WO2022137950A1 - Modified carbon nanotube forest, carbon nanotube aligned aggregate, gas-permeable sheet, catalyst electrode for fuel cells, electroconductive member, thread-like electroconductive member, interlayer heat-conductive material, and method for producing modified carbon nanotube forest - Google Patents

Modified carbon nanotube forest, carbon nanotube aligned aggregate, gas-permeable sheet, catalyst electrode for fuel cells, electroconductive member, thread-like electroconductive member, interlayer heat-conductive material, and method for producing modified carbon nanotube forest Download PDF

Info

Publication number
WO2022137950A1
WO2022137950A1 PCT/JP2021/042904 JP2021042904W WO2022137950A1 WO 2022137950 A1 WO2022137950 A1 WO 2022137950A1 JP 2021042904 W JP2021042904 W JP 2021042904W WO 2022137950 A1 WO2022137950 A1 WO 2022137950A1
Authority
WO
WIPO (PCT)
Prior art keywords
cnt
carbon nanotube
forest
modified
continuum
Prior art date
Application number
PCT/JP2021/042904
Other languages
French (fr)
Japanese (ja)
Inventor
翼 井上
Original Assignee
株式会社シーディアイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シーディアイ filed Critical 株式会社シーディアイ
Priority to JP2022571986A priority Critical patent/JPWO2022137950A1/ja
Publication of WO2022137950A1 publication Critical patent/WO2022137950A1/en
Priority to JP2024014780A priority patent/JP2024052746A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells

