實施例提供一種奈米碳管線狀結構的製備方 法,其與第一實施例提供的奈米碳管線狀結構的製備方 法基本相似。主要區別在於,本實施例在從所述複數奈 米碳管陣列中拉取獲得複數奈米碳管膜的步驟之後,進 一步地要在該複數奈米碳管膜上形成至少一層金屬材料 ’從而形成複數奈米碳管複合u輯賴數奈采碳 管複合膜,以形成-個奈米碳管線狀結構。本實施例奈 米碳管線狀結構的製備方法主要包括以下步驟: 國步驟S3(H,提供複數基底,舞一基底均具貧一生長有奈 米碳管陣歹㈣生長表面’所述,基底的生長表面處於 不同的平面。 . .- _]步驟S3G2,以-定速度沿與每—奈米碳管陣列的基底 [_ #生長表面成02至5G4拉膜角度拉取奈来碳管陣列以獲 得複數奈米碳管膜。 [_步驟S303,在所述複數奈来碳管膜上形成至少一層金屬 材料,從而形成複數奈米碳管複合膜。 [_在步驟S303中,所述金屬材料的材料優選為金、銀銘 、銅或其合金,該金屬材料的厚度優選為丨奈㈣〇奈米 098130458 表單編號A0101 第14頁/共28百 K 0982052263-0 201109275 [0052] Ο [0053] [0054] Ο 。所述在複數奈米被管膜上形成至少一層金屬材料的方 法町採用物理方法,如物理氣相沈積法(PVD)包括真空 蒸鍍或離子濺射等,也可採用化學方法,如電鍍或化學 魏等。優選地,本實施例採用真空蒸鍵法在所述複數奈 米碳管膜上先形成一層銅金屬材料,後形成一層鉑金屬 材料。 所述奈米碳管複合膜包括—奈米碳管膜及至少一層金屬 材料,且至少有部分金屬材料形成於該奈米碳管膜中的 奈米碳管表面》本實施例中,所述奈米碳管複合膜包括 一奈米碳管膜、一層銅金屬材料及一層鉑金屬材料。 步驟S304,合併所述複數奈米碳管複合膜,以形成一奈 米碳管線狀複合結構。 步驟S304與第一實施例之步驟S103相似。本實施例提供 的奈米竣管線狀結構的結構與第一實施例提供的奈米碳 管線狀結構的結構相似’不同之處在於:該奈米竣管線 狀結構為奈米碳管線狀複合'結構《該奈米碳管線狀複合 結構包括複數通過兄德瓦爾首尾相連的奈米碳管,且 該複數奈米碳管沿奈米碳管線狀複合結構的長度方向平 行排列且緊密排列;且該複數奈米碳管的表面設置有至 少一層金屬材料。另外,從該奈米碳管線狀複合結構的 橫截面分不出該奈米碳管線狀結構係由幾個奈米碳管複 合膜組成的,各個奈米碳管複合膜均勻分散其中’且各 098130458 個奈米碳管複合膜之間沒有明顯的界面。本實施例中’ 該奈米碳管線狀結構包括複數通過凡德瓦爾力首尾相& 的奈米碳管,且該複數奈米碳管沿同奈米碳管線狀結構 表單編號A0101 第15頁/共28頁 0982052263-0 201109275 的長度方向平行排列且緊密排列;且該複數奈米碳管的 表面-X置有層銅金屬材料及一層銘金屬材料,且該銅 至屬材料„又置於该複數奈米碳管與銘金屬材料之間。 [0055] [0056] 098130458 可以理解,也可以在本發明第二實施例提供的奈米碳管 線狀結構的製備方法的步驟S202,即從所述複數奈米碳 管陣列中拉取獲得複數奈米碳管膜的步驟之後,在該複 數不米碳管膜上形成至少—層金屬材料,從而形成複數 奈米碳管複合膜;處理所述複數奈米碳管複合膜,以形 成一個扭轉的奈米碳管複合線狀結構。該扭轉的奈米碳 管複合線狀結構包括複數通過凡德瓦爾力首尾相連的奈 米碳管,且該複數奈米碳管沿該扭轉的奈_米碳管線狀結 構的軸向螺旋排列;且該複數奈米碳管的表面設置有至 少一層金屬材料。另外’從該扭轉的奈米碳管複合線狀 結構的橫截面分不出該扭轉的奈米碳管線狀結構係由幾 個奈米碳管複合膜組成的,各個奈米碳管複合膜均勻分 散其中,且各個奈米碳管複合膜之間沒有明顯的界面。 本發明提供的奈米碳管線狀結構的製備方法採用複數奈 米碳管陣列拉膜製得複數奈米碳管膜,之後合併所述複 數奈米碳管膜,以升> 成一個奈米碳管線狀結構。該奈米 碳管線狀結構具有較大的直徑,因此具有較好的機械強 度及韌性。由於玎通過控制用於拉膜的生長有奈米碳管 陣列的基底的個數,因此該奈米碳管線狀結構的直徑可 控,故,該奈米碳管線狀結構應用範圍較廣。 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 0982052263-0 表單編號A0101 第16頁/共28頁 [0057] 201109275 [0058] [0059] 〇 [0060] [0061] [0062] [0063] 〇 [0064] [0065] [0066] [0067] [0068] ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係現有技術中從一超順排奈米碳管陣列中拉出一根連 續奈来碳管線的模型圖。 圖2係本發明第一實施例提供的奈米碳管線狀結構的製備 方法的流程圖。 圖3係本發明第一實施例提供的奈米碳管線狀結構的製锴 方法的過程示意圖。 圖4係本發明第一實施例提供的奈米:碳管線狀:結構的製儀 方法中所採用的生長有奈米碳管陣列的基底的示意圖。 圖5係本發明第一實施例提供的奈米碳管線狀結構的製備 方法中所採用的鋸齒形排列奈米碳管球列的示意圖。J. Therefore, to a certain extent, R has made its application. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a rice-carbon line structure having good mechanical strength and secretness and a preparation method thereof. The preparation of the nanocarbon line-like structure includes the following steps: providing a plurality of substrates, each substrate having a growth surface having an array of carbon nanotubes grown, the plurality of substrates being plucked ^ The surface of the king's length is in a different plane; along the growth surface of each of the bases, the angle of the film is GS to pull the array of carbon nanotubes to obtain a plurality of carbon nanotubes. # , , , , , , , , , , , , , And merging the nucleus film at the reference position to form a nai form number Α 0101 page 4 / total 28 pages 0982052263-0 201109275 [0007] Ο [0008] [0009] [0010] G [0013] [0013] 098130458 m carbon pipeline structure. Compared with the prior art, the method for preparing a nanocarbon line-like structure provided by the present invention uses a plurality of carbon nanotube arrays to form a plurality of carbon nanotube films, and then combines the plurality of carbon nanotube films to form A nano carbon line structure. The nanocarbon line-like structure has a large diameter and thus has good mechanical strength and toughness. Since the number of substrates on which the carbon nanotube array is grown for pulling the film can be controlled, the diameter of the nano carbon official line structure is controllable. Therefore, the nanocarbon line structure is widely used. [Embodiment] Hereinafter, a method for preparing a nanocarbon line-like structure provided by an embodiment of the present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 2, FIG. 3 and FIG. 4, a first embodiment of the present invention provides a method for preparing a nano-stone anomaly linear structure, which comprises the following steps: Step S101: providing a plurality of substrates 12, each substrate η Each has a growth surface 122 with a carbon nanotube array 10 grown, the growth surface 122 of the plurality of substrates 12 being in different planes; Step S102: 2 to 5 〇 2 along the growth surface 122 of each substrate 12 Pulling the carbon nanotube array 10 to obtain a plurality of carbon nanotube films 2〇t Step S103: providing a reference position 22 at which the plurality of carbon nanotube films 20 are combined to form A nanocarbon line-like structure 26 is stepped in step S101, and the plurality of substrates 12 are in different planes, which can be arranged in various shapes, such as a straight line, by form number A0101, page 5 / page 28,0980522263-0 201109275, Fan or zigzag. In this embodiment, the three substrates 12 are arranged in a straight line in a direction perpendicular to the growth surface 1 2 2 of the substrate 12, that is, in a straight line. At this time, the growth surfaces 122 of the plurality of substrates 12 are all parallel to each other and are in different planes. [0014] The carbon nanotube array 10 includes a plurality of carbon nanotubes arranged substantially along the same growth direction thereof. It should be further noted here that the term "roughly" means that the carbon nanotubes are restricted by various factors during the growth process, such as the inconsistent flow velocity of the carbon source gas stream, and the uneven concentration of the carbon source gas. And the unevenness of the catalyst, it is impossible or necessary to arrange each of the carbon nanotubes in the carbon nanotube array 10 completely along its growth direction, that is, each of the carbon nanotubes is completely parallel. The carbon nanotube array 10 in this embodiment is a super-sequential carbon nanotube array. The super-sequential carbon nanotube array is an array of pure carbon nanotubes formed by a plurality of carbon nanotubes that are parallel to each other and perpendicular to the substrate. The carbon nanotubes in the super-sequential carbon nanotube array are single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes. 5纳米〜50纳米。 