TWI342266B - Carbon nanotube composite film - Google Patents

Carbon nanotube composite film Download PDF

Info

Publication number
TWI342266B
TWI342266B TW97108084A TW97108084A TWI342266B TW I342266 B TWI342266 B TW I342266B TW 97108084 A TW97108084 A TW 97108084A TW 97108084 A TW97108084 A TW 97108084A TW I342266 B TWI342266 B TW I342266B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
composite film
layer
nanotube composite
film according
Prior art date
Application number
TW97108084A
Other languages
Chinese (zh)
Other versions
TW200938373A (en
Inventor
Kai Liu
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97108084A priority Critical patent/TWI342266B/en
Publication of TW200938373A publication Critical patent/TW200938373A/en
Application granted granted Critical
Publication of TWI342266B publication Critical patent/TWI342266B/en

Links

Description

1342266 九、發明說明: 【發明所屬之技術領域】1342266 IX. Description of the invention: [Technical field to which the invention belongs]

本發明涉及一種複合薄臈,尤其涉及一 合薄膜。 種奈米碳管複 【先前技術】 自九十年代初以來,以奈米碳管爲代表 :獨特的結構和性質引起了人們極大的關注。近=以 # =奈米碳管及奈米材料研究的不斷深人,其廣闊的應用 月,】豕不斷顯現出來。如,由於奈米碳管所具有的獨特 磁學、光學、力學、化學等性能,大量有關其於場發射電 子源、傳感器、新型光學材料、軟鐵磁材料等領域的應用 研究不斷被報道。 一 特別地,奈米碳管與其他材料如金屬、半導體或者聚 &物等的複合可以實現材料的優勢互補或加强。奈米碳管 具有較大的長徑比和中空的結構,具有優異的力學性能Y 事可作爲一種超級纖維,對複合材料起到增强作用。此外, 奈米碳管具有優異的導熱性能,利用奈米碳管的導熱性能 使該複合材料具有良好的熱傳導性。然而,奈米碳管除了 .具有優異的導熱性能外,其也具有良好的導電性能,故奈 米碳管與其他材料如金屬、半導體或者聚合物等所形成的 複合材料也具有優異的導電性能。 奈米碳管複合材料的製備方法通常有原位聚合法、溶 液共混法和熔體共混法。奈米碳管複合薄膜係奈米碳管複 合材料實際應用的一種重要形式。奈米碳管複合薄膜一般 1342266 通過絲網印刷法、旋轉甩塗法、含碳材料熱解法或者液相 化學沈積法來形成。所形成的奈米碳管複合薄膜具有緻密 性好和均勻分散性好的優點。 然而’先前的奈米碳管複合薄膜的製備方法較爲複 雜’且’奈米碳管係沿各個方向隨機分布於奈米碳管複合 薄膜中。這樣奈米碳管於奈米碳管複合薄膜中分散不均 勻’致使得到的奈米碳管複合薄膜機械强度和韌性較差, 容易破裂,影響了奈米碳管複合薄膜的熱學性能和電學性 能。通過對奈米碳管進行化學改性後製備的奈米碳管複合 薄膜(請參見 Surface Resistivity and Rheological BehaviorsThe present invention relates to a composite sheet, and more particularly to a composite film. Nano carbon nanotubes [Previous technology] Since the early 1990s, it has been represented by carbon nanotubes: the unique structure and properties have attracted great attention. Near = the constant deepening of the research of # = nano carbon tube and nano materials, its vast application month, 豕 豕 constantly emerged. For example, due to the unique magnetic, optical, mechanical, and chemical properties of carbon nanotubes, a large number of applications for field emission electron sources, sensors, new optical materials, and soft ferromagnetic materials have been reported. In particular, the combination of carbon nanotubes with other materials such as metals, semiconductors or poly-amps can complement or enhance the advantages of the materials. The carbon nanotubes have a large aspect ratio and a hollow structure, and have excellent mechanical properties. Y can be used as a super fiber to enhance the composite material. In addition, the carbon nanotubes have excellent thermal conductivity, and the thermal conductivity of the carbon nanotubes makes the composite have good thermal conductivity. However, in addition to its excellent thermal conductivity, the carbon nanotubes also have good electrical conductivity, so the composites formed by the carbon nanotubes and other materials such as metals, semiconductors or polymers also have excellent electrical conductivity. . The preparation method of the carbon nanotube composite material generally includes an in-situ polymerization method, a solution blending method, and a melt blending method. The carbon nanotube composite film is an important form of practical application of the carbon nanotube composite material. The carbon nanotube composite film is generally formed by screen printing, spin coating, carbonaceous material pyrolysis or liquid phase chemical deposition. The formed carbon nanotube composite film has the advantages of good compactness and uniform dispersion. However, the preparation method of the prior carbon nanotube composite film is more complicated and the 'nano carbon nanotubes are randomly distributed in the carbon nanotube composite film along various directions. Thus, the carbon nanotubes are unevenly dispersed in the carbon nanotube composite film, so that the obtained carbon nanotube composite film has poor mechanical strength and toughness, and is easily broken, which affects the thermal and electrical properties of the carbon nanotube composite film. A carbon nanotube composite film prepared by chemically modifying a carbon nanotube (see Surface Resistivity and Rheological Behaviors)

of Carboxylated Multiwall Carbon Nanotube-Filled PETOf Carboxylated Multiwall Carbon Nanotube-Filled PET

Composite Film,Dae Ho Shin,Journal of Applied p〇iymerComposite Film, Dae Ho Shin, Journal of Applied p〇iymer

