TWI342027B - Method for making twisted yarn - Google Patents

Method for making twisted yarn Download PDF

Info

Publication number
TWI342027B
TWI342027B TW97108087A TW97108087A TWI342027B TW I342027 B TWI342027 B TW I342027B TW 97108087 A TW97108087 A TW 97108087A TW 97108087 A TW97108087 A TW 97108087A TW I342027 B TWI342027 B TW I342027B
Authority
TW
Taiwan
Prior art keywords
layer
carbon nanotube
nanotube film
forming
conductive material
Prior art date
Application number
TW97108087A
Other languages
Chinese (zh)
Other versions
TW200939249A (en
Inventor
Kai-Li Jiang
Liang Liu
Kai Liu
Qing-Yu Zhao
Yong-Chao Zhai
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97108087A priority Critical patent/TWI342027B/en
Publication of TW200939249A publication Critical patent/TW200939249A/en
Application granted granted Critical
Publication of TWI342027B publication Critical patent/TWI342027B/en

Links

Description

1342027 九、發明說明: 【發明所屬之技術頜域】 本發明涉及一種絞線的製造方法,尤其涉及一種基於 . 奈米碳管的絞線的製造方法。 【先前技術】 奈米碳管係一種由石墨烯片卷成的中空管狀物,其具 有優異的力學、熱學及電學性質。奈米碳管應用領域非常 廣闊,如’它可用於製作場效應晶體管、原子力顯微鏡針 大、場發射電子搶、奈米模板等等。然,目前基本上都係 於微觀尺度下應用奈米碳管,操作較困難。故,將奈米碳 管組裝成宏觀尺度的結構對於奈米碳管的宏觀應用^有重 要意義。 ^ 范守善等人於 Nature,2002,419:801,Spinning1342027 IX. Description of the invention: [Technical jaw region to which the invention pertains] The present invention relates to a method for manufacturing a stranded wire, and more particularly to a method for manufacturing a stranded wire based on a carbon nanotube. [Prior Art] A carbon nanotube is a hollow tubular body rolled from a graphene sheet having excellent mechanical, thermal and electrical properties. The application of carbon nanotubes is very broad, such as 'it can be used to make field effect transistors, atomic force microscope needles, field emission electrons, nano templates and so on. However, at present, it is basically applied to the micro-scale application of carbon nanotubes, which is difficult to operate. Therefore, the assembly of nano-carbon tubes into a macro-scale structure is of great significance for the macroscopic application of carbon nanotubes. ^ Fan Shoushan and others at Nature, 2002, 419: 801, Spinning