The single-walled carbon nanotubes preferably have a diameter of 0. 5 nanometers ~ 50 nanometers. The diameter of the double-walled carbon nanotubes is preferably from 1.0 nm to 50 nm. 5纳米〜50纳米。 The diameter of the multi-walled carbon nanotubes is preferably 1. 5 nanometers ~ 50 nanometers. In this embodiment, the preparation method of the super-sequential carbon nanotube array is a chemical vapor deposition method. The method for preparing a super-sequential carbon nanotube array by chemical vapor deposition comprises the following steps: First, a uniform catalyst film layer 14 is formed on a growth surface 122 of a substrate 12, the catalyst film layer 14 can be achieved by a thermal deposition method, an electron beam deposition method, or a sputtering method. The material of the substrate 12 is glass, quartz, ruthenium or alumina. This embodiment employs a 4 inch smooth tantalum substrate. The reminder 098130458 Form No. A0101 Page 6 / 28 pages 0982052263-0 201109275 [(8) 16] [0017] 〇 [0018] ❹ [0019] The material of the tincture film layer 14 is iron (F e ), recorded (c〇 An alloy such as a metal such as Nitrite or a combination thereof. This embodiment employs 〇 Next, the substrate 12 on which the catalyst thin film layer 14 is formed is annealed in a medium of w for about 30 minutes to 90 minutes to form catalyst particles. After the second cooling, after annealing and cooling, the substrate with the catalyst particles distributed is placed in the reaction furnace, and heated to 70 (Γ~1〇〇〇.〇 finally passed into the carbon source under the argon shielding gas atmosphere). The gas 'lasts for 5 minutes to 30 minutes to obtain a super-sequential carbon nanotube array 1 高度 having a height of 2 〇 0 μm to 40: 0 μm. The super-parallel carbon nanotube array 10 comprises a plurality of parallel and vertical a plurality of carbon nanotubes grown on the growth surface 122 of the substrate. By controlling the growth conditions, the carbon nanotube array 10 contains substantially no impurities, such as catalyst metal particles remaining in an amorphous carbon bite, etc. The gas may be a hydrocarbon such as acetylene, ethylene, methane, etc. In the present embodiment, the carbon source gas is a girl. < Optionally, referring to Fig. 5, the plurality of substrates 12 are arranged in a zigzag pattern. The plurality of zigzag-shaped substrates 12 may be supported by a zigzag-shaped carrier device 13. The zigzag-shaped carrier device 13 has a plurality of serrations, each of which has two intersecting serrations 130, the carbon nanotube array 10 The substrate 12 can be located at the two intersecting saws The surface of the tooth surface 130. In the step S102, in the present embodiment, the method of obtaining the carbon nanotube film 20 from any of the carbon nanotube arrays 1 can be the same. The following detailed description from a carbon nanotube array 10 method for pulling a carbon nanotube film, the slave - 098130458 Form No. A0101 Page 7 / 28 pages 0892052263-0 [0020] 201109275 The carbon nanotube array 10 pulls a carbon nanotube film 20 The method specifically includes the following steps: [0021] First, a stretching tool is provided, which is bonded to a plurality of carbon nanotubes in a carbon nanotube array 10. In the embodiment, the stretching The tool is preferably a tape having a width that is slightly larger than the width of the bond between the tape and the carbon nanotube array 10. [0022] Second, along the carbon nanotube array 10 at a certain speed The growth surface 122 of the substrate 12 is angled and the plurality of carbon nanotubes are pulled toward a reference position 22. The plurality of carbon nanotubes are gradually separated from the growth surface of the substrate 12 in the pulling direction by the pulling force. At the same time, due to Van der Waals force The selected plurality of carbon nanotubes are continuously pulled out end to end with other carbon nanotubes to form a continuous carbon nanotube film 20. The carbon nanotubes in the carbon nanotube film 20 The alignment direction is substantially parallel to the pulling direction of the carbon nanotube film 20. [0023] The certain angle may be recorded as the film angle α, and the angle of the film is greater than 0° and less than or equal to 50°. Preferably, it is greater than 0° and less than or equal to 5°. In this embodiment, the angles of the three carbon nanotube arrays are sequentially S, α2, and α3, wherein α/α〆%, where is 0. 5, α9 is between 5° and 10°, between 10° and 15°. If the length of the substrate 12 is L and the angle of the film is α, the distance between any array of carbon nanotubes and the array of carbon nanotubes above it should be greater than L/tana to ensure each nanocarbon during the filming process. None of the tube arrays are blocked by the array of carbon nanotubes above them. [0024] It can be understood that a plurality of stretching tools are sequentially used from the plurality of carbon nanotubes 098130458. Form No. A0101 Page 8 of 28 pages 0982052263-0 201109275 [0025] [0026] Ο [0027] Ο [0028] [ 0029] A plurality of carbon nanotube films can be obtained by arranging the array 10 film. In the present embodiment, in step S103, a reference position 22 is provided, and the plurality of carbon nanotube films 2 合并 are combined at the reference position 22 to form a nano-soil-like structure 6 6 by the following method achieve. The method comprises the steps of: (1) providing a converging device at the reference location 22; and combining the plurality of carbon nanotube membranes 2 into a pretreated nanoparticle by the converging device at the reference location 22 Carbon line structure 24. The converging device is a pulley or a tapered structure, and the