Science,V 99n3,P900-904(2006)),雖然電學性能有所提 尚,然由於要於加熱的條件下進行,從而限制了與奈米碳 管複合的材料的類型。 有鑒於此,提供 種余木碳管複合薄膜及其製備^ 法’使所得到的奈米碳管複合薄膜具有良好的導電性能、 良好的機械强度和韌性,且該製備方法簡單、易於規 生産實為必要。 ' 【發明内容】Science, V 99n3, P900-904 (2006)), although the electrical properties are improved, the type of material compounded with the carbon nanotubes is limited due to the heating conditions. In view of the above, the invention provides a wooden carbon tube composite film and a preparation method thereof, so that the obtained carbon nanotube composite film has good electrical conductivity, good mechanical strength and toughness, and the preparation method is simple and easy to produce. It is really necessary. 'Content of the invention】

-種奈純管複合薄膜’包括導f材料和多個 管,其中,該奈米碳管平行於奈米碳管複合 該導電材料包覆於奈米碳管表面。 J 與先前技術比較,本技財案奈㈣管複匈膜具肩 1342266 以下優點:其一 ’奈米碳管複合薄膜中包含多個通過凡德 瓦爾力首尾相連且擇優取向排列的奈米碳管,從而使奈米 . 碳管複合薄膜具有更好的機械强度及韌性《其二,奈米碳 管複合薄膜中每根奈米碳管表面均形成有金屬導電層,比 •先前技術中的無序的奈米碳管複合薄膜具有更好的導電 性。 【實施方式】 以下將結合附圖詳細說明本技術方案實施例奈米碳管 複合薄膜的結構及其製備方法。 請參見圖1,本技術方案實施例提供一種奈米碳管複 合薄膜1 00 ’該奈米碳管複合薄膜1 〇〇由奈米碳管1 1 1和 導電材料(圖未示)構成。該奈米碳管複合薄膜100包括 多個奈米碳管11丨,並且,每個奈米碳管丨i丨表面均包覆 至少一層導電材料。於該奈米碳管複合薄膜1〇〇中,奈米 石反管111沿同一個方向擇優取向排列,且通過凡德瓦爾力 •首尾相連。具體地,於該奈米碳管複合薄臈1 中,每個 奈米碳管111具有大致相等的長度,延同一方向擇優取向 排列,形成具有一定寬度的奈米碳管束片段,多個奈米碳 .管束片段通過凡德瓦爾力首尾相連,從而形成一奈米碳管 複合薄膜100。 凊參見圖2,該奈米碳管複合薄膜丨〇〇中每一根奈米 碳管111表面均包覆至少一導電材料層。具體地該導電 材料層包括與奈米碳管ln表面直接結合的潤濕層ιΐ2、 设置於潤濕層外的過渡層113、設置於過渡層113外的導 1342266 電層114及設置於導電層114外的抗氧化層ιΐ5。 由於奈米碳管m與大多數金屬之間的潤濕性不好, .上述潤濕層"2的作用爲使導電層114與奈米碳管⑴ 結合。形成該潤濕層112的材料可以爲錄、把或欽 =不米碳管⑴潤濕性好的金屬或它們的合金該❹ 二::的厚度爲1〜10奈米。本實施例中,該潤濕層⑴ 鎳’厚度約爲2奈米。可以理解,該 _選擇結構。 上述過渡層U3的作用爲使潤濕層112盥導電層114 形成該過渡廣113的材料可以爲與潤濕“2 導電層114材料均能較好結合的材料,該過渡層⑴ 2度爲1〜1G奈来。本實施例中,該過渡層113的材料 任错’厚度爲2奈米。可以理解’該過渡層ιΐ3爲可選擇 、結構。 上述導電層114的作用爲使奈米碳管複合薄膜⑽且 ^好的導電性能。形成該導電層m的材料可以4翻Γ =金#導電性好的金屬或它們的合金,該導電層114的 U〜2G奈米。本實施例中,該導㈣ιΐ4的 .銀’厚度約爲5奈米。 上述抗氧化層115的作用爲防止於奈米碳 Γ的製造過程中導電们14於线中被氧化,從而使:j 复合薄㈣0的導電性能下降。形成該抗氧化層⑴ ㈣^可以爲金或始等於空氣中不易氧化的穩定金屬或它 們的口金’該抗氧化層115的厚度爲卜1〇奈米。本實施 1342266 例中,該抗氧化層115的材料爲銘,厚度爲2奈米。可以 理解,該抗氧化層115爲可選擇結構。 . 進一步地,爲提高奈米碳管複合薄膜100的强度,可 ,於該抗氧化層115外進一步設置一强化層116。形成該强 化層116的材料可以爲聚乙烯醇(PVA)、聚苯撑苯並二噁 唑(PBO)、聚乙烯(PE)或聚氣乙烯(pvc)等强度較高 的聚合物,該强化層116的厚度爲ojq微米。本實施例 籲中’該强化層116的材料爲聚乙稀醇(pVA ),厚度爲〇 5 微米。可以理解,該强化層116爲可選擇結構。 請參閱圖3及圖4,本技術方案實施例中奈米碳管複 合薄膜222的製備方法主要包括以下步驟: 步驟一:提供一奈米碳管陣列216,優選地,該陣列 爲超順排奈米碳管陣列。 本技術方案實施例提供的奈米碳管陣列216爲單壁奈 米碳管陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中= ❿一種或多種。本實施例中,該超順排奈米碳管陣列的製僙 方法採用化學氣相沈積法,其具體步驟包 平整基底,該基底可選用P型或N型石夕基底,(或=成 .有乳化層的矽基底,本實施例優選爲採用4英寸的矽基 底’(b )於基底表面均勻形成一催化劑層該催化劑層材 料可選用鐵(Fe)、始(CG)、錄(Ni)或其任意組合的合 金之,(c)將上述形成有催化劑層的基底於7〇〇〜9〇〇。〇 的空氣中退火約3G分鐘〜9G分鐘;(d)將處理過的基底置 於反應爐中,於保護氣體環境下加熱到〜,秋 1342266 通入碳源氣體反應約5〜30分鐘,生長得到超順排奈米碳 官陣列,其尚度爲200〜400微米。該超順排奈米碳管陣列 .爲多個彼此平行且垂直於基底生長的奈米碳管形成的純奈 '米碳管陣列。通過上述控制生長條件,該超順排奈米碳管 陣列中基本不含有雜質,如無定型碳或殘留的催化劑金屬 顆粒等。該超順排奈米碳管陣列中的奈米碳管彼此通過凡 德瓦爾力緊密接觸形成陣列。該超順排奈米碳管陣列與上 $述基底面積基本相同。 本實把例中碳源氣可選用乙炔、乙稀、曱院等化學性 質較活潑的碳氫化合物,本實施例優選的碳源氣爲乙炔; 保護氣體爲氮氣或惰性氣體,本實施例優選的保護氣體爲 氬氣。 ’ 步驟二:採用一拉伸工具從所述奈米碳管陣列216中 拉取獲得一奈米碳管薄膜214。 所述奈米碳管薄膜214的製備方法包括以下步驟:(a) ❹從上述奈米碳管陣列216中選定一定寬度的多個奈米碳管 束片段,本實施例優選爲採用具有一定寬度的膠帶接觸奈 米碳官陣列216以選定一定寬度的多個奈米碳管束片段; (b )以一定速度沿基本垂直於奈米碳管陣列2丨6生長方向 拉伸該多個奈米碳管束片段,以形成一連續的奈米碳管薄 膜 214。 於上述拉伸過程中,該多個奈米碳管束片段於拉力作 用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 用,該選定的多個奈米碳管束片段分別與其它奈米碳管束 1342266 •片段首尾相連地連續地被拉出,從而形成一奈米碳管薄膜 214。該奈米碳管薄膜214包括多個首尾相連且定向排列的 -奈米碳管束。該奈米碳管薄膜214中奈米碳管的排列方向 •基本平行於奈米碳管薄膜214的拉伸方向。該奈米碳管薄 膜214的微觀結構請參閱圖5。 ' 該直接拉伸獲得的擇優取向排列的奈米碳管薄膜214 比無序的奈来*厌管》專膜214具有更好的均勻性。同時兮直 籲接拉伸獲得奈米碳管薄膜214的方法簡單快速,適宜=行 工業化應用。 步驟三:形成至少一層導電材料層於所述奈米碳管薄 膜214表面,從而形成一奈米碳管複合薄臈222 ^ 本實施例採用物理氣相沈積法(PVD )如真空蒸鍵或 離子濺射等沈積導電材料層。優選地,本實施例採用真空 蒸鍍法沈積至少一層導電材料層。 所述採用真空蒸鍍法形成至少一層導電材料層的方法 •包括以下步驟:首先,提供一真空容器210,該真空容器 210具有一沈積區間,該沈積區間底部和頂部分別放置至 少一個蒸發源212 ’該至少一個蒸發源212按形成至少一 .層導電材料層的先後順序依次沿奈米碳管薄膜214的拉伸 方向設置’且每個蒸發源212均可通過一個加熱裝置(圖 未示)加熱。上述奈米碳管薄膜214設置於上下蒸發源212 中間並間隔一定距離,其中奈米碳管薄臈2丨4正對上下蒸 發源212設置。該真空容器2丨〇可通過外接一真空栗(圖 未不)抽氣達到預定的真空度。所述蒸發源212材料爲待The naphtha tube composite film 'includes a f-material and a plurality of tubes, wherein the carbon nanotubes are coated in parallel with the carbon nanotubes to coat the surface of the carbon nanotubes. J Compared with the prior art, this technology is based on the advantages of the following: (4) The tube has a shoulder 1342266. The following advantages: The 'nanocarbon tube composite film contains a plurality of nanocarbons connected by van der Waals force and arranged in a preferred orientation. Tube, so that the carbon nanotube composite film has better mechanical strength and toughness. Second, the surface of each carbon nanotube in the carbon nanotube composite film is formed with a metal conductive layer, compared to the prior art. The disordered carbon nanotube composite film has better conductivity. [Embodiment] Hereinafter, a structure of a carbon nanotube composite film of the embodiment of the present technical solution and a preparation method thereof will be described in detail with reference to the accompanying