Definitions

  • the present invention provides a modified carbon nanotube forest (modified CNT forest), a carbon nanotube continuum (CNT continuum) including a spun body of the modified CNT forest, a gas permeable sheet including the CNT continuum, and the gas permeable sheet.
  • modified CNT forest modified CNT forest
  • CNT continuum carbon nanotube continuum
  • the present invention relates to a catalyst electrode of a fuel cell, a conductive member and a filamentous conductive member including the modified CNT forest or the CNT continuum, an interlayer heat conductive material having the conductive member, and a method for producing the modified CNT forest.
  • CNT forest refers to a synthetic structure of a plurality of carbon nanotubes (CNTs) (hereinafter, the individual shapes of CNTs that give such a synthetic structure are referred to as “primary structure”, and the above synthetic structure is referred to as “secondary structure”. It is a kind of "next structure”), and a direction in which a plurality of CNTs are in a certain direction for at least a part of the long axis direction (as a specific example, a direction substantially parallel to one normal of the surface of the substrate). It means an aggregate of CNTs that grows so as to orient in the above.).
  • Patent Document 1 and Non-Patent Document 1 disclose a method for producing a CNT forest using iron chloride (gas phase catalyst method).
  • Non-Patent Document 2 discloses a method (solid phase catalyst method) in which catalyst fine particles are provided on a substrate and CNTs are grown from the catalyst fine particles to obtain a CNT forest.
  • a plurality of CNTs are continuously withdrawn from the CNT forest by pinching a part of the CNTs in the CNT forest and pulling the CNTs away from the CNT forest (in the present specification, this CNTs are continuously extracted from the CNT forest.
  • the work is also referred to as “spinning" following the work of manufacturing yarn from fibers according to the prior art.
  • a structure having a structure in which a plurality of CNTs are connected to each other along the spinning direction is a "CNT continuum”.
  • Patent Document 2 discloses a secondary structure in which a plurality of CNTs have a continuous filamentous overall shape (this CNT continuum is referred to as "CNT yarn” in the present specification).
  • Patent Document 2 discloses a secondary structure in which a plurality of CNTs continuously have a web-like overall shape (this CNT continuum is referred to as "CNT web" in the present specification).
  • the CNTs constituting the CNT web are oriented along one of the in-plane directions (corresponding to the spinning direction) of the CNT web.
  • FIG. 29 is a diagram showing a state in which CNT webs are spun from a CNT forest produced by a gas phase catalyst method.
  • Patent Document 3 describes a plurality of carbon fibers extending along a extending direction, the plurality of carbon fibers in which each carbon fiber contains a carbon nanotube, and a plurality of metal particles supported on the plurality of carbon fibers.
  • a carbon nanotube electrode comprising the plurality of metal particles dispersed in the entire carbon fiber in the extending direction and electrically connecting each carbon fiber to another carbon fiber.
  • Patent Document 4 describes a metal composite carbon nanotube twisted yarn obtained by twisting metal-walled nanotube fibers in which metal is adhered to the surface of carbon nanotube fibers in which the ends of a plurality of carbon nanotubes are bonded to each other. Disclosed is a metal composite carbon nanotube twisted yarn having a structure in which contact portions between metals adhered to nanotube fibers are fused.
  • Japanese Unexamined Patent Publication No. 2009-196873 Japanese Patent No. 5664832 Japanese Unexamined Patent Publication No. 2020-102352 Japanese Unexamined Patent Publication No. 2018-53408
  • the present invention relates to a modified CNT forest in which the CNT forest is modified with another substance, a CNT continuum having a spun body of the modified CNT forest, a gas permeable sheet having the CNT continuum, and a fuel having the gas permeable sheet.
  • a catalyst electrode of a battery a conductive member and a filamentous conductive member provided with the modified CNT forest or CNT continuum described above, an interlayer heat conductive material provided with the conductive member, and a method for producing the modified CNT forest described above. The purpose.
  • a modified carbon nanotube forest comprising carbon nanotubes oriented in a predetermined direction and fine particles supported on the carbon nanotubes, which can be spun.
  • the diameter D2 and the average diameter D3 are the arithmetic average of the diameters of the fine particles in 10 or more places and the arithmetic of the diameters of the carbon nanotubes in 10 places or more, respectively, measured by observing the modified carbon nanotube forest with an electronic microscope. It is an average.
  • D1 A- 1 / 2 -D3 (2)
  • a carbon nanotube continuum comprising a spun body of the modified carbon nanotube forest according to any one of the above [1] to [4].
  • the carbon nanotube continuum having the web shape according to the above [6] is provided, and at least a part of the carbon nanotubes constituting the carbon nanotube continuum has a gap in a direction intersecting the orientation direction thereof.
  • a catalyst electrode of a fuel cell provided with the gas permeable sheet according to the above [9] or the above [10].
  • [12] It is characterized by comprising the modified carbon nanotube forest according to any one of the above [1] to [3] and a plating-based material deposited on the carbon nanotubes located inside the modified carbon nanotube forest.
  • Conductive member
  • the tensile strength is 1.0 times or more and the Young's modulus is 1.5 times or more based on the blank carbon nanotube continuum corresponding to the material obtained by removing the plating-based substance from the filamentous conductive member.
  • the filamentous conductive member according to any one of the above [17] to the above [20].
  • a modified CNT forest a CNT continuum including a spun body of the modified CNT forest, a gas permeable sheet including the CNT continuum, a catalyst electrode of a fuel cell including the gas permeable sheet, and the above-mentioned modified CNT forest.
  • a conductive member and a filamentous conductive member provided with a CNT continuum, an interlayer heat conductive material provided with the conductive member, and a method for producing the above-mentioned modified CNT forest are provided.
  • FIG. 4 shows the observation result of the side surface shown in FIG. 4 by the backscattered electron image.
  • FIG. 6 shows the observation result of the side surface shown in FIG. 6 by the backscattered electron image.
  • FIG. 1 A diagram showing how a CNT twisted yarn is produced by twisting a CNT yarn obtained by spinning a modified CNT forest, and (b) a diagram conceptually showing a configuration of an apparatus for spinning a modified CNT forest. Is. It is a figure which shows the observation result of the CNT plying. It is a partially enlarged view of FIG. (A) An observation view of a cross section of a CNT twisted yarn, and (b) a view of a central portion of the cross section of FIG. 12 (a) partially enlarged and observed by backscattered electrons.
  • FIG. 3 is an observation diagram showing a cross section of a conductive member produced including plating with a current density of 5 mA / cm 2 . It is an observation view which shows the cross section of the comparative conductive member manufactured without modification with copper fine particles.
  • A An observation view showing a cross section of a conductive member produced including plating with a current density of 4 mA / cm 2 ,
  • 34 (A) is a graph in which the vertical axis is a linear scale. It is a graph which shows the temperature dependence of the electrical resistivity which standardized the electrical resistivity of each sample by the value at 300K. It is a graph which shows the temperature dependence of the specific conductivity of a composite yarn which had copper deposited on the CNT twisted yarn which carried Cu—NPs, and a copper wire. It is a graph which shows the current capacity of each sample. It is a graph which shows the relationship between the specific conductivity and the specific current capacity of each sample. It is a stress-strain diagram of each sample. It is a graph which shows the relationship between Young's modulus and tensile strength of various samples.
  • the modified CNT forest (modified carbon nanotube forest) according to the embodiment of the present invention includes a CNT forest having CNTs oriented in a predetermined direction and fine particles supported on the CNTs, and can be spun.
  • the CNT forest can be produced by the production method disclosed in Patent Document 1 and Non-Patent Document 1 (gas phase catalyst method), or the production method disclosed in Non-Patent Document 2 (solid phase catalyst method).
  • the predetermined direction is the direction along the normal direction of the CNT forest forming surface of the substrate for forming the CNT forest.
  • the modified CNT forest has a ratio R of 3 or more defined by the following formula (1) using the adjacent gap D1 of the CNT and the average particle size D2 of the fine particles.
  • R D1 / D2 (1)
  • the adjacent gap D1 is represented by the following formula (2) by the number density A (unit: book / m 2 ) of the modified CNT forest and the average diameter D3 of the CNT.
  • the average particle size D2 and the average diameter D3 are the arithmetic mean of the diameters of 10 or more fine particles and the arithmetic mean of the diameters of 10 or more carbon nanotubes measured by observing the modified CNT forest from the side with an electron microscope, respectively. It is an average.
  • D1 A- 1 / 2 -D3 (2)
  • the adjacent gap D1'of the CNT forest produced by the gas phase catalyst method has a number density A of about 10 13 lines / m 2 and an average diameter D3 of about 40 nm. Therefore, it is about 275 nm.
  • the adjacent gap D1'of the CNT forest produced by the solid phase catalyst method has a number density A of about 1.5 ⁇ 10 15 lines / m 2 and an average diameter. Since D3 is about 7 nm, it is about 20 nm.
  • a CNT forest having a number density A of about 5 ⁇ 10 15 lines / m 2 and an average diameter D3 of about 4 nm can be produced, so that the adjacent gap D1'can be set to about 10 nm. It is possible.
  • the average particle size D2 of the fine particles is sufficiently smaller than the adjacent gap D1 from the viewpoint of stably ensuring the spinnability of the modified CNT forest.
  • the ratio R defined by the above formula (1) is preferably 3 or more, more preferably 6 or more, further preferably 7 or more, and 8 or more. It is particularly preferable, and 9 or more is extremely preferable.
  • the average particle size D2 is large, it is highly possible that fine particles are present in the modified CNT forest so as to connect the adjacent CNTs between the adjacent CNTs in the direction intersecting the orientation direction. CNTs arranged next to each other should be separated when they are spun, but when fine particles connect adjacent CNTs as described above, it becomes difficult for CNTs arranged next to each other to separate. It may cause spinning defects.
  • the modified CNT formed from the CNT forest produced by the gas phase catalyst method since the adjacent gap D1'of the CNT forest produced by the gas phase catalyst method is about 275 nm, the modified CNT formed from the CNT forest produced by the gas phase catalyst method.
  • the average particle size D2 of the fine particles carried by the CNTs of the forest has a ratio R of 3 or more when it is 90 nm or less.
  • the modified CNT forest formed from the CNT forest produced by the gas phase catalyst method since the adjacent gap D1'of the CNT forest produced by the gas phase catalyst method is about 20 nm, the modified CNT forest formed from the CNT forest produced by the gas phase catalyst method.
  • the average diameter D2 of the fine particles carried by the CNTs is 6.7 nm or less, and the ratio R is 3 or more.
  • the ratio R is 3 or more when the average particle size D2 of the fine particles is 3.3 nm or less.
  • the fine particles carried by the CNTs of the modified CNT forest may have conductivity.
  • a typical example of conductive fine particles is that they are made of a metallic material.
  • the constituent metal elements are not particularly limited. Examples thereof include Au, Ag, Cu, Pt, Ni, Co, Fe, Al, Ti, Zn, W, Cr and the like.
  • the fine particles carried by the CNTs of the modified CNT forest may contain oxides.
  • Specific examples of the oxide contained in the fine particles include an aluminum oxide and a titanium oxide. There may be a plurality of metal elements constituting the oxide contained in the fine particles.
  • the modified CNT forest according to the embodiment of the present invention, fine particles of a predetermined size can be carried on the CNT of the CNT forest which is one of the raw materials, and the obtained modified CNT forest has spinnability. If it is included, it may be manufactured by any manufacturing method. According to the method described below, the modified CNT forest can be efficiently produced.
  • a metal element-containing substance is supplied to the CNT forest in a gas phase state, the metal element-containing substance is decomposed to generate a metal base substance, and the metal base substance is produced. It is provided that the fine particles formed from the above are supported on the CNT forest.
  • the CNT forest can be produced by a known method. Specific examples include the production method by the gas phase catalyst method described in Patent Document 1 and Non-Patent Document 1, and the solid phase catalyst method described in Non-Patent Document 2.
  • the CNT forest produced by these production methods can be spun.
  • the metal element-containing substance is a substance that can be decomposed in the gas phase state and can form fine particles from the metal-based substance that is a decomposition product.
  • the metal element-containing substance include organic metal complexes such as copper (II) acetylacetonate and platinum acetylacetonate, and metal halides.
  • the metal element-containing substance does not have to be a gas phase at the supply stage, and may be preferably a solid phase or a liquid phase from the viewpoint of improving handleability.
  • Decomposition of metal element-containing substances occurs by applying energy from the outside. Specifically, the metal element-containing substance may be heated, the metal element-containing substance may be irradiated with a laser, or a high-energy ray such as an electron beam may be irradiated.
  • the metal-based substance which is a decomposition product of the metal element-containing substance, may be composed of a metal-based material including an alloy and an intermetallic compound, or may be composed of an oxide. Fine particles are formed by agglomerating the produced metal-based substance or functioning as an autocatalytic reaction.
  • FIG. 1 is a diagram conceptually showing an example of a manufacturing apparatus for obtaining a modified CNT forest from a CNT forest.
  • the manufacturing apparatus 100 includes a glass tube 10 whose inside is a reaction chamber RC and a heater 20 provided so as to cover the side surface of the glass tube 10.
  • a metal element-containing substance RS is arranged in the reaction chamber RC and contains a metal element.
  • a CNT forest 30 is arranged around the material RS.
  • the reaction chamber RC is depressurized and heated by the heater 20 to bring the metal element-containing substance RS into a gas phase state.
  • the metal element-containing substance RS in the gas phase is diffused and supplied to the CNT forest 30, the metal element-containing substance RS is thermally decomposed to generate a metal-based substance, and the fine particles based on the metal-based substance are CNT forest 30.
  • the modified CNT forest 40 is obtained by being carried by the CNTs of the above.
  • the particle size of the fine particles can be adjusted by the amount of the metal element-containing substance RS arranged in the reaction chamber RC, the total pressure of the reaction chamber RC, the temperature of the reaction chamber RC, and the like.
  • the specific numerical range of these parameters is appropriately set according to the type of the metal element-containing substance RS so that the average particle size D2 set by the adjacent gap D1 of the modified CNT forest can be realized. By adjusting these parameters, it is also possible to set the loading density of the CNT fine particles.
  • the modification of CNTs with the fine particles is uniform with respect to the CNTs constituting the CNT forest. Can be raised high. That is, according to the manufacturing method according to the present embodiment, the CNTs located inside the CNT forest can be stably modified with fine particles, and the obtained modified CNT forest has spinning potential. can.
  • Ag nanometal ink is dropped onto the CNT forest when the carbon nanotube electrode is manufactured.
  • FIG. 2 is a diagram showing the observation results of a part of the side surface of the CNT forest.
  • observation without mention means observation with an electron microscope or observation with an optical microscope.
  • FIG. 2 is a secondary electron image.
  • This CNT forest is produced by a vapor phase catalyst method, and its number density A is about 10 13 lines / m 2 , and the average diameter D3 of CNTs is about 35 nm. Therefore, the adjacent gap D1 of the CNT forest is about 280 nm.
  • FIG. 3 is a diagram showing the observation results of a part of the side surface of the modified CNT forest formed from the CNT forest manufactured by the same manufacturing method as the CNT forest of FIG.
  • FIG. 4 is a partially enlarged view of FIG.
  • the adjacent gap D1 of the modified CNT forest is substantially equal to the adjacent gap D1'of the CNT forest. Since the modified CNT forest shown in FIG. 3 is formed from the CNT forest produced by the gas phase catalyst method, the adjacent gap D1 thereof is about 280 nm. Further, as shown in FIG. 4, the diameter of the fine particles supported on the CNT is sufficiently smaller than 100 nm. As will be described later in the examples, the average particle size D2 of the fine particles is 29.2 nm. Therefore, in the modified CNT forest shown in FIG. 4, the ratio R is 9 or more, and it can be said that the modified CNT forest has particularly stable spinnability.
  • FIG. 5 is a diagram showing the results of observing the side surface shown in FIG. 3 by a backscattered electron image, and fine particles (consisting of a Cu-based conductive substance) adhering to CNTs are observed as bright spots.
  • FIG. 6 is a diagram showing observation results of a part of a cross section (that is, the inside of the CNT forest) obtained by removing a part of the CNT forest on the surface including the orientation direction of the CNT.
  • FIG. 7 is a diagram showing the results of observing the side surface shown in FIG. 6 by a backscattered electron image, and the fine particles attached to the CNTs are observed as bright spots. Comparing FIGS. 5 and 7, the density of bright spots is slightly higher in FIG. 5, but a sufficient number of bright spots are also observed in FIG. 7, and the modified CNT forest is the CNT located inside the CNTs. It is confirmed that the particles are also carried.
  • the carbon nanotube continuum (CNT continuum) includes the spun body of the above-mentioned modified CNT forest.
  • FIG. 8 is a diagram conceptually showing how a modified CNT forest is spun.
  • the CNTs 50 oriented in the direction D are continuously connected to form the CNT continuum 60. ..
  • the fine particles 70 attached to the CNTs 50 constituting the modified CNT forest 40 maintain their state even when they are spun. Therefore, the CNTs 50 constituting the CNT continuum 60 obtained by spinning the modified CNT forest 40 are also highly uniformly modified by the fine particles 70.
  • the shape of the CNT continuum is determined by the spinning process.
  • the shape may have a web shape or a thread shape.
  • a CNT continuum with a web shape is obtained by pulling out one of the sides of the modified CNT forest so that it does not converge.
  • the drawn CNT web can be continuously spun, for example, by winding it on a drum.
  • the CNTs that make up the CNT web are oriented along the spinning direction.
  • the connected state of adjacent CNTs in the spinning direction (that is, the orientation direction) is held by the van der Waals force generated between the CNTs and the other CNTs at each end. Therefore, the CNTs constituting the CNT web are not connected to the CNTs adjacent to each other in the direction intersecting the spinning direction (intersection direction) in the portion other than the end portion thereof, and the CNTs adjacent to each other in the intersecting direction are not connected to each other. There is a gap. That is, the CNT web has a mesh-like structure while the CNTs constituting the CNT web are modified from the fine particles.
  • the length of this gap depends on the number density of the CNT forest and the spinning method (particularly the tension at the time of spinning), but can be set in the range of several nm to several ⁇ m, for example. Therefore, by appropriately adjusting the gaps in the CNT web, it is possible to form a gas permeable sheet that allows gas to pass through but does not allow liquid to pass through.
  • the gas permeable sheet since the CNTs constituting the sheet are modified with fine particles, it is possible to cause an interaction between the gas passing through the sheet and the fine particles. Moreover, the gas permeable sheet has in-plane conductivity. Specifically, based on the fact that the CNTs are oriented in the spinning direction, the conductivity along the orientation direction is higher than the conductivity in the direction orthogonal to the orientation direction. Therefore, if an appropriate conductive catalyst material (for example, a Pt-Co alloy containing Pt and Co) is set as the fine particles for modifying CNT, this gas permeable sheet can be used as a component of the catalyst electrode of the fuel cell. Is possible.
  • an appropriate conductive catalyst material for example, a Pt-Co alloy containing Pt and Co
  • the thread-shaped CNT continuum pulls the CNTs from one of the sides of the modified CNT forest so that the CNT webs are formed, and the CNT webs are converged in the spinning direction to further pull out the CNTs. can get.
  • the CNTs constituting the CNT yarn thus formed are oriented along the extending direction of the thread shape of the CNT yarn. Therefore, for example, the CNT yarn produced by the production method according to the present embodiment has a thread-shaped extension as compared with a thread-like structure produced by ejecting a liquid material containing CNT having a short shaft length from a die. It has high conductivity along the existing direction and has excellent mechanical properties.
  • the CNT yarn is modified with fine particles up to the CNTs located in the center thereof.
  • a dispersion liquid containing metal particles is applied to CNT fibers (corresponding to CNT yarn) drawn from a CNT array (corresponding to CNT forest). This causes the metal particles to adhere to the CNTs. Therefore, the CNTs located on the outer side of the CNT fiber are more likely to have metal particles attached, and the CNTs located in the central portion of the CNT fiber are less likely to have metal particles attached. That is, the CNT yarn produced by the production method according to the present embodiment is more uniformly modified with fine particles than the CNT yarn produced by the production method disclosed in Patent Document 3.
  • FIG. 9A is a diagram showing a state in which a twisted yarn (CNT twisted yarn) is produced by twisting a CNT yarn obtained by spinning a modified CNT forest.
  • FIG. 9B is a diagram conceptually showing the configuration of an apparatus for spinning a modified CNT forest.
  • FIG. 10 is a diagram showing observation results of CNT plying, and
  • FIG. 11 is a partially enlarged view of FIG. 10.
  • FIG. 12A is an observation view of a cross section of the CNT twisted yarn.
  • FIG. 12 (b) is a diagram in which the central portion of the cross section of FIG.
  • the CNT plying yarn is modified with fine particles up to the CNT located at the center thereof.
  • a CNT continuum having CNTs carrying fine particles having conductivity as described above is plated, and the CNTs located inside the CNT continuum are plated. Prepare to deposit material.
  • the process for depositing the plating substance may be electroplating or electroless plating.
  • the plating substance is appropriately set as necessary.
  • An unrestricted example of the plating process is electroplating with a copper sulfate bath.
  • FIG. 13 is a diagram conceptually showing the configuration of an apparatus for plating CNT plying by electroplating a copper sulfate bath.
  • the CNT twisted yarn 120 held by the mica sheet (mica foil) 110 is immersed in the copper sulfate bath 130, and one end of the CNT twisted yarn 120 not immersed in the copper sulfate bath 130 is clipped 141.
  • the wiring 151 connected to the clip 141 is electrically connected to the cathode terminal 161 of the power supply 160.
  • An anode 170 made of a U-shaped copper foil is immersed in a copper sulfate bath 130, a part of the anode 170 not immersed in the copper sulfate bath 130 is sandwiched between clips 142, and a wiring 152 connected to the clip 142 is connected. It is electrically connected to the anode terminal 162 of the power supply 160.
  • the CNT plying 120 is copper-plated to obtain the conductive member 200.
  • the conductive member thus obtained has sufficiently high conductivity as it is, but the plating substance is reduced by heat-treating the conductive member in a reducing atmosphere to further enhance the conductivity of the conductive member. Can be done.
  • the heat treatment conditions are appropriately set, and by way of example without limitation, it is 1 hour at 700 ° C. under a hydrogen stream (100 sccm).
  • the conductive member according to another embodiment of the present invention includes the above-mentioned modified CNT forest and a plating substance deposited on carbon nanotubes located inside the modified carbon nanotube forest.
  • the modified CNT forest since the CNTs constituting the modified CNT forest carry the fine particles generated based on the decomposition of the metal element-containing substance, the modified CNT forest is also modified with the fine particles of the CNTs located inside the modified CNT forest. Therefore, by plating the modified CNT forest, the plating material is deposited so as to fill the gaps in the CNT forest. If the fine particles supported on the CNTs have conductivity, the deposition of the plating substance is realized more stably. If, for example, copper having high thermal conductivity is selected as the plating substance, the conductive member obtained by plating has high thermal conductivity in the extending direction of CNT, and therefore can be suitably used as an interlayer heat conductive material. ..
  • the conductive member was manufactured using the manufacturing apparatus shown in FIG. 1 and the plating apparatus shown in FIG.
  • the CNTs constituting the obtained CNT forest had a diameter of 30 nm to 40 nm.
  • the number density of the CNT forest was about 10 13 lines / m 2 .
  • the crystallinity of the CNTs constituting the CNT forest was evaluated by Raman scattering measurement, the ratio IG / ID of the G peak intensity of the graphene in-plane vibration mode and the D peak intensity caused by the disorder vibration was 2 to 3. there were.
  • Cu (acac) 2 copper (II) acetylacetonate (Cu (acac) 2 ) is used as a metal element-containing substance RS, and CNT forest 30 is modified with copper fine particles to obtain a modified CNT forest. rice field. Specifically, the CNT forest 30 was placed in the reaction chamber RC that could be sealed, and Cu (acac) 2 , which is a metal element-containing substance RS, was placed in the vicinity thereof. Next, the reaction chamber RC was filled with argon gas and the pressure was maintained at 30 Torr. Subsequently, the inside of the reaction chamber RC was heated at a temperature of 400 ° C. for 15 minutes using the heater 20.
  • the CNTs of the CNT forest 30 were modified by the copper fine particles produced by separating Cu (acac) 2 at 200 ° C. to obtain the modified CNT forest 40.
  • the images shown in FIGS. 3 to 7 are observation views of the manufactured modified CNT forest 40.
  • the fine particles observed in these figures were made of a Cu-based conductive material.
  • the modified CNT forest produced by the same method as this method was observed using a scanning transmission electron microscope to measure the diameter of the CNT and the particle size of the fine particles.
  • 14 to 17 are diagrams showing the observation results of the modified CNT forest
  • FIG. 18 is a histogram showing the measurement results of the particle size of the fine particles.
  • the particle size was measured for any 62 fine particles selected from the images shown in FIGS. 14 to 17, and the average value of the particle size (average particle size D2) was 29.2 nm, and the standard deviation thereof. Was 10.7 nm. Therefore, the ratio R defined by the above equation (1) was 9.7.
  • the obtained modified CNT forest was spun as shown in FIG. 9 to obtain CNT plyed yarn.
  • the diameter of the obtained CNT plyed yarn was 30 to 35 ⁇ m.
  • FIG. 19 is an observation view of the appearance of the conductive member thus obtained
  • FIG. 20 is an enlarged observation view of the appearance of the conductive member.
  • FIG. 21 is an observation view showing a cross section of a conductive member manufactured by including plating with a current density of 5 mA / cm 2 .
  • FIG. 22 shows a cross section of a comparative conductive member made by spinning a CNT forest unmodified with copper fine particles and plating the CNT yarn with a current density of 5 mA / cm 2 . It is a figure.
  • FIG. 23 is an observation view showing a cross section of a conductive member manufactured by including plating with a current density of 4 mA / cm 2 .
  • FIG. 19 shows a cross section of a comparative conductive member made by spinning a CNT forest unmodified with copper fine particles and plating the CNT yarn with a current density of 4 mA / cm 2 . It is a figure.
  • FIGS. 25 to 28 show the measurement results of CNT yarns obtained by spinning CNT forests not modified with copper fine particles (Cu fraction is 0 vol%) and the results of general pure copper wiring (Cu fraction). 100 vol%) is also shown for comparison.
  • the conductive member has better electrical characteristics than the CNT yarn formed only of CNTs. Specifically, when the volume ratio of copper in the conductive member is 30 vol% or more, the conductivity and the specific conductivity which are substantially not significantly different from those of copper can be obtained, and when the volume ratio of copper is 35 vol% or more, the conductivity is obtained. A current capacity and a specific current capacity that are substantially the same as those of copper were obtained.
  • Example 2 Spinnable CNT Forest Synthesis A vertically oriented CNT was grown on a substrate by a two-step floating catalyst CVD method. Details of the method for synthesizing spunable CNT forests have been described in previous reports.
  • a solution containing ferrocene, which is a catalyst precursor of CNT, contained in ethanol is atomized by ultrasonic waves and conveyed onto a Si substrate in a CVD chamber by Ar of a carrier gas. Ferrocene was thermally decomposed on a Si substrate at 700 ° C. to form Fe nanoparticles in situ.
  • acetylene was supplied as the carbon source gas, and chlorine gas was supplied for the purpose of lengthening the CNT.
  • a CNT forest having a diameter of 10 nm and a forest length of about 300 ⁇ m was synthesized with a CNT growth temperature of 700 ° C. and a growth pressure of 18 Torr. The CNT forest thus obtained could be spun.
  • Cu-NPs Copper nanoparticles (hereinafter, also referred to as “Cu-NPs”) were supported on the CNT forest.
  • Cu (acac) 2 which is a precursor of Cu-NPs, and a spinnable CNT forest were placed in a CVD chamber and held at 400 ° C. for 15 minutes in a 100% Ar atmosphere of 30 Torr. In this process, Cu (acac) 2 evaporates and diffuses and thermally decomposes on the CNT surface. Then, it was thermally decomposed on the surface of the CNT, and Cu-NPs were nucleated.
  • the spunable CNT forest thus obtained is also referred to as a “Cu-NPs-supported CNT forest”.
  • the CNT twisted yarn thus obtained is also referred to as "Cu-NPs-supported CNT twisted yarn”.
  • CNT plying was also produced from a CNT forest that did not support Cu-NPs.
  • this CNT plying yarn is referred to as "unsupported CNT plying yarn”.
  • a filamentous conductive member (hereinafter, also referred to as "CNT / Cu-wire") including a CNT continuum having a yarn shape (CNT twisted yarn) and a plating-based substance deposited on at least a part of the CNTs constituting the CNT twisted yarn. .)
  • plating-based substance means a general term for a plating substance (a substance formed by plating) and a substance based on the plating substance (corresponding to a reduced body of copper plating in this example).
  • the current capacity was measured using the two-terminal method under high vacuum. If the measurement length of the two-terminal method is short, heat escapes to the electrodes, so the measurement length was set to 1 cm for the purpose of measuring the current capacity of the true sample. Further, the current density when the yarn is broken is defined as the current capacity.
  • the tensile characteristics were a tensile tester (“EZ-L” manufactured by Shimadzu Corporation), the number of measurements was 5, the measurement length was 1 cm, and the tensile speed was 0.05 mm / min. The tensile strain was measured with a non-contact elongation meter (“TRViewX” manufactured by Shimadzu Corporation).
  • the measurement results of CNT / Cu-wire obtained by the above manufacturing method are shown below.
  • the amount of Cu-NPs supported can be determined by parameters such as the amount of precursor and temperature.
  • the particle size can be controlled.
  • Cu (acac) 2 is a sublimable organic compound that sublimates and thermally decomposes at a relatively low temperature. Therefore, it can be said that it is suitable as a precursor that diffuses into the inside of the CNT forest with steam and supports Cu-NPs on the CNT surface in the entire CNT forest.
  • the thermal decomposition rate of Cu (acac) 2 changes greatly depending on the pressure and temperature in the chamber. When the temperature is high, the thermal decomposition rate is high, so that Cu-NPs are supported from the side surface of the CNT forest, resulting in the inability to support the inside of the CNT forest.
  • the supporting conditions of Cu-NPs were carefully examined to obtain a spunable CNT forest that was uniformly supported up to the inside of the CNT forest.
  • FIGS. 30 (A) to 30 (C) The secondary electron images of the CNT forest carrying Cu-NPs when the amount of Cu (acac) 2 is changed to 10 mg, 30 mg, and 100 mg are shown in FIGS. 30 (A) to 30 (C).
  • FIG. 30 (A) when the amount of Cu (acac) 2 is as small as 10 mg, the amount of Cu-NPs formed on the CNT surface is small, and the amount of Cu-NPs supported is small, and the CNTs not supported by Cu-NPs. Also existed. However, the spinnability was high as in the CNT forest which did not support Cu-NPs.
  • Cu (acac) 2 was used as a precursor because the purpose was to combine with copper, but other acetylacetonate complexes (Pt (acac) 2 , Ni (acac) 2 , Zn ( By using acac) 2 etc.), nanoparticles of various metals can be similarly supported in the CNT forest. Therefore, the method according to this embodiment can be utilized not only as a wiring material but also as an electrode material for a battery or a capacitor.
  • the range of applications is wide, such as Cu-NPs-supported CNT forest, Cu-NPs-supported CNT sheet, and Cu-NPs-supported CNT twisted yarn.
  • the method used in this embodiment has good handleability and is convenient for the user, which is also an advantage.
  • FIG. 31 (A) shows a composite yarn (hereinafter, “Mixed CNT / Cu—” in which copper is precipitated on a CNT twisted yarn (Cu-NPs-supported CNT twisted yarn) carrying Cu-NPs in advance using a CNT having a diameter of about 10 nm. It may be described as "wire”). It is a figure which shows the cross section secondary electron image.
  • CNT / Cu composite yarn may be used as a general term for Mixed CNT / Cu-wire and Unmixed CNT / Cu-wire.
  • the Unmixed CNT / Cu-wire has a core-clad structure in which a large amount of copper is deposited on the outer peripheral portion of the CNT plying yarn (the CNT plying yarn is the core and the copper is the clad), as shown in FIG. 31 (B). Was forming).
  • copper deposited in an island shape was also present inside the CNT plyed yarn.
  • Copper ions in the plating solution tend to precipitate as metallic copper on the surface of Cu-NPs, which is stable in surface energy.
  • Cu-NPs are formed on the entire CNT twisted yarn, and copper ions diffused inside the CNT twisted yarn during plating are deposited as metallic copper on the Cu-NPs surface. Further, since the distance between the CNT bundles of the CNT twisted yarn is about 200 nm, it is considered that the copper ions are sufficiently diffused throughout the CNT twisted yarn due to the impregnation of the plating solution before energization.
  • FIG. 32 (A) A transmitted electron image of a mixed CNT / Cu-wire orthogonal cross section (a cross section at a plane orthogonal to the extending direction of the CNT) is shown in FIG. 32 (A), and a high magnification image thereof is shown in FIG. 32 (B).
  • the particle size of the precipitated copper is several hundred nm.
  • copper is deposited between the CNT bundles and is in close contact with the CNT surface. Almost no voids were found between the copper and the CNTs, but nanovoids of several tens of nm were present between the CNT bundles. Further, from the high magnification image (FIG.
  • FIG. 33 (A) A transmitted electron image of a parallel cross section of the Mixed CNT / Cu-wire (a cross section in a plane including the extending direction of the CNT) is shown in FIG. 33 (A), and a high magnification image thereof is shown in FIG. 33 (B). As shown in these figures, the CNTs and copper were in continuous contact with each other in the longitudinal direction. (3) Electrical conduction characteristics of CNT / Cu-wire
  • FIG. 34 (A) shows the room temperature conductivity of Mixed CNT / Cu-wire and Unmixed CNT / Cu-wire. Data for CNT plying and copper wire (purity 99.99%) are also shown for comparison.
  • the copper volume content of CNT / Cu-ware which is the horizontal axis of FIG. 34 (A), is deposited in CNT / Cu-ware from the increment of the weight of the CNT twisted yarn before precipitating CNT / Cu-ware and copper. It was calculated by calculating the volume of copper and dividing by the volume of CNT / Cu-wire.
  • FIG. 34 (B) is a graph in which the vertical axis of FIG. 34 (A) is a linear scale.
  • the conductivity of the Mixed CNT / Cu-wire is 2.41 ⁇ 105 S / cm, and the conductivity of the Unmixed CNT / Cu-wire is 4.26 ⁇ 10 4 S / cm. Met.
  • the conductivity of CNT plying is 2.35 ⁇ 10 2 S / cm, which is three orders of magnitude smaller than the conductivity of copper wire (4.5 ⁇ 10 5 S / cm).
  • the conductivity of CNT / Cu-wire increased as the volume ratio of copper increased.
  • the Mixed CNT / Cu-wire has a substantially linear relationship with the copper wire, and free electrons moving in the copper matrix dominate as carriers.
  • Unmixed CNT / Cu-wire is lower than the linear relationship. From the cross-sectional secondary electron image of FIG. 31 (B), copper deposited in an island shape can be seen inside the CNT / Cu-wire, so that copper that does not contribute to conductivity is present. As a result, it is considered that the conductivity decreased with respect to the copper content.
  • FIG. 35 shows the temperature dependence of the electrical resistivity in which each sample is normalized by the value at 300K.
  • the electrical resistivity (broken line) of the copper wire increased in proportion to the temperature due to phonon scattering, and the temperature coefficient of resistance (TCR) was 3.3 ⁇ 10 -3 K -1 . ..
  • the electrical resistivity of Mixed CNT / Cu-ware (solid line) and the electrical resistivity of Unmixed CNT / Cu-ware (dotted line) increase with increasing temperature, but the TCR is 1.2 ⁇ 10 -3 K -1 respectively. , 2.0 ⁇ 10 -3 K -1 , which is smaller than copper wire. From this, it is considered that the phonon scattering of electrons is suppressed by CNT.
  • the temperature coefficient of resistance (TCR) in the range of 300K to 450K is preferably 1.8 ⁇ 10 -3K -1 or less when the longitudinal conductivity is measured. , 1.5 ⁇ 10 -3 K -1 or less is more preferable, and 1.2 ⁇ 10 -3 K -1 or less is particularly preferable.
  • FIG. 36 shows the temperature dependence of the specific conductivity between the mixed CNT / Cu-wire and the copper wire.
  • the specific conductivity (solid line) of the Mixed CNT / Cu-wire is smaller than the specific conductivity (broken line) of the copper wire because it is a CNT that does not contribute to electrical conduction at room temperature (300K).
  • the specific conductivity of the Mixed CNT / Cu-wire reverses the specific conductivity of the copper wire at 370K. That is, it was confirmed that at 400 K or higher, the specific conductivity of the mixed CNT / Cu-wire is stably realized to be higher than the specific conductivity of the copper wire.
  • the electrical resistivity (dashed line) of the CNT twisted yarn decreased linearly with increasing temperature, and its TCR was ⁇ 0.6 ⁇ 10 -3K -1 . ..
  • the temperature dependence of this negative linear electrical resistance is considered to be influenced by Friedel oscillation.
  • FIG. 37 shows the current capacity of each sample.
  • the current capacity of the Mixed CNT / Cu-wire was 1.3 ⁇ 10 5 A / cm 2
  • the current capacity of the Unmixed CNT / Cu-wire was 5.32 ⁇ 10 4 A / cm 2 .
  • the current capacity of Mixed CNT / Cu-wire is about 2.2 times higher than that of copper wire (5.8 x 10 4 A / cm 2 ) even though the volume content of copper is 56.7%. Indicated.
  • Increasing the current density supplied to the CNT / Cu-ware increases the electrical resistance due to the generation of Joule heat in the CNT / Cu-ware.
  • the mixed CNT / Cu-wire preferably has a current capacity of 105 A / cm 2 or more.
  • FIG. 38 shows a graph showing the relationship between the specific conductivity and the specific current capacity of each sample.
  • the specific conductivity of Mixed CNT / Cu-wire is 4.31 ⁇ 10 4 S ⁇ cm 2 / g, which is about the same as that of copper wire (4.87 ⁇ 10 4 S ⁇ cm 2 / g) and CNT plying (4). .40 x 10 2 S ⁇ cm 2 / g), which is more than two orders of magnitude higher.
  • the result was that the specific conductivity was mostly dependent on the copper content. This also supports that the carriers in the composite are copper free electrons.
  • the specific current capacity of the Mixed CNT / Cu-wire was 2.32 ⁇ 10 4 A ⁇ cm / g, which was 3.6 times larger than the 6.5 ⁇ 10 3 A ⁇ cm / g of the copper wire.
  • the CNT twisted yarn (2.85 ⁇ 104 A ⁇ cm / g) had the largest value. It is known that CNT twisted yarn has a sublimation temperature much higher than that of copper and has a high infrared emissivity, so that it can transport current to a temperature higher than that of copper, and has a specific conductivity that is two orders of magnitude smaller than that of copper but exhibits a high specific current capacity. There is. From the above, the Mixed CNT / Cu-wire is lightweight, yet has high conductivity, and has a current capacity that surpasses that of copper wire, so that it can be expected to be applied as a small-diameter wiring capable of supplying high power.
  • FIG. 39 (A) shows stress-strain diagrams of Mixed CNT / Cu-wire and Unmixed CNT / Cu-wire manufactured using a CNT having a diameter of about 10 nm.
  • stress-strain lines of CNT plyed yarn and copper wire manufactured using CNTs having a diameter of about 10 nm are also shown.
  • the tensile strength of Mixed CNT / Cu-ware was 699 MPa, and the Young's modulus was 70.4 GPa.
  • the tensile strength of the copper wire was 191 MPa and the Young's modulus was 83.5 GPa, and the tensile strength of the CNT twisted yarn was 666 MPa and the Young's modulus was 32.2 GPa.
  • FIG. 39 (B) is a graph showing the relationship between Young's modulus and tensile strength of various samples obtained from the stress-strain diagram of FIG. 39 (A). As shown in FIG.
  • the Young's modulus of Mixed CNT / Cu-ware was significantly increased and the tensile strength was equal to or higher than that of the CNT twisted yarn as a reference.
  • Unmixed CNT / Cu-ware the tensile strength was remarkably reduced and the Young's modulus was also lowered. That is, by comparing Mixed CNT / Cu-wall and Unmixed CNT / Cu-ware, the mixed CNT / Cu-ware, which is a filamentous conductive member, is a blank carbon corresponding to the material obtained by removing the plating-based material from the filamentous conductive member.
  • the tensile strength is 1.0 times or more and the Young's ratio is 1.5 times or more based on the nanotube continuum, that is, the CNT twisted yarn. It is more preferable that the Young's modulus of the Mixed CNT / Cu-ware is 2.0 times or more based on the CNT twisted yarn.
  • FIG. 40 (A) The secondary electron image of the tensile break portion of the Mixed CNT / Cu-wire is shown in FIG. 40 (A), and the secondary electron image of the tensile break portion of the Unmixed CNT / Cu-wire is shown in FIG. 40 (B).
  • FIG. 40 (A) the CNT was pulled out shortly at the broken portion of the Mixed CNT / Cu-ware.
  • FIG. 40 (B) in the Unmixed CNT / Cu-wire, the copper on the outer peripheral portion (clad) was broken and slipped, and the CNT twisted yarn was pulled out for a long time.
  • FIG. 41 (A) is a diagram showing a secondary electron image of a composite yarn in which copper is deposited on a CNT twisted yarn carrying Cu-NPs.
  • FIG. 41 (B) is a diagram showing a secondary electron image of a buckled portion of a composite yarn in which copper is deposited on a CNT twisted yarn that does not support Cu-NPs.
  • the Mixed CNT / Cu-ware can be deformed with a small curvature.
  • This composite yarn was flexible because it was a homogeneous medium in which CNT and copper were homogeneously mixed.
  • FIG. 41 (B) the Unmixed CNT / Cu-ware easily buckles and fractures.
  • Example 2 a CNT / Cu composite yarn containing CNTs uniformly in a high proportion was produced. Due to the synergistic effect of CNT and copper, it is an innovative new material with high electrical conductivity, low TCR, high current capacity, high tensile properties and high flexibility. Homogeneous CNT / Cu-wire can be expected as a new lightweight wiring material for drone motors and earphones, small coils for small actuators, and wiring for small electronic device systems with high energy density.
  • the dry CNT spinning technique in which vapor phase nanoparticles are deposited in order to obtain a homogeneous composite material is a new technique that adds a new aspect to the CNT application. Since CNTs carrying nanoparticles can form various structures such as long fibers, sheets, and three-dimensional structures, CNTs with various functionalities can be applied in the future.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The purpose of the present invention is to provide: a modified CNT forest in which a CNT forest is modified with another substance; a CNT aligned aggregate which comprises a spun product of the modified CNT forest; a gas-permeable sheet which comprises the CNT aligned aggregate; a catalyst electrode for fuel cells, which is provided with the gas-permeable sheet; an electroconductive member and a thread-like electroconductive member, each of which comprises the modified CNT forest or the CNT aligned aggregate; an interlayer heat-conductive material which comprises the electroconductive member; and a method for producing the modified CNT forest. The modified carbon nanotube forest (40) according to the present invention comprises carbon nanotubes (50) that are aligned in a predetermined direction and microparticles (70) supported on the carbon nanotubes (50), can be spun, and preferably has a ratio R of 3 or more, in which the ratio R is defined by formula (1) below using an adjacent gap distance D1 between the carbon nanotubes (50) and an average particle diameter D2 of the microparticles (70). It is preferred that the microparticles (70) have electroconductivity. (1): R = D1/D2 The adjacent gap distance D1 is expressed by formula (2) using the number density A (unit: carbon nanotubes/m2) of the modified carbon nanotube forest (40) and the average diameter D3 of the carbon nanotubes (50). (2): D1 = A-1/2-D3