Continuous CNT Yams —文中揭露了從一超順排奈米碳管 陣列中可以拉出一根連續的純奈米碳管線,這種奈米碳管 鲁線包括多個於凡德瓦爾力作用下首尾相接的奈米碳管束片 段,每個奈米碳管束片段具有大致相等的長度,且每個奈 米碳管束片段由多個相互平行的奈米碳管構成。然而,由 於上述奈米碳管束片段通過相互搭接來形成一連續的奈米 碳管線,導致接觸點處的電阻較高,進而導致上述奈米碳 官線的電導率較低,無法代替金屬導線,用於信號傳輸及 電氣傳輸領域。 有鑒於此,提供一種絞線及其製備方法實為必要,該 、’·交線具有良好的導電性能、較强的機械性能、較輕的質量 7 1342027 及較小的直徑,並且易于製造,適于低成本大量生産。 【發明内容】 & 一—種絞線的製造方法,包括以下步驟:提供一奈米碳 管陣列;㈣―拉伸卫具從所述奈米碳管陣列中拉取獲得 j米碳管薄膜;形成至少—層導電材料層於所述奈米碳 管薄膜表面;以及扭轉所述奈米碳管薄膜,形成一絞線。 相杈於先前技術,本技術方案絞線的製備方法具有以 下4 .‘沾其,所述絞線是通過對所述奈米碳管薄膜進行 扭轉而製造’製造方法簡單方便、成本較低。其二,、所述 從奈米碳管陣列直接拉取獲得奈米碳管薄膜的步驟及形成 至少-層導電材料層的步驟均可在一真空容器中進行,有 利於絞線的規模化生産。 【實施方式】 以下將結合附圖詳細說明本技術方案實施例絞線的結 構及其製造方法。 —種絞線,該絞線由奈米碳管 和導電材料構成。具體地,該絞線包括多個奈米破管,並 且’每個奈米碳管表面均包覆至少一層導電材料。盆中, 每個奈米碳管具有大致相等的長度,並且,多個奈米碳管 通過凡德瓦爾力首尾相連形成-絞線。在該奈米碳管絞線 中,奈米碳管沿絞線的車由向擇優取向排列。優選地,奈米 碳管繞絞線的軸向螺旋狀旋轉排列。該絞線的直徑可以爲 4.5不'米100微#優選地,該絞線的直徑爲⑺〜μ微米。 請參見® 1,豸絞線中每—根奈米碳管⑴表面均包 8 1342027 覆至少一層導電材料層114。具體地,該導電材料層U4 .包括與奈米碳管111表面直接結合的潤濕層112、設置在 .潤濕層外的過渡層Π3、設置在過渡層丨13外的導電層114 以及没置在導電層π 4外的抗氧化層η 5。 由於奈米碳管111與大多數金屬之間的潤濕性不好, 因此’上述淵濕層112的作用爲使導電層丨丨4與奈米碳管 111更好的結合。形成該潤濕層丨丨2的材料可以爲鎳、鈀 籲或鈦等與奈米碳管η丨潤濕性好的金屬或它們的合金,該 潤濕層112的厚度爲ι〜10奈米。本實施例中,該潤濕層 112的材料爲鎳,厚度約爲2奈米。可以理解,該潤濕層 112爲可選擇結構。 ’ 、 上述過渡層1丨3的作用爲使潤濕層u 2與導電層i】4 更好的結合。形成該過渡層i丨3的材料可以爲與潤濕層U 2 材料及^電層丨丨4材料均能較好結合的材料,該過渡層U 3 的厚度爲1〜10奈米。本實施例中,該過渡層U3的材料 籲爲銅,厚度爲2奈米。可以理解,該過渡層113爲可選擇 結構。 •处。上述導電層114的作用爲使絞線具有較好的導電性 此°形成該導電層114的材料可以爲銅、銀或金等導電性 好:金屬或其合金,該導電層114的厚度爲卜2〇夺米。 本貝,例中,該導電層114的材料爲銀,厚度約爲5奈米。 迷抗氧化層丨15的_爲防止在絞線的製造過程中 降。开空氣中被氧化’從而使絞線的導電性能下 ^抗氧化層115的材料可以爲金或鉑等在空氣令 9Continuous CNT Yams - This article reveals that a continuous pure nanocarbon pipeline can be pulled from a super-sequential carbon nanotube array. This nano-carbon nanotube line includes multiple first and last van der Waals forces. The aligned carbon nanotube bundle segments each have substantially equal lengths, and each of the carbon nanotube bundle segments is composed of a plurality of mutually parallel carbon nanotubes. However, since the above-mentioned carbon nanotube bundle segments are mutually overlapped to form a continuous nanocarbon pipeline, the electrical resistance at the contact point is high, which results in a low conductivity of the above-mentioned nanocarbon official line, which cannot replace the metal conductor. For signal transmission and electrical transmission. In view of the above, it is necessary to provide a stranded wire and a preparation method thereof, which has good electrical conductivity, strong mechanical properties, lighter weight 7 1342027 and a smaller diameter, and is easy to manufacture. Suitable for low-cost mass production. SUMMARY OF THE INVENTION A method for manufacturing a stranded wire includes the steps of: providing a carbon nanotube array; and (4) drawing a j-carbon tube film from the array of carbon nanotubes. Forming at least a layer of a conductive material on the surface of the carbon nanotube film; and twisting the carbon nanotube film to form a strand. In contrast to the prior art, the method of manufacturing the strand of the present invention has the following method: 'staining the strand, which is manufactured by twisting the carbon nanotube film'. The manufacturing method is simple and convenient, and the cost is low. Secondly, the step of directly drawing the carbon nanotube film from the carbon nanotube array and the step of forming the at least one layer of the conductive material layer can be carried out in a vacuum vessel, which is advantageous for large-scale production of the stranded wire. . [Embodiment] Hereinafter, a structure of a stranded wire of an embodiment of the present technical solution and a method of manufacturing the same will be described in detail with reference to the accompanying drawings. — A stranded wire consisting of a carbon nanotube and a conductive material. Specifically, the strand includes a plurality of nanotubes, and each surface of the carbon nanotube is coated with at least one layer of electrically conductive material. In the basin, each of the carbon nanotubes has substantially the same length, and a plurality of carbon nanotubes are connected end to end by a van der Waals force to form a stranded wire. In the carbon nanotube stranded wire, the carbon nanotubes are arranged along the stranded line in a preferred orientation. Preferably, the carbon nanotubes are arranged in an axial helical rotation about the strands. The strand may have a diameter of 4.5 not more than 100 micrometers. Preferably, the strand has a diameter of (7) to μm. Refer to the ® 1, stranded wire for each of the carbon nanotubes (1) on the surface of 8 1342027 covering at least one layer of conductive material 114. Specifically, the conductive material layer U4 includes a wetting layer 112 directly bonded to the surface of the carbon nanotube 111, a transition layer 设置3 disposed outside the wetting layer, a conductive layer 114 disposed outside the transition layer 以及13, and The oxidation resistant layer η 5 is disposed outside the conductive layer π 4 . Since the wettability between the carbon nanotubes 111 and most of the metals is not good, the above-mentioned wet layer 112 functions to better bond the conductive layer 丨丨4 to the carbon nanotubes 111. The material for forming the wetting layer 丨丨2 may be a metal such as nickel, palladium or titanium which is wettable with carbon nanotubes η, or an alloy thereof, and the thickness of the wetting layer 112 is ι 10 nm. . In this embodiment, the wetting layer 112 is made of nickel and has a thickness of about 2 nm. It will be appreciated that the wetting layer 112 is an optional structure. The role of the above transition layer 1 丨 3 is to better combine the wetting layer u 2 with the conductive layer i 4 . The material forming the transition layer i 丨 3 may be a material which can be well combined with the wet layer U 2 material and the electric layer 丨丨 4 material, and the transition layer U 3 has a thickness of 1 to 10 nm. In this embodiment, the material of the transition layer U3 is copper and has a thickness of 2 nm. It will be appreciated that the transition layer 113 is an optional structure. • At the office. The conductive layer 114 functions to make the stranded wire have better conductivity. The material forming the conductive layer 114 may be made of copper, silver or gold, such as a metal or an alloy thereof, and the thickness of the conductive layer 114 is 2 〇 〇 米. In this example, the conductive layer 114 is made of silver and has a thickness of about 5 nm. The _ of the anti-oxidation layer 丨 15 is prevented from falling during the manufacturing process of the strand. The open air is oxidized' so that the conductive properties of the strands ^ The material of the anti-oxidation layer 115 may be gold or platinum in the air.