tapered structure includes an inlet and an outlet. The inlet has a larger area such that a plurality of carbon nanotube membranes 2 are spread from the inlet into the tapered structure. The outlet has a smaller area such that the plurality of carbon nanotube membranes 20 are The outlet exits the tapered structure and merges into a pretreated nanocarbon line-like structure 24. In the film drawing process in step S102, the film direction of the plurality of carbon nanotubes is drawn toward the reference position 22. After the plurality of carbon nanotube films 20 are concentrated to the reference position 22, they can be combined. The combination of the plurality of carbon nanotube films 20 at the reference position 22 simplifies the method of preparing the nanocarbon line-like structure and improves the production efficiency as compared with the case where the plurality of carbon nanotube films 20 are successively combined. The plurality of carbon nanotube membranes 20 are combined and processed to combine the plurality of carbon nanotube membranes 20 into a pretreated nanocarbon line-like structure 24 » since each of the carbon nanotube membranes 20 has a strong The viscosity is so that the plurality of carbon nanotube films 20 will be bonded to each other after being combined. (2) The pretreated nanocarbon line structure 24 is treated with an organic solvent 32, 098130458 Form No. 1010101 Page 9 of 28 0982052263-0 201109275 A nanocarbon line-like structure 26 is obtained. [0031] Specifically, the organic solvent 3 2 may be dropped on the surface of the pretreated nanocarbon line-like structure 24 by a test tube or a drop bottle, and the entire pretreated nanocarbon line structure may be infiltrated. twenty four. In this embodiment, a drop of 3 bottles is placed above the pretreated nanocarbon line-like structure 24, the bottom of the drop bottle 30 has a drop 34, and the organic solvent 32 is dropped from the drip 34 onto the pretreated nanocarbon line structure. The surface of 24. The organic solvent 32 is a volatile organic solvent such as ethanol, methanol, acetone, di-ethane or gas, and the organic solvent used in the present embodiment is ethanol. After the pretreated nanocarbon line structure 24 is infiltrated by the organic solvent 32, the pretreated nano tube, the % linear structure 24 shrinks into a nano carbon line shape under the action of the surface tension of the volatile organic solvent 32. Structure 26. The nanometer tube-like structure 26 includes a plurality of carbon nanotubes connected end to end by van der Waals force and arranged in parallel along the length direction of the nanocarbon line-like structure 26; and from ° The cross section of the metamorphic line-like structure of the hexagram is not divided into the nano carbon line structure 26 is composed of several carbon nanotube membranes, and the various carbon nanotube membranes are uniformly dispersed therein, and each nano carbon There is no obvious interface between the membranes. Further, the drying step of drying the nanocarbon line-like structure treated with the organic solvent may be performed. Specifically, the organic solvent-treated nanocarbon line-like structure 26 may be dried. The dry box 36 has a temperature of 80. 〇100. (:, the organic solvent in the nanocarbon line shape, and the α-structure 26 is rapidly volatilized, so that the carbon nanotubes in the nanocarbon line-like structure 26 are more closely arranged. Alternatively, a hair dryer may be used. The organic solvent in the organic solvent-treated nanocarbon line-like structure 26 is blown dry. The diameter of the dried nanocarbon line-like structure 26 is not 098130458. Form No. 1010101 Page 10 / Total 28 pages 0892052263-0 201109275 [0033] [0036] [0036] [0037] 098130458 is less than 120 μm. In this embodiment, the dried nanocarbon line-like structure 26 has a diameter of 200 microns. Further, the resulting nanocarbon line-like structure 26 is collected. Specifically, the nanocarbon line-like structure 26 is wound onto the reel 28 of the motor 38 by means of a motor 38. It will be appreciated that manual methods may also be employed. The nanocarbon line-like structure 26 is wound onto the reel 28. It will be understood that the above process for preparing the nanocarbon line-like structure 26 is carried out continuously. Referring to Figure 6, a second embodiment of the present invention provides a nanocarbon line. Method for preparing a structure, the system The preparation method mainly comprises the following steps: Step S201: providing a plurality of substrates 42, each of the substrates 42 having a growth surface 422 grown with a carbon nanotube array 40, the growth surfaces 422 of the plurality of substrates 42 being in different planes. a method for preparing a substrate 42 in which a plurality of carbon nanotube arrays 4 are grown, and a structure of the carbon nanotube array 40 and a nanotube-reduced tube array provided in step S101 of the first embodiment of the present invention, The preparation method of the substrate 12 of the crucible and the structure of the carbon nanotube array 10 are similar, except that the substrate 42 in which the plurality of carbon nanotube arrays 40 are grown in the second embodiment is arranged in a fan shape. The number of 42 is four, in a fan-shaped arrangement, wherein 'the growth surfaces 422 of the four substrates 42 are all located on different planes. Step S202: Along the substrate 42 with each carbon nanotube array 4 at a certain speed The growth surface is pulled at a film angle of 0° to 50° to pull the carbon nanotube array 40 to obtain a plurality of carbon nanotube films 50. Form No. 1010101 Page 11/28 Page 0982052263-0 201109275 Round Step S2 〇2 The preparation method of the carbon nanotube film 5〇 is similar to the preparation method of the step S1〇2 in the first embodiment. The difference is that the film angle of the four carbon nanotube arrays 4〇 in the embodiment is R4 is equal in size and larger than 〇. Less