Description

修飾カーボンナノチューブフォレスト、カーボンナノチューブ連続体、ガス透過性シート、燃料電池の触媒電極、導電性部材、糸状導電性部材、層間熱伝導材料、および修飾カーボンナノチューブフォレストの製造方法Method for manufacturing modified carbon nanotube forest, carbon nanotube continuum, gas permeable sheet, catalyst electrode of fuel cell, conductive member, filamentous conductive member, interlayer heat conductive material, and modified carbon nanotube forest.
 本発明は、修飾カーボンナノチューブフォレスト(修飾CNTフォレスト)、当該修飾CNTフォレストの紡績体を備えるカーボンナノチューブ連続体(CNT連続体)、当該CNT連続体を備えるガス透過性シート、当該ガス透過性シートを備える燃料電池の触媒電極、上記の修飾CNTフォレストまたはCNT連続体を備える導電性部材および糸状導電性部材、当該導電性部材を備える層間熱伝導材料、および上記の修飾CNTフォレストの製造方法に関する。 The present invention provides a modified carbon nanotube forest (modified CNT forest), a carbon nanotube continuum (CNT continuum) including a spun body of the modified CNT forest, a gas permeable sheet including the CNT continuum, and the gas permeable sheet. The present invention relates to a catalyst electrode of a fuel cell, a conductive member and a filamentous conductive member including the modified CNT forest or the CNT continuum, an interlayer heat conductive material having the conductive member, and a method for producing the modified CNT forest.
 本明細書において、「CNTフォレスト」とは、複数のカーボンナノチューブ(CNT)の合成構造(以下、かかる合成構造を与えるCNTの個々の形状を「一次構造」といい、上記の合成構造を「二次構造」ともいう。)の一種であって、複数のCNTが長軸方向の少なくとも一部について一定の方向(具体的な一例として、基板が備える面の1つの法線にほぼ平行な方向が挙げられる。)に配向するように成長してなるCNTの集合体を意味する。特許文献1および非特許文献1には、塩化鉄を用いてCNTフォレストを製造する方法(気相触媒法)が開示されている。非特許文献2には、基材上に触媒微粒子を設け、その触媒微粒子からCNTを成長させることによりCNTフォレストを得る方法(固相触媒法)が開示されている。 As used herein, the term "CNT forest" refers to a synthetic structure of a plurality of carbon nanotubes (CNTs) (hereinafter, the individual shapes of CNTs that give such a synthetic structure are referred to as "primary structure", and the above synthetic structure is referred to as "secondary structure". It is a kind of "next structure"), and a direction in which a plurality of CNTs are in a certain direction for at least a part of the long axis direction (as a specific example, a direction substantially parallel to one normal of the surface of the substrate). It means an aggregate of CNTs that grows so as to orient in the above.). Patent Document 1 and Non-Patent Document 1 disclose a method for producing a CNT forest using iron chloride (gas phase catalyst method). Non-Patent Document 2 discloses a method (solid phase catalyst method) in which catalyst fine particles are provided on a substrate and CNTs are grown from the catalyst fine particles to obtain a CNT forest.
 また、本明細書において、CNTフォレストの一部のCNTをつまみ、そのCNTをCNTフォレストから離間するように引っ張ることによって、CNTフォレストから複数のCNTを連続的に引き出すこと(本明細書において、この作業を従来技術に係る繊維から糸を製造する作業に倣って「紡績」ともいう。)によって形成される、複数のCNTが紡績方向に沿って互いにつながった構造を有する構造体を「CNT連続体」という。特許文献2には、複数のCNTが連続して糸状の全体形状を有する二次構造(本明細書においてこのCNT連続体を「CNTヤーン」という。)について開示がある。CNTヤーンを構成するCNTは、CNTヤーンの延在方向(紡績方向に相当する。)に沿って配向している。また、特許文献2には、複数のCNTが連続してウェブ状の全体形状を有する二次構造(本明細書においてこのCNT連続体を「CNTウェブ」という。)について開示がある。CNTウェブを構成するCNTは、CNTウェブの面内方向の一つ(紡績方向に相当する。)に沿って配向している。図29は、気相触媒法により製造されたCNTフォレストからCNTウェブが紡ぎ出されている状態を示す図である。 Further, in the present specification, a plurality of CNTs are continuously withdrawn from the CNT forest by pinching a part of the CNTs in the CNT forest and pulling the CNTs away from the CNT forest (in the present specification, this CNTs are continuously extracted from the CNT forest. The work is also referred to as "spinning" following the work of manufacturing yarn from fibers according to the prior art.) A structure having a structure in which a plurality of CNTs are connected to each other along the spinning direction is a "CNT continuum". ". Patent Document 2 discloses a secondary structure in which a plurality of CNTs have a continuous filamentous overall shape (this CNT continuum is referred to as "CNT yarn" in the present specification). The CNTs constituting the CNT yarn are oriented along the extending direction (corresponding to the spinning direction) of the CNT yarn. Further, Patent Document 2 discloses a secondary structure in which a plurality of CNTs continuously have a web-like overall shape (this CNT continuum is referred to as "CNT web" in the present specification). The CNTs constituting the CNT web are oriented along one of the in-plane directions (corresponding to the spinning direction) of the CNT web. FIG. 29 is a diagram showing a state in which CNT webs are spun from a CNT forest produced by a gas phase catalyst method.
 特許文献3には、延在方向に沿って延びる複数の炭素繊維であって、各炭素繊維がカーボンナノチューブを含む前記複数の炭素繊維と、前記複数の炭素繊維に担持された複数の金属粒子であって、前記複数の金属粒子は、前記延在方向において前記炭素繊維の全体に分散し、各炭素繊維を他の炭素繊維に電気的に接続する前記複数の金属粒子と、を備えるカーボンナノチューブ電極が開示されている。 Patent Document 3 describes a plurality of carbon fibers extending along a extending direction, the plurality of carbon fibers in which each carbon fiber contains a carbon nanotube, and a plurality of metal particles supported on the plurality of carbon fibers. A carbon nanotube electrode comprising the plurality of metal particles dispersed in the entire carbon fiber in the extending direction and electrically connecting each carbon fiber to another carbon fiber. Is disclosed.
 特許文献4には、複数のカーボンナノチューブの端部同士が接合されたカーボンナノチューブ繊維の表面に金属が被着した金属被着ナノチューブ繊維を撚り合わせた金属複合カーボンナノチューブ撚糸であって、前記のカーボンナノチューブ繊維に被着した金属同士の接触部が融着した構造である、金属複合カーボンナノチューブ撚糸が開示されている。 Patent Document 4 describes a metal composite carbon nanotube twisted yarn obtained by twisting metal-walled nanotube fibers in which metal is adhered to the surface of carbon nanotube fibers in which the ends of a plurality of carbon nanotubes are bonded to each other. Disclosed is a metal composite carbon nanotube twisted yarn having a structure in which contact portions between metals adhered to nanotube fibers are fused.
特開2009-196873号公報Japanese Unexamined Patent Publication No. 2009-196873 特許第5664832号公報Japanese Patent No. 5664832 特開2020-102352号公報Japanese Unexamined Patent Publication No. 2020-102352 特開2018-53408号公報Japanese Unexamined Patent Publication No. 2018-53408
 本発明は、CNTフォレストが他の物質によって修飾された修飾CNTフォレスト、当該修飾CNTフォレストの紡績体を備えるCNT連続体、当該CNT連続体を備えるガス透過性シート、当該ガス透過性シートを備える燃料電池の触媒電極、上記の修飾CNTフォレストまたはCNT連続体を備える導電性部材および糸状導電性部材、当該導電性部材を備える層間熱伝導材料、ならびに上記の修飾CNTフォレストの製造方法を提供することを目的とする。 The present invention relates to a modified CNT forest in which the CNT forest is modified with another substance, a CNT continuum having a spun body of the modified CNT forest, a gas permeable sheet having the CNT continuum, and a fuel having the gas permeable sheet. Provided are a catalyst electrode of a battery, a conductive member and a filamentous conductive member provided with the modified CNT forest or CNT continuum described above, an interlayer heat conductive material provided with the conductive member, and a method for producing the modified CNT forest described above. The purpose.
 上記課題を解決するために、提供される本発明は次の態様を含む。
[1]所定の方向に配向したカーボンナノチューブを備えるカーボンナノチューブフォレストと、前記カーボンナノチューブに担持された微粒子とを備え、紡績可能であることを特徴とする修飾カーボンナノチューブフォレスト。
In order to solve the above problems, the provided invention includes the following aspects.
[1] A modified carbon nanotube forest comprising carbon nanotubes oriented in a predetermined direction and fine particles supported on the carbon nanotubes, which can be spun.
[2]前記カーボンナノチューブの隣接間隙D1と前記微粒子の平均粒径D2とを用いて下記式(1)により定義される比Rが3以上である、上記[1]に記載の修飾カーボンナノチューブフォレスト。
  R=D1/D2   (1)
 ここで、前記隣接間隙D1は、前記修飾カーボンナノチューブフォレストの数密度A(単位:本/m2)および前記カーボンナノチューブの平均直径D3を用いて、下記式(2)により表され、前記平均粒径D2および前記平均直径D3は、それぞれ、前記修飾カーボンナノチューブフォレストを電子顕微鏡により観察して測定された、10カ所以上の前記微粒子の直径の算術平均および10カ所以上の前記カーボンナノチューブの直径の算術平均である。
  D1=A-1/2-D3   (2)
[2] The modified carbon nanotube forest according to the above [1], wherein the ratio R defined by the following formula (1) is 3 or more using the adjacent gap D1 of the carbon nanotubes and the average particle size D2 of the fine particles. ..
R = D1 / D2 (1)
Here, the adjacent gap D1 is represented by the following formula (2) using the number density A (unit: book / m 2 ) of the modified carbon nanotube forest and the average diameter D3 of the carbon nanotubes, and the average grain. The diameter D2 and the average diameter D3 are the arithmetic average of the diameters of the fine particles in 10 or more places and the arithmetic of the diameters of the carbon nanotubes in 10 places or more, respectively, measured by observing the modified carbon nanotube forest with an electronic microscope. It is an average.
D1 = A- 1 / 2 -D3 (2)
[3]前記微粒子は導電性を有する、上記[1]または上記[2]に記載の修飾カーボンナノチューブフォレスト。 [3] The modified carbon nanotube forest according to the above [1] or the above [2], wherein the fine particles have conductivity.
[4]前記微粒子は酸化物を含む、上記[1]から上記[3]のいずれか1項に記載の修飾カーボンナノチューブフォレスト。 [4] The modified carbon nanotube forest according to any one of the above [1] to [3], wherein the fine particles contain an oxide.
[5]上記[1]から上記[4]のいずれか1項に記載の修飾カーボンナノチューブフォレストの紡績体を備える、カーボンナノチューブ連続体。 [5] A carbon nanotube continuum comprising a spun body of the modified carbon nanotube forest according to any one of the above [1] to [4].
[6]前記カーボンナノチューブ連続体がウェブ形状を有する、上記[5]に記載のカーボンナノチューブ連続体。 [6] The carbon nanotube continuum according to the above [5], wherein the carbon nanotube continuum has a web shape.
[7]前記カーボンナノチューブ連続体は糸形状を有する、上記[5]に記載のカーボンナノチューブ連続体。 [7] The carbon nanotube continuum according to the above [5], wherein the carbon nanotube continuum has a thread shape.
[8]撚りかけられている、上記[7]に記載のカーボンナノチューブ連続体。 [8] The carbon nanotube continuum according to the above [7], which is twisted.
[9]上記[6]に記載されるウェブ形状を有するカーボンナノチューブ連続体を備え、前記カーボンナノチューブ連続体を構成するカーボンナノチューブの少なくとも一部は、その配向方向に交差する方向に隙間を有して隣り合うこと
を特徴とするガス透過性シート。
[9] The carbon nanotube continuum having the web shape according to the above [6] is provided, and at least a part of the carbon nanotubes constituting the carbon nanotube continuum has a gap in a direction intersecting the orientation direction thereof. A gas permeable sheet characterized by being adjacent to each other.
[10]前記カーボンナノチューブは、PtおよびCoからなる群から選ばれる一種以上の元素を含む微粒子を担持する、上記[9]に記載のガス透過性シート。 [10] The gas permeable sheet according to the above [9], wherein the carbon nanotubes carry fine particles containing one or more elements selected from the group consisting of Pt and Co.
[11]上記[9]または上記[10]に記載のガス透過性シートを備える燃料電池の触媒電極。 [11] A catalyst electrode of a fuel cell provided with the gas permeable sheet according to the above [9] or the above [10].
[12]上記[1]から上記[3]のいずれか1項に記載の修飾カーボンナノチューブフォレストと、前記修飾カーボンナノチューブフォレストの内部に位置するカーボンナノチューブに堆積しためっき系物質を備えることを特徴とする導電性部材。 [12] It is characterized by comprising the modified carbon nanotube forest according to any one of the above [1] to [3] and a plating-based material deposited on the carbon nanotubes located inside the modified carbon nanotube forest. Conductive member.
[13]上記[12]に記載される導電性部材を備える、層間熱伝導材料。 [13] An interlayer heat conductive material comprising the conductive member according to the above [12].
[14]上記[5]から上記[8]のいずれかに記載されるカーボンナノチューブ連続体と、前記カーボンナノチューブ連続体の内部に位置するカーボンナノチューブに堆積しためっき物質とを備えることを特徴とする導電性部材。 [14] The carbon nanotube continuum according to any one of the above [5] to [8] and a plating substance deposited on the carbon nanotubes located inside the carbon nanotube continuum are provided. Conductive member.
[15]前記カーボンナノチューブ連続体のカーボンナノチューブは導電性を有する微粒子を担持する、上記[14]に記載の導電性部材。 [15] The conductive member according to the above [14], wherein the carbon nanotubes of the carbon nanotube continuum carry fine particles having conductivity.
[16]上記[1]から上記[4]のいずれかに記載の修飾カーボンナノチューブフォレストの製造方法であって、金属元素含有物質を気相状態にしてカーボンナノチューブフォレストに供給し、前記金属元素含有物質を分解して金属基物質を生成し、前記金属基物質から形成された微粒子を、前記カーボンナノチューブフォレストに担持させることを備えることを特徴とする修飾カーボンナノチューブフォレストの製造方法。 [16] The method for producing a modified carbon nanotube forest according to any one of the above [1] to [4], wherein the metal element-containing substance is supplied to the carbon nanotube forest in a gas phase state and contains the metal element. A method for producing a modified carbon nanotube forest, which comprises decomposing a substance to generate a metal-based substance and supporting fine particles formed from the metal-based substance on the carbon nanotube forest.
[17]上記[6]または上記[7]に記載される糸形状を有するカーボンナノチューブ連続体と、前記カーボンナノチューブ連続体を構成するカーボンナノチューブの少なくとも一部に堆積しためっき系物質とを備える糸状導電性部材。 [17] A filament having a carbon nanotube continuum having a thread shape according to the above [6] or [7] and a plating-based substance deposited on at least a part of the carbon nanotubes constituting the carbon nanotube continuum. Conductive member.
[18]電流容量が105A/cm2以上である、上記[17]に記載の糸状導電性部材。 [18] The filamentous conductive member according to the above [17], which has a current capacity of 105 A / cm 2 or more.
[19]長手方向の導電率を測定したときに、300Kから450Kの範囲での抵抗温度係数が1.8×10-3-1以下である、上記[17]または上記[18]に記載の糸状導電性部材。 [19] The above-mentioned [17] or the above-mentioned [18], wherein the temperature coefficient of resistance in the range of 300K to 450K is 1.8 × 10 -3K -1 or less when the conductivity in the longitudinal direction is measured. Thread-like conductive member.
[20]長手方向で測定された導電率に基づき算出される比導電率が、400K以上で銅線の比導電率よりも高い、上記[17]から上記[19]のいずれかに記載の糸状導電性部材。 [20] The thread shape according to any one of the above [17] to the above [19], wherein the specific conductivity calculated based on the conductivity measured in the longitudinal direction is 400 K or more and higher than the specific conductivity of the copper wire. Conductive member.
[21]前記糸状導電部材から前記めっき系物質を除いた材料に相当するブランクカーボンナノチューブ連続体を基準として、引張強度が1.0倍以上であり、ヤング率が1.5倍以上である、上記[17]から上記[20]のいずれかに記載の糸状導電性部材。 [21] The tensile strength is 1.0 times or more and the Young's modulus is 1.5 times or more based on the blank carbon nanotube continuum corresponding to the material obtained by removing the plating-based substance from the filamentous conductive member. The filamentous conductive member according to any one of the above [17] to the above [20].
 本発明により、修飾CNTフォレスト、当該修飾CNTフォレストの紡績体を備えるCNT連続体、当該CNT連続体を備えるガス透過性シート、当該ガス透過性シートを備える燃料電池の触媒電極、上記の修飾CNTフォレストまたはCNT連続体を備える導電性部材および糸状導電性部材、当該導電性部材を備える層間熱伝導材料、ならびに上記の修飾CNTフォレストの製造方法が提供される。 According to the present invention, a modified CNT forest, a CNT continuum including a spun body of the modified CNT forest, a gas permeable sheet including the CNT continuum, a catalyst electrode of a fuel cell including the gas permeable sheet, and the above-mentioned modified CNT forest. Alternatively, a conductive member and a filamentous conductive member provided with a CNT continuum, an interlayer heat conductive material provided with the conductive member, and a method for producing the above-mentioned modified CNT forest are provided.
CNTフォレストから修飾CNTフォレストを得る製造装置の一例を概念的に示す図である。It is a figure which conceptually shows an example of the manufacturing apparatus which obtains a modified CNT forest from a CNT forest. CNTフォレストの側面の一部の観察結果を示す図である。It is a figure which shows the observation result of a part of the side surface of a CNT forest. 修飾CNTフォレストの側面の一部の観察結果を示す図である。It is a figure which shows the observation result of a part of the side surface of a modified CNT forest. 図3の部分拡大図である。It is a partially enlarged view of FIG. 図4に示される側面について反射電子像により観察した結果を示す図である。It is a figure which shows the result of observing the side surface shown in FIG. 4 by the backscattered electron image. CNTフォレストの一部を除去して得られた断面の一部の観察結果を示す図である。It is a figure which shows the observation result of the part of the cross section obtained by removing a part of the CNT forest. 図6に示される側面について反射電子像により観察した結果を示す図である。It is a figure which shows the result of observing the side surface shown in FIG. 6 by the backscattered electron image. 修飾CNTフォレストが紡績される様子を概念的に示す図である。It is a figure which conceptually shows how the modified CNT forest is spun. (a)修飾CNTフォレストを紡績して得られたCNTヤーンに撚りかけしてCNT撚糸を作製している様子を示す図、(b)修飾CNTフォレストを紡績する装置の構成を概念的に示す図である。(A) A diagram showing how a CNT twisted yarn is produced by twisting a CNT yarn obtained by spinning a modified CNT forest, and (b) a diagram conceptually showing a configuration of an apparatus for spinning a modified CNT forest. Is. CNT撚糸の観察結果を示す図である。It is a figure which shows the observation result of the CNT plying. 図10の部分拡大図である。It is a partially enlarged view of FIG. (a)CNT撚糸の断面の観察図、(b)図12(a)の断面の中心部分を部分的に拡大して反射電子により観察した図である。(A) An observation view of a cross section of a CNT twisted yarn, and (b) a view of a central portion of the cross section of FIG. 12 (a) partially enlarged and observed by backscattered electrons. 硫酸銅浴の電気めっきによりCNT撚糸にめっきする装置の構成を概念的に示した図である。It is a figure which conceptually showed the structure of the apparatus which plating the CNT plying by the electroplating of the copper sulfate bath. 修飾CNTフォレストの観察結果を示す図である。It is a figure which shows the observation result of the modified CNT forest. 修飾CNTフォレストの観察結果を示す図である。It is a figure which shows the observation result of the modified CNT forest. 修飾CNTフォレストの観察結果を示す図である。It is a figure which shows the observation result of the modified CNT forest. 修飾CNTフォレストの観察結果を示す図である。It is a figure which shows the observation result of the modified CNT forest. 微粒子の粒径の測定結果を示すヒストグラムである。It is a histogram which shows the measurement result of the particle diameter of a fine particle. 導電性部材の外観の観察図である。It is an observation view of the appearance of a conductive member. 図19の導電性部材の拡大観察図である。It is an enlarged observation view of the conductive member of FIG. 電流密度を5mA/cm2としてめっきすることを含んで作製された導電性部材の断面を示す観察図である。FIG. 3 is an observation diagram showing a cross section of a conductive member produced including plating with a current density of 5 mA / cm 2 . 銅微粒子による修飾なしに作製された比較用導電性部材の断面を示す観察図である。It is an observation view which shows the cross section of the comparative conductive member manufactured without modification with copper fine particles. (a)電流密度を4mA/cm2としてめっきすることを含んで作製された導電性部材の断面を示す観察図、(b)図23(a)の断面の中心部分を部分的に拡大して観察した図である。(A) An observation view showing a cross section of a conductive member produced including plating with a current density of 4 mA / cm 2 , (b) a partially enlarged central portion of the cross section of FIG. 23 (a). It is an observed figure. 銅微粒子による修飾なしに比較用導電性部材の断面を示す観察図である。It is an observation view which shows the cross section of the comparative conductive member without modification with copper fine particles. 導電性部材の導電率(単位:S/cm)の測定結果を示すグラフである。It is a graph which shows the measurement result of the conductivity (unit: S / cm) of a conductive member. 導電性部材の比導電率(単位:S・m2・kg-1)の測定結果を示すグラフである。It is a graph which shows the measurement result of the specific conductivity (unit: S · m 2 · kg -1 ) of a conductive member. 導電性部材の電流容量(単位:A/cm2)の測定結果を示すグラフである。It is a graph which shows the measurement result of the current capacity (unit: A / cm 2 ) of a conductive member. 導電性部材の比電流容量(単位:A・cm・kg-1)の測定結果を示すグラフである。It is a graph which shows the measurement result of the specific current capacity (unit: A · cm · kg -1 ) of a conductive member. 気相触媒法により製造されたCNTフォレストからCNTウェブが紡ぎ出された状態を示す図である。It is a figure which shows the state which the CNT web was spun from the CNT forest produced by the gas phase catalyst method. Cu(acac)2の使用量を10mgとして製造された、銅ナノ粒子を担持したCNTフォレストの二次電子像を示す図である。It is a figure which shows the secondary electron image of the CNT forest which carried the copper nanoparticles, which was produced with the amount of Cu (acac) 2 used as 10 mg. Cu(acac)2の使用量を30mgとして製造された、銅ナノ粒子を担持したCNTフォレストの二次電子像を示す図である。It is a figure which shows the secondary electron image of the CNT forest which carried the copper nanoparticles, which was produced with the amount of Cu (acac) 2 used as 30 mg. Cu(acac)2の使用量を100mgとして製造された、銅ナノ粒子を担持したCNTフォレストの二次電子像を示す図である。It is a figure which shows the secondary electron image of the CNT forest which carried the copper nanoparticles, which was produced with the amount of Cu (acac) 2 used as 100 mg. Cu-NPsを担持したCNT撚糸に銅を析出させた複合糸の断面二次電子像を示す図である。It is a figure which shows the cross-sectional secondary electron image of the composite yarn which had copper deposited on the CNT twisted yarn which supported Cu-NPs. Cu-NPsを担持していないCNT撚糸に銅を析出させた複合糸の断面二次電子像を示す図である。It is a figure which shows the cross-section secondary electron image of the composite yarn which had copper deposited on the CNT twisted yarn which does not support Cu-NPs. Cu-NPsを担持したCNT撚糸に銅を析出させた複合糸の直交断面の透過電子像を示す図である。It is a figure which shows the transmission electron image of the orthogonal cross section of the composite yarn which had copper deposited on the CNT twisted yarn which supported Cu-NPs. 図32(A)の高倍像を示す図である。It is a figure which shows the high magnification image of FIG. 32 (A). Cu-NPsを担持したCNT撚糸に銅を析出させた複合糸の平行断面の透過電子像を示す図である。It is a figure which shows the transmission electron image of the parallel cross section of the composite yarn which had copper deposited on the CNT twisted yarn which carried Cu-NPs. 図33(A)の高倍像を示す図である。It is a figure which shows the high magnification image of FIG. 33 (A). Cu-NPsを担持したCNT撚糸に銅を析出させた複合糸およびCu-NPsを担持していないCNT撚糸に銅を析出させた複合糸の導電率を示すグラフである。It is a graph which shows the conductivity of the composite yarn which deposited copper in the CNT plying which supported Cu-NPs, and the composite yarn which deposited copper in the CNT twisted yarn which did not support Cu-NPs. 図34(A)の縦軸をリニアスケールにしたグラフである。FIG. 34 (A) is a graph in which the vertical axis is a linear scale. 各サンプルの電気抵抗率を300Kでの値で規格化した電気抵抗率の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the electrical resistivity which standardized the electrical resistivity of each sample by the value at 300K. Cu-NPsを担持したCNT撚糸に銅を析出させた複合糸および銅線の比導電率の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the specific conductivity of a composite yarn which had copper deposited on the CNT twisted yarn which carried Cu—NPs, and a copper wire. 各サンプルの電流容量を示すグラフである。It is a graph which shows the current capacity of each sample. 各サンプルの比導電率と比電流容量との関係を示すグラフである。It is a graph which shows the relationship between the specific conductivity and the specific current capacity of each sample. 各サンプルの応力ひずみ線図である。It is a stress-strain diagram of each sample. 各種サンプルのヤング率と引張強度との関係を示すグラフである。It is a graph which shows the relationship between Young's modulus and tensile strength of various samples. Cu-NPsを担持したCNT撚糸に銅を析出させた複合糸の引張破断部の二次電子像を示す図である。It is a figure which shows the secondary electron image of the tensile fracture part of the composite yarn which had copper deposited on the CNT twisted yarn which supported Cu-NPs. Cu-NPsを担持していないCNT撚糸に銅を析出させた複合糸の引張破断部の二次電子像を示す図である。It is a figure which shows the secondary electron image of the tensile fracture part of the composite yarn which had copper deposited on the CNT twisted yarn which does not support Cu-NPs. Cu-NPsを担持したCNT撚糸に銅を析出させた複合糸の二次電子像を示す図である。It is a figure which shows the secondary electron image of the composite yarn which had copper deposited on the CNT twisted yarn which supported Cu-NPs. Cu-NPsを担持していないCNT撚糸に銅を析出させた複合糸の座屈部の二次電子像を示す図である。It is a figure which shows the secondary electron image of the buckling part of the composite yarn which had copper deposited on the CNT twisted yarn which does not support Cu-NPs.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 本発明の一実施形態に係る修飾CNTフォレスト(修飾カーボンナノチューブフォレスト)は、所定の方向に配向したCNTを備えるCNTフォレストと、CNTに担持された微粒子とを備え、紡績可能である。CNTフォレストは、特許文献1や非特許文献1に開示される製造方法(気相触媒法)、または非特許文献2に開示される製造方法(固相触媒法)により製造することができる。これらの場合において、所定の方向は、CNTフォレストを形成するための基板のCNTフォレスト形成面の法線方向に沿った方向である。 The modified CNT forest (modified carbon nanotube forest) according to the embodiment of the present invention includes a CNT forest having CNTs oriented in a predetermined direction and fine particles supported on the CNTs, and can be spun. The CNT forest can be produced by the production method disclosed in Patent Document 1 and Non-Patent Document 1 (gas phase catalyst method), or the production method disclosed in Non-Patent Document 2 (solid phase catalyst method). In these cases, the predetermined direction is the direction along the normal direction of the CNT forest forming surface of the substrate for forming the CNT forest.
 修飾CNTフォレストは、CNTの隣接間隙D1と微粒子の平均粒径D2とを用いて下記式(1)により定義される比Rが3以上である。
  R=D1/D2   (1)
The modified CNT forest has a ratio R of 3 or more defined by the following formula (1) using the adjacent gap D1 of the CNT and the average particle size D2 of the fine particles.
R = D1 / D2 (1)
 ここで、隣接間隙D1は、修飾CNTフォレストの数密度A(単位:本/m2)およびCNTの平均直径D3により、下記式(2)により表される。平均粒径D2および平均直径D3は、それぞれ、修飾CNTフォレストを側方から電子顕微鏡により観察して測定された、10カ所以上の微粒子の直径の算術平均および10カ所以上のカーボンナノチューブの直径の算術平均である。
  D1=A-1/2-D3   (2)
