TW200938373A - Carbon nanotube composite film - Google Patents

Carbon nanotube composite film Download PDF

Info

Publication number
TW200938373A
TW200938373A TW97108084A TW97108084A TW200938373A TW 200938373 A TW200938373 A TW 200938373A TW 97108084 A TW97108084 A TW 97108084A TW 97108084 A TW97108084 A TW 97108084A TW 200938373 A TW200938373 A TW 200938373A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
composite film
nanotube composite
layer
carbon
Prior art date
Application number
TW97108084A
Other languages
Chinese (zh)
Other versions
TWI342266B (en
Inventor
Kai Liu
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97108084A priority Critical patent/TWI342266B/en
Publication of TW200938373A publication Critical patent/TW200938373A/en
Application granted granted Critical
Publication of TWI342266B publication Critical patent/TWI342266B/en

Links

Abstract

The present invention relates to a carbon nanotube composite film. The carbon nanotube composite film includes conductive material and a plurality of carbon nanotubes. The carbon nanotubes are parallel to a surface of the carbon nanotube composite film. The conductive material is coated on a surface of the carbon nanotubes.

Description

200938373 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種複合薄膜,尤其涉及一種奈米碳管複 * 合薄膜。 【先前技術】 自九十年代初以來’以奈米石炭管爲代表的奈米材料以 其獨特的結構和性質引起了人們極大的關注。近幾年來, ❹隨著奈米碳管及奈米材料研究的不斷深入,其廣闊的應用 前景不斷顯現出來。如,由於奈米碳管所具有的獨特的電 磁學、光學、力學、化學等性能’大量有關其於場發射電 子源、傳感器、新型光學材料、軟鐵磁材料等領域的應用 研究不斷被報道。 … 特別地,奈米碳管與其他材料如金屬、半導體或者聚 合物等的複合可以實現材料的優勢互補或加强。奈米碳管 具有較大的長徑比和中空的結構,具有優異的力學性能, :作^二種超級纖維,對複合材料起到增强作用。此外, 奈米碳管具有優異的導熱性能’利用奈米碳管的導埶性能 使該複合材料具有良好的熱傳導性。然而,奈米碳管除了 憂、的^熱性能外’其也具有良好的導電性能,故奈 ίίΙ與其他材料如金屬、半導體或者聚合物等所形成的 複σ材料也具有優異的導電性能。 =米碳管複合材料的製備方法通常有原位聚合法、溶 二:==混二奈米碳管複合薄膜係奈米碳管複 貫際應用的-種重要形式。奈米碳管複合薄臈一般 200938373 ' 通過絲網印刷法、旋轉甩塗法、含碳材料熱解法或者液相 化學沈積法來形成。所形成的奈米碳管複合薄膜具有緻密 性好和均勻分散性好的優點。 • 然而,先前的奈米碳管複合薄膜的製備方法較爲複 雜,且,奈米碳管係沿各個方向隨機分布於奈米碳管複合 薄膜中。這樣奈米碳管於奈米碳管複合薄膜中分散不均 勻,致使得到的奈米碳管複合薄膜機械强度和韌性較差, $容易破裂,影響了奈米碳管複合薄膜的熱學性能和電學性 能。通過對奈米碳管進行化學改性後製備的奈米碳管複合 薄膜(請參見 Surface Resistivity and Rheological Behaviors of Carboxylated Multiwall Carbon Nanotube-Filled PET Composite Film,Dae Ho Shin,Journal of Applied Polymer Science,V 99n3,p900-904(2006)),雖然電學性能有所提 高,然由於要於加熱的條件下進行,從而限制了與奈米碳 管複合的材料的類型。 ❹ 有鑒於此,提供一種奈米碳管複合薄膜及其製備方 法,使所得到的奈米碳管複合薄膜具有良好的導電性能、 良好的機械强度和韌性,且該製備方法簡單、易於規模化 生産實為必要。 【發明内容】 一種奈米碳管複合薄膜,包括導電材料和多個奈米碳 管,其中,該奈米碳管平行於奈米碳管複合薄膜表面排列, 該導電材料包覆於奈米碳管表面。 與先前技術比較,本技術方案奈米碳管複合薄膜具有 7 200938373 以下優點:其一,奈米碳管複合薄膜中包含多個通過凡德 瓦爾力首尾相連且擇優取向排列的奈米碳管,從而使奈米 -碳管複合薄膜具有更好的機械强度及韌性。其二,奈米碳 *官複合薄膜中每根奈米碳管表面均形成有金屬導電層,比 先刚技術中的無序的奈米碳管複合薄膜具有更好的導電 性。 【實施方式】 ❹ 以下將結合附圖詳細說明本技術方案實施例奈米碳管 複合薄膜的結構及其製備方法。 明參見圖1,本技,方案實施例提供一種奈米破管複 合薄膜100 ’該奈米碳管複合薄膜10〇由奈米碳管lu和 導電材料(圖未示)構成。該奈米碳管複合薄膜100包括 多個奈米碳管m,並且,每個奈米碳管lu表面均包覆 至少一層導電材料。於該奈米碳管複合薄膜1〇〇中,奈米 碳管111沿同一個方向擇優取向排列,且通過凡德瓦爾力 ©首尾相連。具體地,於該奈米碳管複合薄膜100中,每個 奈米*反管111具有大致相等的長度’延同一方向擇優取向 排列,形成具有一定寬度的奈米碳管束片段,多個奈米碳 官束片段通過凡德瓦爾力首尾相連’從而形成一奈米碳管 複合薄膜100。 請參見圖2,該奈米碳管複合薄膜100中每一根奈米 碳管111表面均包覆至少一導電材料層。具體地,該導電 材料層包括與奈米碳管111表面直接結合的潤濕層112、 設置於潤濕層外的過渡層113、設置於過渡層113外的導 8 200938373 .電層及設置於導電層114外的抗氧化層115。 由於奈米碳管111與大多數金屬之間的潤濕性不好, ,故,上述潤濕層112的作用爲使導電層114與奈米碳管^ •更好的結合。形成該潤濕層112的材料可以爲錄、纪或欽 等與奈米碳管111潤濕性好的金屬或它們的合金,該潤谓 層112的厚度爲卜10奈米。本實施例中, ⑴ 的材料爲錄’厚度約爲2奈米。可以理解,該潤渴二;2 ❹選擇結構。 層爲了 更好;^渡層113的作用爲使潤濕層112與導電層114 = 成該過渡層113的材料可以爲與潤濕層U2 材料均能較好結合的材料,該過渡層U3 爲/ί 。本實施例中,該過渡層U3的材料 爲鋼,厚度爲2奈米。可以理鉉^ a 結構。 了 乂理解,該過渡層113爲可選擇 ❹有二==114的作用爲使奈米碳管複合薄膜100具 V㈣好的導電性能。形成該導ι > 銀或金等導電性好的金屬或入^可以爲銅、 厚度爲K20夺f們的合金,該導電層114的 銀’厚度約爲5奈米。 4電層1U的材料爲 上述抗氧化層115的作 100的製造過程中導電声n4 & 於不未石厌^稷合薄膜 氺π — 守电禮114於空氣中被氣化,π品社* =官複合薄請的導電性 被二:而使奈 予度爲1〜10奈米。本實施 200938373 例中,該抗氧化層115的材料爲鉑,厚度爲2奈米。可以 理解’該抗氧化層115爲可選擇結構。 進一步地,爲提高奈米碳管複合薄膜1〇〇的强度,可 .於該抗氧化層115外進一步設置一强化層116。形成該强 化層116的材料可以爲聚乙烯醇(pVA)、聚苯撑苯並二噁 哇(觸)、聚乙烯(PE)或聚氣乙烤(pvc)等强度較^ 的聚合物,該强化層116的厚度爲微米。本實施例 ❹中,該强化層116的材料爲聚乙烯醇(PVA),厚度爲0.5 微米。可以理解,該强化層丨〗6爲可選擇結構。 ★請參_ 3及圖4’本技術方案實施例中奈米碳管複 5薄膜222的製備方法主要包括以下步驟: 一步驟一:提供一奈米碳管陣列216,優選地,該陣列 爲超順排奈米碳管陣列。 本技術方案實施例提供的奈米碳管陣列216爲單壁奈 米碳管陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的 © -種或多種。本實施例中,該超順排奈米碳管陣列的製備 方法採用化學氣相沈積法,其具體步驟包括:(a)提供一 平整基底,該基底可選用P型或N型石夕基底,或選用形成 有氧化層的矽基底,本實施例優選爲採用4英寸的矽基 底;(b)於基底表面均勻形成一催化劑層,該催化劑層材 料可選用鐵(Fe)、始(Cq)、錄㈤)或其任意組合的合 金之,(c )將上述形成有催化劑層的基底於700〜900oC 的空氣中退火約30分鐘〜90分鐘;⑷將處理過的基底置 於反應爐中,於保δ蔓軋體環境下加熱到5〇〇〜74〇。匸,然後 200938373 ,入碳源氣體反應約5〜3G分鐘’生長得到超順排奈米碳 官陣列’其高度冑200〜4〇〇微米。該超順排奈米碳管陣列 .爲多個彼此平行且垂直於基底生長的奈米碳管形成的純夺 ♦米碳管陣列。通過上述控制生長條件,該超順排奈米碳管 陣列中基本不含有雜質,如無定型碳或殘留的催㈣金屬 顆粒等。該超順排奈米碳管陣列中的奈米碳管彼此通過凡 德瓦爾力緊密接觸形成陣列。該超順排奈米碳管陣列與上 ❹述基底面積基本相同。 本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性 質較活潑的碳氫化合物,本實施例優選的碳源氣爲乙块; 保護氣體爲氮氣或惰性氣體,本實施例優選的保護氣體爲 氬氣。 步驟二:採用一拉伸工具從所述奈米碳管陣列216中 拉取獲得一奈米碳管薄膜214。 所述奈米碳官薄膜214的製備方法包括以下步驟:(a) ❿從上述奈米碳管陣列216中選定一定寬度的多個奈米碳管 束片段,本實施例優選爲採用具有一定寬度的膠帶接觸奈 米碳管陣列216以選定一定寬度的多個奈米碳管束片段; (b)以一定速度沿基本垂直於奈米碳管陣列216生長方向 拉伸該多個奈米碳管束片段,以形成一連續的奈米碳管薄 膜 214。 