than 5. Because: nano 2 carbon tube: the angle of the columnar film is preferably greater than 〇. Less than 5. Therefore, the fan-shaped arrangement can be used to pull the nano-array The film angle is reduced, which helps to improve the quality of the film of the carbon nanotube array, thereby improving the quality of the prepared nanocarbon line structure. If the length of the substrate 42 is L, the angle of the film is T', then the distance between the N-carbon nanotube array 4〇 and the carbon nanotube array above it should be greater than L/taBr to ensure that each film is pulled during the filming process. The carbon nanotube array 40 is not blocked by the carbon nanotube array above it. _9] #STEPS203: providing a reference position 52 at which the plurality of carbon nanotube films 50 are combined to form a nanocarbon line-like structure 54 00 [0040] This step S203 specifically includes the following steps : (u provides a reference position 52 at which the plurality of carbon nanotube membranes 5〇 are combined into one pretreated nanocarbon line-like structure 54; (2) torsion of the pretreated nanowires Stone reverse pipeline-like structure 5 4; (3) treating the twisted pretreated natricarb line-like structure 55 with an organic solvent 62 to obtain a nanocarbon line-like structure 56 ° [0041] Providing a reference position 52' at the reference position 52, the step of combining the plurality of carbon nanotube films 50 into a pretreated nanocarbon line-like structure 54 and a reference position 2 2 in the first embodiment The steps of combining the plurality of carbon nanotube films 20 to form a pretreated nanocarbon line-like structure 24 are similar. 098130458 Form No. A0101 Page 12 of 28 No. 9882522263-0 201109275 [0042] In step S2G2 The film in the film is too rich, the plural number of the film "film film 50 film direction That is, the direction is toward the reference position 52_. The plurality of nanotubes 50 are concentrated to the reference position μ, and then they can be combined. Compared with the case where the plurality of carbon tubes (four) are successively combined, the reference is The position (10) and the plurality of carbon nanotube films 50 can simplify the method of manufacturing the nanocarbon line-like structure and improve the production efficiency. [0043] 步骤 ❹ In the step (1), the mechanically twisted pretreated nanocarbon is used. Pipelined, "constructed 54'-derived-twisted pretreated nanocarbon line-like structure 55 wherein the material-twisted pretreated naphtha line-like structure 55 includes a plurality of pre-treated naicarbon line-like structures 55 around the torsion The axially helical array of nanometers; and the cross section of the wire-to-line structure 55 is indistinguishable from the twisted pretreated nanocarbon line-like structure 55 is composed of several carbon nanotube membranes 5〇 The composition of each carbon nanotube film 5 〇 is uniformly dispersed therein, and there is no obvious interface between each carbon nanotube film 5 。. Specifically, the torsion pre-existing nano carbon line structure 55 includes a plurality of a carbon nanotube fragment, the plurality of carbon nanotube fragments pass The van der Waals force is connected end to end, and each nano carbon tube segment encloses a plurality of carbon nanotubes that are parallel to each other and closely coupled by van der Waals force. The carbon nanotube segments have any length, thickness, uniformity and shape. The twisted pretreated nanocarbon line-like structure 55 is not limited in length. [0044] The step (3) treats the twisted pretreated nanocarbon line-like structure 55 with an organic solvent 62 to obtain a twisted The method of the nanocarbon line-like structure 56 is the same as the method of treating the pretreated nanocarbon line-like structure 24 with the organic solvent 32 in the first embodiment to obtain a nanocarbon line-like structure 26. 098130458 Form No. A0101 Page 13 of 28 0982052263-0 201109275 [0045] Further, the drying process may be followed by drying the nanocarbon line-like structure 56 treated with the organic solvent 62; and a collection The step of preparing the nanocarbon line-like structure 56. The drying step and the collecting step are similar to the drying step and the collecting step provided by the first embodiment of the present invention. It will be understood that the step of drawing and treating the plurality of carbon nanotube films 5 可 can be carried out continuously. A third embodiment of the present invention provides a method of preparing a nanocarbon line-like structure substantially similar to the method of preparing a nanocarbon line-like structure provided by the first embodiment. The main difference is that, after the step of extracting the plurality of carbon nanotube films from the plurality of carbon nanotube arrays, the method further forms at least one layer of the metal material on the plurality of carbon nanotube films. Forming a plurality of carbon nanotube composites and a plurality of carbon nanotube composite membranes to form a nanocarbon line-like structure. The preparation method of the nano carbon line-like structure of the present embodiment mainly comprises the following steps: the national step S3 (H, providing a plurality of substrates, the dance-based substrate has a lean growth, a carbon nanotube array (four) growth surface', the substrate The growth surface is in a different plane. . . - _] Step S3G2, at a constant speed along the base of each-carbon nanotube array [_ # growth surface into the 02 to 5G4 film angle to pull the carbon nanotube array Obtaining a plurality of carbon nanotube films. [_Step S303, forming at least one layer of metal material on the plurality of carbon nanotube films to form a plurality of carbon nanotube composite films. [_In step S303, the metal The material of the material is preferably gold, silver, copper or an alloy thereof, and the thickness of the metal material is preferably 丨奈(四)〇奈 098130458 Form