JP5494322B2 - CNT wire manufacturing method - Google Patents

CNT wire manufacturing method Download PDF

Info

Publication number
JP5494322B2
JP5494322B2 JP2010164118A JP2010164118A JP5494322B2 JP 5494322 B2 JP5494322 B2 JP 5494322B2 JP 2010164118 A JP2010164118 A JP 2010164118A JP 2010164118 A JP2010164118 A JP 2010164118A JP 5494322 B2 JP5494322 B2 JP 5494322B2
Authority
JP
Japan
Prior art keywords
layer
cnt
film thickness
substrate
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010164118A
Other languages
Japanese (ja)
Other versions
JP2011153062A (en
Inventor
大島  久純
憲二 桶結
智寛 島津
ミラン シリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010164118A priority Critical patent/JP5494322B2/en
Publication of JP2011153062A publication Critical patent/JP2011153062A/en
Application granted granted Critical
Publication of JP5494322B2 publication Critical patent/JP5494322B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、CNT(カーボンナノチューブ)ワイヤの製造方法に関する。   The present invention relates to a method for producing a CNT (carbon nanotube) wire.

カーボンナノチューブ(以下、CNTとする)は、1991年にNECの飯島氏によって発見された新しい炭素材料である。このCNTは、炭素原子がsp2結合した六員環のネットワークを有する黒鉛シートが円筒状に閉じた構造を有する、直径数nm〜数十nmのチューブ状の炭素素材である。   Carbon nanotube (hereinafter referred to as CNT) is a new carbon material discovered by Mr. Iijima of NEC in 1991. This CNT is a tubular carbon material having a diameter of several nanometers to several tens of nanometers having a structure in which a graphite sheet having a six-membered ring network in which carbon atoms are sp2 bonded is cylindrically closed.

CNTは非常に安定した化学構造を有し、CNTを構成する六方格子の螺旋度によって、良導体にも半導体にもなるなど、様々な特性を有することが確認されている。また、CNTは、電気的特性、熱伝導性、及び機械的強度に優れており、これらの特徴を活かして、現在では、熱機器分野、電気、電子機器分野などへの応用研究が盛んに行われている。   CNT has a very stable chemical structure, and it has been confirmed that it has various characteristics such as being a good conductor and a semiconductor depending on the helical degree of the hexagonal lattice constituting the CNT. In addition, CNTs are excellent in electrical characteristics, thermal conductivity, and mechanical strength. Utilizing these characteristics, CNTs are currently actively researched in the fields of thermal equipment, electricity, and electronic equipment. It has been broken.

CNTは、上記のとおり、微細な構造を有するため、そのままでは、取り扱い性や加工性が悪い。このため、肉眼で確認しながら取り扱うことが可能な大きさのCNTの集合体を製造することが試みられている。このCNTの集合体としては、例えば、複数のCNTから成るCNTワイヤが挙げられる。さらに、このCNTワイヤを用いて、CNTの織布やシートを製造できる。   Since CNT has a fine structure as described above, handling and workability are poor as it is. For this reason, attempts have been made to produce an aggregate of CNTs that can be handled with the naked eye. Examples of the CNT aggregate include a CNT wire composed of a plurality of CNTs. Furthermore, using this CNT wire, a woven or sheet of CNT can be manufactured.

CNTワイヤは、次のように製造できる。まず、基板上にCNT合成用の金属触媒層を形成し、次に、炭化水素系のガスを炭素源として供給して、化学気相堆積法により、基板上に垂直に配向成長したCNT膜(複数のCNTから成る膜)を合成する。そして、この膜からCNT自身が連なった糸を引き出し(紡糸)、必要に応じて撚りをかけ、CNTからなるワイヤを製造する(特許文献1〜3)。   The CNT wire can be manufactured as follows. First, a metal catalyst layer for CNT synthesis is formed on a substrate. Next, a hydrocarbon-based gas is supplied as a carbon source, and a CNT film vertically aligned and grown on the substrate by chemical vapor deposition ( A film composed of a plurality of CNTs) is synthesized. And the thread | yarn which CNT itself continued from this film | membrane is drawn out (spinning), and it twists as needed, and manufactures the wire which consists of CNT (patent documents 1-3).