於上述拉伸過程中’該多個奈米碳管束片段於拉力作 用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 用’該選定的多個奈米碳管束片段分別與其它奈米碳管束 11 200938373 片::::連地連續地被拉出,從而形成一奈米碳管薄膜 2M。該不米碳管薄膜214包括多個首尾相連且定向排列的 官束。該奈米碳管薄膜214中奈米碳管的排列方向 土本千订於奈米碳㈣膜214的拉伸方向。該奈米碳管薄 膜214的微觀結構請參閱圖5。 該直接拉伸獲得的擇優取向排列的奈米碳管薄膜214 比無序的奈米碳管薄膜214具有更好的均勾性。同時該直 〇接拉伸獲得奈求碳管薄膜214的方法簡單快速 工業化應用。 、且迺仃 +步驟三:形成至少-層導電材料層於所述奈米碳管薄 膜214表面,從而形成-奈米碳管複合薄膜222。 本實施例採用物理氣相沈積法(PVD)如真空蒸鍍 離子濺射等沈積導雷姑料羼彳真、登 …、又 — 償导電材科層。優選地,本實施例採用真空 条鑛法沈積至少一層導電材料層。 © 斤述ί用真空蒸鍍法形成至少一層導電材料層的方法 2=::二先’提供一真空容器21〇,該真空容器 八 7 ϋ積區間,該沈積區間底部和頂部分別放置至 少一個蒸發源212,該至少一個蒸發源212按形成至少一 層導,材料層的先後順序依次沿奈米碳管薄膜2U的拉伸 方向設置,且每個蒸發源212均可通過-個加献裝 上述奈米碳管薄膜214設置於上下蒸發源a。 中間並間隔一定距離,其中奈米碳管薄膜214正對上下蒗 發源212設置。該真空容器21〇可通過外接一真空圖 未不)抽氣達到預定的真空度。所述蒸發源212材料爲待 12 200938373 沈積的導電材料。其次,通過加熱所述蒸發源2丨2,使其 溶融後蒸發或升華形成導電材料蒸汽,該導電材料蒸汽遇 • 到冷的奈米碳管薄膜214後,於奈米碳管薄膜214上下表 * 面凝聚,形成導電材料層。由於奈米碳管薄膜214中的奈 米碳管之間存在間隙’並且奈米碳管薄膜214較薄,導電 材料可以滲透進入所述奈米碳管薄膜214之中,從而沈積 於每根奈米碳管表面。沈積導電材料層後的奈米碳管複合 ❻薄膜222的微觀結構照片請參閱圖6和圖7。 可以理解,通過調節奈米碳管薄膜214和每個蒸發源 212的距離及蒸發源212之間的距離,可使每個蒸發源212 具有一個沈積區。當需要沈積多層導電材料層時,可將多 個蒸發源212同時加熱,使奈米碳管薄膜214連續通過多 個瘵發源的沈積區,從而實現沈積多層導電材料層。 爲提局導電材料蒸汽密度並且防止導電材料被氧化, 真空容器21〇内真空度應達到1帕(pa)以上。本技術方 ❹案實施例中,真空容器中的真空度爲4xl〇,4Pa。 可以理解,也可將步驟一中的奈米碳管陣列216直接 放入上述真空容器210中。首先,於真空容器2H)令採用 -拉伸工具A所述奈米碳管陣列中拉取獲得—定寬度的夺 米碳管薄膜2141後,加熱上述至少一個蒸發源212,沈 積至少一層導電材料於所述奈米碳管薄膜214表面。以一 定速度不斷地從所述奈米碳管陣列216中拉取奈米碳管薄 膜214 ’且使所述奈米碳管薄膜214連續地通過上述蒸發 源2U的沈積區,進而實現從奈米碳管陣列μ中拉取奈 13 200938373 •米碳管薄膜214及奈米碳管複合薄膜222的連續生産。 本技術方案實施例中’所述採用真空蒸鍛法形成至少 .一層導電材料層的步驟具體包括以下步驟:形成—層㈣ •層於所述奈米碳管薄膜214表面;形成一層過渡層於所述 潤濕層的外表面;形成—層導電層於所述過渡層的外表 面,形成一層抗氧化層於所述導電層的外表面。其中,上 述形成潤濕層、過渡層及抗氧化層的步驟均爲可選擇的步 ❺驟。具體地,可將上述奈米碳管薄膜214連續地通過上述 各層材料所形成的蒸發源的沈積區。 另外,於所述形成至少一個導電材料層於所述奈米碳 s溥膜214的表面之後,可進一步包括於所述導電材料層 外形成强化層的步驟。具體地,可將形成有至少一個導電 材料層的奈米碳管薄膜214通過一裝有聚合物溶液的裝置 220 ’使t合物溶液浸潤整個奈米碳管薄膜214,該聚合物 洛液通過分子間作用力黏附於所述導電材料層外表面,待 〇聚合物凝固後形成一强化層。 所制得的奈米碳管複合薄膜222可進一步收集於捲筒 224上。收集方式爲將奈米碳管複合薄膜222纏繞於所述 捲筒260上。 可選擇地’上述奈米碳管薄膜214的形成步驟、至少 —個導電材料層的形成步驟及强化層的形成步驟均可於上 述真空容器中進行,進而實現奈米碳管複合薄膜222的連 續生産。 本技術方案實施例中,未沈積導電材料之前的奈米碳 14 200938373 •管薄膜214的電阻於1600歐姆左右,當沈積導電材料 Ni/Au後形成的奈米碳管複合薄膜222的電阻可降至2〇〇 *歐姆左右,可見光透過率爲。故所形成的奈米碳 *管複合薄膜222具有較低的電阻及較好的可見光透過率, 可用作透明導電膜。 與先前技術相比較,本技術方案實施例提供的奈米碳 管複合薄膜及其製備方法具有以下優點:其一,奈米碳管 ❹複合薄膜中包含多個通過凡德瓦爾力首尾相連且擇優取向 排列的奈米碳管,從而使奈米碳管複合薄膜具有更好的機 械强度及韌性。其二,奈米碳管複合薄膜中每根奈米碳管 表面均形成有導電材料層,比先前技術中的無序的奈米碳 管複合薄膜具有更好的導電性,另外,該奈米碳管複合薄 膜還具有較好的可見光透過率,故可用作透明導電膜。其 二,由於奈米碳管複合薄膜係直接從奈米碳管陣列中拉取 而製造,該方法簡單、成本較低。其四,所述拉伸奈米碳 〇官薄膜及沈積導電材料的步驟均可於一真空容器中進行, 有利於奈米碳管複合薄膜的規模化生産。 表 T、上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡習知本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 15 200938373 ' 【圖式簡單說明】 圖1係本技術方案實施例奈米碳管複合薄獏結構系意 ^ 圖。 - 圖2係本技術方案實施例奈米碳管複合薄膜中單根奢 米碳管的結構示意圖。 圖3係本技術方案實施例奈米碳管複合薄獏的製造方 法的流程圖。 ❹ 圖4係本技術方案實施例奈米碳管複合薄膜的製造装 置的結構示意圖。 圖5係本技術方案實施例的奈米碳管薄膜掃描電鏡照 片。 圖6係本技術方案實施例奈米碳管複合薄膜的掃描 鏡照片。 ' 圖7係本技術方案實施例奈米碳管複合薄臈的透射♦ 鏡照片。 电 〇 【主要元件符號說明】 100, 222 111 112 113 114 115 116 奈米碳管複合薄膜 未管 潤濕層 過渡層 導電層 抗氧化層 强化層 200938373 真空容器 210 蒸發源 212 奈米碳管結構 214 奈米碳管陣列 216 裝置 220 捲筒 260 Ο ❹ 17200938373 IX. Description of the Invention: [Technical Field] The present invention relates to a composite film, and more particularly to a carbon nanotube composite film. [Prior Art] Since the early 1990s, nanomaterials represented by nano-carboniferous pipes have attracted great attention due to their unique structure and properties. In recent years, with the deepening of research on carbon nanotubes and nanomaterials, the broad application prospects have been continuously revealed. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of carbon nanotubes, a large number of applications related to field emission electron sources, sensors, new optical materials, and soft ferromagnetic materials have been reported. . ... In particular, the combination of carbon nanotubes with other materials such as metals, semiconductors or polymers can complement or enhance the advantages of the materials. The carbon nanotube has a large aspect ratio and a hollow structure, and has excellent mechanical properties. It is used as a kind of super fiber to enhance the composite material. In addition, the carbon nanotubes have excellent thermal conductivity. The conductivity of the carbon nanotubes makes the composites have good thermal conductivity. However, in addition to the thermal properties of the carbon nanotubes, the carbon nanotubes also have good electrical conductivity, so that the complex sigma materials formed by other materials such as metals, semiconductors or polymers have excellent electrical conductivity. The preparation method of the m-carbon tube composite material usually has an in-situ polymerization method, and the dissolution of the two-phase carbon dioxide composite film is an important form of the application of the carbon nanotube composite. The carbon nanotube composite thin crucible is generally 200938373 'formed by screen printing, spin coating, pyrolysis