drawings. Referring to Fig. 1, an embodiment of the present invention provides a carbon nanotube composite film 100'. The carbon nanotube composite film 1 is composed of a carbon nanotube 11 and a conductive material (not shown). The carbon nanotube composite film 100 includes a plurality of carbon nanotubes 11 , and each of the carbon nanotubes is coated with at least one layer of a conductive material. In the carbon nanotube composite film 1 奈, the nano stone back tube 111 is arranged in a preferred orientation in the same direction, and is connected end to end by Van der Waals force. Specifically, in the carbon nanotube composite thin crucible 1, each of the carbon nanotubes 111 has substantially the same length and is arranged in a preferred orientation in the same direction to form a carbon nanotube bundle segment having a certain width, and a plurality of nanometers. The carbon tube bundle segments are connected end to end by van der Waals force to form a carbon nanotube composite film 100. Referring to Fig. 2, the surface of each of the carbon nanotubes 111 in the carbon nanotube composite film is coated with at least one layer of a conductive material. Specifically, the conductive material layer comprises a wetting layer ι2 directly bonded to the surface of the carbon nanotube ln, a transition layer 113 disposed outside the wetting layer, a conductive layer 1342 disposed outside the transition layer 113, and a conductive layer disposed on the conductive layer. Antioxidant layer ιΐ5 outside 114. Since the wettability between the carbon nanotubes m and most of the metals is not good, the above-mentioned wetting layer "2 functions to bond the conductive layer 114 to the carbon nanotubes (1). The material forming the wetting layer 112 may be a metal having a good wettability of the carbon nanotubes (1) or an alloy thereof. The thickness of the bismuth:: is 1 to 10 nm. In this embodiment, the wetting layer (1) has a thickness of about 2 nm. It can be understood that the _ selection structure. The material of the transition layer U3 is such that the material of the wetting layer 112 and the conductive layer 114 to form the transition 113 can be a material which can be better combined with the material of the wetting "2 conductive layer 114. The transition layer (1) is 2 degrees. In the present embodiment, the material of the transition layer 113 has a thickness of 2 nm. It can be understood that the transition layer ι 3 is optional and structural. The conductive layer 114 functions as a carbon nanotube. The composite film (10) has good electrical conductivity. The material forming the conductive layer m can be turned into a metal having a good conductivity or an alloy thereof, and the conductive layer 114 has a U~2G nanometer. In this embodiment, The thickness of the silver of the (4) ιΐ4 is about 5 nm. The role of the above-mentioned antioxidant layer 115 is to prevent the conductive members 14 from being oxidized in the line during the manufacturing process of the nanocarbon crucible, thereby making: j composite thin (four) 0 conductive The performance of the anti-oxidation layer (1) (4) can be gold or a stable metal which is equal to the non-oxidation in the air or their gold. The thickness of the anti-oxidation layer 115 is 1 〇 nanometer. In the example 1342266, The material of the oxidation resistant layer 115 is inscription and has a thickness of 2 nm. It is understood that the anti-oxidation layer 115 is an optional structure. Further, in order to improve the strength of the carbon nanotube composite film 100, a strengthening layer 116 may be further disposed outside the oxidation resistant layer 115. The strengthening layer 116 is formed. The material may be a higher strength polymer such as polyvinyl alcohol (PVA), polyphenylene benzobisoxazole (PBO), polyethylene (PE) or polyethylene oxide (pvc), and the thickness of the strengthening layer 116 is ojq The present embodiment calls for the material of the reinforcing layer 116 to be polyethylene glycol (pVA) having a thickness of 〇5 μm. It is understood that the reinforcing layer 116 is of an alternative structure. Please refer to FIG. 3 and FIG. The preparation method of the carbon nanotube composite film 222 in the embodiment of the technical solution mainly comprises the following steps: Step 1: providing a carbon nanotube array 216, preferably, the array is a super-sequential carbon nanotube array. The carbon nanotube array 216 provided in the embodiment is one or more of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. In this embodiment, the super-aligned row The method of preparing carbon nanotube arrays using chemical vapor deposition In the integrated method, the specific step of the substrate is to flatten the substrate, and the substrate may be a P-type or N-type stone substrate, or (or = a ruthenium substrate having an emulsion layer, and this embodiment preferably uses a 4-inch germanium substrate) (b) A catalyst layer is uniformly formed on the surface of the substrate. The catalyst layer material may be selected from the group consisting of iron (Fe), SG (C), Ni (N) or any combination thereof, and (c) the substrate on which the catalyst layer is formed is 7 〇. 