上記特許文献1の技術において、金属触媒は、鉄、ニッケル及びコバルトの中から選ばれる少なくとも1種の金属である。また、上記特許文献2の技術において、金属触媒は、鉄、コバルト、ニッケル、鉄合金、コバルト合金、ニッケル合金、鉄酸化物、コバルト酸化物、ニッケル酸化物、またはこれらの組み合わせである。また、上記特許文献3の技術において、金属触媒は、電子ビーム蒸発でシリコンウエハまたはガラスの基板上に堆積させた、厚さ5nmの鉄膜である。   In the technique of Patent Document 1, the metal catalyst is at least one metal selected from iron, nickel, and cobalt. In the technique of Patent Document 2, the metal catalyst is iron, cobalt, nickel, iron alloy, cobalt alloy, nickel alloy, iron oxide, cobalt oxide, nickel oxide, or a combination thereof. In the technique disclosed in Patent Document 3, the metal catalyst is an iron film having a thickness of 5 nm deposited on a silicon wafer or glass substrate by electron beam evaporation.

特許第3868914号公報Japanese Patent No. 3868914 WO2005/102924号公報WO2005 / 102924 特表2008−523254号公報Special table 2008-523254 gazette

上記特許文献1〜3を含む従来の技術では、基板上の垂直配向膜から、CNTが連なった糸を安定して紡糸することができず、CNTワイヤの生産性や歩留まりが低かった。
本発明は以上の点に鑑みなされたものであり、生産性や歩留まりが高いCNTワイヤの製造方法を提供することを目的とする。
In the conventional techniques including Patent Documents 1 to 3 described above, it is not possible to stably spin a yarn in which CNTs are continuous from a vertical alignment film on a substrate, and the productivity and yield of CNT wires are low.
This invention is made | formed in view of the above point, and it aims at providing the manufacturing method of CNT wire with high productivity and a yield.

本発明のCNTワイヤの製造方法は、表面に、FeとAlとの合金の層であるFe−Al層を有する基板上に、CNTを複数形成する工程と、複数のCNTの一部を引き出す工程とを有する。本発明のCNTワイヤの製造方法において、蛍光X線測定に基づき算出した前記Fe−Al層の組成比Fe/Alと、蛍光X線測定に基づき算出した前記Fe−Al層の膜厚と、蛍光X線測定に基づき算出した前記Fe−Al層のFe換算での膜厚であるFe膜厚とは、下記の条件1、条件2、及び条件3のうちのいずれかを充足する。
条件1:前記Fe−Al層の組成比Fe/Alは、0.52〜0.75の範囲にあり、且つ前記Fe−Al層の膜厚は、4〜7.9nmの範囲にある。
条件2:前記Fe−Al層の組成比Fe/Alは、0.23〜0.52の範囲にあり、且つ前記Fe−Al層の膜厚は、5.8〜7.9nmの範囲にある。
条件3:前記Fe−Al層の組成比Fe/Alは、0.52以下であり、且つ前記Fe−Al層の膜厚は、5.8nm以下であり、且つ前記Fe−Al層のFe膜厚が1.6nmより厚い範囲にある。
The method for producing a CNT wire of the present invention includes a step of forming a plurality of CNTs on a substrate having a Fe—Al layer that is an alloy layer of Fe and Al on the surface , and a step of extracting a part of the plurality of CNTs. And have. In the CNT wire manufacturing method of the present invention, the composition ratio Fe / Al of the Fe—Al layer calculated based on the fluorescent X-ray measurement, the film thickness of the Fe—Al layer calculated based on the fluorescent X-ray measurement, and the fluorescence The Fe film thickness that is the film thickness in terms of Fe of the Fe—Al layer calculated based on the X-ray measurement satisfies one of the following condition 1, condition 2, and condition 3.
Condition 1: The composition ratio Fe / Al of the Fe—Al layer is in the range of 0.52 to 0.75, and the film thickness of the Fe—Al layer is in the range of 4 to 7.9 nm.
Condition 2: The composition ratio Fe / Al of the Fe—Al layer is in the range of 0.23 to 0.52, and the film thickness of the Fe—Al layer is in the range of 5.8 to 7.9 nm. .
Condition 3: The composition ratio Fe / Al of the Fe—Al layer is 0.52 or less, the film thickness of the Fe—Al layer is 5.8 nm or less, and the Fe film of the Fe—Al layer The thickness is in the range thicker than 1.6 nm.