of carbonaceous materials or liquid phase chemical deposition. The formed carbon nanotube composite film has the advantages of good compactness and uniform dispersion. • However, the preparation method of the previous carbon nanotube composite film is complicated, and the carbon nanotubes are randomly distributed in the carbon nanotube composite film in all directions. Thus, the carbon nanotubes are unevenly dispersed in the carbon nanotube composite film, so that the obtained carbon nanotube composite film has poor mechanical strength and toughness, and is easily broken, which affects the thermal and electrical properties of the carbon nanotube composite film. . A carbon nanotube composite film prepared by chemically modifying a carbon nanotube (see Surface Resistivity and Rheological Behaviors of Carboxylated Multiwall Carbon Nanotube-Filled PET Composite Film, Dae Ho Shin, Journal of Applied Polymer Science, V 99n3) , p900-904 (2006)), although the electrical properties are improved, but due to the heating conditions, thereby limiting the type of material composited with the carbon nanotubes. ❹ In view of the above, a carbon nanotube composite film and a preparation method thereof are provided, and the obtained carbon nanotube composite film has good electrical conductivity, good mechanical strength and toughness, and the preparation method is simple and easy to scale. Production is really necessary. SUMMARY OF THE INVENTION A carbon nanotube composite film includes a conductive material and a plurality of carbon nanotubes, wherein the carbon nanotubes are arranged parallel to a surface of the carbon nanotube composite film, and the conductive material is coated on the nano carbon. Tube surface. Compared with the prior art, the carbon nanotube composite film of the technical solution has the following advantages of 7 200938373: First, the carbon nanotube composite film comprises a plurality of carbon nanotubes arranged by van der Waals force and arranged in a preferred orientation. Thereby, the nano-carbon tube composite film has better mechanical strength and toughness. Secondly, a metal conductive layer is formed on the surface of each of the carbon nanotubes in the nano carbon composite film, which has better conductivity than the disordered carbon nanotube composite film in the prior art. [Embodiment] The structure of a carbon nanotube composite film of the embodiment of the present technical solution and a preparation method thereof will be described in detail below with reference to the accompanying drawings. Referring to Fig. 1, the embodiment of the present invention provides a nano tube-breaking composite film 100'. The carbon nanotube composite film 10 is composed of a carbon nanotube lu and a conductive material (not shown). The carbon nanotube composite film 100 includes a plurality of carbon nanotubes m, and each of the carbon nanotubes surface is coated with at least one layer of a conductive material. In the carbon nanotube composite film, the carbon nanotubes 111 are arranged in a preferred orientation in the same direction, and are connected end to end by van der Waals force. Specifically, in the carbon nanotube composite film 100, each nano*reactor 111 has substantially the same length 'longitudinal orientation in the same direction to form a carbon nanotube bundle segment having a certain width, and a plurality of nanometers. The carbon official beam segment is connected end to end by van der Waals force to form a carbon nanotube composite film 100. Referring to FIG. 2, each of the carbon nanotubes 111 in the carbon nanotube composite film 100 is coated with at least one layer of a conductive material. Specifically, the conductive material layer includes a wetting layer 112 directly bonded to the surface of the carbon nanotube 111, a transition layer 113 disposed outside the wetting layer, and a guide 8 disposed outside the transition layer 113. The electrical layer and the layer are disposed on An oxidation resistant layer 115 outside the conductive layer 114. Since the wettability between the carbon nanotubes 111 and most of the metals is not good, the above-mentioned wetting layer 112 functions to better bond the conductive layer 114 to the carbon nanotubes. The material forming the wetting layer 112 may be a metal having good wettability with the carbon nanotubes 111 such as Li, Ji or Qin, or an alloy thereof, and the thickness of the layer 112 is 10 nm. In this embodiment, the material of (1) is recorded to have a thickness of about 2 nm. It can be understood that the thirsty two; 2 ❹ select structure. The layer is for better; the effect of the layer 113 is such that the wetting layer 112 and the conductive layer 114 = the material of the