Here, the adjacent gap D1 is represented by the following formula (2) by the number density A (unit: book / m 2 ) of the modified CNT forest and the average diameter D3 of the CNT. The average particle size D2 and the average diameter D3 are the arithmetic mean of the diameters of 10 or more fine particles and the arithmetic mean of the diameters of 10 or more carbon nanotubes measured by observing the modified CNT forest from the side with an electron microscope, respectively. It is an average.
D1 = A- 1 / 2 -D3 (2)
 修飾CNTフォレストの隣接間隙D1は、微粒子を担持させる方法を適切に設定すれば、CNTフォレストの隣接間隙D1’に実質的に等しくすること(D1=D1’)ができる。非特許文献1に記載されるように、気相触媒法により製造されたCNTフォレストの隣接間隙D1’は、数密度Aが1013本/m2程度であり、平均直径D3が40nm程度であることから、275nm程度となる。一方、非特許文献2に記載されるように、固相触媒法により製造されたCNTフォレストの隣接間隙D1’は、数密度Aが1.5×1015本/m2程度であり、平均直径D3が7nm程度であることから、20nm程度となる。固相触媒法では、数密度Aが5×1015本/m2程度であり、平均直径D3が4nm程度のCNTフォレストを製造することができるため、隣接間隙D1’を10nm程度とすることも可能である。 The adjacent gap D1 of the modified CNT forest can be substantially equal to the adjacent gap D1'of the CNT forest (D1 = D1') if the method for supporting the fine particles is appropriately set. As described in Non-Patent Document 1, the adjacent gap D1'of the CNT forest produced by the gas phase catalyst method has a number density A of about 10 13 lines / m 2 and an average diameter D3 of about 40 nm. Therefore, it is about 275 nm. On the other hand, as described in Non-Patent Document 2, the adjacent gap D1'of the CNT forest produced by the solid phase catalyst method has a number density A of about 1.5 × 10 15 lines / m 2 and an average diameter. Since D3 is about 7 nm, it is about 20 nm. In the solid phase catalyst method, a CNT forest having a number density A of about 5 × 10 15 lines / m 2 and an average diameter D3 of about 4 nm can be produced, so that the adjacent gap D1'can be set to about 10 nm. It is possible.
 微粒子の平均粒径D2は、隣接間隙D1よりも十分に小さいことが、修飾CNTフォレストの紡績性を安定的に確保する観点から重要である。具体的には、上記式(1)により定義される比Rが、3以上であることが好ましく、6以上であることがより好ましく、7以上であることがさらに好ましく、8以上であることが特に好ましく、9以上であることが極めて好ましい。平均粒径D2が大きいと、修飾CNTフォレストにおいて配向方向と交差する方向に隣り合うCNTの間で、隣り合うCNTを連結するように微粒子が存在する可能性が高くなる。隣り合って配置されたCNTは紡績される際に離間すべきであるが、上記のように微粒子が隣り合うCNTを連結している場合には、隣り合って配置されたCNTが離間しにくくなることがあり、紡績不良の原因となりうる。 It is important that the average particle size D2 of the fine particles is sufficiently smaller than the adjacent gap D1 from the viewpoint of stably ensuring the spinnability of the modified CNT forest. Specifically, the ratio R defined by the above formula (1) is preferably 3 or more, more preferably 6 or more, further preferably 7 or more, and 8 or more. It is particularly preferable, and 9 or more is extremely preferable. When the average particle size D2 is large, it is highly possible that fine particles are present in the modified CNT forest so as to connect the adjacent CNTs between the adjacent CNTs in the direction intersecting the orientation direction. CNTs arranged next to each other should be separated when they are spun, but when fine particles connect adjacent CNTs as described above, it becomes difficult for CNTs arranged next to each other to separate. It may cause spinning defects.
 上記のとおり、非特許文献1に基づくと、気相触媒法により製造されたCNTフォレストの隣接間隙D1’は275nm程度であるから、気相触媒法により製造されたCNTフォレストから形成された修飾CNTフォレストのCNTが担持する微粒子の平均粒径D2は、90nm以下となるときに比Rが3以上となる。また、非特許文献2に基づくと、気相触媒法により製造されたCNTフォレストの隣接間隙D1’は、20nm程度であるから、気相触媒法により製造されたCNTフォレストから形成された修飾CNTフォレストのCNTが担持する微粒子の平均粒径D2は、6.7nm以下となるときに比Rが3以上となる。気相触媒法では隣接間隙D1’が10nm程度のCNTフォレストも製造可能であり、この場合には、微粒子の平均粒径D2は3.3nm以下となるときに比Rが3以上となる。 As described above, based on Non-Patent Document 1, since the adjacent gap D1'of the CNT forest produced by the gas phase catalyst method is about 275 nm, the modified CNT formed from the CNT forest produced by the gas phase catalyst method. The average particle size D2 of the fine particles carried by the CNTs of the forest has a ratio R of 3 or more when it is 90 nm or less. Further, based on Non-Patent Document 2, since the adjacent gap D1'of the CNT forest produced by the gas phase catalyst method is about 20 nm, the modified CNT forest formed from the CNT forest produced by the gas phase catalyst method. The average diameter D2 of the fine particles carried by the CNTs is 6.7 nm or less, and the ratio R is 3 or more. In the vapor phase catalyst method, it is possible to produce a CNT forest having an adjacent gap D1'about 10 nm. In this case, the ratio R is 3 or more when the average particle size D2 of the fine particles is 3.3 nm or less.
 修飾CNTフォレストのCNTが担持する微粒子は導電性を有していてもよい。導電性を有する微粒子の典型例は金属系材料からなる場合である。微粒子が金属系材料からなる場合において、構成金属元素は特に限定されない。Au,Ag,Cu,Pt,Ni,Co,Fe,Al,Ti,Zn,W,Crなどが例示される。 The fine particles carried by the CNTs of the modified CNT forest may have conductivity. A typical example of conductive fine particles is that they are made of a metallic material. When the fine particles are made of a metal-based material, the constituent metal elements are not particularly limited. Examples thereof include Au, Ag, Cu, Pt, Ni, Co, Fe, Al, Ti, Zn, W, Cr and the like.
 修飾CNTフォレストのCNTが担持する微粒子は酸化物を含んでいてもよい。微粒子が含む酸化物の具体例として、アルミニウムの酸化物、チタンの酸化物が例示される。微粒子が含む酸化物を構成する金属元素は複数であってもよい。 The fine particles carried by the CNTs of the modified CNT forest may contain oxides. Specific examples of the oxide contained in the fine particles include an aluminum oxide and a titanium oxide. There may be a plurality of metal elements constituting the oxide contained in the fine particles.
 本発明の一実施形態に係る修飾CNTフォレストは、原料の1つであるCNTフォレストのCNTに所定の大きさの微粒子を担持させることができ、得られた修飾CNTフォレストが紡績性を有して入れば、どのような製造方法により製造されてもよい。次に説明する方法によれば、修飾CNTフォレストを効率的に製造することが可能である。 In the modified CNT forest according to the embodiment of the present invention, fine particles of a predetermined size can be carried on the CNT of the CNT forest which is one of the raw materials, and the obtained modified CNT forest has spinnability. If it is included, it may be manufactured by any manufacturing method. According to the method described below, the modified CNT forest can be efficiently produced.
 本発明の一実施形態に係る修飾CNTフォレストの製造方法は、金属元素含有物質を気相状態にしてCNTフォレストに供給し、金属元素含有物質を分解して金属基物質を生成し、金属基物質から形成された微粒子を、CNTフォレストに担持させることを備える。 In the method for producing a modified CNT forest according to an embodiment of the present invention, a metal element-containing substance is supplied to the CNT forest in a gas phase state, the metal element-containing substance is decomposed to generate a metal base substance, and the metal base substance is produced. It is provided that the fine particles formed from the above are supported on the CNT forest.
 CNTフォレストは、公知の方法により製造することができる。具体例として、特許文献1および非特許文献1に記載される気相触媒法による製造方法、非特許文献2に記載される固相触媒法が挙げられる。これらの製造方法により製造されたCNTフォレストは紡績可能である。 The CNT forest can be produced by a known method. Specific examples include the production method by the gas phase catalyst method described in Patent Document 1 and Non-Patent Document 1, and the solid phase catalyst method described in Non-Patent Document 2. The CNT forest produced by these production methods can be spun.
 金属元素含有物質は、気相状態において分解可能であって、分解生成物である金属基物質から微粒子を形成することが可能な物質である。金属元素含有物質として、銅(II)アセチルアセトナート、白金アセチルアセトナートなどの有機金属錯体、金属ハロゲン化物が例示される。 The metal element-containing substance is a substance that can be decomposed in the gas phase state and can form fine particles from the metal-based substance that is a decomposition product. Examples of the metal element-containing substance include organic metal complexes such as copper (II) acetylacetonate and platinum acetylacetonate, and metal halides.
 金属元素含有物質は供給段階では気相である必要はなく、取り扱い性を高める観点から固相や液相であることが好ましい場合もある。この場合において、金属元素含有物質を気相状態にするために、金属元素含有物質を加熱したり、金属元素含有物質が配置された空間を減圧にすることが好ましいこともある。金属元素含有物質の分解は、外部からエネルギーを加えることにより生じる。具体的には、金属元素含有物質を加熱してもよいし、金属元素含有物質に対してレーザ照射したり、電子線などの高エネルギー線を照射したりしてもよい。 The metal element-containing substance does not have to be a gas phase at the supply stage, and may be preferably a solid phase or a liquid phase from the viewpoint of improving handleability. In this case, in order to bring the metal element-containing substance into a gas phase state, it may be preferable to heat the metal element-containing substance or reduce the pressure in the space where the metal element-containing substance is arranged. Decomposition of metal element-containing substances occurs by applying energy from the outside. Specifically, the metal element-containing substance may be heated, the metal element-containing substance may be irradiated with a laser, or a high-energy ray such as an electron beam may be irradiated.
 金属元素含有物質の分解生成物である金属基物質は、合金、金属間化合物を含む金属系材料から構成されていてもよいし、酸化物から構成されていてもよい。生成した金属基物質が凝集したり、自己触媒として機能したりすることにより、微粒子が形成される。 The metal-based substance, which is a decomposition product of the metal element-containing substance, may be composed of a metal-based material including an alloy and an intermetallic compound, or may be composed of an oxide. Fine particles are formed by agglomerating the produced metal-based substance or functioning as an autocatalytic reaction.
 図1は、CNTフォレストから修飾CNTフォレストを得る製造装置の一例を概念的に示す図である。製造装置100は、その内部が反応室RCとなるガラス管10およびガラス管10の側面を覆うように設けられるヒータ20を備え、反応室RCには金属元素含有物質RSが配置され、金属元素含有物質RSの周囲にCNTフォレスト30が配置される。 FIG. 1 is a diagram conceptually showing an example of a manufacturing apparatus for obtaining a modified CNT forest from a CNT forest. The manufacturing apparatus 100 includes a glass tube 10 whose inside is a reaction chamber RC and a heater 20 provided so as to cover the side surface of the glass tube 10. A metal element-containing substance RS is arranged in the reaction chamber RC and contains a metal element. A CNT forest 30 is arranged around the material RS.
 反応室RCを減圧とすると共にヒータ20により加熱して、金属元素含有物質RSを気相状態とする。気相状態となった金属元素含有物質RSは拡散してCNTフォレスト30へと供給され、金属元素含有物質RSが熱分解して金属基物質が生成し、金属基物質に基づく微粒子がCNTフォレスト30のCNTにより担持されて、修飾CNTフォレスト40が得られる。 The reaction chamber RC is depressurized and heated by the heater 20 to bring the metal element-containing substance RS into a gas phase state. The metal element-containing substance RS in the gas phase is diffused and supplied to the CNT forest 30, the metal element-containing substance RS is thermally decomposed to generate a metal-based substance, and the fine particles based on the metal-based substance are CNT forest 30. The modified CNT forest 40 is obtained by being carried by the CNTs of the above.
 微粒子の粒径は、反応室RCに配置する金属元素含有物質RSの量、反応室RCの全圧、反応室RCの温度などにより調整することが可能である。これらのパラメータの具体的な数値範囲は、修飾CNTフォレストの隣接間隙D1により設定される平均粒径D2を実現できるように、金属元素含有物質RSの種類に応じて適宜設定される。なお、これらのパラメータを調整することにより、CNTの微粒子の担持密度を設定することも可能である。 The particle size of the fine particles can be adjusted by the amount of the metal element-containing substance RS arranged in the reaction chamber RC, the total pressure of the reaction chamber RC, the temperature of the reaction chamber RC, and the like. The specific numerical range of these parameters is appropriately set according to the type of the metal element-containing substance RS so that the average particle size D2 set by the adjacent gap D1 of the modified CNT forest can be realized. By adjusting these parameters, it is also possible to set the loading density of the CNT fine particles.
 本実施形態に係る製造方法では、微粒子の原料となる金属元素含有物質を気相状態にしてカーボンナノチューブフォレストに供給するため、微粒子によるCNTの修飾を、CNTフォレストを構成するCNTに対して均一性高く生じさせることができる。すなわち、本実施形態に係る製造方法によれば、CNTフォレストの内部に位置するCNTについても、微粒子による修飾が安定的に実現され、しかも、得られた修飾CNTフォレストは紡績可能性を有することができる。これに対し、例えば特許文献2では、カーボンナノチューブ電極を製造する際に、AgナノメタルインクをCNTフォレストに滴下する。このため、CNTフォレストを構成するCNTのうち、外側に位置するCNTほど微粒子(特許文献2ではAg)が多く付着し、CNTフォレストの内部に位置するCNTには微粒子が付着しにくい。また、特許文献2に開示される方法では、CNTフォレストを構成するCNTに微粒子を付着させるために、CNTフォレストに液体(インク)を滴下する。この際、CNTフォレストを構成するCNTは液体の凝集力によって互いに接触する。互いに接触したCNTの間には強い相互作用が働くため、もはや分離することは不可能である。すなわち、特許文献2に係る修飾CNTフォレストが紡績可能性を有することはありえない。 In the production method according to the present embodiment, in order to supply the metal element-containing substance, which is the raw material of the fine particles, to the carbon nanotube forest in a gas phase state, the modification of CNTs with the fine particles is uniform with respect to the CNTs constituting the CNT forest. Can be raised high. That is, according to the manufacturing method according to the present embodiment, the CNTs located inside the CNT forest can be stably modified with fine particles, and the obtained modified CNT forest has spinning potential. can. On the other hand, for example, in Patent Document 2, Ag nanometal ink is dropped onto the CNT forest when the carbon nanotube electrode is manufactured. Therefore, among the CNTs constituting the CNT forest, more fine particles (Ag in Patent Document 2) adhere to the CNTs located on the outer side, and the fine particles are less likely to adhere to the CNTs located inside the CNT forest. Further, in the method disclosed in Patent Document 2, a liquid (ink) is dropped onto the CNT forest in order to attach fine particles to the CNTs constituting the CNT forest. At this time, the CNTs constituting the CNT forest come into contact with each other due to the cohesive force of the liquid. It is no longer possible to separate because of the strong interaction between the CNTs in contact with each other. That is, the modified CNT forest according to Patent Document 2 cannot have spinning potential.
 図2は、CNTフォレストの側面の一部の観察結果を示す図である。以下、ことわりのない「観察」は電子顕微鏡による観察または光学顕微鏡による観察を意味する。図2は二次電子像である。このCNTフォレストは気相触媒法により製造されたものであって、その数密度Aは1013本/m2程度であり、CNTの平均直径D3は35nm程度である。したがって、CNTフォレストの隣接間隙D1は280nm程度である。図3は、図2のCNTフォレストと同じ製造方法により製造されたCNTフォレストから形成された修飾CNTフォレストの側面の一部の観察結果を示す図である。図4は図3の部分拡大図である。 FIG. 2 is a diagram showing the observation results of a part of the side surface of the CNT forest. Hereinafter, "observation" without mention means observation with an electron microscope or observation with an optical microscope. FIG. 2 is a secondary electron image. This CNT forest is produced by a vapor phase catalyst method, and its number density A is about 10 13 lines / m 2 , and the average diameter D3 of CNTs is about 35 nm. Therefore, the adjacent gap D1 of the CNT forest is about 280 nm. FIG. 3 is a diagram showing the observation results of a part of the side surface of the modified CNT forest formed from the CNT forest manufactured by the same manufacturing method as the CNT forest of FIG. FIG. 4 is a partially enlarged view of FIG.
 図3に示されるように、CNTフォレストのCNTは微粒子を担持しても形態的に変化しない。それゆえ、修飾CNTフォレストの隣接間隙D1はCNTフォレストの隣接間隙D1’に実質的に等しい。図3に示される修飾CNTフォレストは、気相触媒法により製造されたCNTフォレストから形成されたものであるから、その隣接間隙D1は280nm程度である。また、図4に示されるように、CNTに担持される微粒子の直径は100nmよりも十分に小さい。実施例において後述するように、微粒子の平均粒径D2は29.2nmである。したがって、図4に示される修飾CNTフォレストにおいて比Rは9以上であり、修飾CNTフォレストは紡績性を特に安定的に有しているといえる。 As shown in FIG. 3, the CNTs in the CNT forest do not change morphologically even if they carry fine particles. Therefore, the adjacent gap D1 of the modified CNT forest is substantially equal to the adjacent gap D1'of the CNT forest. Since the modified CNT forest shown in FIG. 3 is formed from the CNT forest produced by the gas phase catalyst method, the adjacent gap D1 thereof is about 280 nm. Further, as shown in FIG. 4, the diameter of the fine particles supported on the CNT is sufficiently smaller than 100 nm. As will be described later in the examples, the average particle size D2 of the fine particles is 29.2 nm. Therefore, in the modified CNT forest shown in FIG. 4, the ratio R is 9 or more, and it can be said that the modified CNT forest has particularly stable spinnability.
 図5は、図3に示される側面について反射電子像により観察した結果を示す図であり、CNTに付着した微粒子(Cu系導電性物質からなる)は輝点として観察されている。図6は、CNTフォレストの一部をCNTの配向方向を含む面で除去して得られた断面の一部(すなわち、CNTフォレストの内部)の観察結果を示す図である。図7は、図6に示される側面について反射電子像により観察した結果を示す図であり、CNTに付着した微粒子は輝点として観察されている。図5と図7とを対比すると、図5の方がやや輝点の密度が高いが、図7においても十分な数の輝点が観察され、修飾CNTフォレストは、その内部に位置するCNTについても微粒子を担持していることが確認される。 FIG. 5 is a diagram showing the results of observing the side surface shown in FIG. 3 by a backscattered electron image, and fine particles (consisting of a Cu-based conductive substance) adhering to CNTs are observed as bright spots. FIG. 6 is a diagram showing observation results of a part of a cross section (that is, the inside of the CNT forest) obtained by removing a part of the CNT forest on the surface including the orientation direction of the CNT. FIG. 7 is a diagram showing the results of observing the side surface shown in FIG. 6 by a backscattered electron image, and the fine particles attached to the CNTs are observed as bright spots. Comparing FIGS. 5 and 7, the density of bright spots is slightly higher in FIG. 5, but a sufficient number of bright spots are also observed in FIG. 7, and the modified CNT forest is the CNT located inside the CNTs. It is confirmed that the particles are also carried.
 本発明の一実施形態に係るカーボンナノチューブ連続体(CNT連続体)は、上記の修飾CNTフォレストの紡績体を備える。図8は、修飾CNTフォレストが紡績される様子を概念的に示す図である。基板SB上の修飾CNTフォレスト40の側面の一部に位置するCNT50が方向Dに引き出されることにより、方向D(紡績方向)に配向したCNT50が連続的につながり、CNT連続体60が形成される。図8に示されるように、修飾CNTフォレスト40を構成するCNT50に付着した微粒子70は、紡績されても、その状態を維持する。このため、修飾CNTフォレスト40を紡績して得られたCNT連続体60を構成するCNT50も、微粒子70による修飾が均一性高く実現されている。 The carbon nanotube continuum (CNT continuum) according to the embodiment of the present invention includes the spun body of the above-mentioned modified CNT forest. FIG. 8 is a diagram conceptually showing how a modified CNT forest is spun. By pulling out the CNTs 50 located on a part of the side surface of the modified CNT forest 40 on the substrate SB in the direction D, the CNTs 50 oriented in the direction D (spinning direction) are continuously connected to form the CNT continuum 60. .. As shown in FIG. 8, the fine particles 70 attached to the CNTs 50 constituting the modified CNT forest 40 maintain their state even when they are spun. Therefore, the CNTs 50 constituting the CNT continuum 60 obtained by spinning the modified CNT forest 40 are also highly uniformly modified by the fine particles 70.
 CNT連続体の形状は、紡績プロセスによって決定される。その形状は、ウェブ形状を有していてもよいし、糸形状を有していてもよい。 The shape of the CNT continuum is determined by the spinning process. The shape may have a web shape or a thread shape.
 ウェブ形状を有するCNT連続体(CNTウェブ)は、修飾CNTフォレストの側面の一つを収束させないように引き出すことによって得られる。引き出されたCNTウェブは、例えばドラムに巻き取ることにより、継続的に紡績することが可能である。 A CNT continuum with a web shape (CNT web) is obtained by pulling out one of the sides of the modified CNT forest so that it does not converge. The drawn CNT web can be continuously spun, for example, by winding it on a drum.
 CNTウェブを構成するCNTは、紡績方向に沿うように配向している。紡績方向(すなわち配向方向)で隣り合うCNTの連結状態は、それぞれの端部において他のCNTとの間に生じるファンデルワールス力によって保持されている。このため、CNTウェブを構成するCNTは、その端部以外の部分において、紡績方向に交差する方向(交差方向)に隣り合うCNTと連結しておらず、交差方向に隣り合うCNTの間には隙間がある。すなわち、CNTウェブは、これを構成するCNTが微粒子より修飾されていながらメッシュのような構造を有する。この隙間の長さは、CNTフォレストの数密度や紡績方法(特に紡ぎ出すときの張力)に依存するが、例えば数nm~数μmの範囲に設定することができる。このため、CNTウェブの隙間を適切に調整することにより、気体は透過するが液体は通さないガス透過性シートを形成することができる。 The CNTs that make up the CNT web are oriented along the spinning direction. The connected state of adjacent CNTs in the spinning direction (that is, the orientation direction) is held by the van der Waals force generated between the CNTs and the other CNTs at each end. Therefore, the CNTs constituting the CNT web are not connected to the CNTs adjacent to each other in the direction intersecting the spinning direction (intersection direction) in the portion other than the end portion thereof, and the CNTs adjacent to each other in the intersecting direction are not connected to each other. There is a gap. That is, the CNT web has a mesh-like structure while the CNTs constituting the CNT web are modified from the fine particles. The length of this gap depends on the number density of the CNT forest and the spinning method (particularly the tension at the time of spinning), but can be set in the range of several nm to several μm, for example. Therefore, by appropriately adjusting the gaps in the CNT web, it is possible to form a gas permeable sheet that allows gas to pass through but does not allow liquid to pass through.
 このガス透過性シートは、シートを構成するCNTが微粒子により修飾されているため、シートを透過する気体と微粒子との間に相互作用を生じさせることが可能である。しかも、ガス透過性シートは面内方向に導電性を有する。具体的には、CNTが紡績方向に配向していることに基づき、配向方向に沿った導電率が、配向方向に直交する方向の導電率よりも高い。したがって、CNTを修飾する微粒子として適当な導電性触媒材料(例えば、PtおよびCoを含むPt-Co合金など)を設定すれば、このガス透過性シートを燃料電池の触媒電極の構成要素として用いることが可能となる。 In this gas permeable sheet, since the CNTs constituting the sheet are modified with fine particles, it is possible to cause an interaction between the gas passing through the sheet and the fine particles. Moreover, the gas permeable sheet has in-plane conductivity. Specifically, based on the fact that the CNTs are oriented in the spinning direction, the conductivity along the orientation direction is higher than the conductivity in the direction orthogonal to the orientation direction. Therefore, if an appropriate conductive catalyst material (for example, a Pt-Co alloy containing Pt and Co) is set as the fine particles for modifying CNT, this gas permeable sheet can be used as a component of the catalyst electrode of the fuel cell. Is possible.
 糸形状を有するCNT連続体(CNTヤーン)は、修飾CNTフォレストの側面の一つからCNTウェブが形成されるようにCNTを引き出し、このCNTウェブを紡績方向に収束させてCNTをさらに引き出すことによって得られる。このようにして形成されたCNTヤーンを構成するCNTは、CNTヤーンの糸形状の延在方向に沿って配向している。このため、例えば軸長さが短いCNTを含む液状体をダイスから噴出させて作製された糸状の構造体に比べて、本実施形態に係る製造方法により製造されたCNTヤーンは、糸形状の延在方向に沿った導電率が高く、また機械特性に優れる。 The thread-shaped CNT continuum (CNT yarn) pulls the CNTs from one of the sides of the modified CNT forest so that the CNT webs are formed, and the CNT webs are converged in the spinning direction to further pull out the CNTs. can get. The CNTs constituting the CNT yarn thus formed are oriented along the extending direction of the thread shape of the CNT yarn. Therefore, for example, the CNT yarn produced by the production method according to the present embodiment has a thread-shaped extension as compared with a thread-like structure produced by ejecting a liquid material containing CNT having a short shaft length from a die. It has high conductivity along the existing direction and has excellent mechanical properties.
 前述のように、修飾CNTフォレストは、その内部に位置するCNTについても微粒子により修飾されているため、CNTヤーンは、その中心部に位置するCNTまで微粒子により修飾されている。これに対し、例えば特許文献3に開示される製造方法では、CNTアレイ(CNTフォレストに対応する。)から引き出されたCNT繊維(CNTヤーンに対応する。)に金属粒子を含む分散液を塗布することにより、CNTに金属粒子を付着させる。このため、CNT繊維の外側に位置するCNTほど金属粒子が付着しやすく、CNT繊維の中心部分に位置するCNTには金属粒子が付着しにくい。すなわち、本実施形態に係る製造方法により製造されたCNTヤーンは、特許文献3に開示される製造方法により製造されたCNTヤーンよりも、微粒子の修飾がより均一的に実現されている。 As described above, since the modified CNT forest is also modified with fine particles for the CNTs located inside the modified CNT forest, the CNT yarn is modified with fine particles up to the CNTs located in the center thereof. On the other hand, for example, in the manufacturing method disclosed in Patent Document 3, a dispersion liquid containing metal particles is applied to CNT fibers (corresponding to CNT yarn) drawn from a CNT array (corresponding to CNT forest). This causes the metal particles to adhere to the CNTs. Therefore, the CNTs located on the outer side of the CNT fiber are more likely to have metal particles attached, and the CNTs located in the central portion of the CNT fiber are less likely to have metal particles attached. That is, the CNT yarn produced by the production method according to the present embodiment is more uniformly modified with fine particles than the CNT yarn produced by the production method disclosed in Patent Document 3.
 紡績して得られたCNTヤーンは、そのままボビンに巻き取ってもよいし、追加工しながら巻き取ってもよい。追加工の一つに、撚りかけが挙げられる。図9(a)は、修飾CNTフォレストを紡績して得られたCNTヤーンに撚りかけして撚糸(CNT撚糸)を作製している様子を示す図である。図9(b)は、修飾CNTフォレストを紡績する装置の構成を概念的に示す図である。図10は、CNT撚糸の観察結果を示す図であり、図11は図10の部分拡大図である。図12(a)は、CNT撚糸の断面の観察図である。図12(b)は、図12(a)の断面の中心部分を部分的に拡大して反射電子により観察した図である。撚りかけすることにより、CNTヤーンの機械的強度が高まり、さらに電気特性(導電率)が向上する場合もある。図11および図12に示されるように、CNT撚糸は、その中心部に位置するCNTまで微粒子により修飾されている。 The CNT yarn obtained by spinning may be wound on the bobbin as it is, or may be wound while additional processing. One of the additional work is twisting. FIG. 9A is a diagram showing a state in which a twisted yarn (CNT twisted yarn) is produced by twisting a CNT yarn obtained by spinning a modified CNT forest. FIG. 9B is a diagram conceptually showing the configuration of an apparatus for spinning a modified CNT forest. FIG. 10 is a diagram showing observation results of CNT plying, and FIG. 11 is a partially enlarged view of FIG. 10. FIG. 12A is an observation view of a cross section of the CNT twisted yarn. FIG. 12 (b) is a diagram in which the central portion of the cross section of FIG. 12 (a) is partially enlarged and observed by backscattered electrons. By twisting, the mechanical strength of the CNT yarn is increased, and the electrical characteristics (conductivity) may be further improved. As shown in FIGS. 11 and 12, the CNT plying yarn is modified with fine particles up to the CNT located at the center thereof.