'^厶厶I 易氧化的穩定金屬或它們的合金,該抗氧化層115的厚 :爲1〜10奈米。本實施例中,該抗氧化I 115的材料爲 厚度爲2奈米。可以理解,該抗氧化層115爲可選擇 進-步地,爲提高絞線的强度,可在該抗氧化層ii5 、卜進-步設置-强化層116。形成該强化们16的材料可 以爲聚乙稀醇(PVA)、聚笨撑笨並二。惡p 歸㈣)或聚氣乙4 (PVC)等强度較高的聚合物,;^ ^層116的厚度爲〜1微米。本實施例中,該强化層116 的材料爲聚乙烯醇,厚度爲〇 5微米。可以理解,該强化 層116爲可選擇結構。 °月’閱圖2及圖3 ’本技術方案實施例中絞線的製備 方法主要包括以下步驟: β步驟一:提供一奈米碳管陣列216,優選地,該陣列 爲超順排奈米碳管陣列。 本技術方案實施例提供的奈米碳管陣列216爲單壁奈 米石反“車列’雙壁奈米碳管陣列,及多壁奈米碳管陣列中 的種或夕種本只把例中,該超順排奈采碳管陣列的製 備方法抓用化學氣相沈積法,其具體步驟包括:⑴提供 -平整基底,該基底可選用p型或N Μ基底,或選用形 成有氧化層的#基底,本實施例優選爲採用4英寸的石夕基 底 土底表面均句幵》成一催化劑層,該催化劑層材 料可^鐵(Fe)KCG)、鎳(Ni)或其任意組合的合 金之,(c)將上述形成有催化劑層的基底在〜憎。^ 1342027 的空氣中退火約30分鐘〜90分鐘;(d )將處理過的基底置 於反應爐中’在保護氣體環境下加熱到500〜740°C,然後 通入奴源氣體反應約5〜3 0分鐘,生長得到超順排奈米碳 官陣列’其高度爲200〜400微米。該超順排奈米碳管陣列 爲多個彼此平行且垂直於基底生長的奈米碳管形成的純奈 米碳管陣列。通過上述控制生長條件,該超順排奈米碳管 陣列中基本不含有雜質’如無定型碳或殘留的催化劑金屬 鲁顆粒等。該超順排奈米碳管陣列中的奈米碳管彼此通過凡 德瓦爾力緊密接觸形成陣列。該超順排奈米碳管陣列與上 述基底面積基本相同。 本實施例中碳源氣可選用乙炔、乙烯、曱烷等化學性 質較活潑的碳氫化合物,本實施例優選的碳源氣爲乙炔; 保護氣體爲氮氣或惰性氣體,本實施例優選的保護氣體爲 氬氣。 步驟二:採用一拉伸工具從所述奈米碳管陣列216中 鲁拉取獲得一奈米碳管薄膜214。 所述奈米碳管薄膜214的製備方法包括以下步驟:(a) 從上述奈米碳管陣列216中選定一定寬度的多個奈米碳管 束片段’本實施例優選爲採用具有一定寬度的膠帶接觸奈 米石反官陣列216以選定一定寬度的多個奈米碳管束片段; (b )以一定速度沿基本垂直於奈米碳管陣列2丨6生長方向 拉伸該多個奈米碳管束片段,以形成一連續的奈米碳管薄 膜 214。 請參閱圖4 ’該奈米碳管薄膜214爲擇優取向排列的 1342027 多個奈米碳管束首尾相連形成的具有一定寬度的奈米碳管 薄膜214。在上述拉伸過程中,該多個奈米碳管束片段在 拉力作用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦 爾力作用,該選定的多個奈米碳管束片段分別與其它奈米 .碳管束片段首尾相連地連續地被拉出,從而形成一奈米碳 官薄膜214。該奈米碳管薄膜214包括多個首尾相連且定 向排列的奈米碳管束。該奈米碳管薄膜214中奈米碳管的 魯排列方向基本平行於奈米碳管薄膜214的拉伸方向。 該直接拉伸獲得的擇優取向排列的奈米碳管薄膜2 i 4 比無序的奈米碳管薄膜具有更好的均勻性。同時該直接拉 伸獲得奈米碳管薄膜214的方法簡單快速,適宜進行工業 化應用。 步驟三:形成至少一層導電材料層於所述奈米碳管薄 膜214表面。 本實施例採用物理氣相沈積法(PVE))如真空蒸錢或 鲁離子濺射等沈積導電材料層。優選地,本實施例採用真^ 蒸鍍法沈積至少一層導電材料層。 ''工 所述採用真空蒸鍍法形成至少一層導電材料層的方法 包括以下步驟:首先,提供一真空容器210,該真空容哭 210具有沈積區間,該沈積區間底部和頂部分別玫置至 個蒸發源212,該至少一個蒸發源212按形成至少— 層導電材料層的先後順序依次沿奈米碳管薄膜214的=伸 方向設置,且每個蒸發源212均可通過一個加熱裝置(圖 未不)加熱。上述奈米碳管薄膜214設置於上下蒸發源2 ^ 1342027 中間並間隔一定距離,其中奈米碳管薄膜214正對上下蒸 發源2 12設置。該真空容器2 1 〇可通過外接一真空泵(圖 未示)抽氣達到預定的真空度。所述蒸發源2 12材料爲待 沈積的導電材料。其次,通過加熱所述蒸發源2 12,使其 炫融後蒸發或升華形成導電材料蒸汽’該導電材料蒸汽遇 到冷的奈米碳管薄膜214後,在奈米碳管薄膜214上下表 面凝聚’形成導電材料層。由於奈米碳管薄膜214中的奈 鲁米碳管之間存在間隙,並且奈米碳管薄膜214的厚度較 薄,導電材料可以滲透進入所述奈米碳管薄膜2丨4之中, 從而沈積在每根奈米碳管表面。沈積導電材料層後的奈米 碳官薄膜214的微觀結構照片請參閱圖5和圖6。 可以理解,通過調節奈米碳管薄膜214和每個蒸發源 212的距離以及蒸發源212之間的距離,可使每個蒸發源 212具有一個沈積區。當需要沈積多層導電材料層時,可 將多個蒸發源212同時加熱,使奈米碳管薄膜214連續通 •過多個瘵發源的沈積區,從而實現沈積多層導電材料層。 爲提冋‘電材料洛’/'密度並且防止導電材料被氧化, 真空容1121()内真空度應達到1φό (pa)以上。本技術方 .案實施例中’真空容器中的真空度爲4xl〇_4pa。 可以理解,也可將步驟—中的太止山—土 〒的奈未碳管陣列2 16直接 放入上述真空容器210中。首杏, 自无’在真空容器210中採用 一拉伸工具從所述奈米碳管陳 u長' g早列216中拉取獲得一定寬度 的奈米碳管薄膜2 1 4。然後, 加熱上述至少一個蒸發源 2 12,沈積至少一層導電材料 、所述奈米碳管薄膜2 1 4表 1342027 面。以一定速度不斷地從所述奈米碳管陣列2 1 6中拉取奈 ^米碳管薄膜214,且使所述奈米碳管薄膜214連續地通過 .上述蒸發源212的沈積區,進而實現從奈米碳管陣列216 •中拉取奈米碳管薄膜214及形成至少一層導電材料層的連 續生産。 本技術方案實施例中’所述採用真空蒸鍍法形成至少 一層導電材料層的步驟具體包括以下步驟:形成一層潤濕 φ層於所述奈米碳管薄膜214表面;形成一層過渡層於所述 潤濕層的外表面;形成一層導電層於所述過渡層的外表 面;形成一層抗氧化層於所述導電層的外表面。其中,上 述形成潤濕層、過渡層及抗氧化層的步驟均爲可選擇的步 驟具體地,可將上述奈来碳管薄膜214連續地通過上述 各層材料所形成的蒸發源的沈積區。 另外,在所述形成至少一個導電材料層於所述奈米碳 官薄膜214的表面之後’可進一步包括在所述奈米碳管薄 籲膜214表面形成强化層的步驟。所述形成强化層的步驟包 括以下步驟:將形成有至少一個導電材料層的奈米碳管薄 膜214通過一裝有聚合物溶液的裝置22〇,使聚合物溶液 浸潤整個奈米碳管薄膜214,該聚合物溶液通過分子間作 用力黏附於所述至少一個導電材料層的外表面;以及凝固 聚合物’形成一强化層。 步驟四:扭轉所述奈米碳管薄膜214,形成一絞線222。 ^所述扭轉上述沈積有至少—層導電材料層的奈米碳管 4膜214形成一絞線222的步驟可通過以下兩種方式形 1J42027 成其一,通過將黏附於上述奈米碳管每 伸工具固定於-旋轉電機上;扭轉該奈米石山、端的拉 成-絞線222。其二,提供-個尾米 二的的尾部與奈米_ …限,丄:=;=二=:轉 =上述柱轉奈米碳管薄膜214可沿奈米 : 形成一的掃描電 222 了:理解’本技術方案並不限於上述方法獲得絞線 、要能使所述奈米碳管薄膜214形成絞線222的方法 都在本技術方案的保護範圍之内。 所製得的絞線222可進一步收集在捲筒224上。收隼 方式爲將絞線222纏繞在捲筒224上。 术'^厶厶I is a oxidizable stable metal or an alloy thereof, and the thickness of the oxidation resistant layer 115 is 1 to 10 nm. In this embodiment, the material of the antioxidant I 115 has a thickness of 2 nm. It can be understood that the anti-oxidation layer 115 is optional. In order to increase the strength of the strand, the anti-oxidation layer ii5 may be provided with a strengthening layer 116. The material forming the reinforcement 16 may be polyethylene glycol (PVA), polystyrene, and two. The polymer of higher strength such as pp (4)) or polyethane 4 (PVC); ^^ layer 116 has a thickness of ~1 μm. In this embodiment, the reinforcing layer 116 is made of polyvinyl alcohol and has a thickness of 〇 5 μm. It will be appreciated that the reinforcement layer 116 is an optional structure. FIG. 2 and FIG. 3 'The preparation method of the strand in the embodiment of the present technical solution mainly includes the following steps: β Step 1: providing a carbon nanotube array 216, preferably, the array is super-shunned nanometer Carbon tube array. The carbon nanotube array 216 provided in the embodiment of the present technical solution is a single-walled nano-stone anti-"car-mounted" double-walled carbon nanotube array, and the species in the multi-walled carbon nanotube array or the genus The preparation method of the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (1) providing a flat substrate, the substrate may be selected from a p-type or N-type substrate, or an oxide layer is formed. The #BASE, this embodiment is preferably