transition layer 113 can be a material which can be better combined with the material of the wetting layer U2, the transition layer U3 is /ί. In this embodiment, the transition layer U3 is made of steel and has a thickness of 2 nm. You can understand the ^ a structure. It is understood that the transition layer 113 has the effect of having two == 114 to make the carbon nanotube composite film 100 have a good electrical conductivity of V(iv). A conductive metal such as silver or gold or an alloy having a thickness of K20 may be formed, and the conductive layer 114 may have a silver thickness of about 5 nm. The material of the electric layer 1U is the conductive sound n4 & in the manufacturing process of the above-mentioned anti-oxidation layer 115. In the air, the film is vaporized in the air, π品社* = The electrical conductivity of the official composite is 2: and the nanocomb is 1 to 10 nm. In the example of 200938373, the material of the oxidation resistant layer 115 is platinum and has a thickness of 2 nm. It will be understood that the antioxidant layer 115 is of an alternative construction. Further, in order to increase the strength of the carbon nanotube composite film, a reinforcing layer 116 may be further disposed outside the oxidation resistant layer 115. The material forming the strengthening layer 116 may be a polymer such as polyvinyl alcohol (pVA), polyphenylene benzodiazepine (touch), polyethylene (PE) or polyethylene bake (pvc). The thickness of the strengthening layer 116 is micrometers. In the present embodiment, the reinforcing layer 116 is made of polyvinyl alcohol (PVA) and has a thickness of 0.5 μm. It can be understood that the strengthening layer 6 is an optional structure. The method for preparing the carbon nanotube complex 5 film 222 in the embodiment of the present invention mainly includes the following steps: First step 1: providing a carbon nanotube array 216, preferably, the array is Ultra-sequential carbon nanotube array. The carbon nanotube array 216 provided in the embodiment of the present technical solution is a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, and the substrate may be a P-type or N-type Shi Xi substrate. Or using a germanium substrate formed with an oxide layer, in this embodiment, a 4-inch germanium substrate is preferably used; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe), initial (Cq), Recording (5)) or any combination thereof, (c) annealing the substrate on which the catalyst layer is formed in air at 700 to 900 ° C for about 30 minutes to 90 minutes; (4) placing the treated substrate in a reaction furnace, Heated to 5 〇〇 to 74 〇 in a δ vine rolling environment.匸, then 200938373, into the carbon source gas reaction about 5~3G minutes 'growth to get super-sequential nanocarbon official array' its height 胄200~4〇〇 microns. The super-sequential carbon nanotube array is a pure array of carbon nanotubes formed by a plurality of carbon nanotubes that are parallel to each other and perpendicular to the substrate. The super-sequential carbon nanotube array is substantially free of impurities, such as amorphous carbon or residual ruthenium (tetra) metal particles, by controlling the growth conditions as described above. The carbon nanotubes in the super-sequential carbon nanotube array are in close contact with each other to form an array by van der Waals forces. The array of super-sequential carbon nanotubes is substantially the same as the area of the substrate described above. In this embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in this embodiment is a block; the shielding gas is nitrogen or an inert gas, and the preferred protection in this embodiment. The gas is argon. Step 2: A carbon nanotube film 214 is taken from the carbon nanotube array 216 by a stretching tool. The preparation method of the nano carbon official film 214 includes the following steps: (a) selecting a plurality of carbon nanotube bundle segments of a certain width from the carbon nanotube array 216, and the embodiment preferably adopts a certain width. The tape contacts the carbon nanotube array 216 to select a plurality of carbon nanotube bundle segments of a certain width; (b) stretching the plurality of carbon nanotube bundle segments at a rate substantially perpendicular to the growth direction of the carbon nanotube array 216, To form a continuous carbon nanotube film 214. During the above stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate in the stretching direction by the tensile force, and the selected plurality of carbon nanotube bundle segments are respectively associated with the other naphthalenes due to the van der Waals force. Carbon tube bundle 11 200938373 piece:::: The ground is continuously pulled out to form