本発明のCNTワイヤの製造方法では、基板上にCNTを複数形成するための触媒として、上述した条件1、条件2、及び条件3のうちのいずれかを充足する組成比及び膜厚のFe−Al層を用いる。Fe−Al層における組成比及び膜厚が、条件1、条件2、及び条件3のうちのいずれかを充足することにより、基板上に複数形成されたCNTを用いてCNTワイヤを製造するときの生産性や歩留まりが高い。   In the method for producing a CNT wire of the present invention, as a catalyst for forming a plurality of CNTs on a substrate, a composition ratio and film thickness satisfying any one of the above-described conditions 1, 2 and 3 are satisfied. An Al layer is used. When the composition ratio and film thickness in the Fe—Al layer satisfy one of Condition 1, Condition 2, and Condition 3, when manufacturing a CNT wire using a plurality of CNTs formed on the substrate Productivity and yield are high.

前記Fe−Al層のFe膜厚とは、後述するFe−Al層のFe換算での膜厚(M1)を意味する。
前記条件2において、Fe−Al層の組成比Fe/Alが、0.30〜0.52の範囲にあることが好ましい。この範囲にあることにより、CNTワイヤを製造するときの生産性や歩留まりが一層高い。また、条件2において、Fe−Al層の膜厚が5.8〜7.5nmの範囲にあることが好ましい。この範囲にあることにより、CNTワイヤを製造するときの生産性や歩留まりが一層高い。
The Fe film thickness of the Fe—Al layer means the film thickness (M1) in terms of Fe of the Fe—Al layer described later.
In the condition 2, it is preferable that the composition ratio Fe / Al of the Fe—Al layer is in the range of 0.30 to 0.52. By being in this range, productivity and yield when manufacturing CNT wires are higher. In condition 2, it is preferable that the film thickness of the Fe—Al layer be in the range of 5.8 to 7.5 nm. By being in this range, productivity and yield when manufacturing CNT wires are higher.

本発明のCNTワイヤの製造方法では、予め表面にFe−Al層が形成された基板を用いてもよいし、製造方法の一部として、基板の表面にFe−Al層を形成する工程を有していてもよい。   In the CNT wire manufacturing method of the present invention, a substrate having a Fe—Al layer formed on the surface in advance may be used, or as a part of the manufacturing method, there is a step of forming a Fe—Al layer on the surface of the substrate. You may do it.

本発明において、Fe−Al層は、例えば、スパッタ又は蒸着により形成することができる。   In the present invention, the Fe—Al layer can be formed, for example, by sputtering or vapor deposition.

CNTワイヤの製造方法を表す説明図である。It is explanatory drawing showing the manufacturing method of a CNT wire. 金属触媒層の組成と紡糸可否との関係を表すグラフである。It is a graph showing the relationship between a composition of a metal catalyst layer, and spinning availability. CNTワイヤを表す電子顕微鏡写真である。It is an electron micrograph showing a CNT wire.