a 4-inch stone slab base soil surface surface into a catalyst layer, the catalyst layer material can be iron (Fe) KCG), nickel (Ni) or any combination of alloys (c) annealing the substrate on which the catalyst layer is formed in air of ~1342027 for about 30 minutes to 90 minutes; (d) placing the treated substrate in a reaction furnace to heat in a protective gas atmosphere To 500~740 ° C, then pass the slave gas reaction for about 5 to 30 minutes, and grow to obtain a super-sequential nano carbon official array whose height is 200 to 400 microns. The super-shoring carbon nanotube array is a plurality of pure carbon nanotubes formed by carbon nanotubes that are parallel to each other and perpendicular to the substrate The carbon nanotube array. The super-sequential carbon nanotube array is substantially free of impurities such as amorphous carbon or residual catalyst metal ruthenium particles, etc. by the above controlled growth conditions. The super-sequential carbon nanotube array The carbon nanotubes are in close contact with each other to form an array by van der Waals force. The super-sequential carbon nanotube array is substantially the same area as the above substrate. In this embodiment, the carbon source gas may be selected from acetylene, ethylene, decane and the like. The active hydrocarbon, the preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is argon. Step 2: using a stretching tool from the nanocarbon A carbon nanotube film 214 is obtained by pulling in the tube array 216. The preparation method of the carbon nanotube film 214 includes the following steps: (a) selecting a plurality of layers of a certain width from the carbon nanotube array 216 The carbon nanotube bundle segment 'this embodiment preferably uses a tape having a certain width to contact the nanostone squash array 216 to select a plurality of carbon nanotube bundle segments of a certain width; (b) along a base at a certain speed The plurality of carbon nanotube bundle segments are stretched perpendicular to the growth direction of the carbon nanotube array 2丨6 to form a continuous carbon nanotube film 214. Please refer to FIG. 4 'The carbon nanotube film 214 is preferred The aligned array of 1342027 plurality of carbon nanotube bundles are formed end to end to form a carbon nanotube film 214 having a width. During the stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the stretching direction by the tensile force. At the same time as the substrate, the selected plurality of carbon nanotube bundle segments are continuously pulled out end to end with the other nano carbon tube bundle segments due to the van der Waals force, thereby forming a nano carbon official film 214. The carbon nanotube film 214 includes a plurality of carbon nanotube bundles which are connected end to end and aligned. The arrangement direction of the carbon nanotubes in the carbon nanotube film 214 is substantially parallel to the stretching direction of the carbon nanotube film 214. The preferentially oriented aligned carbon nanotube film 2 i 4 obtained by direct stretching has better uniformity than the disordered carbon nanotube film. At the same time, the method of directly drawing the carbon nanotube film 214 is simple and rapid, and is suitable for industrial application. Step three: forming at least one layer of a conductive material on the surface of the carbon nanotube film 214. In this embodiment, a layer of a conductive material is deposited by physical vapor deposition (PVE), such as vacuum evaporation or rub ion sputtering. Preferably, this embodiment deposits at least one layer of conductive material by a true evaporation method. The method for forming at least one layer of conductive material by vacuum evaporation includes the following steps: First, a vacuum vessel 210 is provided, the vacuum capacitor 210 having a deposition interval, and the bottom and top of the deposition interval are respectively set to one The evaporation source 212, the at least one evaporation source 212 is arranged in the order of forming the at least one layer of the conductive material in the direction of the extension of the carbon nanotube film 214, and each evaporation source 212 can pass through a heating device (not shown) No) heating. The carbon nanotube film 214 is disposed at a distance between the upper and lower evaporation sources 2 ^ 1342027, wherein the carbon nanotube film 214 is disposed opposite to the upper and lower evaporation sources 2 12 . The vacuum vessel 2 1 抽 can be evacuated to a predetermined degree of vacuum by an external vacuum pump (not shown). The evaporation source 2 12 material is a conductive material to be deposited. Next, by heating the evaporation source 2 12, causing it to condense, evaporating or sublimating to form a conductive material vapor. After the conductive material vapor encounters the cold carbon nanotube film 214, it condenses on the upper and lower surfaces of the carbon nanotube film 214. 