No. A0101 Page 14 / Total 28 100 K 0982052263-0 201109275 [0052] Ο [0053 [0054] 所述 The method for forming at least one layer of metal material on the plurality of nano-tube films adopts a physical method, such as physical vapor deposition (PVD) including vacuum evaporation or ion sputtering, and the like. Chemical methods such as electroplating or chemical Wei Preferably, in this embodiment, a layer of copper metal material is first formed on the plurality of carbon nanotube films by a vacuum steaming method, and then a layer of platinum metal material is formed. The carbon nanotube composite film includes - nano carbon. a tubular film and at least one layer of metal material, and at least a portion of the metal material is formed on the surface of the carbon nanotube in the carbon nanotube film. In this embodiment, the carbon nanotube composite film comprises a carbon nanotube film a layer of copper metal material and a layer of platinum metal material. Step S304, combining the plurality of carbon nanotube composite membranes to form a nano carbon line-like composite structure. Step S304 is similar to step S103 of the first embodiment. The structure of the nano-tubular structure provided by the example is similar to the structure of the nano-carbon pipeline-like structure provided by the first embodiment. The difference is that the nano-tubular structure is a nano-carbon pipeline-like composite structure. The nano carbon line-like composite structure comprises a plurality of carbon nanotubes connected end to end by the brother Deval, and the plurality of carbon nanotubes are arranged in parallel along the length direction of the nanocarbon line-like composite structure and closely arranged. And the surface of the plurality of carbon nanotubes is provided with at least one layer of metal material. In addition, the nano carbon line-like structure is not composited from the cross section of the nanocarbon line-like composite structure and is composed of several carbon nanotubes The composition of the membrane, the individual carbon nanotube composite membranes are uniformly dispersed therein and there is no obvious interface between the 098130458 carbon nanotube composite membranes. In this embodiment, the nanocarbon pipeline-like structure includes a plurality of van der Waals The carbon nanotubes of the first and last phase & and the plurality of carbon nanotubes are arranged in parallel along the length direction of the same nanocarbon line-like structure form number A0101, page 15 / 28 pages 0982052263-0 201109275; The surface-X of the plurality of carbon nanotubes is provided with a layer of copper metal material and a layer of metal material, and the copper to the genus material is placed between the plurality of carbon nanotubes and the metal material. [0056] 098130458 It can be understood that step S202 of the method for preparing a nanocarbon line-like structure provided by the second embodiment of the present invention, that is, pulling the plurality of nanotubes from the array of the plurality of carbon nanotubes can also be obtained. After the step of the carbon nanotube film, at least a layer of metal material is formed on the plurality of carbon nanotube films to form a plurality of carbon nanotube composite membranes; and the plurality of carbon nanotube composite membranes are processed to form a twisted Nano carbon tube composite wire structure. The twisted carbon nanotube composite linear structure comprises a plurality of carbon nanotubes connected end to end by a van der Waals force, and the plurality of carbon nanotubes are arranged in an axial spiral along the twisted nanometer carbon pipeline structure; And the surface of the plurality of carbon nanotubes is provided with at least one layer of metal material. In addition, from the cross section of the twisted carbon nanotube composite linear structure, the twisted nanocarbon line-like structure is composed of several carbon nanotube composite membranes, and the individual carbon nanotube composite membranes are uniform. It is dispersed and there is no obvious interface between the individual carbon nanotube composite membranes. The method for preparing a nanocarbon line-like structure provided by the invention adopts a plurality of carbon nanotube arrays to form a plurality of carbon nanotube films, and then combines the plurality of carbon nanotube films to form a nanometer into a nanometer. Carbon line structure. The nanocarbon line-like structure has a large diameter and thus has good mechanical strength and toughness. Since the diameter of the nanocarbon line-like structure is controllable by controlling the number of substrates in which the carbon nanotube array is grown for pulling the film, the nanocarbon line structure is widely used. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above is only the preferred embodiment of the present invention. 0982052263-0 Form No. A0101 Page 16 of 28 [0057] 201109275 [0058] 00[0060] [0061] [0062] [0063 [0064] [0068] [0068] [0068] From this, the scope of the patent application of this case cannot be limited. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a model diagram of a conventional Nyle carbon line drawn from a super-sequential carbon nanotube array in the prior art. Fig. 2 is a flow chart showing a method of preparing a nanocarbon line-like structure according to a first embodiment of the present invention. Fig. 3 is a schematic view showing the process of the method for producing a nanocarbon line-like structure according to the first embodiment of the present invention. Fig. 4 is a schematic view showing a substrate in which a carbon nanotube array is grown, which is used in the method of fabricating a carbon nanotube-like structure according to a first embodiment of the present invention. Fig. 5 is a schematic view showing a zigzag-arranged carbon nanotube sphere used in the method for preparing a nanocarbon line-like structure according to the first embodiment of the present invention.