a carbon nanotube film 2M. The carbon nanotube film 214 includes a plurality of end-to-end and oriented arrays of official beams. The arrangement direction of the carbon nanotubes in the carbon nanotube film 214 is set in the stretching direction of the nano carbon (four) film 214. See Figure 5 for the microstructure of the carbon nanotube film 214. The preferred orientation alignment of the carbon nanotube film 214 obtained by the direct stretching has better uniformity than the disordered carbon nanotube film 214. At the same time, the method of directly obtaining the carbon nanotube film 214 by straight stretching is simple and rapid industrial application. And 迺仃 + step three: forming at least a layer of a conductive material layer on the surface of the carbon nanotube film 214 to form a carbon nanotube composite film 222. In this embodiment, physical vapor deposition (PVD), such as vacuum evaporation, ion sputtering, etc., is used to deposit the conductive materials. Preferably, this embodiment deposits at least one layer of conductive material using a vacuum strip method.公斤 ί 用 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空 真空The evaporation source 212, the at least one evaporation source 212 is arranged in the order of stretching of the carbon nanotube film 2U in the order of the at least one layer of the material, and each evaporation source 212 can be supplied with the above-mentioned The carbon nanotube film 214 is disposed on the upper and lower evaporation sources a. The middle is spaced apart by a distance, wherein the carbon nanotube film 214 is disposed opposite the upper and lower pupils 212. The vacuum vessel 21 can be evacuated to a predetermined degree of vacuum by externally drawing a vacuum map. The evaporation source 212 material is a conductive material to be deposited on 12 200938373. Next, by heating the evaporation source 2丨2, causing it to melt and evaporating or sublimating to form a conductive material vapor, the conductive material vapor is passed to the cold carbon nanotube film 214, and then placed on the carbon nanotube film 214. * The surface is agglomerated to form a layer of conductive material. Since there is a gap between the carbon nanotubes in the carbon nanotube film 214 and the carbon nanotube film 214 is thin, a conductive material can penetrate into the carbon nanotube film 214 and deposit on each of the nanotubes. Carbon tube surface. The microstructure of the carbon nanotube composite tantalum film 222 after depositing the conductive material layer is shown in Figures 6 and 7. It will be appreciated that each evaporation source 212 can have a deposition zone by adjusting the distance between the carbon nanotube film 214 and each evaporation source 212 and the distance between the evaporation sources 212. When it is desired to deposit a plurality of layers of the conductive material, the plurality of evaporation sources 212 may be simultaneously heated to continuously pass the carbon nanotube film 214 through the deposition regions of the plurality of hair sources, thereby realizing deposition of the plurality of layers of the conductive material. In order to extract the vapor density of the conductive material and prevent the conductive material from being oxidized, the vacuum in the vacuum vessel 21 should be above 1 Pa (pa). In the embodiment of the present technology, the degree of vacuum in the vacuum vessel is 4 x 10 Å, 4 Pa. It will be appreciated that the carbon nanotube array 216 of step one can also be placed directly into the vacuum vessel 210 described above. First, after the vacuum tube 2H) pulls the carbon nanotube film 2141 of the width obtained by using the stretching tool A, the at least one evaporation source 212 is heated to deposit at least one layer of conductive material. On the surface of the carbon nanotube film 214. The carbon nanotube film 214' is continuously drawn from the carbon nanotube array 216 at a constant speed and the carbon nanotube film 214 is continuously passed through the deposition zone of the evaporation source 2U, thereby realizing the nanometer from the nanometer. The carbon tube array μ is pulled into the natrix 13 200938373 • The continuous production of the carbon nanotube film 214 and the carbon nanotube composite film 222. The step of forming at least one layer of conductive material by vacuum steaming in the embodiment of the technical solution specifically includes the following steps: forming a layer (four) • layering on the surface of the carbon nanotube film 214; forming a transition layer The outer surface of the wetting layer; forming a layer of conductive layer on the outer surface of the transition layer to form an anti-oxidation layer on the outer surface of the