'Form a layer of conductive material. Since there is a gap between the nanoluminal carbon tubes in the carbon nanotube film 214, and the thickness of the carbon nanotube film 214 is thin, the conductive material can penetrate into the carbon nanotube film 2丨4, thereby Deposited on the surface of each carbon nanotube. A photomicrograph of the microstructure of the nano-carbon film 214 after depositing a layer of conductive material is shown in Figures 5 and 6. It will be appreciated that by adjusting the distance between the carbon nanotube film 214 and each evaporation source 212 and the distance between the evaporation sources 212, each evaporation source 212 can have a deposition zone. When it is desired to deposit a plurality of layers of the conductive material, the plurality of evaporation sources 212 may be simultaneously heated to continuously pass the carbon nanotube film 214 through the deposition regions of the plurality of hair sources, thereby realizing deposition of the plurality of layers of the conductive material. In order to improve the 'electrical material' density and prevent the conductive material from being oxidized, the vacuum in the vacuum volume 1121() should be above 1φό (pa). In the embodiment of the present invention, the degree of vacuum in the vacuum vessel is 4xl 〇 4pa. It is to be understood that the step of the Taishou Mountain-Turkish Neiwu carbon tube array 2 16 can be directly placed in the above vacuum vessel 210. The first apricot, from the vacuum container 210, was pulled from the carbon nanotubes to form a certain width of the carbon nanotube film 2 1 4 by using a stretching tool. Then, the at least one evaporation source 2 12 is heated to deposit at least one layer of conductive material, the surface of the carbon nanotube film 2 1 4 1342027. The carbon nanotube film 214 is continuously drawn from the carbon nanotube array 2 16 at a constant speed, and the carbon nanotube film 214 is continuously passed through the deposition area of the evaporation source 212. A continuous production of the carbon nanotube film 214 from the carbon nanotube array 216 and the formation of at least one layer of conductive material is achieved. The step of forming at least one layer of conductive material by vacuum evaporation in the embodiment of the technical solution specifically includes the steps of: forming a layer of wetting φ on the surface of the carbon nanotube film 214; forming a transition layer in the chamber The outer surface of the wetting layer; forming a conductive layer on the outer surface of the transition layer; forming an anti-oxidation layer on the outer surface of the conductive layer. Wherein, the steps of forming the wetting layer, the transition layer and the oxidation resistant layer are all optional steps. Specifically, the carbon nanotube film 214 may be continuously passed through a deposition zone of an evaporation source formed by the respective layers of materials. Further, after the forming of the at least one conductive material layer on the surface of the nano carbon film 214, a step of forming a strengthening layer on the surface of the carbon nanotube film 214 may be further included. The step of forming the strengthening layer includes the steps of: passing the carbon nanotube film 214 formed with the at least one conductive material layer through a device 22 containing the polymer solution, so that the polymer solution infiltrates the entire carbon nanotube film 214. The polymer solution is adhered to the outer surface of the at least one conductive material layer by intermolecular forces; and the solidified polymer 'forms a strengthening layer. Step 4: The carbon nanotube film 214 is twisted to form a strand 222. The step of twisting the carbon nanotube 4 film 214 on which the at least one layer of the conductive material is deposited to form a strand 222 can be formed into one of the following two ways, by adhering to each of the above carbon nanotubes. The extension tool is fixed to the rotating electric machine; the nano-stone mountain is twisted and the end-stretched strand 222 is twisted. Secondly, the tail and the nanometer of the tail rice are provided, and the 丄:=;=2=: turn=the above column-to-nanocarbon film 214 can be along the nanometer: forming a scanning electric 222 It is understood that the present technical solution is not limited to the above method to obtain the stranded wire, and the method for forming the carbon nanotube film 214 to form the stranded wire 222 is within the protection scope of the present technical solution. The resulting strands 222 can be further collected on the spool 224. The winding method is to wind the strand 222 around the reel 224. Operation