• :' ί;· ...... .::> :S 圖6係本發明第二實施例提供的奈米碳管線狀結構的製備 方法的過程示意圖。 【主要元件符號說明】 超順排奈米碳管陣列:1 奈米碳管束片段:2 奈米碳管線:4 奈米碳管陣列:10 ' 40 基底:12、42 098130458 表單編號A0101 第Π頁/共28頁 0982052263-0 201109275 [0069] 承載裝置:13 [0070] [0071] [0072] [0073] [0074] [0075] [0076] [0077] [0078] [0079] [0080] [0081] [0082] 催化劑薄膜層:1 4 奈米碳管膜:20、50 基準位置:22、52 預處理奈米碳管線狀結構:24、55 奈米碳管線狀結構:26、54、56 電機卷軸:28 滴瓶:30 -、'士气,:呑1· 有機溶劑:32、62 滴口 : 34 烘幹箱:36 電機:38 生長表面:122、422 鋸齒面:130 098130458 表單編號A0101 第18頁/共28頁 0982052263-0• : ' ί;· ......::> :S Fig. 6 is a schematic view showing the process of the preparation method of the nanocarbon line-like structure provided by the second embodiment of the present invention. [Main component symbol description] Super-shoring carbon nanotube array: 1 Nano carbon tube bundle segment: 2 Nano carbon pipeline: 4 Carbon nanotube array: 10 ' 40 Base: 12, 42 098130458 Form No. A0101 Page / Total 28 pages 0982052263-0 201109275 [0069] Carrying device: 13 [0070] [0073] [0075] [0075] [0078] [0080] [0080] [0082] Catalyst film layer: 1 4 carbon nanotube film: 20, 50 Reference position: 22, 52 Pretreated nano carbon line structure: 24, 55 nm carbon line structure: 26, 54, 56 motor Reel: 28 drop bottles: 30 -, 'male,: 呑 1 · organic solvent: 32, 62 drip: 34 drying oven: 36 motor: 38 growth surface: 122, 422 serrated surface: 130 098130458 Form No. A0101 18 Page / Total 28 pages 0982052263-0