〇~9〇〇. Annealing in the air for about 3G minutes~9G minutes; (d) placing the treated substrate in a reaction furnace, heating to ~ in the protective gas atmosphere, and introducing the carbon source gas in the autumn 1342266 After 5 to 30 minutes, the super-sequential nanocarbon carbon array is grown to a degree of 200 to 400 microns. The super-sequential carbon nanotube array is a pure naphthene carbon nanotube array formed by a plurality of carbon nanotubes that are parallel to each other and perpendicular to the substrate. The super-sequential carbon nanotube array is substantially free of impurities such as amorphous carbon or residual catalyst metal particles by the above controlled growth conditions. The carbon nanotubes in the super-sequential carbon nanotube array are in close contact with each other to form an array by van der Waals forces. The super-sequential carbon nanotube array has substantially the same area as the upper substrate. In the present example, the carbon source gas may be selected from acetylene, ethylene, broth and other chemically active hydrocarbons. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, which is preferred in this embodiment. The shielding gas is argon. Step 2: A carbon nanotube film 214 is taken from the carbon nanotube array 216 by a stretching tool. The preparation method of the carbon nanotube film 214 includes the following steps: (a) selecting a plurality of carbon nanotube bundle segments of a certain width from the carbon nanotube array 216, and the embodiment preferably adopts a certain width. The tape contacts the nanocarbon array 216 to select a plurality of carbon nanotube bundle segments of a certain width; (b) stretching the plurality of carbon nanotube bundles at a constant speed along a growth direction substantially perpendicular to the carbon nanotube array 2丨6 Fragments are formed to form a continuous carbon nanotube film 214. In the above stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate in the stretching direction under the action of the tensile force, and the selected plurality of carbon nanotube bundle segments are respectively associated with the other naphthalenes due to the van der Waals force. The carbon nanotube bundle 1342266 • The segments are continuously pulled out end to end to form a carbon nanotube film 214. The carbon nanotube film 214 comprises a plurality of end-to-end aligned carbon nanotube bundles. The arrangement direction of the carbon nanotubes in the carbon nanotube film 214 is substantially parallel to the stretching direction of the carbon nanotube film 214. See Figure 5 for the microstructure of the carbon nanotube film 214. The preferentially oriented aligned carbon nanotube film 214 obtained by direct stretching has better uniformity than the disordered Nai tube. At the same time, the method of straightening and stretching to obtain the carbon nanotube film 214 is simple and rapid, and is suitable for industrial application. Step 3: forming at least one layer of a conductive material on the surface of the carbon nanotube film 214 to form a carbon nanotube composite thin layer 222 ^ This embodiment uses physical vapor deposition (PVD) such as vacuum evaporation or ion A layer of a conductive material is deposited by sputtering or the like. Preferably, this embodiment deposits at least one layer of a conductive material by vacuum evaporation. The method for forming at least one layer of conductive material by vacuum evaporation includes the following steps: First, a vacuum vessel 210 is provided, the vacuum vessel 210 having a deposition interval, at least one evaporation source 212 disposed at the bottom and the top of the deposition interval, respectively. 'The at least one evaporation source 212 is sequentially disposed along the stretching direction of the carbon nanotube film 214 in the order of forming at least one layer of the conductive material layer, and each evaporation source 212 can pass through a heating device (not shown) heating. The carbon nanotube film 214 is disposed at a distance between the upper and lower evaporation sources 212, wherein the carbon nanotubes 2臈4 are disposed opposite to the upper and lower evaporation sources 212. The vacuum container 2 can be evacuated to a predetermined degree of vacuum by externally pumping a vacuum pump (not shown). The evaporation source 212 material is to be treated