conductive layer. Wherein, the steps of forming the wetting layer, the transition layer and the anti-oxidation layer are all optional steps. Specifically, the above-described carbon nanotube film 214 may be continuously passed through a deposition zone of an evaporation source formed by the above respective layers of materials. In addition, after the forming at least one conductive material layer on the surface of the nanocarbon samarium film 214, a step of forming a strengthening layer outside the conductive material layer may be further included. Specifically, the carbon nanotube film 214 formed with the at least one conductive material layer may be made to infiltrate the entire carbon nanotube film 214 through a device 220' containing a polymer solution, and the polymer solution is passed through. The intermolecular force adheres to the outer surface of the conductive material layer, and a solidified layer is formed after the polymer is solidified. The resulting carbon nanotube composite film 222 can be further collected on a reel 224. The collection method is to wind the carbon nanotube composite film 222 on the reel 260. Optionally, the forming step of the carbon nanotube film 214, the forming step of at least one conductive material layer, and the forming step of the reinforcing layer may be performed in the vacuum container to realize continuous operation of the carbon nanotube composite film 222. produce. In the embodiment of the technical solution, the nano carbon 14 before the deposition of the conductive material is 200938373. The resistance of the tube film 214 is about 1600 ohms, and the resistance of the carbon nanotube composite film 222 formed after depositing the conductive material Ni/Au can be lowered. To about 2 〇〇 * ohm, the visible light transmittance. Therefore, the nanocarbon* tube composite film 222 formed has a low electrical resistance and a good visible light transmittance, and can be used as a transparent conductive film. Compared with the prior art, the carbon nanotube composite film provided by the embodiments of the present technical solution and the preparation method thereof have the following advantages: First, the carbon nanotube composite film includes a plurality of first and last connected by van der Waals force and is preferred The aligned carbon nanotubes provide better mechanical strength and toughness for the carbon nanotube composite film. Secondly, a surface of a conductive material is formed on the surface of each of the carbon nanotubes in the carbon nanotube composite film, which has better conductivity than the disordered carbon nanotube composite film in the prior art, and the nanometer The carbon tube composite film also has a good visible light transmittance, and thus can be used as a transparent conductive film. Second, since the carbon nanotube composite film is directly drawn from the carbon nanotube array, the method is simple and low in cost. Fourthly, the step of stretching the nano-carbon ruthenium film and depositing the conductive material can be carried out in a vacuum vessel, which is advantageous for large-scale production of the carbon nanotube composite film. Table T, above, the invention has indeed met the requirements of the invention patent, and filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. 15 200938373 ' [Simple description of the drawings] Fig. 1 is a schematic diagram of a carbon nanotube composite thin crucible structure according to an embodiment of the present technical solution. - Figure 2 is a schematic view showing the structure of a single luxury carbon nanotube in a carbon nanotube composite film according to an embodiment of the present technical solution. Fig. 3 is a flow chart showing a method of manufacturing a carbon nanotube composite thin crucible according to an embodiment of the present technical solution. Fig. 4 is a schematic view showing the structure of a manufacturing apparatus of a carbon nanotube composite film according to an embodiment of the present invention. Fig. 5 is a scanning electron micrograph of a carbon nanotube film of an embodiment of the present technical solution. Fig. 6 is a scanning photograph of a carbon nanotube composite film of the embodiment of the present invention. Figure 7 is a transmission photographic photograph of a carbon nanotube composite thin crucible in the embodiment of the present technical solution. Electric 〇【Main component symbol description】 100, 222 111 112 113 114 115 116 Nano carbon nanotube composite film unpiped layer transition layer Conductive layer Anti-oxidation layer strengthening layer 200938373 Vacuum vessel 210 Evaporation source 212 Carbon nanotube structure 214 Carbon nanotube array 216 device 220 reel 260 Ο ❹ 17