 本発明の一実施形態に係る導電性部材の製造方法は、上記のような導電性を有する微粒子を担持するCNTを有するCNT連続体にめっきして、CNT連続体の内部に位置するCNTにめっき物質を堆積させることを備える。 In the method for manufacturing a conductive member according to an embodiment of the present invention, a CNT continuum having CNTs carrying fine particles having conductivity as described above is plated, and the CNTs located inside the CNT continuum are plated. Prepare to deposit material.
 めっき物質を堆積させるためのプロセスは電気めっきであってもよいし無電解めっきであってもよい。めっき物質は必要に応じ適宜設定される。めっきプロセスの限定されない例示として、硫酸銅浴を用いた電気めっきが挙げられる。図13は、硫酸銅浴の電気めっきによりCNT撚糸にめっきする装置の構成を概念的に示した図である。図13に示されるめっき装置100Aにおいて、マイカシート(雲母箔)110によって保持されたCNT撚糸120を硫酸銅浴130に浸漬させ、硫酸銅浴130に浸漬していないCNT撚糸120の一端をクリップ141で挟んで、クリップ141に接続された配線151を電源160の陰極端子161に電気的に接続する。コの字型の銅箔からなる陽極170を硫酸銅浴130に浸漬させ、硫酸銅浴130に浸漬していない陽極170の一部をクリップ142で挟んで、クリップ142に接続された配線152を電源160の陽極端子162に電気的に接続する。電源160から電流を流すことにより、CNT撚糸120に銅めっきが施されて、導電性部材200が得られる。 The process for depositing the plating substance may be electroplating or electroless plating. The plating substance is appropriately set as necessary. An unrestricted example of the plating process is electroplating with a copper sulfate bath. FIG. 13 is a diagram conceptually showing the configuration of an apparatus for plating CNT plying by electroplating a copper sulfate bath. In the plating apparatus 100A shown in FIG. 13, the CNT twisted yarn 120 held by the mica sheet (mica foil) 110 is immersed in the copper sulfate bath 130, and one end of the CNT twisted yarn 120 not immersed in the copper sulfate bath 130 is clipped 141. The wiring 151 connected to the clip 141 is electrically connected to the cathode terminal 161 of the power supply 160. An anode 170 made of a U-shaped copper foil is immersed in a copper sulfate bath 130, a part of the anode 170 not immersed in the copper sulfate bath 130 is sandwiched between clips 142, and a wiring 152 connected to the clip 142 is connected. It is electrically connected to the anode terminal 162 of the power supply 160. By passing a current from the power supply 160, the CNT plying 120 is copper-plated to obtain the conductive member 200.
 こうして得られた導電性部材はそのままでも十分に高い導電性を有しているが、導電性部材を還元雰囲気で熱処理することによりめっき物質を還元して、導電性部材の導電性をさらに高めることができる。熱処理条件は適宜設定され、限定されない例示をすれば、水素気流(100sccm)下において700℃で1時間である。 The conductive member thus obtained has sufficiently high conductivity as it is, but the plating substance is reduced by heat-treating the conductive member in a reducing atmosphere to further enhance the conductivity of the conductive member. Can be done. The heat treatment conditions are appropriately set, and by way of example without limitation, it is 1 hour at 700 ° C. under a hydrogen stream (100 sccm).
 本発明の他の一実施形態に係る導電性部材は、上記の修飾CNTフォレストと、修飾カーボンナノチューブフォレストの内部に位置するカーボンナノチューブに堆積しためっき物質を備える。前述のように、修飾CNTフォレストを構成するCNTは金属元素含有物質の分解に基づき生成した微粒子を担持しているため、修飾CNTフォレストはその内部に位置するCNTも微粒子により修飾されている。それゆえ、修飾CNTフォレストにめっきすることにより、CNTフォレストの隙間を充填するようにめっき物質が堆積する。CNTに担持される微粒子が導電性を有していれば、めっき物質の堆積はより安定的に実現される。めっき物質として例えば熱伝導率が高い銅を選択すれば、めっきにより得られた導電性部材は、CNTの延在方向に高い熱伝導性を有するため、層間熱伝導材料として好適に用いることができる。 The conductive member according to another embodiment of the present invention includes the above-mentioned modified CNT forest and a plating substance deposited on carbon nanotubes located inside the modified carbon nanotube forest. As described above, since the CNTs constituting the modified CNT forest carry the fine particles generated based on the decomposition of the metal element-containing substance, the modified CNT forest is also modified with the fine particles of the CNTs located inside the modified CNT forest. Therefore, by plating the modified CNT forest, the plating material is deposited so as to fill the gaps in the CNT forest. If the fine particles supported on the CNTs have conductivity, the deposition of the plating substance is realized more stably. If, for example, copper having high thermal conductivity is selected as the plating substance, the conductive member obtained by plating has high thermal conductivity in the extending direction of CNT, and therefore can be suitably used as an interlayer heat conductive material. ..
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
(実施例1)
Hereinafter, the present invention will be described in more detail with reference to Examples and the like, but the scope of the present invention is not limited to these Examples and the like.
(Example 1)
 図1に示される製造装置および図13に示されるめっき装置を用いて、導電性部材を製造した。 The conductive member was manufactured using the manufacturing apparatus shown in FIG. 1 and the plating apparatus shown in FIG.
 特許文献1などに示される製造方法により、下記の条件で成長高さ0.8mm程度のCNTフォレストを基板のCNT形成面上に得た。
 ・炭素源:アセチレン
 ・触媒:固体のFeCl2
By the manufacturing method shown in Patent Document 1 and the like, a CNT forest having a growth height of about 0.8 mm was obtained on the CNT forming surface of the substrate under the following conditions.
-Carbon source: Acetylene-Catalyst: Solid FeCl 2
 得られたCNTフォレストを構成するCNTは、直径が30nm~40nmであった。CNTフォレストを除去した後の基板におけるCNT形成面を観察したところ、CNTフォレストの数密度は1013本/m2程度であった。CNTフォレストを構成するCNTの結晶性をラマン散乱測定により評価したところ、グラフェン面内振動モードのGピーク強度とそのディスオーダー振動に起因するDピーク強度の比IG/IDは2~3であった。 The CNTs constituting the obtained CNT forest had a diameter of 30 nm to 40 nm. When the CNT formation surface on the substrate after removing the CNT forest was observed, the number density of the CNT forest was about 10 13 lines / m 2 . When the crystallinity of the CNTs constituting the CNT forest was evaluated by Raman scattering measurement, the ratio IG / ID of the G peak intensity of the graphene in-plane vibration mode and the D peak intensity caused by the disorder vibration was 2 to 3. there were.
 図1に示される製造装置100を用いて、銅(II)アセチルアセトナート(Cu(acac)2)を金属元素含有物質RSとして、CNTフォレスト30を銅の微粒子で修飾して修飾CNTフォレストを得た。具体的には、密閉可能な反応室RC内にCNTフォレスト30を配置し、その近傍に金属元素含有物質RSであるCu(acac)2を配置した。次に、反応室RCをアルゴンガスで封入してその圧力を30Torrに保持した。続いて、ヒータ20を用いて、反応室RC内を400℃の温度で15分間加熱した。200℃でCu(acac)2が分離して生成した銅の微粒子によりCNTフォレスト30のCNTが修飾されて、修飾CNTフォレスト40が得られた。図3から図7に示される画像は、製造された修飾CNTフォレスト40の観察図である。これらの図において観察された微粒子は、Cu系の導電性材料からなるものであった。 Using the manufacturing apparatus 100 shown in FIG. 1, copper (II) acetylacetonate (Cu (acac) 2 ) is used as a metal element-containing substance RS, and CNT forest 30 is modified with copper fine particles to obtain a modified CNT forest. rice field. Specifically, the CNT forest 30 was placed in the reaction chamber RC that could be sealed, and Cu (acac) 2 , which is a metal element-containing substance RS, was placed in the vicinity thereof. Next, the reaction chamber RC was filled with argon gas and the pressure was maintained at 30 Torr. Subsequently, the inside of the reaction chamber RC was heated at a temperature of 400 ° C. for 15 minutes using the heater 20. The CNTs of the CNT forest 30 were modified by the copper fine particles produced by separating Cu (acac) 2 at 200 ° C. to obtain the modified CNT forest 40. The images shown in FIGS. 3 to 7 are observation views of the manufactured modified CNT forest 40. The fine particles observed in these figures were made of a Cu-based conductive material.
 この方法と同じ方法で製造された修飾CNTフォレストについて走査型透過電子顕微鏡を用いて観察して、CNTの直径および微粒子の粒径を測定した。図14から図17は修飾CNTフォレストの観察結果を示す図であり、図18は微粒子の粒径の測定結果を示すヒストグラムである。図14から図17に示される画像から選ばれた任意の13本のCNTの直径を測定したところ、平均直径(平均直径D3)は36nmであり、標準偏差は8.6nmであった。上記の測定結果から、修飾CNTフォレストの数密度Aは1013本/m2程度であるから、修飾CNTフォレストの隣接間隙D1は280nm(=(1013-2-1/2-36nm)であった。また、図14から図17に示される画像から選ばれた任意の62個の微粒子について粒径の測定を行い、粒径の平均値(平均粒径D2)は29.2nmであり、その標準偏差は10.7nmであった。したがって、上記式(1)により定義される比Rは9.7となった。 The modified CNT forest produced by the same method as this method was observed using a scanning transmission electron microscope to measure the diameter of the CNT and the particle size of the fine particles. 14 to 17 are diagrams showing the observation results of the modified CNT forest, and FIG. 18 is a histogram showing the measurement results of the particle size of the fine particles. When the diameters of any 13 CNTs selected from the images shown in FIGS. 14 to 17 were measured, the average diameter (average diameter D3) was 36 nm and the standard deviation was 8.6 nm. From the above measurement results, since the number density A of the modified CNT forest is about 10 13 lines / m 2 , the adjacent gap D1 of the modified CNT forest is 280 nm (= (10 13 m -2 ) -1 / 2-36 nm). Met. Further, the particle size was measured for any 62 fine particles selected from the images shown in FIGS. 14 to 17, and the average value of the particle size (average particle size D2) was 29.2 nm, and the standard deviation thereof. Was 10.7 nm. Therefore, the ratio R defined by the above equation (1) was 9.7.
 得られた修飾CNTフォレストを、図9に示されるように紡績して、CNT撚糸を得た。得られたCNT撚糸の直径は30~35μmであった。 The obtained modified CNT forest was spun as shown in FIG. 9 to obtain CNT plyed yarn. The diameter of the obtained CNT plyed yarn was 30 to 35 μm.
 図13に示される装置を用いて、得られたCNT撚糸の一部を切断することにより用意された試料に対して銅めっきを行った。具体的な条件は次のとおりである。
・めっき浴:硫酸銅水溶液(田中貴金属社販売「ミクロファブCu300」)
・電流密度:4mA/cm2または5mA/cm2
・めっき時間:1時間
Using the apparatus shown in FIG. 13, copper plating was performed on a sample prepared by cutting a part of the obtained CNT plying yarn. The specific conditions are as follows.
-Plating bath: Copper sulfate aqueous solution ("Microfab Cu300" sold by Tanaka Kikinzoku Co., Ltd.)
-Current density: 4 mA / cm 2 or 5 mA / cm 2
・ Plating time: 1 hour
 CNT撚糸に銅めっきを堆積させてなる導電性部材を、水素気流(100sccm)において、700℃で1時間加熱した。こうして評価対象となる導電性部材を得た。図19は、こうして得られた導電性部材の外観の観察図であり、図20は導電性部材の外観の拡大観察図である。 A conductive member formed by depositing copper plating on CNT plying was heated at 700 ° C. for 1 hour in a hydrogen stream (100 sccm). In this way, a conductive member to be evaluated was obtained. FIG. 19 is an observation view of the appearance of the conductive member thus obtained, and FIG. 20 is an enlarged observation view of the appearance of the conductive member.
 図21は電流密度を5mA/cm2としてめっきすることを含んで作製された導電性部材の断面を示す観察図である。図22は、銅微粒子により修飾されていないCNTフォレストを紡績して得られたCNTヤーンに電流密度5mA/cm2でめっきすることを含んで作製された、比較用導電性部材の断面を示す観察図である。図23は電流密度を4mA/cm2としてめっきすることを含んで作製された導電性部材の断面を示す観察図である。図19は、銅微粒子により修飾されていないCNTフォレストを紡績して得られたCNTヤーンに電流密度4mA/cm2でめっきすることを含んで作製された、比較用導電性部材の断面を示す観察図である。 FIG. 21 is an observation view showing a cross section of a conductive member manufactured by including plating with a current density of 5 mA / cm 2 . FIG. 22 shows a cross section of a comparative conductive member made by spinning a CNT forest unmodified with copper fine particles and plating the CNT yarn with a current density of 5 mA / cm 2 . It is a figure. FIG. 23 is an observation view showing a cross section of a conductive member manufactured by including plating with a current density of 4 mA / cm 2 . FIG. 19 shows a cross section of a comparative conductive member made by spinning a CNT forest unmodified with copper fine particles and plating the CNT yarn with a current density of 4 mA / cm 2 . It is a figure.
 図21と図22との対比、および図23と図24との対比から明らかなように、修飾CNTフォレストを用いることにより、中心側における銅の存在密度が相対的に高い導電性部材が得られた。 As is clear from the contrast between FIGS. 21 and 22 and the contrast between FIGS. 23 and 24, by using the modified CNT forest, a conductive member having a relatively high copper abundance density on the central side can be obtained. rice field.
 めっき条件を調整することにより、銅の体積割合(単位:vol%)が異なる複数の導電性部材を作製した。これらの導電性部材の導電率(単位:S/cm)および比導電率(単位:S・m2・kg-1)ならびに電流容量(単位:A/cm2)および比電流容量(単位:A・cm・kg-1)を測定した。その結果を図25から図28に示す。なお、図23から図28には、銅微粒子により修飾されていないCNTフォレストを紡績して得られたCNTヤーンの測定結果(Cu fractionが0vol%)および一般的な純銅配線の結果(Cu fractionが100vol%)も、対比のために示した。 By adjusting the plating conditions, a plurality of conductive members having different copper volume ratios (unit: vol%) were produced. Conductivity (unit: S / cm) and specific conductivity (unit: S ・ m 2・ kg -1 ) and current capacity (unit: A / cm 2 ) and specific current capacity (unit: A) of these conductive members・ Cm · kg -1 ) was measured. The results are shown in FIGS. 25 to 28. It should be noted that FIGS. 23 to 28 show the measurement results of CNT yarns obtained by spinning CNT forests not modified with copper fine particles (Cu fraction is 0 vol%) and the results of general pure copper wiring (Cu fraction). 100 vol%) is also shown for comparison.
 図23から図28に示されるように、導電性部材は、CNTのみから形成されたCNTヤーンよりも優れた電気特性を有していることが確認された。具体的には、導電性部材における銅の体積割合が30vol%以上であれば、実質的に銅と大差ない導電率、比導電率が得られ、銅の体積割合が35vol%以上であれば、実質的に銅と大差ない電流容量、比電流容量が得られた。 As shown in FIGS. 23 to 28, it was confirmed that the conductive member has better electrical characteristics than the CNT yarn formed only of CNTs. Specifically, when the volume ratio of copper in the conductive member is 30 vol% or more, the conductivity and the specific conductivity which are substantially not significantly different from those of copper can be obtained, and when the volume ratio of copper is 35 vol% or more, the conductivity is obtained. A current capacity and a specific current capacity that are substantially the same as those of copper were obtained.
(実施例2)
(1)紡績性CNTフォレスト合成
 2ステップ浮遊触媒CVD法により基板上に垂直配向CNTを成長させた。紡績性CNTフォレストの合成方法の詳細は過去の報告に記述されている。第1ステップで、CNTの触媒前駆体となるフェロセンをエタノールに含有した溶液を超音波により霧化し、キャリアガスのArによってCVDチャンバー内のSi基板上に搬送する。700℃のSi基板上でフェロセンを熱分解し、in-situでFeナノ粒子を形成した。第2ステップで、炭素源ガスとしてアセチレン、CNT長尺化を目的として塩素ガスを供給した。CNTの成長温度を700℃、成長圧力を18Torrとして直径10nm、フォレスト長が300μm程度のCNTフォレストを合成した。こうして、得られたCNTフォレストは紡績可能であった。
(Example 2)
(1) Spinnable CNT Forest Synthesis A vertically oriented CNT was grown on a substrate by a two-step floating catalyst CVD method. Details of the method for synthesizing spunable CNT forests have been described in previous reports. In the first step, a solution containing ferrocene, which is a catalyst precursor of CNT, contained in ethanol is atomized by ultrasonic waves and conveyed onto a Si substrate in a CVD chamber by Ar of a carrier gas. Ferrocene was thermally decomposed on a Si substrate at 700 ° C. to form Fe nanoparticles in situ. In the second step, acetylene was supplied as the carbon source gas, and chlorine gas was supplied for the purpose of lengthening the CNT. A CNT forest having a diameter of 10 nm and a forest length of about 300 μm was synthesized with a CNT growth temperature of 700 ° C. and a growth pressure of 18 Torr. The CNT forest thus obtained could be spun.
(2)CNTフォレストへのCuナノ粒子担持
 CNTフォレストに銅ナノ粒子(以下、「Cu-NPs」ともいう。)を担持させた。Cu-NPsの前駆体であるCu(acac)2と紡績性CNTフォレストをCVDチャンバー内に配置し、30Torrの100%Arの雰囲気で400℃で15分間保持した。このプロセスでは、Cu(acac)2が蒸発、拡散してCNT表面で熱分解する。その後、CNT表面で熱分解し、Cu-NPsが核形成された。Cu(acac)2の蒸気はCNTフォレストの内部まで均質に拡散するため、Cu-NPsもCNTフォレストの内部のCNTに一様に堆積した。Cu-NPsを担持したのち、真空排気し、100Torrのアルゴン:水素=4:1の雰囲気で350℃で1時間還元した。また、Cu(acac)2の量を変化させることで、CNTフォレストへのCu-NPs担持量を制御した。以下、こうして得られた紡績可能なCNTフォレストを「Cu-NPs担持CNTフォレスト」ともいう。
(2) Supporting Cu nanoparticles on the CNT forest Copper nanoparticles (hereinafter, also referred to as “Cu-NPs”) were supported on the CNT forest. Cu (acac) 2 , which is a precursor of Cu-NPs, and a spinnable CNT forest were placed in a CVD chamber and held at 400 ° C. for 15 minutes in a 100% Ar atmosphere of 30 Torr. In this process, Cu (acac) 2 evaporates and diffuses and thermally decomposes on the CNT surface. Then, it was thermally decomposed on the surface of the CNT, and Cu-NPs were nucleated. Since the vapor of Cu (acac) 2 diffuses uniformly to the inside of the CNT forest, Cu-NPs are also uniformly deposited in the CNT inside the CNT forest. After supporting Cu-NPs, the cells were vacuum-exhausted and reduced at 350 ° C. for 1 hour in an atmosphere of 100 Torr argon: hydrogen = 4: 1. In addition, the amount of Cu-NPs supported on the CNT forest was controlled by changing the amount of Cu (acac) 2 . Hereinafter, the spunable CNT forest thus obtained is also referred to as a “Cu-NPs-supported CNT forest”.
(3)Cu-NPs担持CNT撚糸の作製
 実施例1と同様に、Cu-NPs担持CNTフォレストの一端を引き出すと、CNTバンドル(本明細書において、CNTフォレストの部分構造であって、数本のCNTが近接した部分を有し束状になっているものを意味する。)が連続的に引き出され、一方向に配向したCNTの連結体(CNTウェブ)が形成された。CNTウェブに撚りを加えながらスライダーで引き出すことでCNT撚糸を作製した。スピンドルの回転速度は14000rpm、引き出し速度は50mm/sとした。以下、こうして得られたCNT撚糸を「Cu-NPs担持CNT撚糸」ともいう。なお、対比のために、Cu-NPsを担持していないCNTフォレストからもCNT撚糸を作製した。以下、このCNT撚糸を「未担持CNT撚糸」という。
(3) Preparation of Cu-NPs-Supported CNT Twisted Threads As in Example 1, when one end of the Cu-NPs-supported CNT forest is pulled out, a CNT bundle (in the present specification, a partial structure of the CNT forest, which is several pieces) is pulled out. (Meaning that the CNTs have adjacent portions and are bundled) were continuously withdrawn to form a unidirectionally oriented CNT conjugate (CNT web). CNT plying was produced by pulling out the CNT web with a slider while twisting it. The rotation speed of the spindle was 14000 rpm, and the withdrawal speed was 50 mm / s. Hereinafter, the CNT twisted yarn thus obtained is also referred to as "Cu-NPs-supported CNT twisted yarn". For comparison, CNT plying was also produced from a CNT forest that did not support Cu-NPs. Hereinafter, this CNT plying yarn is referred to as "unsupported CNT plying yarn".
(4)銅めっき処理
 CNT撚糸に銅を析出させるため、硫酸銅溶液を用いて、Cu-NPs担持CNT撚糸および未担持CNT撚糸に電気めっき処理を施した。銅板をアノード、CNT撚糸をカソードとし、直流電流を供給した。電流密度を0.2A/dm2として2時間供給した。また、存在しうる酸化銅の還元処理およびCNTと銅の付き廻りを滑らかにするため、アルゴンを400sccm、水素を100sccm供給しながら500Torr、700℃で1時間の熱処理を行った。こうして、糸形状を有するCNT連続体(CNT撚糸)と、CNT撚糸を構成するCNTの少なくとも一部に堆積しためっき系物質とを備える糸状導電性部材(以下、「CNT/Cu-wire」ともいう。)を得た。本明細書において「めっき系物質」とは、めっき物質(めっきにより形成された物質)およびめっき物質に基づく物質(本実施例における銅めっきの還元体が相当する。)の総称を意味する。
(4) Copper Plating Treatment In order to deposit copper on the CNT twisted yarn, a Cu-NPs-supported CNT twisted yarn and an unsupported CNT twisted yarn were electroplated using a copper sulfate solution. A direct current was supplied by using a copper plate as an anode and CNT plying as a cathode. The current density was 0.2 A / dm 2 and the current density was set to 0.2 A / dm 2 for 2 hours. Further, in order to reduce the copper oxide that may exist and to smooth the circulation of CNT and copper, heat treatment was performed at 500 Torr and 700 ° C. for 1 hour while supplying 400 sccm of argon and 100 sccm of hydrogen. In this way, a filamentous conductive member (hereinafter, also referred to as "CNT / Cu-wire") including a CNT continuum having a yarn shape (CNT twisted yarn) and a plating-based substance deposited on at least a part of the CNTs constituting the CNT twisted yarn. .) Was obtained. As used herein, the term "plating-based substance" means a general term for a plating substance (a substance formed by plating) and a substance based on the plating substance (corresponding to a reduced body of copper plating in this example).
(5)特性評価
 CNTの観察のため、電界放出形走査電子顕微鏡(日立製作所社製「SU-8030」)を用いた。CNT/Cu-wireの断面二次電子像の観察のため、クロスセクションポリッシャ(JEOL社製「IB-09020 CP」)を用いてCNT/Cu-wireの断面を良質に加工した。CNT/Cu-wireの高倍率での断面観察のため、透過型電子顕微鏡(JEOL社製「JEM-2100F」)を用いた。透過電子像の観察のため、FIB(JEOL社製「JIB-4700F」)を用いてCNT/Cu-wireの薄膜を作製した。導電率は大気圧下で四端子法を用いた。電流容量は高真空下で二端子法を用いて測定した。二端子法の測定長が短いと電極へ熱が逃げてしまうため、真の試料の電流容量を測定する目的として測定長を1cmとした。また、糸が破断したときの電流密度を電流容量とした。引張特性は引張試験機(島津製作所社製「EZ-L」)を用い、測定数は5、測定長は1cm、引張速度は0.05mm/minとした。引張ひずみは非接触伸び計(島津製作所社製「TRViewX」)で測定した。
(5) Characteristic evaluation A field emission scanning electron microscope (“SU-8030” manufactured by Hitachi, Ltd.) was used for observing CNTs. In order to observe the cross-section secondary electron image of CNT / Cu-ware, the cross-section of CNT / Cu-ware was processed into good quality using a cross-section polisher (“IB-09020 CP” manufactured by JEOL). A transmission electron microscope (“JEM-2100F” manufactured by JEOL) was used for observing the cross section of CNT / Cu-ware at a high magnification. A CNT / Cu-wire thin film was prepared using FIB (“JIB-4700F” manufactured by JEOL) for observing the transmitted electron image. For the conductivity, the four-terminal method was used under atmospheric pressure. The current capacity was measured using the two-terminal method under high vacuum. If the measurement length of the two-terminal method is short, heat escapes to the electrodes, so the measurement length was set to 1 cm for the purpose of measuring the current capacity of the true sample. Further, the current density when the yarn is broken is defined as the current capacity. The tensile characteristics were a tensile tester (“EZ-L” manufactured by Shimadzu Corporation), the number of measurements was 5, the measurement length was 1 cm, and the tensile speed was 0.05 mm / min. The tensile strain was measured with a non-contact elongation meter (“TRViewX” manufactured by Shimadzu Corporation).
 以下、上記の製造方法で得られたCNT/Cu-wireの測定結果を示す。
(1)Cu-NPs担持CNTフォレストからのdry-spinning(乾式紡績)CNT撚糸
 本実施例に係るCu-NPs担持方法によれば、前駆体量や温度などのパラメータでCu-NPsの担持量や粒径を制御可能である。Cu(acac)2は昇華性の有機化合物であり、比較的低温で昇華、熱分解する。そのため、CNTフォレストの内部まで蒸気で拡散させ、CNTフォレスト全体にCNT表面上でCu-NPsを担持させる前駆体として好適であると言える。
The measurement results of CNT / Cu-wire obtained by the above manufacturing method are shown below.
(1) Dry-spinning (dry spinning) CNT plying from a Cu-NPs-supported CNT forest According to the Cu-NPs-supporting method according to the present embodiment, the amount of Cu-NPs supported can be determined by parameters such as the amount of precursor and temperature. The particle size can be controlled. Cu (acac) 2 is a sublimable organic compound that sublimates and thermally decomposes at a relatively low temperature. Therefore, it can be said that it is suitable as a precursor that diffuses into the inside of the CNT forest with steam and supports Cu-NPs on the CNT surface in the entire CNT forest.
 しかし、CNTフォレストの内部まで均質にCu-NPsを担持させる条件は注意深く制御する必要がある。チャンバー内の圧力や温度によってCu(acac)2の熱分解速度が大きく変化する。温度が高い場合は熱分解速度が速いため、CNTフォレストの側面からCu-NPsの担持が進行し、CNTフォレストの内部へ担持できない結果となった。本実施例では、Cu-NPsの担持条件を丹念に吟味し、CNTフォレストの内部まで均質に担持した紡績性CNTフォレストを得た。 However, it is necessary to carefully control the conditions under which Cu-NPs are uniformly supported even inside the CNT forest. The thermal decomposition rate of Cu (acac) 2 changes greatly depending on the pressure and temperature in the chamber. When the temperature is high, the thermal decomposition rate is high, so that Cu-NPs are supported from the side surface of the CNT forest, resulting in the inability to support the inside of the CNT forest. In this example, the supporting conditions of Cu-NPs were carefully examined to obtain a spunable CNT forest that was uniformly supported up to the inside of the CNT forest.
 Cu(acac)2の量を10mg、30mg、100mgと変化させたときのCu-NPsを担持したCNTフォレストの二次電子像を図30(A)から図30(C)に示す。図30(A)に示されるように、Cu(acac)2の量が10mgと少ない場合では、CNT表面上に形成されたCu-NPsの担持量は少なく、Cu-NPsが担持していないCNTも存在した。しかし、Cu-NPsを担持していないCNTフォレストと同様に紡績性は高かった。 The secondary electron images of the CNT forest carrying Cu-NPs when the amount of Cu (acac) 2 is changed to 10 mg, 30 mg, and 100 mg are shown in FIGS. 30 (A) to 30 (C). As shown in FIG. 30 (A), when the amount of Cu (acac) 2 is as small as 10 mg, the amount of Cu-NPs formed on the CNT surface is small, and the amount of Cu-NPs supported is small, and the CNTs not supported by Cu-NPs. Also existed. However, the spinnability was high as in the CNT forest which did not support Cu-NPs.
 図30(C)に示されるように、Cu(acac)2の量が100mgと多い場合では、CNT表面上のCu-NPsの担持量が非常に多かった。この場合、CNT同士がCu-NPsで結合され、CNTフォレスト全体が一つの結合体となっていた。CNTフォレスト端部を引き出すと、引き出されたCNTに隣接したCNTバンドルはCNTフォレストにより強く結合しているため、CNTフォレストから分離不能であった。このため、連続乾式紡績が生じず、Cu(acac)2の量が100mgの場合には、CNT撚糸の作製は不可能であった。 As shown in FIG. 30 (C), when the amount of Cu (acac) 2 was as large as 100 mg, the amount of Cu-NPs supported on the CNT surface was very large. In this case, the CNTs were bonded to each other with Cu-NPs, and the entire CNT forest became one combined body. When the end of the CNT forest was pulled out, the CNT bundle adjacent to the pulled out CNT was inseparable from the CNT forest because it was tightly bound to the CNT forest. Therefore, continuous dry spinning did not occur, and when the amount of Cu (acac) 2 was 100 mg, it was impossible to produce CNT plyed yarn.
 図30(B)に示されるように、Cu(acac)2の量を30mgとすることで、Cu-NPsがCNT表面にまんべんなく担持し、かつ紡績性も高いCNTフォレストが得られた。本実施例では、紡績してCNT撚糸を作製する必要があるため、Cu(acac)2の使用量を30mgとして製造したCNTフォレストを用いてCNT撚糸を作製した。 As shown in FIG. 30 (B), by setting the amount of Cu (acac) 2 to 30 mg, a CNT forest in which Cu-NPs were evenly supported on the CNT surface and the spinnability was high was obtained. In this example, since it is necessary to produce CNT plying by spinning, CNT plying was produced using a CNT forest produced with an amount of Cu (acac) 2 used at 30 mg.