12 1342266 /尤積的導電材料。其次,通過加熱所述蒸發源2i2,使其 熔融後4發或升華形成導電材料蒸汽,該導電材料蒸汽遇 '到冷的奈米碳管薄膜214後,於奈米碳管薄膜214上下表 .面凝聚’形成導電材料層。由於奈米碳管薄膜214中的奈 米石反官之間存在間隙,並且奈米碳管薄膜214較薄,導電 材,可以滲透進人所述奈米碳管薄膜214之中,從而沈積 於每根奈米碳管表面。沈積導電材料唐後的奈米碳管複合 鲁薄膜222的微觀結構照片請參閱圖6和圖7。 可以理解,通過調節奈米碳管薄膜214和每個蒸發源 212的距離及蒸發源212之間的距離可使每個蒸發源2p 具有一個沈積區。當需要沈積多層導電材料層時,可將多 個蒸發源212同時加熱,使奈米碳管薄膜214連續通過多 個蒸發源的沈積區,從而實現沈積多層導電材料層。 爲提高導電材料蒸汽密度並且防止導電材料被氧化, 真空容器21G内真空度應達到】# (pa)以上。本技術方 β案實施例中,真空容器中的真空度爲4xl〇-4Pa。 可以理解,也可將步驟一中的奈米碳管陣列216直接 放入上述真空谷态21〇中。首先’於真空容器中採用 .一拉伸工具從所述奈米碳管陣列中拉取獲得一定寬度的奈 米峡官薄膜214。然後,加熱上述至少一個蒸發源212,沈 積至少一層導電材料於所述奈米碳管薄膜214表面。以一 定速度不斷地從所述奈米碳管陣列216中拉取奈米碳管薄 膜214,且使所述奈米碳管薄膜214連續地通過上述蒸發 源212的沈積區,進而實現從奈米碳管陣列216中拉取奈12 1342266 / especially conductive material. Next, by heating the evaporation source 2i2, it is melted and then evaporated or sublimated to form a conductive material vapor. The conductive material vapor meets the cold carbon nanotube film 214 and is placed on the carbon nanotube film 214 on the lower surface. The surface condenses 'forming a layer of conductive material. Since there is a gap between the nanosoils in the carbon nanotube film 214, and the carbon nanotube film 214 is thin, the conductive material can penetrate into the carbon nanotube film 214 and deposit on the carbon nanotube film 214. The surface of each carbon nanotube. Refer to Figures 6 and 7 for the photomicrograph of the carbon nanotube composite film 222 after deposition of the conductive material. It will be appreciated that each evaporation source 2p can have a deposition zone by adjusting the distance between the carbon nanotube film 214 and each evaporation source 212 and the distance between the evaporation sources 212. When it is desired to deposit a plurality of layers of the conductive material, the plurality of evaporation sources 212 may be simultaneously heated to continuously pass the carbon nanotube film 214 through the deposition regions of the plurality of evaporation sources, thereby realizing deposition of the plurality of layers of the conductive material. In order to increase the vapor density of the conductive material and prevent the conductive material from being oxidized, the vacuum in the vacuum vessel 21G should be above # (pa). In the embodiment of the present invention, the degree of vacuum in the vacuum vessel is 4xl - 4Pa. It can be understood that the carbon nanotube array 216 in the first step can also be directly placed in the above-mentioned vacuum trough state 21〇. First, a vacuum tool is used. A stretching tool pulls a nanometer gauze film 214 of a certain width from the array of carbon nanotubes. Then, the at least one evaporation source 212 is heated to deposit at least one layer of conductive material on the surface of the carbon nanotube film 214. The carbon nanotube film 214 is continuously drawn from the carbon nanotube array 216 at a constant speed, and the carbon nanotube film 214 is continuously passed through the deposition zone of the evaporation source 212, thereby realizing the nanometer from the nanometer. Pulling carbon nanotube array 216