Claims (1)

200938373 十、申請專利範圍 匕種=_膜,包括導電材料和多個奈米碳 ::二、玄奈米碳管平行於奈米碳管複合薄膜 表面排列’該導電材料包覆於奈米碳管表面。 2·如申請專,範圍第丄項所述的奈米碳管複合薄膜,其 中,所述母一奈米碳管表面設置有一導電層。200938373 X. Patent application scope = _ film, including conductive material and a plurality of nano carbon:: Second, the carbon nanotubes are arranged parallel to the surface of the carbon nanotube composite film. The conductive material is coated on the nano carbon. Tube surface. 2. The carbon nanotube composite film according to the above item, wherein the surface of the mother carbon nanotube is provided with a conductive layer. 3. 如申請專利範圍第i項所述的奈米碳管複合薄膜,其 中’所述奈米碳官沿同一方向擇優取向排列。 4. 如申請專利範圍第丨項所述的奈米碳管複合薄膜,其 中’所述奈米石厌官具有相等的長度並通過凡德瓦爾力首 尾相連。 , 5. 如申4專利範圍帛1項所述的奈米碳管複合薄膜,其 中,所述奈米碳管包括單壁奈米礙管,雙壁奈米碳管或 多壁奈米碳管。 6. 如申請專利範圍g 5項所述的奈米碳管複合薄膜,其 中,所述單壁奈米碳管的直徑爲〇 5奈米〜5〇奈米,雙 壁奈米妷官的直徑爲1奈米〜50奈米,多壁奈米碳管的 直徑爲1.5奈米〜5〇奈米。 7. 如申請專利範圍第2項所述的奈米碳管複合薄膜,其 中,所述導電層的材料爲銅、銀、金或其合金。 8. 如申請專利範圍第7項所述的奈米碳管複合薄膜,其 中’所述導電層的厚度爲丨〜汕奈米。 9. 如申請專利範圍第2項所述的奈米碳管複合薄膜,其 中,該奈米碳管複合薄膜進一步包括一潤濕層設置於所 述導電層與奈米碳管表面之間。 200938373 1〇·如申1專利S圍第9項所述的奈米碳管複合薄膜,其 中所述潤濕層的材料爲錄、#、欽或其合金,所述潤 濕層的厚度爲1〜10奈米。 11 申%專利施圍帛9項所述的奈米破管複合薄膜,其 、k不米碳管複合薄膜進一步包括一過渡層 設置於所 述導電層與潤濕層之間。 =申叫專利^圍第i i項所述的奈米破管複合薄膜,其 Ο3. The carbon nanotube composite film according to claim i, wherein the nanocarbons are arranged in a preferred orientation in the same direction. 4. The carbon nanotube composite film according to claim 2, wherein the nanostones are of equal length and are connected end to end by van der Waals force. 5. The carbon nanotube composite film according to claim 4, wherein the carbon nanotube comprises a single-walled nano tube, a double-walled carbon tube or a multi-walled carbon tube. . 6. The carbon nanotube composite film according to claim 5, wherein the diameter of the single-walled carbon nanotube is 〇5 nm to 5 Å nanometer, and the diameter of the double-walled nano-manifold For a diameter of 1 nm ~ 50 nm, the diameter of the multi-walled carbon nanotubes is 1.5 nm ~ 5 〇 nanometer. 7. The carbon nanotube composite film according to claim 2, wherein the conductive layer is made of copper, silver, gold or an alloy thereof. 8. The carbon nanotube composite film according to claim 7, wherein the conductive layer has a thickness of 丨~汕N. 9. The carbon nanotube composite film according to claim 2, wherein the carbon nanotube composite film further comprises a wetting layer disposed between the conductive layer and the surface of the carbon nanotube. The invention relates to a carbon nanotube composite film according to Item 9, wherein the material of the wetting layer is recorded, #, 钦 or its alloy, and the thickness of the wetting layer is 1 ~10 nm. The nano tube-breaking composite film according to the above, wherein the k-carbon nanotube composite film further comprises a transition layer disposed between the conductive layer and the wetting layer. = Application of the patented patented nano-tube composite film described in item i i, 其 所述過渡層的材料爲銅、銀或其合金,所述過渡層 的厚度爲1〜1〇奈米。 7u利㈣第2項所述的奈米碳管複合薄膜,其 麻、十,=奈米兔官複合薄膜進—步包括一抗氧化層設置於 所述導電層外表面。 14.:申Γ專利5'圍第13項所述的奈米碳管複合薄膜,其 於恳沾,抗氧化層的材料爲金、敍或其合金,所述抗氧 化層的厚度爲biO奈米。 K 項所述的奈米碳管複合薄膜,其 膜進一步包括一强化層設置於所 15·如申請專利範圍第2 中’該奈米碳管複合薄 述導電層外表面。 t, ^^ I 15項所述的奈米碳管複合薄膜,其 。坐、的材料爲聚乙稀醇、聚苯撑苯並二喔 米。承、3聚氣乙稀’所述强化層的厚度爲0.1〜1微The material of the transition layer is copper, silver or an alloy thereof, and the transition layer has a thickness of 1 to 1 nanometer. The carbon nanotube composite film according to item 2, wherein the hemp, the ten, and the nano rabbit composite film further comprise an anti-oxidation layer disposed on the outer surface of the conductive layer. 14. The carbon nanotube composite film according to claim 13 of claim 5, wherein the material of the anti-oxidation layer is gold, Syria or an alloy thereof, and the thickness of the oxidation resistant layer is biO Nai. Meter. The carbon nanotube composite film according to item K, wherein the film further comprises a reinforcing layer disposed on the outer surface of the conductive layer of the carbon nanotube composite. t, ^^ I The carbon nanotube composite film according to item 15, wherein. The material to sit is polyethylene glycol, polyphenylene benzoquinone. The thickness of the reinforcing layer is 0.1 to 1 micro
TW97108084A 2008-03-07 2008-03-07 Carbon nanotube composite film TWI342266B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97108084A TWI342266B (en) 2008-03-07 2008-03-07 Carbon nanotube composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97108084A TWI342266B (en) 2008-03-07 2008-03-07 Carbon nanotube composite film