可达擇地,上述奈米碳管薄膜2丨4的形成步驟、形成 至少一個導電材料層的步驟、奈米碳管薄膜214的扭轉步 驟及絞線222的收集步驟均可在上述真空容器中進行,進 而實現絞線222的連續生産。 與現有技術相比較,本技術方案實施例提供的採用導 電材料包覆奈米碳管所製造的絞線及其製備方法具有以下 優點.其一,採用導電材料包覆的奈米碳管形成的絞線比 屯不米碳管長線具有更好的導電性。其二,絞線中包含多 個通過凡德瓦爾力首尾相連的奈米碳管束片段,且每個奈 15 1342027 米碳管表面均形成有至少―層導電材料層,苴中,太米石户 管束片段起導電及支撑作用,在奈米碳管上沈積導電材 層後所形成的輯比㈣現錢術巾的金屬㈣方法得到 的金屬導電絲更細,適合製作超細微線纜。其三,由於奈 米奴S爲中空的官狀結構’且形成於奈米碳管外表面的導 電材料詹的厚度只有幾個奈米,因此,電流在通過導電材 料層時基本不會産生趨膚效應,從而避免了信號在絞線傳 =過程中的衰减°其四’由於奈米碳管具有優異的力學性 貪b且具有中空的管狀結構,因此,該含有奈米碳管的絞 線比’‘屯金屬‘線具有更尚的機械强度及更輕的質量,適合 特殊領域,如航天領域及空間設備的應用。其五,所述絞 線是通過對所述奈米碳管薄膜進行扭轉而製造,製造方法 簡單方便、成本較低。其六,所述從奈米碳管陣列直接拉 伸獲得奈米碳管薄膜的步驟及形成至少一層導電材料層的 步驟均可在一真空容器中進行,有利於絞線的規模化生産。 表 T、上所述’本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡習知本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本技術方案實施例奈米碳管絞線中單根奈米碳 ’巨·的結構不意圖。 圖2係本技術方案實施例絞線的製造方法的流程圖。 16 1^42〇27 圖3係本技術方案實施例绞線的製造裝置的結構示意 圖。 . 圖4係本技術方案實施例奈米碳管薄膜的掃描電鏡职 片。 …、 ~ 一圖5係本技術方案實施例沈積導電材料層後的奈米碳 貧薄膜的掃描電鏡照片。The step of forming the carbon nanotube film 2丨4, the step of forming at least one conductive material layer, the twisting step of the carbon nanotube film 214, and the collecting step of the strand 222 may all be in the vacuum container. This is carried out to achieve continuous production of the strands 222. Compared with the prior art, the twisted wire manufactured by using the conductive material coated carbon nanotube provided by the embodiment of the present technical solution and the preparation method thereof have the following advantages. First, the carbon nanotube coated with the conductive material is formed. The stranded wire has better conductivity than the long line of the non-carbon tube. Second, the stranded wire contains a plurality of carbon nanotube bundle segments connected end to end by Van der Valle force, and each of the 15 1342027 m carbon tube surfaces is formed with at least one layer of conductive material layer, 苴中,太米石户The tube bundle segment acts as a conductive and supporting force, and the metal conductive wire obtained by depositing the conductive material layer on the carbon nanotube tube is thinner, and is suitable for making an ultrafine micro cable. Third, since the nano-S is a hollow official structure' and the conductive material formed on the outer surface of the carbon nanotube is only a few nanometers thick, the current does not substantially tend to flow when passing through the conductive material layer. Skin effect, thus avoiding the attenuation of the signal in the strand transmission process. The fourth 'because of the excellent mechanical properties of the carbon nanotubes and the hollow tubular structure, the stranded carbon nanotubes are included. It has more mechanical strength and lighter weight than the '屯屯 metal' line, and is suitable for special fields such as aerospace and space equipment applications. Fifth, the twisted wire is manufactured by twisting the carbon nanotube film, and the manufacturing method is simple and convenient, and the cost is low. Sixth, the step of directly drawing the carbon nanotube film from the carbon nanotube array and the step of forming at least one layer of the conductive material can be carried out in a vacuum vessel, which is advantageous for large-scale production of the strand. Table T, the above description 'The invention has indeed met the requirements of the invention patent, and filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a single nanocarbon ‘giant· in a carbon nanotube strand in the embodiment of the present invention. FIG. 2 is a flow chart of a method for manufacturing a twisted wire according to an embodiment of the present technical solution. 16 1^42〇27 Fig. 3 is a schematic structural view of a manufacturing apparatus for a stranded wire of an embodiment of the present technical solution. Figure 4 is a scanning electron microscope image of a carbon nanotube film of the embodiment of the present technical solution. ..., ~ Figure 5 is a scanning electron micrograph of a nano-carbon poor film deposited by depositing a conductive material layer in the embodiment of the present technical solution.