(S 13 1342266 米碳管薄膜214及奈米碳管複合薄瞑222的連續生産。 本技術方案實施例中,所述採用真空蒸錄法形成至少 '-層導電材料層的步驟具體包括以下步驟:形成一層潤渴 '層於所述奈米碳管薄膜214表面;形成—層過渡層於所述 潤濕層的外表面;形成一層導電層於所述過渡膚的外表 面;形成一層抗氧化層於所述導電層的外表面。其中,上 述形成潤濕層、過渡層及抗氧化層的步驟均爲可選擇的步 鲁驟。具體地,可將上述奈米碳管薄膜214連續地通過上二 各層材料所形成的蒸發源的沈積區。 λ另外,於所述形成至少一個導電材料層於所述奈米碳 管薄膜214的表面之後,可進一步包括於所述導電材料層 外形成强化層的步驟。具體地,可將形成有至少一個導電 材料層的奈米碳管薄臈214通過一裝有聚合物溶液的裝置 2~2〇,使聚合物溶液浸潤整個奈来碳管薄膜214,該聚合物 溶液通過分子間作用力黏附於所述導電材料層外表面,待 •聚合物凝固後形成一强化層。 所制得的奈米碳管複合薄膜222可進一步收集於捲筒 224上。收集方式爲將奈米碳管複合薄膜222纏繞於所述 捲筒260上。 可選擇地’上述奈米碳管薄膜214的形成步驟、至少 一個導電材料層的形成步驟及强化層的形成步驟均可於上 述真空容器中進行,進而實現奈米碳管複合薄膜222的連 續生產。 本技術方案實施例中’未沈積導電材料之前的奈米碳 1342266 官薄膜214的電阻於1600歐姆左右,當沈積導電材料 Ni/Au後形成的奈米碳管複合薄膜222的電阻可降至200 -歐姆左右,可見光透過率爲85%-95°/❶。故所形成的奈米碳 官複合薄膜222具有較低的電阻及較好的可見光透過率, 可用作透明導電膜。 與先前技術相比較,本技術方案實施例提供的奈米碳 管複合薄膜及其製備方法具有以下優點:其一,奈米碳管 鲁複合薄膜中包含多個通過凡德瓦爾力首尾相連且擇優取向 排列的奈米碳管’從而使奈米碳管複合薄膜具有更好的機 械强度及勃性。其二,奈米碳管複合薄膜中每根奈米碳管 表面均形成有導電材料層,比先前技術中的無序的奈米碳 官複合薄膜具有更好的導電性,另外,該奈米碳管複合薄 膜還具有較好的可見光透過率,故可用作透明導電膜。其 三’由於奈米碳管複合薄膜係直接從奈米碳管陣列中拉取 而製造,該方法簡單、成本較低。其四,所述拉伸奈米碳 ® s薄膜及沈積導電材料的步驟均可於一真空容器中進行, 有利於奈米碳管複合薄膜的規模化生産。 綜上所述’本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡習知本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 15 1342266 【圖式簡單說明】 圖1係本技術方案實施例奈米碳管複合薄膜結構系意 圖。 圖2係本技術方案實施例奈米碳管複合薄膜中單槔# 米碳管的結構示意圖。 圖3係本技術方案實施例奈米碳管複合薄膜的製造方 法的流程圖。 圖4係本技術方案實施例奈米碳管複合薄膜的製造裝 置的結構示意圖。 圖5係本技術方案實施例的奈米碳管薄膜掃描電鏡照 片。 圖6係本技術方案實施例奈米碳管複合薄膜的掃描電 鏡照片。 圖7係本技術方案實施例奈米碳管複合薄膜的透射電 鏡照片。 【主要元件符號說明】 奈米碳管複合薄膜 100, 222 奈米碳管 111 潤濕層 112 過渡層 113 導電層 114 抗氧化層 115 强化層 116 1342266 真空容器 210 蒸發源 212 奈米碳管結構 214 奈米碳管陣列 216 裝置 220 捲筒 260(S 13 1342266 The carbon nanotube film 214 and the carbon nanotube composite thin crucible 222 are continuously produced. In the embodiment of the present invention, the step of forming the at least '-layer conductive material layer by the vacuum evaporation method specifically includes the following steps Forming a layer of thirst' layer on the surface of the carbon nanotube film 214; forming a transition layer on the outer surface of the wetting layer; forming a conductive layer on the outer surface of the transition skin; forming an anti-oxidation layer The layer is formed on the outer surface of the conductive layer, wherein the steps of forming the wetting layer, the transition layer and the anti-oxidation layer are all optional steps. Specifically, the carbon nanotube film 214 can be continuously passed through. And a deposition region of the evaporation source formed by the two layers of materials. λ. Further, after the forming the at least one conductive material layer on the surface of the carbon nanotube film 214, further comprising forming a reinforcement outside the conductive material layer. Step of the layer. Specifically, the carbon nanotube thin layer 214 formed with at least one layer of conductive material may be passed through a device 2~2〇 containing a polymer solution to infiltrate the entire carbon nanotube film 2 14. The polymer solution adheres to the outer surface of the conductive material layer by intermolecular force, and forms a strengthening layer after the polymer solidifies. The obtained carbon nanotube composite film 222 can be further collected on the reel 224. The collecting method is to wind the carbon nanotube composite film 222 on the reel 260. Optionally, the step of forming the carbon nanotube film 214, the forming step of the at least one conductive material layer, and the forming of the reinforcing layer The steps can be carried out in the vacuum container to realize the continuous production of the carbon nanotube composite film 222. In the embodiment of the technical solution, the resistance of the nano-carbon 1342266 official film 214 before the deposition of the conductive material is about 1600 ohms. When the conductive material Ni/Au is deposited, the electric resistance of the carbon nanotube composite film 222 can be reduced to about 200 ohms, and the visible light transmittance is 85%-95°/❶. Therefore, the formed nano-carbon composite film 222 is formed. Compared with the prior art, the carbon nanotube composite film provided by the embodiment of the present invention can be used as a transparent conductive film with lower resistance and better visible light transmittance. The preparation method has the following advantages: First, the carbon nanotube composite film contains a plurality of carbon nanotubes that are connected end to end by van der Waals force and arranged in a preferred orientation to make the carbon nanotube composite film have better mechanical properties. The strength and the boring property. Second, the surface of each of the carbon nanotubes in the carbon nanotube composite film is formed with a conductive material layer, which has better conductivity than the disordered nano carbon official composite film in the prior art. In addition, the carbon nanotube composite film also has a good visible light transmittance, so it can be used as a transparent conductive film. The three 'sinus carbon nanotube composite film is directly produced from the carbon nanotube array, The method is simple and low in cost. Fourthly, the steps of stretching the nanocarbon® film and depositing the conductive material can be carried out in a vacuum vessel, which is advantageous for the large-scale production of the carbon nanotube composite film. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. 15 1342266 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is an illustration of a structure of a carbon nanotube composite film according to an embodiment of the present technical solution. 2 is a schematic structural view of a single carbon nanotube in a carbon nanotube composite film according to an embodiment of the present technical solution. Fig. 3 is a flow chart showing a method of manufacturing a carbon nanotube composite film according to an embodiment of the present invention. Fig. 4 is a schematic view showing the structure of a manufacturing apparatus of a carbon nanotube composite film according to an embodiment of the present invention. Fig. 5 is a scanning electron micrograph of a carbon nanotube film of an embodiment of the present technical solution. Fig. 6 is a scanning electron micrograph of a carbon nanotube composite film of the embodiment of the present invention. Fig. 7 is a transmission electron micrograph of a carbon nanotube composite film of the embodiment of the present invention. [Main component symbol description] Carbon nanotube composite film 100, 222 carbon nanotube 111 Wetting layer 112 Transition layer 113 Conductive layer 114 Anti-oxidation layer 115 Strengthening layer 116 1342266 Vacuum vessel 210 Evaporation source 212 Carbon nanotube structure 214 Carbon nanotube array 216 device 220 reel 260