Publications (2)

Publication Number Publication Date
TW200938373A true TW200938373A (en) 2009-09-16
TWI342266B TWI342266B (en) 2011-05-21

Family

ID=44867310

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97108084A TWI342266B (en) 2008-03-07 2008-03-07 Carbon nanotube composite film

Country Status (1)

Country Link
TW (1) TWI342266B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI416086B (en) * 2010-01-22 2013-11-21 Hon Hai Prec Ind Co Ltd Strain measurement devic and measurement method
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI416086B (en) * 2010-01-22 2013-11-21 Hon Hai Prec Ind Co Ltd Strain measurement devic and measurement method
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media

Also Published As

Publication number Publication date
TWI342266B (en) 2011-05-21

Similar Documents

Publication Publication Date Title
JP4589439B2 (en) Method for producing carbon nanotube composite
JP4589440B2 (en) Linear carbon nanotube structure
CN101497438B (en) Carbon nano-tube compound film
JP4504453B2 (en) Method for producing linear carbon nanotube structure
US9206049B2 (en) Method for making carbon nanotubes
JP5243478B2 (en) Nanomaterial thin film
US9708189B2 (en) Carbon fiber film
TWI380949B (en) Carbon nanotube yarn strucutre
TWI339465B (en) Electromagnetic shielding layer and method for making the same
TW200917947A (en) Composite for electromagnetic shielding and method for making the same
TWI342027B (en) Method for making twisted yarn
Liu et al. Growth of carbon nanocoils from K and Ag cooperative bicatalyst assisted thermal decomposition of acetylene
CN103011124B (en) The preparation method of carbon nano-tube compound film
TWI411574B (en) Carbon nanotube composite material and method for making the same
TW200929292A (en) Super capacitor
TW200938373A (en) Carbon nanotube composite film
TW200934725A (en) Carbon nanotube composite and method for making the same
KR101276898B1 (en) Carbon nanotube composite material and methods for making the same
TWI421365B (en) Method for making carbon nanotube composite film
TWI339189B (en) Thermal pad with carbon nanotube array and method of making the same
Jaisi Synthesis and Characterization of Graphene and Graphitized Nanocarbons
TW200417510A (en) A carbon-nanotubes-based material and a method for making the same
TW201043909A (en) Thermal interface material and method for manufacturing the same
Wang High Performance Composites Based on Superaligned Carbon Nanotubes
Quiñones Carbon nanotubes: a study on assembly methods