本発明の実施形態を説明する。
1.基板の用意
直径6インチ、厚さ650μmのP型シリコン基板を熱酸化して、その表面に厚さ100nmの酸化膜を形成した。酸化膜の厚みは、走査型電子顕微鏡を用いて測定した。
An embodiment of the present invention will be described.
1. Preparation of substrate A P-type silicon substrate having a diameter of 6 inches and a thickness of 650 μm was thermally oxidized to form an oxide film having a thickness of 100 nm on the surface thereof. The thickness of the oxide film was measured using a scanning electron microscope.

次に、スパッタリング装置を用いて、基板の表面(熱酸化膜上)に、金属触媒層を形成した。金属触媒層の形成は、表1に示すように、S1〜S27の27種類の条件でそれぞれ行った。   Next, a metal catalyst layer was formed on the surface of the substrate (on the thermal oxide film) using a sputtering apparatus. As shown in Table 1, the metal catalyst layer was formed under 27 conditions of S1 to S27.

S1〜S18、S20〜S27の条件は、Fe−Al(合金)から成る金属触媒層(以下、Fe−Al層とする)を形成する条件であり、S19の条件は、鉄のみから成る金属触媒層を形成する条件である。スパッタリングによるFe−Al層の形成では、Alのターゲットの上にFeのターゲットを乗せ、それらの面積比を変えることにより、Fe−Al層の組成比を調整した。 The conditions S1 to S18 and S20 to S27 are conditions for forming a metal catalyst layer (hereinafter referred to as Fe—Al layer) made of Fe—Al (alloy), and the condition of S19 is a metal catalyst made only of iron. This is a condition for forming a layer. In the formation of the Fe—Al layer by sputtering, the composition ratio of the Fe—Al layer was adjusted by placing the Fe target on the Al target and changing the area ratio thereof.

表1のS1〜S18、S20〜S27の条件におけるFe−Al層の組成比、膜厚は、以下のように算出する。まず、厚み既知のFe層の蛍光X線測定を行い、Fe固有のピーク面積強度を求める。これを、複数種類の厚みのFe層についてそれぞれ行い、Fe膜厚と、Fe固有のピーク面積強度との検量線を作成しておく。同様に、Al層についても、Al膜厚と、蛍光X線測定スペクトルにおけるAl固有のピーク面積強度との検量線を作成しておく。   The composition ratio and film thickness of the Fe—Al layer under the conditions of S1 to S18 and S20 to S27 in Table 1 are calculated as follows. First, fluorescent X-ray measurement of an Fe layer with a known thickness is performed to determine the peak area intensity unique to Fe. This is performed for each of the Fe layers having a plurality of thicknesses, and a calibration curve between the Fe film thickness and the peak area intensity unique to Fe is prepared. Similarly, for the Al layer, a calibration curve is prepared between the Al film thickness and the peak area intensity unique to Al in the fluorescent X-ray measurement spectrum.

次に、基板上に形成したFe−Al層の蛍光X線測定を行う。その測定スペクトルにおいて、Fe固有のピーク面積強度と、Al固有のピーク面積強度とをそれぞれ求める。そして、このFe固有のピーク面積強度を、先に作成しておいたFeの検量線に当てはめて、Fe−Al層のFe換算での膜厚(以下、M1とする)を算出する。また、Al固有のピーク面積強度を、先に作成しておいたAlの検量線に当てはめて、Fe−Al層のAl換算での膜厚(以下、M2とする)を算出する。このM1とM2との和を、Fe−Al層の膜厚とする。また、M1/M2を、Fe−Al層の組成比Fe/Alとする。   Next, the fluorescent X-ray measurement of the Fe—Al layer formed on the substrate is performed. In the measurement spectrum, the peak area intensity specific to Fe and the peak area intensity specific to Al are obtained. Then, the peak area intensity unique to Fe is applied to the previously prepared calibration curve of Fe, and the film thickness in terms of Fe of the Fe—Al layer (hereinafter referred to as M1) is calculated. Further, the peak area intensity peculiar to Al is applied to the previously prepared Al calibration curve, and the film thickness in terms of Al of the Fe—Al layer (hereinafter referred to as M2) is calculated. The sum of M1 and M2 is the film thickness of the Fe—Al layer. M1 / M2 is the composition ratio Fe / Al of the Fe—Al layer.