管薄技,實施例沈積導電材料層後的奈 '、中的不米碳官的透射電鏡照片。 圖7係本技術方案實鮮1纟交 【主要it件符號糾】 ,^電鏡知、片 111 112 113 114 115 116 210 212 214 216 220 222 奈米碳管 潤濕層 過渡層 導電層 抗氧化層 强化層 真空容器 蒸發源 奈米碳管結構 奈米碳管陣列 裝有聚合物溶液的裝置 奈米碳管長線結構 捲筒 224Tube thinning technique, a transmission electron micrograph of the carbon dioxide in the middle of the embodiment after depositing a layer of conductive material. Figure 7 is a technical scheme of the present invention. [Main element symbol correction], ^ Electron mirror, sheet 111 112 113 114 115 116 210 212 214 216 220 222 carbon nanotube wetting layer transition layer conductive layer anti-oxidation layer Strengthening layer vacuum vessel evaporation source carbon nanotube structure carbon nanotube array device with polymer solution nano carbon tube long-line structure reel 224

Claims (1)

1342027 十、申請專利範圍 1. 一種絞線的製造方法,包括以下步驟: 提供一奈米碳管陣列; 採用一拉伸工具從所述奈米破管陣列中拉取獲得—奈 米碳管薄膜; 形成至少一層導電材料層於所述奈米碳管薄獏表面;以 及 扭轉所述奈米碳管薄膜,形成一絞線。 2.如申請專利範圍第1項所述的絞線的製造方法,其中, 所述奈米碳管薄膜的製備過程包括以下步驟: 從上述奈米碳管陣列中選定一定寬度的多個奈米碳管 束片段;以及 以一定速度沿基本垂直於奈米碳管陣列生長方向拉伸 該多個奈米碳管束片段,以形成一連續的奈米碳管 膜。 '1342027 X. Patent application scope 1. A method for manufacturing a stranded wire, comprising the steps of: providing a carbon nanotube array; using a stretching tool to extract from the nanotube array to obtain a carbon nanotube film Forming at least one layer of a conductive material on the surface of the carbon nanotube thinner; and twisting the carbon nanotube film to form a strand. 2. The method for manufacturing a strand according to claim 1, wherein the preparation process of the carbon nanotube film comprises the steps of: selecting a plurality of nanometers of a certain width from the array of carbon nanotubes; a carbon tube bundle segment; and stretching the plurality of carbon nanotube bundle segments at a rate substantially perpendicular to the growth direction of the nanotube array to form a continuous carbon nanotube film. ' 其中, 蒸錢法 3-如申請專利範圍第丨項所述的絞線的製造方法, 所述形成至少一層導電材料層的方法包括真空 或激射法。 4·如申請專利範圍第3項所述的絞線的製造方法,其中, 所述形成至少一層導電材料層的方法蒗 方法包括以下步驟: …鍍去,該 提供-真空容器’該真空容器具有一沈積區間,該 區間底部和頂部分別放置至少一個蒸發源,該至二: 蒸發源按形成至卜層導電材料層的錢順序: 18 1342027 奈米碳管薄膜的拉伸方向μ罢 α ^ a 々句叹置,且每個蒸發源均玎通過 一個加熱裝置加熱; 將奈米峡管薄膜置於上下落旅、店士日日、 k 卜』、I源中間並與其間隔一疋 距離,其中奈米碳管薄膜正對上下蒸發源設置;以及 依次加熱所述蒸發源,使㈣融後蒸發或升㈣成導電 材料蒸汽’該導電材料蒸汽遇到冷的奈米碳管薄膜後, 於奈米碳管薄膜上下表面凝聚,形成導電材料層。 鲁5,如申凊專利範圍第4項所述的絞線的製造方法其中, 所述形成至少一層導電材料層的過程包括形成一層導 電層於所述奈米碳管薄膜的外表面的步驟。 6·如申請專利範圍第5項所述的絞線的製造方法,其中, 所述導電層的材料爲金、銀、銅或其合金。 7. 如申請專利範圍第5項所述的絞線的製造方法,其中, 所述導電層的厚度爲1〜2〇奈米。 8. 如申請專利範圍第5項所述的絞線的製造方法,其中, # 在所述形成導電層的步驟之前進一步包括以下步驟:形 成一層潤濕層於所述奈米碳管薄膜表面;形成,層過渡 層於所述潤濕層的外表面,上述導電層形成在所述潤濕 層的外表面。 9. 如申請專利範圍第5項所述的絞線的製造方法’其中’ 在所述形成導電層的步驟之後進一步包括形成一層抗 氧化層於所述導電層的外表面。 10. 如申請專利範圍第5項所述的絞線的製造方法,其中, 在所述形成至少一層導電材料層於所述奈米破管薄膜 1342027 表面之後,可進一步包括在所述奈米碳管薄膜外表面形 成强化層的步驟。 / 1 L如申請專利範圍第10項所述的絞線的製造方法,其 中,所述形成强化層的步驟具體包括以下步驟:將形成 有至少一個導電材料層的奈米碳管薄獏通過一裝有聚 合物溶液的裝置,使聚合物溶液浸潤签個奈米碳管^ 膜,該聚合物溶液通過分子間作用力_於所Ml 層導電材料層的外表面;以及凝固聚合物,形成—强化 12.如申請專利範圍第!項所述的絞線的製造方法,並中, =轉所述奈米碳管薄膜,形成—絞線的過程包 :步驟:將黏附於上述奈米碳管薄膜—端的拉伸 :於-旋轉電機上’·扭轉所述奈米碳管薄膜,形成二交 利範圍们項所述的絞線的製造方法, 所述扭轉所述奈米碳管薄膜n -中 下步驟··提供一個尾部可以點住夺米碳心:括以 軸,將該紡紗㈣尾部* U錢的紡紗 ../、不不石厌官;4膜έ士人•丨、,κ ν士从 紡紗轴以旋轉的方式扭轉 専膜口,以及使該 線。 不水兔官溥膜,形成一絞 】4.如申請專利範圍第12項 方法,其中,所述扭轉奈;;碳項;述= 交線的製造 碳管薄膜的拉伸方向 二專膜的過程包括沿奈米 的步驟。 '、疋方式扭轉該奈米碳管薄膜 20The method of manufacturing the stranded wire according to the above-mentioned claim, wherein the method of forming the at least one layer of the conductive material comprises a vacuum or a lasing method. 4. The method of manufacturing a strand according to claim 3, wherein the method of forming at least one layer of a conductive material comprises the steps of: ...plating, providing a vacuum container, the vacuum container having a deposition interval, at least one evaporation source is placed at the bottom and the top of the interval, respectively, and the second: the evaporation source is in the order of money formed into the layer of conductive material: 18 1342027 The stretching direction of the carbon nanotube film μ α α α The haiku sighs, and each evaporation source is heated by a heating device; the nano-xia duct film is placed in the middle of the upper drop brigade, shop day, k, and I source, and is separated by a distance, The carbon nanotube film is disposed opposite to the upper and lower evaporation sources; and sequentially heats the evaporation source to (4) melt and evaporate or rise (four) into a conductive material vapor. The conductive material vapor encounters the cold carbon nanotube film, and then is in the nanometer. The upper and lower surfaces of the carbon tube film are agglomerated to form a layer of a conductive material. The method of manufacturing the strand according to claim 4, wherein the forming of the at least one layer of the conductive material comprises the step of forming a conductive layer on the outer surface of the carbon nanotube film. The method for manufacturing a strand according to claim 5, wherein the conductive layer is made of gold, silver, copper or an alloy thereof. 7. The method of manufacturing the strand according to claim 5, wherein the conductive layer has a thickness of 1 to 2 nanometers. 8. The method of manufacturing the strand according to claim 5, wherein: before the step of forming the conductive layer, further comprising the steps of: forming a layer of a wetting layer on the surface of the carbon nanotube film; Forming a layer transition layer on an outer surface of the wetting layer, the conductive layer being formed on an outer surface of the wetting layer. 9. The method of manufacturing a strand according to claim 5, wherein the step of forming the conductive layer further comprises forming an oxidation resistant layer on an outer surface of the conductive layer. 10. The method of manufacturing the strand according to claim 5, wherein after the forming at least one layer of a conductive material on the surface of the nanotube film 1342027, the nano carbon may be further included. The step of forming a reinforcing layer on the outer surface of the tube film. The method for manufacturing a stranded wire according to claim 10, wherein the step of forming the reinforcing layer specifically comprises the step of passing a carbon nanotube formed with at least one layer of a conductive material through a a device containing a polymer solution for infiltrating a polymer solution into a carbon nanotube film, the polymer solution passing through an intermolecular force _ on the outer surface of the M1 layer conductive material layer; and solidifying the polymer to form - Strengthen 12. If you apply for a patent scope! The method for manufacturing a stranded wire according to the item, wherein, the step of converting the carbon nanotube film to form a stranded wire: the step of: stretching the film to the end of the carbon nanotube film: stretching a method for manufacturing a twisted wire according to the second cross section of the motor, wherein the twisting of the carbon nanotube film n - middle and lower steps provides a tail Click on the carbon core of the rice: enclose the shaft, the spinning (four) tail * U money spinning.. /, not stone swearing; 4 film gentleman • 丨, κ ν 士 from the spinning axis Rotate the way to twist the aponeurosis and make the line. The water-free rabbit mandarin film is formed into a twist. 4. The method of claim 12, wherein the twisting naphthalene; carbon term; the description of the cross-section of the carbon nanotube film is oriented in the direction of the second film. The process includes steps along the nanometer. ', 疋 way to reverse the carbon nanotube film 20
TW97108087A 2008-03-07 2008-03-07 Method for making twisted yarn TWI342027B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97108087A TWI342027B (en) 2008-03-07 2008-03-07 Method for making twisted yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97108087A TWI342027B (en) 2008-03-07 2008-03-07 Method for making twisted yarn