Claims (1)

201109275 七、申請專利範圍: 1 . 一種奈米碳管線狀結構的製備方法,其包括以下步驟: 提供複數基底,每一基底均具有一生長有奈米碳管陣列的 生長表面,所述複數基底的生長表面處於不同的平面; 沿與每一基底的生長表面成〇q至5〇s的拉膜角度拉取奈米 碳管陣列以獲得複數奈米碳管膜; 提供一基準位置,在該基準位置合併所述複數奈米碳管膜 ’以形成一個奈米碳管線狀結構。 Q 2 .如申清專利範圍第丨項所述的奢米碳管線狀結構的製備方 法,其中,所述令併複數奈米碳管膜,以形成一個奈米碳 管線狀結構的方法包括以下步驟:將所述複數奈米碳管膜 合併為一個預處理奈米碳管線狀結構;採用有機溶劑處理 該預處理奈米碳管線狀結構以得到_個奈米碳管線狀結構 〇 3 .如申凊專利範圍第2項所述的奈米碳管線狀結構的製備方 法,其中,所述採用有機溶劑處理該預處理奈米碳管線狀 〇 、〜構以彳于到,奈米碳管線狀結構的步驟之後進一步包括 烘幹所述奈米碳管線狀結構的步驟。 4 · >中請專利範圍第2項所述的奈米碳管線狀結構的製備方 法,其中,所述將所述複數奈米碳管膜合併為一個預處理 奈米碳管線狀結構的步驟之後,採用有機溶劑處理該預處 理奈米碳管線狀結構的步驟之前,進一步包括扭轉所述預 處理奈米碳管線狀結構,得到一扭轉的預處理奈米碳管線 狀結構的步驟。 5 .如申睛專利範圍第2項所述的奈米碳管線狀結構的製備方 098130458 表單編號A0101 第19頁/共28頁 0982052263-0 201109275 法,其中,所述將複數奈米碳管膜合併為一個預處理奈米 碳管線狀結構的方法為將該複數奈米碳管膜合股成為一個 預處理奈米碳管線狀結構。 6 .如申請專利範圍第1項所述的奈米碳管線狀結構的製備方 法,其中,所述獲得複數奈米碳管膜的步驟之後,合併複 數奈米碳管膜的步驟之前進一步包括在所述複數奈米碳管 膜上形成至少一層金屬材料的步驟。 7 ·如申請專利範圍第6項所述的奈米碳管線狀結構的製備方 法’其中’所述在複數奈米碳管媒上形成至少一層金屬材 料的方法包括物理氣相沈積法、化學鍍法或電鍍法。 8 .如申請專利範圍第1項所述的奈米碳管線狀結構的製備方 法,其中’所述複數基底呈袁線形排列、扇形排列或呈鋸 齒形排列。 9 .如申請專利範圍第1項所述的奈米碳管線狀結構的製備方 法’其中’所述奈米碳管線狀結構包括複數通過凡德瓦爾 力首尾相連的奈米碳管,且該複數奈米礙誉沿着奈米碳管 線狀結構的長度方向乎行排列。 10 .如申請專利範圍第4項所述的奈米竣笮線狀結構的製備方 法,其中,所述奈米破管線狀結構包括複數通過凡德瓦爾 力首尾相連的奈米碳管,且該複數奈米碳管沿該奈米碳管 線狀結構的轴向螺旋排列。 11 .如申請專利範圍第8項所述的奈米碳管線狀結構的製備方 法,其中’所述複數基底沿垂直於基底的生長表面的方向 重疊排列即呈直線形排列。 12 .如申請專利範圍第11項所述的奈米碳管線狀結構的製備方 法,其中,所述複數基底為三個基底,該三個基底的生長 表單編號A0101 第20頁/共28頁 0982052263-0 201109275 表面上的奈米碳管陣列的拉膜角度為α 、α 、α ,其 1 2 3 中αι<α2<α3,其中αι介於0。至5。,α9介於5。至10。 ’ %介於10°至15°。 13 _如申請專利範圍第11項所述的奈米碳管線狀結構的製備方 法’其中,所述基底的長度為L,所述拉膜角度為α,所 述奈米碳管陣列中的任一奈米碳管陣列與其上方的奈米碳 管陣列的距離大於L/tana。 14 .如申請專利範圍第8項所述的奈米碳管線狀結構的製備方 法,其中,所述複數基底呈扇形排列。 15 ·如申請專利範圍第14項所述的奈米碳管線狀結構的製備方 法’其中,所述複數基底的生長表面上的奈米碳管陣列的 拉膜角度均介於0。至5。。 16 .如申請專利範圍第1項所述的奈米碳管線狀結構的製備方 法’其中,所述形成一個奈米碳管線狀結構的步驟之後進 一步包括一收集所形成的奈米碳管線狀結構的步驟。 17 ·如申請專利範圍第16項所述的奈米碳管線狀結構的製備方 法’其中’所述收集所形成的奈米碳管.線狀結構的步驟具 體為採用電機將該奈米碳管線狀緒構纏繞在電機的卷軸上 〇 18 .如申請專利範圍第丨項所述的奈米碳管線狀結構的製備方 法’其中’所述提供一基準位置,在該基準位置合併所述 複數奈来碳管膜的方法包括以下步驟:提供一匯聚裝置設 置於所述基準位置處;在該基準位置通過所述匯聚裝置將 所述複數奈来碳管膜合併為一個預處理奈米碳管線狀結構 〇 19 ·如申請專利範圍第18項所述的奈米碳管線狀結構的製備方 098130458 0982052263-0 表單編號A〇101 第21頁/共28頁 201109275 法,其中,所述匯聚裝置為一滑輪或一漸縮結構。 098130458 表單編號A0101 第22頁/共28頁 0982052263-0201109275 VII. Patent application scope: 1. A method for preparing a nanocarbon pipeline-like structure, comprising the steps of: providing a plurality of substrates, each substrate having a growth surface grown with an array of carbon nanotubes, the plurality of substrates The growth surfaces are in different planes; the carbon nanotube array is drawn at a film angle of 〇q to 5 〇s with the growth surface of each substrate to obtain a plurality of carbon nanotube films; a reference position is provided The reference position combines the plurality of carbon nanotube membranes to form a nanocarbon line-like structure. Q2. The method for preparing a luxury rice carbon line-like structure according to the above-mentioned patent scope, wherein the method of forming a carbon nanotube-like structure to form a nanocarbon line-like structure includes the following Step: combining the plurality of carbon nanotube membranes into a pretreated nanocarbon pipeline-like structure; treating the pretreated nanocarbon pipeline-like structure with an organic solvent to obtain a nanocarbon line-like structure 〇3. The method for preparing a nanocarbon line-like structure according to the second aspect of the invention, wherein the pretreated nanocarbon line-like crucible is treated with an organic solvent, and the structure is in the form of a carbon nanotube. The step of the structure further includes the step of drying the nanocarbon line-like structure. The method for preparing a nanocarbon line-like structure according to the second aspect of the invention, wherein the step of combining the plurality of carbon nanotube films into a pretreated nanocarbon line structure Thereafter, before the step of treating the pretreated nanocarbon line-like structure with an organic solvent, further comprising the step of twisting the pretreated nanocarbon line-like structure to obtain a twisted pretreated nanocarbon line-like structure. 5. The preparation of a nanocarbon line-like structure as described in claim 2 of the scope of the patent application 098130458, Form No. A0101, page 19, page 28, 098, 205, 263, 00, 00 00 00 00 00 00 00 00 00 00 00 The method of combining into a pretreated nanocarbon line-like structure is to puncture the complex carbon nanotube film into a pretreated nanocarbon line-like structure. 6. The method for preparing a nanocarbon line-like structure according to claim 1, wherein the step of obtaining the plurality of carbon nanotube films is further included before the step of combining the plurality of carbon nanotube films And forming at least one layer of metal material on the plurality of carbon nanotube films. 7. The method for preparing a nanocarbon line-like structure according to claim 6, wherein the method for forming at least one layer of the metal material on the plurality of carbon nanotube media comprises physical vapor deposition, electroless plating Method or electroplating method. 8. The method of preparing a nanocarbon line-like structure according to claim 1, wherein the plurality of substrates are arranged in a Yuan line shape, a fan shape or a zigzag arrangement. 9. The method for preparing a nanocarbon line-like structure according to claim 1, wherein the nanocarbon line-like structure comprises a plurality of carbon nanotubes connected end to end by a van der Waals force, and the plural Nano barriers are arranged along the length of the nanocarbon pipeline structure. 10. The method for preparing a nanowire-like structure according to claim 4, wherein the nano-crushed line structure comprises a plurality of carbon nanotubes connected end to end by a van der Waals force, and the The plurality of carbon nanotubes are helically arranged along the axial direction of the nanocarbon line-like structure. 11. The method of preparing a nanocarbon line-like structure according to claim 8, wherein the plurality of substrates are arranged in a line in a direction perpendicular to a growth surface of the substrate. 12. The method for preparing a nanocarbon line-like structure according to claim 11, wherein the plurality of substrates are three substrates, and the growth forms of the three substrates are numbered A0101, page 20, total 28 pages, 0982052263 -0 201109275 The angle of the film of the carbon nanotube array on the surface is α, α, α, which is αι<α2<α3 in 1 2 3, where αι is between 0. To 5. , α9 is between 5. To 10. '% between 10° and 15°. The method for preparing a nanocarbon line-like structure according to claim 11, wherein the length of the substrate is L, the angle of the film is α, and any of the carbon nanotube arrays The distance between the carbon nanotube array and the array of carbon nanotubes above it is greater than L/tana. 14. The method of preparing a nanocarbon line-like structure according to claim 8, wherein the plurality of substrates are arranged in a fan shape. The method for producing a nanocarbon line-like structure according to claim 14, wherein the carbon nanotube array on the growth surface of the plurality of substrates has a film angle of 0. To 5. . 16. The method for preparing a nanocarbon line-like structure according to claim 1, wherein the step of forming a nanocarbon line-like structure further comprises collecting a formed nanocarbon line-like structure. A step of. 17. The method for preparing a nanocarbon line-like structure as described in claim 16 of the patent application, wherein the step of collecting the formed carbon nanotubes. The linear structure is specifically a step of using a motor to the carbon nanotube line The structure is wound on a reel of the motor. 18 . The method for preparing a nanocarbon line-like structure as described in the scope of the patent application, wherein the method provides a reference position at which the complex number is merged. The method for the carbon tube film comprises the steps of: providing a converging device at the reference position; and combining the plurality of carbon nanotube membranes into a pretreated nanocarbon line by the converging device at the reference position Structure 〇 19 · Preparation of nano carbon line-like structure as described in claim 18, 098130458 0982052263-0 Form No. A 〇 101 page 21 / 28 page 201109275, wherein the concentrating device is Pulley or a tapered structure. 098130458 Form No. A0101 Page 22 of 28 0982052263-0
TW98130458A 2009-09-09 2009-09-09 Mehtod for manufacturing carbon nanotube linear structure TWI391323B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98130458A TWI391323B (en) 2009-09-09 2009-09-09 Mehtod for manufacturing carbon nanotube linear structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98130458A TWI391323B (en) 2009-09-09 2009-09-09 Mehtod for manufacturing carbon nanotube linear structure