 なお、本実施例では銅との複合化が目的であるためCu(acac)2を前駆体として用いたが、他のアセチルアセトナート錯体(Pt(acac)2,Ni(acac)2,Zn(acac)2など)を用いることで、同様にCNTフォレストへ各種金属のナノ粒子を担持できる。そのため、本実施例に係る方法は配線材料のみならず、電池やキャパシタの電極材などへの応用にも活用できる。 In this example, Cu (acac) 2 was used as a precursor because the purpose was to combine with copper, but other acetylacetonate complexes (Pt (acac) 2 , Ni (acac) 2 , Zn ( By using acac) 2 etc.), nanoparticles of various metals can be similarly supported in the CNT forest. Therefore, the method according to this embodiment can be utilized not only as a wiring material but also as an electrode material for a battery or a capacitor.
 本実施例では、CNTフォレストへCu-NPsを全体に担持し、引き出されたCNTウェブにもCu-NPsが均一に担持されているような乾式紡績が実現された。本実施例ではCNTバンドル間距離がCNT撚糸中より広い紡績性CNTフォレストの段階でCu-NPsを担持させているため、CNT撚糸を作製した後にCu-NPsを担持させた場合との対比で、CNT撚糸中へCu-NPsを均一に担持させることができる。本実施例に係る方法ではCNTフォレストにあらかじめナノ粒子を担持させているため、Cu-NPs担持CNTフォレストやCu-NPs担持CNTシート、Cu-NPs担持CNT撚糸など、応用の幅が広い。本実施例で用いた手法はハンドリング性が良く、ユーザーに利便性が良いのも利点である。 In this embodiment, dry spinning was realized in which Cu-NPs were supported on the entire CNT forest and Cu-NPs were uniformly supported on the extracted CNT web. In this embodiment, since Cu-NPs are supported at the stage of the spinnable CNT forest where the distance between the CNT bundles is wider than that in the CNT twisted yarn, the case where Cu-NPs are supported after the CNT twisted yarn is produced is compared with the case where the Cu-NPs are supported. Cu-NPs can be uniformly supported in the CNT plyed yarn. In the method according to this embodiment, since nanoparticles are supported on the CNT forest in advance, the range of applications is wide, such as Cu-NPs-supported CNT forest, Cu-NPs-supported CNT sheet, and Cu-NPs-supported CNT twisted yarn. The method used in this embodiment has good handleability and is convenient for the user, which is also an advantage.
(2)CNT/Cu-wireの構造分析
 本実施例により得られたCNT/Cu-wireの表面は銅の光沢が観察された。図31(A)は、直径10nm程度のCNTを用いて、あらかじめCu-NPsを担持したCNT撚糸(Cu-NPs担持CNT撚糸)に銅を析出させた複合糸(以下、「Mixed CNT/Cu-wire」と記載することもある。)の断面二次電子像を示す図である。図31(B)は、直径10nm程度のCNTを用いる点では共通するが、あらかじめCu-NPsを担持していないCNT撚糸(未担持CNT)に銅を析出した複合糸(以下、「Unmixed CNT/Cu-wire」と記載することもある。)の断面二次電子像を示す図である。なお、本明細書において、Mixed CNT/Cu-wireおよびUnmixed CNT/Cu-wireの総称として「CNT/Cu複合糸」を用いる場合がある。
(2) Structural analysis of CNT / Cu-wire Copper gloss was observed on the surface of the CNT / Cu-wire obtained in this example. FIG. 31 (A) shows a composite yarn (hereinafter, “Mixed CNT / Cu—” in which copper is precipitated on a CNT twisted yarn (Cu-NPs-supported CNT twisted yarn) carrying Cu-NPs in advance using a CNT having a diameter of about 10 nm. It may be described as "wire"). It is a figure which shows the cross section secondary electron image. FIG. 31B is common in that a CNT having a diameter of about 10 nm is used, but a composite yarn in which copper is precipitated on a CNT twisted yarn (non-supported CNT) that does not previously support Cu-NPs (hereinafter, “Unmixed CNT /”). It may be described as "Cu-wire"), and is a diagram showing a cross-sectional secondary electron image. In this specification, "CNT / Cu composite yarn" may be used as a general term for Mixed CNT / Cu-wire and Unmixed CNT / Cu-wire.
 図31(A)に示されるように、Mixed CNT/Cu-wireは、CNT撚糸の外周部から内部まで均質に銅が析出していた。また、高倍像から、銅が緻密に析出していることがわかる。これに対して、Unmixed CNT/Cu-wireは、図31(B)に示されるように、CNT撚糸の外周部に銅が多く析出したコア-クラッド構造(CNT撚糸がコアで、銅がクラッドとなる)を形成していた。また、CNT撚糸の内部に島状に析出した銅も存在していた。図31(A)および図31(B)の対比により、CNT撚糸にCu-NPsをあらかじめ担持させてからめっき処理を施すことで、CNT撚糸の内部まで均質に銅を析出できることが確認された。 As shown in FIG. 31 (A), in the Mixed CNT / Cu-wire, copper was uniformly deposited from the outer peripheral portion to the inner portion of the CNT twisted yarn. In addition, it can be seen from the high magnification image that copper is densely deposited. On the other hand, the Unmixed CNT / Cu-wire has a core-clad structure in which a large amount of copper is deposited on the outer peripheral portion of the CNT plying yarn (the CNT plying yarn is the core and the copper is the clad), as shown in FIG. 31 (B). Was forming). In addition, copper deposited in an island shape was also present inside the CNT plyed yarn. By comparison with FIGS. 31 (A) and 31 (B), it was confirmed that copper can be uniformly deposited even inside the CNT plying by carrying Cu-NPs on the CNT plying in advance and then performing a plating treatment.
 めっき液中の銅イオンは表面エネルギー的に安定なCu-NPs表面で金属銅として析出しやすい。本実施例ではCNT撚糸全体にCu-NPsが形成されており、めっき時にCNT撚糸内部に拡散されている銅イオンがCu-NPs表面で金属銅として析出する。また、CNT撚糸のCNTバンドル間距離は200nm程度であることから、通電前のめっき液への含侵で十分に銅イオンがCNT撚糸の全体に拡散していると考えられる。さらに、めっき時の電流密度が低いため律速過程がイオン拡散ではなくCNT表面上での銅析出であることから、めっきが開始してもさらにイオンが内部に移動して析出が継続することで、本実施例では均質なCNT/Cu-wireを作製できたと考えられる。 Copper ions in the plating solution tend to precipitate as metallic copper on the surface of Cu-NPs, which is stable in surface energy. In this embodiment, Cu-NPs are formed on the entire CNT twisted yarn, and copper ions diffused inside the CNT twisted yarn during plating are deposited as metallic copper on the Cu-NPs surface. Further, since the distance between the CNT bundles of the CNT twisted yarn is about 200 nm, it is considered that the copper ions are sufficiently diffused throughout the CNT twisted yarn due to the impregnation of the plating solution before energization. Furthermore, since the current density during plating is low, the rate-determining process is not ion diffusion but copper precipitation on the CNT surface, so even if plating starts, the ions move further inside and precipitation continues. In this example, it is considered that a homogeneous CNT / Cu-ware could be produced.
 Mixed CNT/Cu-wireの直交断面(CNTの延在方向に対して直交する面での断面)の透過電子像を図32(A)に示し、その高倍像を図32(B)に示す。これらの図に示されるように、析出した銅の粒径は数百nmである。また、銅がCNTバンドル間に析出しており、CNT表面に密着していることがわかる。銅とCNTの間に空隙はほとんど見られなかったが、CNTバンドル間に数十nm程度のナノボイドが存在していた。また、高倍像(図32(B))から、銅マトリックスに覆われたCNTは少し潰れたような形状であることが観察された。この観察から、CNT表面に担持されたCu-NPsを起点に銅が電解析出を始めても、めっき終了時にはCNTを取り囲むように銅が析出していることが確認された。 A transmitted electron image of a mixed CNT / Cu-wire orthogonal cross section (a cross section at a plane orthogonal to the extending direction of the CNT) is shown in FIG. 32 (A), and a high magnification image thereof is shown in FIG. 32 (B). As shown in these figures, the particle size of the precipitated copper is several hundred nm. Further, it can be seen that copper is deposited between the CNT bundles and is in close contact with the CNT surface. Almost no voids were found between the copper and the CNTs, but nanovoids of several tens of nm were present between the CNT bundles. Further, from the high magnification image (FIG. 32 (B)), it was observed that the CNT covered with the copper matrix had a slightly crushed shape. From this observation, it was confirmed that even if copper started electrolytic precipitation starting from Cu-NPs supported on the CNT surface, copper was deposited so as to surround the CNT at the end of plating.
 Mixed CNT/Cu-wireの平行断面(CNTの延在方向を含む面での断面)の透過電子像を図33(A)に示し、その高倍像を図33(B)に示す。これらの図に示されるように、CNTと銅が長手方向に連続的に密着していた。
(3)CNT/Cu-wireの電気伝導特性
A transmitted electron image of a parallel cross section of the Mixed CNT / Cu-wire (a cross section in a plane including the extending direction of the CNT) is shown in FIG. 33 (A), and a high magnification image thereof is shown in FIG. 33 (B). As shown in these figures, the CNTs and copper were in continuous contact with each other in the longitudinal direction.
(3) Electrical conduction characteristics of CNT / Cu-wire
 図34(A)にMixed CNT/Cu-wireおよびUnmixed CNT/Cu-wireの室温の導電率を示す。また、比較のためにCNT撚糸と銅線(純度99.99%)のデータも合わせて示す。図34(A)の横軸であるCNT/Cu-wireの銅の体積含有率は、CNT/Cu-wireと銅を析出する前のCNT撚糸の重量の増分からCNT/Cu-wire中に析出した銅の体積を計算し、CNT/Cu-wireの体積で除することで算出した。図34(B)は、図34(A)の縦軸をリニアスケールにしたグラフである。 FIG. 34 (A) shows the room temperature conductivity of Mixed CNT / Cu-wire and Unmixed CNT / Cu-wire. Data for CNT plying and copper wire (purity 99.99%) are also shown for comparison. The copper volume content of CNT / Cu-ware, which is the horizontal axis of FIG. 34 (A), is deposited in CNT / Cu-ware from the increment of the weight of the CNT twisted yarn before precipitating CNT / Cu-ware and copper. It was calculated by calculating the volume of copper and dividing by the volume of CNT / Cu-wire. FIG. 34 (B) is a graph in which the vertical axis of FIG. 34 (A) is a linear scale.
 図34(A)に示されるように、Mixed CNT/Cu-wireの導電率は2.41×105S/cm、Unmixed CNT/Cu-wireの導電率は4.26×104S/cmであった。CNT撚糸の導電率は2.35×102S/cmであり、銅線の導電率(4.5×105S/cm)より3桁小さい。CNT/Cu-wireの導電率は銅の体積比率が高いほど増加した。図34(B)に示されるリニアスケールのプロットでは、Mixed CNT/Cu-wireは銅線とほぼ線形な関係であり、銅マトリクス中を移動する自由電子がキャリアとして支配的である。なお、Unmixed CNT/Cu-wireの導電率は線形関係より低い。図31(B)の断面二次電子像から、CNT/Cu-wireの内部に島状に析出した銅が見られるため、導電性に寄与していない銅が存在している。その結果、銅の含有率に対して導電率が低下したと考えられる。 As shown in FIG. 34 (A), the conductivity of the Mixed CNT / Cu-wire is 2.41 × 105 S / cm, and the conductivity of the Unmixed CNT / Cu-wire is 4.26 × 10 4 S / cm. Met. The conductivity of CNT plying is 2.35 × 10 2 S / cm, which is three orders of magnitude smaller than the conductivity of copper wire (4.5 × 10 5 S / cm). The conductivity of CNT / Cu-wire increased as the volume ratio of copper increased. In the linear scale plot shown in FIG. 34 (B), the Mixed CNT / Cu-wire has a substantially linear relationship with the copper wire, and free electrons moving in the copper matrix dominate as carriers. The conductivity of Unmixed CNT / Cu-wire is lower than the linear relationship. From the cross-sectional secondary electron image of FIG. 31 (B), copper deposited in an island shape can be seen inside the CNT / Cu-wire, so that copper that does not contribute to conductivity is present. As a result, it is considered that the conductivity decreased with respect to the copper content.
 図35に各サンプルを300Kでの値で規格化した電気抵抗率の温度依存性を示す。図35に示されるように、銅線の電気抵抗率(破線)はフォノンの散乱により温度に比例して増加し、抵抗温度係数(TCR)は3.3×10-3-1であった。Mixed CNT/Cu-wireの電気抵抗率(実線)およびUnmixed CNT/Cu-wireの電気抵抗率(点線)は温度の上昇に伴い増加するが、TCRはそれぞれ1.2×10-3-1、2.0×10-3-1であり銅線より小さい。このことより、電子のフォノン散乱がCNTにより抑制されていると考えられる。また、CNTと銅マトリクスの接触面が多いMixed CNT/Cu-wireの方がUnmixed CNT/Cu-wireよりTCRが小さいことから、CNTと銅の界面近傍で自由電子のフォノン散乱が低減されていると予想される。図35に示されるように、長手方向の導電率を測定したときに、300Kから450Kの範囲での抵抗温度係数(TCR)は、1.8×10-3-1以下であることが好ましく、1.5×10-3-1以下であることがより好ましく、1.2×10-3-1以下であることが特に好ましい。 FIG. 35 shows the temperature dependence of the electrical resistivity in which each sample is normalized by the value at 300K. As shown in FIG. 35, the electrical resistivity (broken line) of the copper wire increased in proportion to the temperature due to phonon scattering, and the temperature coefficient of resistance (TCR) was 3.3 × 10 -3 K -1 . .. The electrical resistivity of Mixed CNT / Cu-ware (solid line) and the electrical resistivity of Unmixed CNT / Cu-ware (dotted line) increase with increasing temperature, but the TCR is 1.2 × 10 -3 K -1 respectively. , 2.0 × 10 -3 K -1 , which is smaller than copper wire. From this, it is considered that the phonon scattering of electrons is suppressed by CNT. Further, since the mixed CNT / Cu-ware having many contact surfaces between the CNT and the copper matrix has a smaller TCR than the Unmixed CNT / Cu-ware, the phonon scattering of free electrons is reduced near the interface between the CNT and the copper. It is expected to be. As shown in FIG. 35, the temperature coefficient of resistance (TCR) in the range of 300K to 450K is preferably 1.8 × 10 -3K -1 or less when the longitudinal conductivity is measured. , 1.5 × 10 -3 K -1 or less is more preferable, and 1.2 × 10 -3 K -1 or less is particularly preferable.
 図36にMixed CNT/Cu-wireと銅線の比導電率の温度依存性を示す。Mixed CNT/Cu-wireの比伝導率(実線)は、室温(300K)では、電気伝導に寄与しないCNTのため、銅線の比導電率(破線)よりも小さい。しかしながら、Mixed CNT/Cu-wireのTCRは銅のTCRよりも小さいため、Mixed CNT/Cu-wireの比導電率は銅線の比導電率を370Kで逆転した。すなわち、400K以上では、Mixed CNT/Cu-wireの比伝導率が銅線の比導電率よりも高くなることが安定的に実現されることが確認された。 FIG. 36 shows the temperature dependence of the specific conductivity between the mixed CNT / Cu-wire and the copper wire. The specific conductivity (solid line) of the Mixed CNT / Cu-wire is smaller than the specific conductivity (broken line) of the copper wire because it is a CNT that does not contribute to electrical conduction at room temperature (300K). However, since the TCR of the Mixed CNT / Cu-wire is smaller than the TCR of the copper, the specific conductivity of the Mixed CNT / Cu-wire reverses the specific conductivity of the copper wire at 370K. That is, it was confirmed that at 400 K or higher, the specific conductivity of the mixed CNT / Cu-wire is stably realized to be higher than the specific conductivity of the copper wire.
 一方で、図35に示されるように、CNT撚糸の電気抵抗率(一点鎖線)は温度の上昇に伴い線形的に減少し、そのTCRは-0.6×10-3-1であった。この負の線形的な電気抵抗の温度依存性はフリーデル振動による影響が考えられる。 On the other hand, as shown in FIG. 35, the electrical resistivity (dashed line) of the CNT twisted yarn decreased linearly with increasing temperature, and its TCR was −0.6 × 10 -3K -1 . .. The temperature dependence of this negative linear electrical resistance is considered to be influenced by Friedel oscillation.
 図37に各サンプルの電流容量を示す。Mixed CNT/Cu-wireの電流容量は1.3×105A/cm2、Unmixed CNT/Cu-wireの電流容量は5.32×104A/cm2であった。Mixed CNT/Cu-wireの電流容量は銅の体積含有率が56.7%であるにも関わらず、銅線(5.8×104A/cm2)より2.2倍程高い値を示した。CNT/Cu-wireに供給する電流密度を増加すると、CNT/Cu-wireのジュール熱の発生により電気抵抗が増加する。上述のように、CNT/Cu-wireの導電率は370K以上の高温帯で銅より高くなるため、電流密度に対するジュール加熱が銅線の場合より小さくなる。結果として温度上昇が低減し、電流容量が高くなった。このように、図37により、Mixed CNT/Cu-wireは、電流容量が105A/cm2以上であることが好ましいことが確認された。 FIG. 37 shows the current capacity of each sample. The current capacity of the Mixed CNT / Cu-wire was 1.3 × 10 5 A / cm 2 , and the current capacity of the Unmixed CNT / Cu-wire was 5.32 × 10 4 A / cm 2 . The current capacity of Mixed CNT / Cu-wire is about 2.2 times higher than that of copper wire (5.8 x 10 4 A / cm 2 ) even though the volume content of copper is 56.7%. Indicated. Increasing the current density supplied to the CNT / Cu-ware increases the electrical resistance due to the generation of Joule heat in the CNT / Cu-ware. As described above, since the conductivity of CNT / Cu-wire is higher than that of copper in the high temperature band of 370 K or higher, Joule heating with respect to the current density is smaller than that of copper wire. As a result, the temperature rise was reduced and the current capacity was increased. As described above, it was confirmed from FIG. 37 that the mixed CNT / Cu-wire preferably has a current capacity of 105 A / cm 2 or more.
 図38に各サンプルの比導電率と比電流容量との関係を示すグラフを示す。Mixed CNT/Cu-wireの比導電率は4.31×104S・cm2/gであり、銅線(4.87×104S・cm2/g)と同程度でCNT撚糸(4.40×102S・cm2/g)より二桁以上高い。比導電率はほとんど銅の含有量に依存する結果となった。このことからも、複合材料中のキャリアは銅の自由電子であることをサポートしている。一方、Mixed CNT/Cu-wireの比電流容量は銅線の6.5×103A・cm/gより3.6倍大きい2.32×104A・cm/gとなった。CNT/Cuにおける高温時の抵抗上昇抑制により、銅線同様に電流は銅マトリクス部を流れているにもかかわらず輸送容量は大きく向上する結果となった。 FIG. 38 shows a graph showing the relationship between the specific conductivity and the specific current capacity of each sample. The specific conductivity of Mixed CNT / Cu-wire is 4.31 × 10 4 S · cm 2 / g, which is about the same as that of copper wire (4.87 × 10 4 S · cm 2 / g) and CNT plying (4). .40 x 10 2 S · cm 2 / g), which is more than two orders of magnitude higher. The result was that the specific conductivity was mostly dependent on the copper content. This also supports that the carriers in the composite are copper free electrons. On the other hand, the specific current capacity of the Mixed CNT / Cu-wire was 2.32 × 10 4 A · cm / g, which was 3.6 times larger than the 6.5 × 10 3 A · cm / g of the copper wire. By suppressing the increase in resistance at high temperatures in CNT / Cu, the transport capacity was greatly improved even though the current was flowing through the copper matrix portion as in the case of copper wire.
 なお、CNT撚糸(2.85×104A・cm/g)が最も大きな値となった。CNT撚糸は昇華温度が銅より極めて高く、また赤外放射率も高いため、銅より高い温度まで電流輸送でき、比導電率は銅より二けた小さいけれども高い比電流容量を示すことが知られている。以上から、Mixed CNT/Cu-wireは、軽量でありながら高導電率であり、銅線を凌駕する電流容量も有しているため、高電力供給が可能な細径配線として応用に期待できる。 The CNT twisted yarn (2.85 × 104 A · cm / g) had the largest value. It is known that CNT twisted yarn has a sublimation temperature much higher than that of copper and has a high infrared emissivity, so that it can transport current to a temperature higher than that of copper, and has a specific conductivity that is two orders of magnitude smaller than that of copper but exhibits a high specific current capacity. There is. From the above, the Mixed CNT / Cu-wire is lightweight, yet has high conductivity, and has a current capacity that surpasses that of copper wire, so that it can be expected to be applied as a small-diameter wiring capable of supplying high power.
(4)CNT/Cu-wireの力学特性
 表1にCNT撚糸(CNT yarn)、CNT/Cu複合糸および銅線の特性表を示す。
(4) Mechanical Characteristics of CNT / Cu-wire Table 1 shows the characteristic tables of CNT twisted yarn (CNT yarn), CNT / Cu composite yarn and copper wire.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図39(A)に直径10nm程度のCNTを用いて製造されたMixed CNT/Cu-wireおよびUnmixed CNT/Cu-wireの応力ひずみ線図を示す。また、比較のために、直径10nm程度のCNTを用いて製造されたCNT撚糸および銅線の応力ひずみ線もそれぞれ合わせて示す。Mixed CNT/Cu-wireの引張強度は699MPa、ヤング率は70.4GPaであった。銅線の引張強度は191MPa、ヤング率は83.5GPaであり、CNT撚糸の引張強度は666MPa、ヤング率は32.2GPaであった。Mixed CNT/Cu-wireの引張強度はCNT撚糸と比較して、銅との均質な複合化によって引張強度とヤング率がともに向上した。Unmixed CNT/Cu-wireの引張強度は182.9MPa、ヤング率は25.8GPaであり、引張強度とヤング率がともに減少した。図39(B)は、図39(A)の応力ひずみ線図から得られた、各種サンプルのヤング率と引張強度との関係を示すグラフである。図39(B)に示されるように、CNT撚糸を基準としたとき、Mixed CNT/Cu-wireはヤング率は顕著に増大し、引張強度も同等またはそれ以上であった。これに対し、Unmixed CNT/Cu-wireは引張強度が著しく減少し、ヤング率も低下した。すなわち、Mixed CNT/Cu-wireとUnmixed CNT/Cu-wireとの対比により、糸状導電部材であるMixed CNT/Cu-wireは、この糸状導電部材からめっき系物質を除いた材料に相当するブランクカーボンナノチューブ連続体、すなわちCNT撚糸を基準として、引張強度が1.0倍以上であり、ヤング率が1.5倍以上であることが好ましいことが示された。Mixed CNT/Cu-wireのヤング率は、CNT撚糸を基準として、2.0倍以上であることがより好ましい。 FIG. 39 (A) shows stress-strain diagrams of Mixed CNT / Cu-wire and Unmixed CNT / Cu-wire manufactured using a CNT having a diameter of about 10 nm. For comparison, stress-strain lines of CNT plyed yarn and copper wire manufactured using CNTs having a diameter of about 10 nm are also shown. The tensile strength of Mixed CNT / Cu-ware was 699 MPa, and the Young's modulus was 70.4 GPa. The tensile strength of the copper wire was 191 MPa and the Young's modulus was 83.5 GPa, and the tensile strength of the CNT twisted yarn was 666 MPa and the Young's modulus was 32.2 GPa. As for the tensile strength of Mixed CNT / Cu-wire, both the tensile strength and Young's modulus were improved by the uniform compounding with copper as compared with the CNT twisted yarn. The tensile strength of Unmixed CNT / Cu-wire was 182.9 MPa and the Young's modulus was 25.8 GPa, and both the tensile strength and the Young's modulus decreased. FIG. 39 (B) is a graph showing the relationship between Young's modulus and tensile strength of various samples obtained from the stress-strain diagram of FIG. 39 (A). As shown in FIG. 39 (B), the Young's modulus of Mixed CNT / Cu-ware was significantly increased and the tensile strength was equal to or higher than that of the CNT twisted yarn as a reference. On the other hand, in Unmixed CNT / Cu-ware, the tensile strength was remarkably reduced and the Young's modulus was also lowered. That is, by comparing Mixed CNT / Cu-wall and Unmixed CNT / Cu-ware, the mixed CNT / Cu-ware, which is a filamentous conductive member, is a blank carbon corresponding to the material obtained by removing the plating-based material from the filamentous conductive member. It was shown that it is preferable that the tensile strength is 1.0 times or more and the Young's ratio is 1.5 times or more based on the nanotube continuum, that is, the CNT twisted yarn. It is more preferable that the Young's modulus of the Mixed CNT / Cu-ware is 2.0 times or more based on the CNT twisted yarn.
 Mixed CNT/Cu-wireの引張破断部の二次電子像を図40(A)に示し、Unmixed CNT/Cu-wireの引張破断部の二次電子像を図40(B)に示す。図40(A)に示されるように、Mixed CNT/Cu-wireの破断部は、CNTの引き抜けが短かった。一方、図40(B)に示されるように、Unmixed CNT/Cu-wireは外周部(クラッド)の銅が破断して滑り、CNT撚糸の引き抜けが長かった。Mixed CNT/Cu-wireにおいては銅線に比べてヤング率および引張強度の大幅な向上が見られることから、CNT撚糸中に銅が均質に析出するだけでなくCNTバンドル表面との密着性も良く、銅はマトリックスとしてCNTバンドル間の荷重を良好に伝達していた。すなわち、図40(A)および図40(B)の対比により、Mixed CNT/Cu-wireは、銅を母材とする繊維強化複合材料と見なせることが確認された。 The secondary electron image of the tensile break portion of the Mixed CNT / Cu-wire is shown in FIG. 40 (A), and the secondary electron image of the tensile break portion of the Unmixed CNT / Cu-wire is shown in FIG. 40 (B). As shown in FIG. 40 (A), the CNT was pulled out shortly at the broken portion of the Mixed CNT / Cu-ware. On the other hand, as shown in FIG. 40 (B), in the Unmixed CNT / Cu-wire, the copper on the outer peripheral portion (clad) was broken and slipped, and the CNT twisted yarn was pulled out for a long time. Since the Young's modulus and tensile strength of the Mixed CNT / Cu-ware are significantly improved compared to the copper wire, not only copper is uniformly deposited in the CNT twisted yarn, but also the adhesion to the surface of the CNT bundle is good. , Copper well transmitted the load between the CNT bundles as a matrix. That is, by comparing FIGS. 40 (A) and 40 (B), it was confirmed that Mixed CNT / Cu-wire can be regarded as a fiber-reinforced composite material using copper as a base material.
 図41(A)は、Cu-NPsを担持したCNT撚糸に銅を析出させた複合糸の二次電子像を示す図である。図41(B)は、Cu-NPsを担持していないCNT撚糸に銅を析出させた複合糸の座屈部の二次電子像を示す図である。図41(A)に示されるように、Mixed CNT/Cu-wireは小さい曲率で変形可能である。この複合糸はCNTと銅が均質に混合した均質媒質であるため、柔軟であった。一方、図41(B)に示されるように、Unmixed CNT/Cu-wireは容易に座屈破壊する。これは、Unmixed CNT/Cu-wireでは中心部にCNT撚糸がそのまま存在するが、CNT撚糸部分は曲げによる圧縮荷重を負担できないことから、表面の銅からなる外周部(クラッド)が容易に座屈に至るためと考えられる。 FIG. 41 (A) is a diagram showing a secondary electron image of a composite yarn in which copper is deposited on a CNT twisted yarn carrying Cu-NPs. FIG. 41 (B) is a diagram showing a secondary electron image of a buckled portion of a composite yarn in which copper is deposited on a CNT twisted yarn that does not support Cu-NPs. As shown in FIG. 41 (A), the Mixed CNT / Cu-ware can be deformed with a small curvature. This composite yarn was flexible because it was a homogeneous medium in which CNT and copper were homogeneously mixed. On the other hand, as shown in FIG. 41 (B), the Unmixed CNT / Cu-ware easily buckles and fractures. This is because in Unmixed CNT / Cu-wire, the CNT twisted yarn exists in the center as it is, but since the CNT twisted yarn portion cannot bear the compressive load due to bending, the outer peripheral portion (clad) made of copper on the surface easily buckles. It is thought that this is to reach.
 以上説明したように、実施例2では、CNTを均質に高い割合で含むCNT/Cu複合糸が製造された。CNTと銅の相乗効果により、それは、高い電気伝導率、低いTCR、高い電流容量、高い引張特性、高い柔軟性を有している革新的新材料である。均質CNT/Cu-wireは、ドローンのモーターやイヤホン、小型アクチュエーターの小型コイルやエネルギー密度の高い小型電子デバイスシステムのワイヤリングなど、新たな軽量配線材料として期待できる。また、均質複合材料を得るために本実施例において示された気相ナノ粒子堆積された乾式CNT紡績技術は、CNT応用に新たな側面を追加する新技術である。ナノ粒子を担持したCNTにより長繊維やシート、立体構造など多様な構造体を形成できるので、今後、多様な機能性を有するCNT応用が可能である。 As described above, in Example 2, a CNT / Cu composite yarn containing CNTs uniformly in a high proportion was produced. Due to the synergistic effect of CNT and copper, it is an innovative new material with high electrical conductivity, low TCR, high current capacity, high tensile properties and high flexibility. Homogeneous CNT / Cu-wire can be expected as a new lightweight wiring material for drone motors and earphones, small coils for small actuators, and wiring for small electronic device systems with high energy density. In addition, the dry CNT spinning technique in which vapor phase nanoparticles are deposited in order to obtain a homogeneous composite material is a new technique that adds a new aspect to the CNT application. Since CNTs carrying nanoparticles can form various structures such as long fibers, sheets, and three-dimensional structures, CNTs with various functionalities can be applied in the future.
10  :ガラス管
20  :ヒータ
30  :CNTフォレスト
40  :修飾CNTフォレスト
50  :CNT
60  :CNT連続体
70  :微粒子
100 :製造装置
100A :めっき装置
110 :マイカシート
120 :CNT撚糸
130 :硫酸銅浴
141、142 :クリップ
151、152 :配線
160 :電源
161 :陰極端子
162 :陽極端子
170 :陽極
200 :導電性部材
D  :方向
RC  :反応室
RS  :金属元素含有物質
SB  :基板
10: Glass tube 20: Heater 30: CNT forest 40: Modified CNT forest 50: CNT
60: CNT continuous body 70: Fine particles 100: Manufacturing equipment 100A: Plating equipment 110: Mica sheet 120: CNT twisted yarn 130: Copper sulfate bath 141, 142: Clips 151, 152: Wiring 160: Power supply 161: Cathode terminal 162: Anode terminal 170: Anode 200: Conductive member D: Direction RC: Reaction chamber RS: Metal element-containing substance SB: Substrate