Claims (1)

1342266 十、申請專利範圍 1. :種奈米碳管複合薄臈’包括導電材料和多個奈米碳 :,其改良在於,該奈米碳管平行於奈米碳管複合薄膜 面排列,該導電材料包覆於奈米碳管表面。 2. 如申請專利範圍第丨項所述的奈来碳管複合薄膜,其 中,所述每一奈米碳管表面設置有一導電層。 3·如申請專利範圍帛1項所述的奈米碳管複合薄膜,其 中,所述奈米碳管沿同一方向擇優取向排列。 4’如申請專利㈣第1項所述的奈米碳管複合薄膜,其 中所述不米石反官具有相等的長度並通過凡 呈i日揸。 5. 如申明專利圍第i項所述的奈米碳管複合薄膜,其 :’所述奈,碳官包括單壁奈米碳管雙壁奈米碳管或 多壁奈来碳管。 6. 如申請專,圍第5項所述的奈米碳管複合薄膜,其 中,所述單壁奈米碳管的直徑爲q 5奈米,奈米,雙 Φ壁奈米碳管的直徑爲1奈求,奈米,多壁奈求碳管的 直徑爲1.5奈米〜5〇奈米。 7. 如申明專利$&圍第2項所述的奈米碳管複合薄膜,其 中所述導電層的材料爲銅、銀、金或其合金。 8. 如申β專利㈣第7項所述的奈米碳管複合薄膜,其 中,所述導電層的厚度爲1〜20奈米。 9. 如U利㈣第2項所述的奈米碳管複合薄膜,其 中該不米石反官複合薄膜進一步包括一潤濕層設置於所 述導電層與奈米碳管表面之間。 厶厶 10, 如申睛專利範圍第9 中,所述潤濕層的材料^述的奈米碳管複合薄膜,其 濕層的厚度爲W0奈米鎳、&、鈦或其合金’所述潤 11. 如申凊專利範圍第9箱 中,該奈米碳管複合薄Hr米碳管複合薄Γ其 述導電層與潤濕層之間進—步包括-過渡層設置於所 =申=利範圍s U項所述的奈米碳管複合薄膜,其 過渡層的材料爲鋼、銀或其合金,所述過渡層 的厚度爲1〜10奈米。 13=申請專利範圍第2項所述的奈米碳管複合薄旗,其 中’該奈米碳管複合相進—步包括—絲化層設置於 所述導電層外表面。 14. 如申請專利範圍第13項所述的奈米碳管複合薄膜,其 +,所述抗氧化層的材料爲金、麵或其合金,所述抗氧 化層的厚度爲1〜10奈米。 15. 如申請專利範圍第2項所述的奈米碳管複合薄膜,其 •中;該奈米碳管複合薄獏進—步包括一强化層設置於所 述導電層外表面。 16.如申請專利範圍第I 5項所述的奈米碳管複合薄膜,其 中’所述强化層的材料爲聚乙烯醇、聚苯標苯並二喔 唑、聚乙烯或聚氣乙烯,所述强化層的厚度爲〇1〜】微 米。1342266 X. Patent application scope 1. The composite carbon nanotube composite thin crucible includes a conductive material and a plurality of nanocarbons: the improvement is that the carbon nanotubes are arranged parallel to the surface of the carbon nanotube composite film, The conductive material is coated on the surface of the carbon nanotube. 2. The carbon nanotube composite film according to claim 2, wherein a surface of each of the carbon nanotubes is provided with a conductive layer. 3. The carbon nanotube composite film according to claim 1, wherein the carbon nanotubes are arranged in a preferred orientation in the same direction. 4' The carbon nanotube composite film according to item 1 of claim 4, wherein the non-meter stone squash has an equal length and passes through the sun. 5. The carbon nanotube composite film according to claim i, wherein: the carbonaceous material comprises a single-walled carbon nanotube double-walled carbon nanotube or a multi-walled carbon nanotube. 6. The application of the special carbon nanotube composite film according to item 5, wherein the diameter of the single-walled carbon nanotube is q 5 nm, the diameter of the nanometer, double Φ wall carbon nanotube For 1 Nai, nano, multi-walled carbon tube diameter of 1.5 nm ~ 5 〇 nanometer. 7. The carbon nanotube composite film according to claim 2, wherein the conductive layer is made of copper, silver, gold or an alloy thereof. 8. The carbon nanotube composite film according to Item 7, wherein the conductive layer has a thickness of from 1 to 20 nm. 9. The carbon nanotube composite film according to Item 2, wherein the non-stone composite film further comprises a wetting layer disposed between the conductive layer and the surface of the carbon nanotube.厶厶10, in the ninth aspect of the patent scope, the material of the wetting layer is a carbon nanotube composite film having a wet layer thickness of W0 nano nickel, & titanium or alloy thereof述润11. In the ninth box of the patent scope of the application, the carbon nanotube composite thin Hr m carbon tube composite thin crucible between the conductive layer and the wetting layer comprises a step-transition layer set in the The carbon nanotube composite film according to the U range, wherein the material of the transition layer is steel, silver or an alloy thereof, and the transition layer has a thickness of 1 to 10 nm. 13 = The carbon nanotube composite thin flag of claim 2, wherein the carbon nanotube composite phase comprises a silking layer disposed on an outer surface of the conductive layer. 14. The carbon nanotube composite film according to claim 13, wherein the material of the oxidation resistant layer is gold, a surface or an alloy thereof, and the thickness of the oxidation resistant layer is 1 to 10 nm. . 15. The carbon nanotube composite film according to claim 2, wherein the carbon nanotube composite thin step comprises a reinforcing layer disposed on an outer surface of the conductive layer. 16. The carbon nanotube composite film according to claim 5, wherein the material of the reinforcing layer is polyvinyl alcohol, polyphenylene benzobisoxazole, polyethylene or polyethylene. The thickness of the reinforcing layer is 〇1 to μm.
TW97108084A 2008-03-07 2008-03-07 Carbon nanotube composite film TWI342266B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97108084A TWI342266B (en) 2008-03-07 2008-03-07 Carbon nanotube composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97108084A TWI342266B (en) 2008-03-07 2008-03-07 Carbon nanotube composite film