Publications (2)

Publication Number Publication Date
TW201109275A true TW201109275A (en) 2011-03-16
TWI391323B TWI391323B (en) 2013-04-01

Family

ID=44835880

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98130458A TWI391323B (en) 2009-09-09 2009-09-09 Mehtod for manufacturing carbon nanotube linear structure

Country Status (1)

Country Link
TW (1) TWI391323B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852376B2 (en) 2011-12-09 2014-10-07 Beijing Funate Innovation Technology Co., Ltd. Method for making heaters
TWI460124B (en) * 2011-11-08 2014-11-11 Beijing Funate Innovation Tech Carbon nanotube film and method for making the same
TWI464111B (en) * 2011-12-09 2014-12-11 Beijing Funate Innovation Tech Method for making carbon nanotube films

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100500556C (en) * 2005-12-16 2009-06-17 清华大学 Carbon nano-tube filament and its production
TWI366930B (en) * 2007-12-21 2012-06-21 Hon Hai Prec Ind Co Ltd Touch panel and displaying device using the same
TWI330858B (en) * 2008-02-15 2010-09-21 Hon Hai Prec Ind Co Ltd Thermionic emission device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI460124B (en) * 2011-11-08 2014-11-11 Beijing Funate Innovation Tech Carbon nanotube film and method for making the same
US10287166B2 (en) 2011-11-08 2019-05-14 Beijing Funate Innovation Technology Co., Ltd. Carbon nanotube film and method for making the same
US8852376B2 (en) 2011-12-09 2014-10-07 Beijing Funate Innovation Technology Co., Ltd. Method for making heaters
TWI464111B (en) * 2011-12-09 2014-12-11 Beijing Funate Innovation Tech Method for making carbon nanotube films
US8980035B2 (en) 2011-12-09 2015-03-17 Beijing Funate Innovation Technology Co., Ltd. Method for making carbon nanotube film structures

Also Published As

Publication number Publication date
TWI391323B (en) 2013-04-01

Similar Documents

Publication Publication Date Title
CN102001641B (en) Method for preparing carbon nanotube linear structure
CN100500556C (en) Carbon nano-tube filament and its production
CN101499328B (en) Stranded wire
TWI312337B (en) Method for making the carbon nanotubes silk
JP4504453B2 (en) Method for producing linear carbon nanotube structure
TWI272245B (en) A method for making carbon nanotube device
JP5175313B2 (en) Carbon nanotube-nanoparticle composite material and method for producing the same
TWI490032B (en) Reactor and a method for growing carbon nanotube
JP2010281025A (en) Method for producing carbon nanotube linear structure
TWI608994B (en) Carbon fiber film
JP2010260784A (en) Nano-material thin film
JP2009184907A (en) Carbon nanotube composite material
JP2011026192A (en) Method for making twisted carbon nanotube wire
TWI342027B (en) Method for making twisted yarn
TW201125814A (en) Method for making carbon nanotube structure
TW201109275A (en) Mehtod for manufacturing carbon nanotube linear structure
JPWO2020171047A1 (en) Manufacturing method of carbon nanotube, manufacturing method of carbon nanotube aggregate wire, manufacturing method of carbon nanotube aggregate wire bundle, carbon nanotube manufacturing equipment, carbon nanotube aggregate wire manufacturing equipment and carbon nanotube aggregate wire bundle manufacturing equipment
TW201020209A (en) Carbon nanotube film
CN103367074B (en) The preparation method of field emission body of Nano carbon tube
TW201134754A (en) Carbon nanotube array and method for making carbon nanotube structure using the same
WO2020050142A1 (en) Carbon nanotube composite bundled wire, heat-treated carbon nanotube composite bundled wire, method for producing carbon nanotube composite bundled wire, and method for producing heat-treated carbon nanotube composite bundled wire
CN103367073B (en) Field emission body of Nano carbon tube
TWI571435B (en) Method for making carbon nanotube composite wire
TWI386366B (en) Method for making carbon nanotube yarn
TW200842105A (en) Transmission electron microscope grid and method for making same