Claims (21)

  1.  所定の方向に配向したカーボンナノチューブを備えるカーボンナノチューブフォレストと、
     前記カーボンナノチューブに担持された微粒子とを備え、
     紡績可能であること
    を特徴とする修飾カーボンナノチューブフォレスト。
    A carbon nanotube forest with carbon nanotubes oriented in a predetermined direction,
    With fine particles supported on the carbon nanotubes
    A modified carbon nanotube forest characterized by being spinpable.
  2.  前記カーボンナノチューブの隣接間隙D1と前記微粒子の平均粒径D2とを用いて下記式(1)により定義される比Rが3以上である、請求項1に記載の修飾カーボンナノチューブフォレスト。
      R=D1/D2   (1)
     ここで、前記隣接間隙D1は、前記修飾カーボンナノチューブフォレストの数密度A(単位:本/m2)および前記カーボンナノチューブの平均直径D3を用いて、下記式(2)により表され、前記平均粒径D2および前記平均直径D3は、それぞれ、前記修飾カーボンナノチューブフォレストを電子顕微鏡により観察して測定された、10カ所以上の前記微粒子の直径の算術平均および10カ所以上の前記カーボンナノチューブの直径の算術平均である。
      D1=A-1/2-D3   (2)
    The modified carbon nanotube forest according to claim 1, wherein the ratio R defined by the following formula (1) using the adjacent gap D1 of the carbon nanotubes and the average particle size D2 of the fine particles is 3 or more.
    R = D1 / D2 (1)
    Here, the adjacent gap D1 is represented by the following formula (2) using the number density A (unit: book / m 2 ) of the modified carbon nanotube forest and the average diameter D3 of the carbon nanotubes, and the average grain. The diameter D2 and the average diameter D3 are the arithmetic average of the diameters of the fine particles in 10 or more places and the arithmetic of the diameters of the carbon nanotubes in 10 places or more, respectively, measured by observing the modified carbon nanotube forest with an electronic microscope. It is an average.
    D1 = A- 1 / 2 -D3 (2)
  3.  前記微粒子は導電性を有する、請求項1または請求項2に記載の修飾カーボンナノチューブフォレスト。 The modified carbon nanotube forest according to claim 1 or 2, wherein the fine particles have conductivity.
  4.  前記微粒子は酸化物を含む、請求項1から請求項3のいずれか1項に記載の修飾カーボンナノチューブフォレスト。 The modified carbon nanotube forest according to any one of claims 1 to 3, wherein the fine particles contain an oxide.
  5.  請求項1から請求項4のいずれか1項に記載の修飾カーボンナノチューブフォレストの紡績体を備える、カーボンナノチューブ連続体。 A carbon nanotube continuum comprising the spun body of the modified carbon nanotube forest according to any one of claims 1 to 4.
  6.  前記カーボンナノチューブ連続体がウェブ形状を有する、請求項5に記載のカーボンナノチューブ連続体。 The carbon nanotube continuum according to claim 5, wherein the carbon nanotube continuum has a web shape.
  7.  前記カーボンナノチューブ連続体は糸形状を有する、請求項5に記載のカーボンナノチューブ連続体。 The carbon nanotube continuum according to claim 5, wherein the carbon nanotube continuum has a thread shape.
  8.  撚りかけられている、請求項7に記載のカーボンナノチューブ連続体。 The carbon nanotube continuum according to claim 7, which is twisted.
  9.  請求項6に記載されるウェブ形状を有するカーボンナノチューブ連続体を備え、
     前記カーボンナノチューブ連続体を構成するカーボンナノチューブの少なくとも一部は、その配向方向に交差する方向に隙間を有して隣り合うこと
    を特徴とするガス透過性シート。
    The carbon nanotube continuum having the web shape according to claim 6 is provided.
    A gas permeable sheet characterized in that at least a part of carbon nanotubes constituting the carbon nanotube continuum is adjacent to each other with a gap in a direction intersecting the orientation direction thereof.
  10.  前記カーボンナノチューブは、PtおよびCoからなる群から選ばれる一種以上の元素を含む微粒子を担持する、請求項9に記載のガス透過性シート。 The gas permeable sheet according to claim 9, wherein the carbon nanotubes carry fine particles containing one or more elements selected from the group consisting of Pt and Co.
  11.  請求項9または請求項10に記載のガス透過性シートを備える燃料電池の触媒電極。 The catalyst electrode of the fuel cell provided with the gas permeable sheet according to claim 9 or 10.
  12.  請求項1から請求項3のいずれか1項に記載の修飾カーボンナノチューブフォレストと、前記修飾カーボンナノチューブフォレストの内部に位置するカーボンナノチューブに堆積しためっき系物質を備えることを特徴とする導電性部材。 A conductive member comprising the modified carbon nanotube forest according to any one of claims 1 to 3 and a plating-based substance deposited on the carbon nanotubes located inside the modified carbon nanotube forest.
  13.  請求項12に記載される導電性部材を備える、層間熱伝導材料。 An interlayer heat conductive material comprising the conductive member according to claim 12.
  14.  請求項5から請求項8のいずれか1項に記載されるカーボンナノチューブ連続体と、前記カーボンナノチューブ連続体の内部に位置するカーボンナノチューブに堆積しためっき物質とを備えることを特徴とする導電性部材。 A conductive member comprising the carbon nanotube continuum according to any one of claims 5 to 8 and a plating substance deposited on the carbon nanotubes located inside the carbon nanotube continuum. ..
  15.  前記カーボンナノチューブ連続体のカーボンナノチューブは導電性を有する微粒子を担持する、請求項14に記載の導電性部材。 The conductive member according to claim 14, wherein the carbon nanotubes of the carbon nanotube continuum carry fine particles having conductivity.
  16.  請求項1から請求項4のいずれか1項に記載の修飾カーボンナノチューブフォレストの製造方法であって、
     金属元素含有物質を気相状態にしてカーボンナノチューブフォレストに供給し、
     前記金属元素含有物質を分解して金属基物質を生成し、
     前記金属基物質から形成された微粒子を、前記カーボンナノチューブフォレストに担持させること
    を備えることを特徴とする修飾カーボンナノチューブフォレストの製造方法。
    The method for producing a modified carbon nanotube forest according to any one of claims 1 to 4.
    The metal element-containing substance is put into a gas phase state and supplied to the carbon nanotube forest.
    The metal element-containing substance is decomposed to generate a metal-based substance,
    A method for producing a modified carbon nanotube forest, which comprises supporting the fine particles formed from the metal-based substance on the carbon nanotube forest.
  17.  請求項6または請求項7に記載される糸形状を有するカーボンナノチューブ連続体と、前記カーボンナノチューブ連続体を構成するカーボンナノチューブの少なくとも一部に堆積しためっき系物質とを備える糸状導電性部材。 A filamentous conductive member comprising the carbon nanotube continuum having a thread shape according to claim 6 or 7, and a plating-based substance deposited on at least a part of the carbon nanotubes constituting the carbon nanotube continuum.
  18.  電流容量が105A/cm2以上である、請求項17に記載の糸状導電性部材。 The filamentous conductive member according to claim 17, which has a current capacity of 105 A / cm 2 or more.
  19.  長手方向の導電率を測定したときに、300Kから450Kの範囲での抵抗温度係数が1.8×10-3-1以下である、請求項17または請求項18に記載の糸状導電性部材。 The filamentous conductive member according to claim 17 or 18, wherein the temperature coefficient of resistance in the range of 300 K to 450 K is 1.8 × 10 -3 K -1 or less when the conductivity in the longitudinal direction is measured. ..
  20.  長手方向で測定された導電率に基づき算出される比導電率が、400K以上で銅線の比導電率よりも高い、請求項17から請求項19のいずれか1項に記載の糸状導電性部材。 The filamentous conductive member according to any one of claims 17 to 19, wherein the specific conductivity calculated based on the conductivity measured in the longitudinal direction is 400 K or more and higher than the specific conductivity of the copper wire. ..
  21.  前記糸状導電部材から前記めっき系物質を除いた材料に相当するブランクカーボンナノチューブ連続体を基準として、引張強度が1.0倍以上であり、ヤング率が1.5倍以上である、請求項17から請求項20のいずれか1項に記載の糸状導電性部材。 17. Claim 17 has a tensile strength of 1.0 times or more and a Young's modulus of 1.5 times or more based on a blank carbon nanotube continuum corresponding to a material obtained by removing the plating-based substance from the filamentous conductive member. The filamentous conductive member according to any one of claims 20.
PCT/JP2021/042904 2020-12-22 2021-11-24 Modified carbon nanotube forest, carbon nanotube aligned aggregate, gas-permeable sheet, catalyst electrode for fuel cells, electroconductive member, thread-like electroconductive member, interlayer heat-conductive material, and method for producing modified carbon nanotube forest WO2022137950A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022571986A JPWO2022137950A1 (en) 2020-12-22 2021-11-24
JP2024014780A JP2024052746A (en) 2020-12-22 2024-02-02 Modified carbon nanotube forests, carbon nanotube continua and interlayer thermal conductive materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-212289 2020-12-22
JP2020212289 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022137950A1 true WO2022137950A1 (en) 2022-06-30