Publications (2)

Publication Number Publication Date
TW200938373A TW200938373A (en) 2009-09-16
TWI342266B true TWI342266B (en) 2011-05-21

Family

ID=44867310

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97108084A TWI342266B (en) 2008-03-07 2008-03-07 Carbon nanotube composite film

Country Status (1)

Country Link
TW (1) TWI342266B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI416086B (en) * 2010-01-22 2013-11-21 Hon Hai Prec Ind Co Ltd Strain measurement devic and measurement method
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media

Also Published As

Publication number Publication date
TW200938373A (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP4589438B2 (en) Carbon nanotube composite
JP4589439B2 (en) Method for producing carbon nanotube composite
CN101499328B (en) Stranded wire
CN101499338B (en) Stranded wire production method
CN105244071B (en) cable
US8048256B2 (en) Carbon nanotube film structure and method for fabricating the same
JP5243478B2 (en) Nanomaterial thin film
US9708189B2 (en) Carbon fiber film
US10011488B2 (en) Method for making carbon fiber film
CN101381071A (en) Carbon nanotube compound film and preparation method thereof
TW200938481A (en) Carbon nanotube yarn strucutre
JP2011046604A (en) Method for producing carbon nanotube wire structure
JP2010222244A (en) Carbon nanotube particle composite material and method for producing the same
TWI342027B (en) Method for making twisted yarn
TWI339465B (en) Electromagnetic shielding layer and method for making the same
CN103011124B (en) The preparation method of carbon nano-tube compound film
TWI411574B (en) Carbon nanotube composite material and method for making the same
TWI342266B (en) Carbon nanotube composite film
KR101276898B1 (en) Carbon nanotube composite material and methods for making the same
TWI421365B (en) Method for making carbon nanotube composite film
TW201039682A (en) Three-dimensional heat source
TW201043909A (en) Thermal interface material and method for manufacturing the same