Publications (2)

Publication Number Publication Date
TW200939249A TW200939249A (en) 2009-09-16
TWI342027B true TWI342027B (en) 2011-05-11

Family

ID=44867650

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97108087A TWI342027B (en) 2008-03-07 2008-03-07 Method for making twisted yarn

Country Status (1)

Country Link
TW (1) TWI342027B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097065B (en) * 2014-04-23 2018-03-02 北京富纳特创新科技有限公司 CNT compound wire
CN105094390B (en) 2014-04-23 2018-07-13 北京富纳特创新科技有限公司 conductive grid and touch panel
CN105092890B (en) 2014-04-23 2018-05-22 北京富纳特创新科技有限公司 Hot-wire anemometer
CN105101498B (en) 2014-04-23 2018-05-22 北京富纳特创新科技有限公司 Defrosting glass, defrosting lamp and application the defrosting glass, defrost lamp automobile
CN105081490B (en) 2014-04-23 2017-09-12 北京富纳特创新科技有限公司 Line cutting electrode silk and wire-electrode cutting device
CN105091966B (en) 2014-04-23 2018-07-13 北京富纳特创新科技有限公司 Thermal mass flow meter
CN105097748B (en) 2014-04-23 2018-07-13 北京富纳特创新科技有限公司 Bonding line and semiconductor package part

Also Published As

Publication number Publication date
TW200939249A (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP4589440B2 (en) Linear carbon nanotube structure
JP4504453B2 (en) Method for producing linear carbon nanotube structure
JP4589438B2 (en) Carbon nanotube composite
JP4589439B2 (en) Method for producing carbon nanotube composite
CN105244071B (en) cable
JP5243478B2 (en) Nanomaterial thin film
US9840773B2 (en) Method for making nanowire structure
TWI342027B (en) Method for making twisted yarn
TWI380949B (en) Carbon nanotube yarn strucutre
JP5091278B2 (en) Method for producing carbon nanotube linear structure
US8247036B2 (en) Method for making coaxial cable
JP5175313B2 (en) Carbon nanotube-nanoparticle composite material and method for producing the same
JP5180266B2 (en) Method for producing carbon nanotube linear structure
TWI345792B (en) Cable
TW201016598A (en) Carbon nanotube composite material and method for making the same
KR101276898B1 (en) Carbon nanotube composite material and methods for making the same
TWI342266B (en) Carbon nanotube composite film
TW201109275A (en) Mehtod for manufacturing carbon nanotube linear structure
TWI421365B (en) Method for making carbon nanotube composite film
TWI345794B (en) Method for making cable