Family

ID=82159059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042904 WO2022137950A1 (en) 2020-12-22 2021-11-24 Modified carbon nanotube forest, carbon nanotube aligned aggregate, gas-permeable sheet, catalyst electrode for fuel cells, electroconductive member, thread-like electroconductive member, interlayer heat-conductive material, and method for producing modified carbon nanotube forest

Country Status (2)

Country Link
JP (2) JPWO2022137950A1 (en)
WO (1) WO2022137950A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080039227A (en) * 2006-10-31 2008-05-07 삼성전자주식회사 Device comprising palladium-catalyst-induced carbon nanostructure and fabrication method thereof
JP2011064684A (en) * 2009-09-15 2011-03-31 Qinghua Univ Raman scattering substrate, and raman spectrum measuring system adopting the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080039227A (en) * 2006-10-31 2008-05-07 삼성전자주식회사 Device comprising palladium-catalyst-induced carbon nanostructure and fabrication method thereof
JP2011064684A (en) * 2009-09-15 2011-03-31 Qinghua Univ Raman scattering substrate, and raman spectrum measuring system adopting the same

Also Published As

Publication number Publication date
JPWO2022137950A1 (en) 2022-06-30
JP2024052746A (en) 2024-04-12

Similar Documents

Publication Publication Date Title
US8951631B2 (en) CNT-infused metal fiber materials and process therefor
US6455021B1 (en) Method for producing carbon nanotubes
JP4504453B2 (en) Method for producing linear carbon nanotube structure
EP1810950B1 (en) Carbon nanotube aggregate and process for producing the same
US7754283B2 (en) Continuous production of carbon nanotubes
US9963781B2 (en) Carbon nanotubes grown on nanostructured flake substrates and methods for production thereof
KR102003577B1 (en) Carbon nanotube conductor with enhanced electrical conductivity
EP3466876A1 (en) Carbon fibre comprising carbon nanotubes
KR20130105634A (en) Metal substrates having carbon nanotubes grown thereon and methods for production thereof
KR20040111412A (en) Iron/Carbon Composite, Carbonaceous Material Comprising the Iron/Carbon Composite, and Process For Producing the Same
JP2013509504A5 (en)
TW200938481A (en) Carbon nanotube yarn strucutre
JPH11116218A (en) Production of single layered nanotube
US11512390B2 (en) Method of site-specific deposition onto a free-standing carbon article
WO2022137950A1 (en) Modified carbon nanotube forest, carbon nanotube aligned aggregate, gas-permeable sheet, catalyst electrode for fuel cells, electroconductive member, thread-like electroconductive member, interlayer heat-conductive material, and method for producing modified carbon nanotube forest
WO2023026951A1 (en) Method for producing carbon nanotube strand wire and carbon nanotube strand wire production device
JP6972627B2 (en) Method for manufacturing carbon nanotube composite and laminated body
US9970130B2 (en) Carbon nanofibers with sharp tip ends and a carbon nanofibers growth method using a palladium catalyst
JP5494322B2 (en) CNT wire manufacturing method
CN111041542A (en) Composite metal wire with composite electroplated nano carbon metal film and preparation method thereof
Suda et al. Syntheses and electronic applications of Helical carbon nanofibers
Landi et al. Nanometal-Interconnected Carbon Conductors (NICCS) for Advanced Electric Machines (RIT Final Technical Report)
Dhall et al. Synthesis and Structural studies of lightweight CNT/Cu composites: An overview
Hekmat et al. Effect of Template on the Structure of Carbon Nanotubes Grown by Catalytic Chemical Vapor Deposition Method
TWI345794B (en) Method for making cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910103

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910103

Country of ref document: EP

Kind code of ref document: A1