表1のS19は、Feのみから成る層(Fe層)である。このFe層の膜厚は、以下のように算出する。基板上に形成したFe層の蛍光X線測定を行う。その測定スペクトルにおいて、Fe固有のピーク面積強度を求める。そして、このFe固有のピーク面積強度を、先に作成しておいたFeの検量線に当てはめて、Fe層の膜厚を算出する。   S19 in Table 1 is a layer composed only of Fe (Fe layer). The film thickness of this Fe layer is calculated as follows. X-ray fluorescence measurement of the Fe layer formed on the substrate is performed. In the measurement spectrum, the peak area intensity unique to Fe is obtained. Then, the peak area intensity unique to Fe is applied to the previously prepared calibration curve of Fe to calculate the thickness of the Fe layer.

なお、蛍光X線測定スペクトルからピーク面積強度を求めるときは、ベースラインを引いておき、そのベースラインよりも上の部分の面積を求める。
2.CNTの合成
S1〜S27の各条件で金属触媒層を形成した基板のそれぞれを用いて、CNTを合成した。具体的には、以下のようにした。基板を電気炉に挿入し、電気炉内に、水蒸気、アルゴン、及び水素を流した。アルゴンの流量は300cc/minとし、水素の流量は50cc/minとし、水蒸気の流量は、電気炉から出たArガス中に占める水蒸気濃度が60ppmとなる量とした。
In addition, when calculating | requiring peak area intensity | strength from a fluorescent X ray measurement spectrum, a base line is drawn and the area of the part above the base line is calculated | required.
2. Synthesis of CNTs CNTs were synthesized using each of the substrates on which the metal catalyst layers were formed under the conditions of S1 to S27. Specifically, it was as follows. The substrate was inserted into an electric furnace, and water vapor, argon, and hydrogen were allowed to flow through the electric furnace. The flow rate of argon was 300 cc / min, the flow rate of hydrogen was 50 cc / min, and the flow rate of water vapor was such that the water vapor concentration in the Ar gas from the electric furnace was 60 ppm.

その状態で電気炉内を昇温してゆき、CNT合成温度(700℃)に達した後、電気炉内にエチレンガスを10cc/minの流量で流し、基板上にCNTを合成した。合成時間は10分間とした。   In this state, the temperature in the electric furnace was raised, and after reaching the CNT synthesis temperature (700 ° C.), ethylene gas was flowed into the electric furnace at a flow rate of 10 cc / min to synthesize CNTs on the substrate. The synthesis time was 10 minutes.

合成終了後、電子顕微鏡で基板上を観察したところ、S1〜S27の条件で金属触媒層を形成した基板については、基板上でCNTが合成され、CNTの垂直配向膜が形成されていた。合成されたCNTは、その一端が基板に固定されており、基板に対して垂直方向に均一に配向していた。また、個々のCNTの直径は10〜30nm程度であり、CNTの長さは約100〜300μmであった。   When the substrate was observed with an electron microscope after the synthesis was completed, CNT was synthesized on the substrate on which the metal catalyst layer was formed under the conditions of S1 to S27, and a vertical alignment film of CNT was formed. One end of the synthesized CNT was fixed to the substrate, and was uniformly oriented in a direction perpendicular to the substrate. Moreover, the diameter of each CNT was about 10-30 nm, and the length of CNT was about 100-300 micrometers.

3.CNTワイヤの製造試験
CNTが合成された基板(S1〜S27の条件で金属触媒層を形成した基板)のそれぞれについて、CNTワイヤの製造試験を行った。具体的には、図1(a)に示すように、基板上に配向しているCNTのマトリックスにおいて、基板の端部にあるCNTの束の一端を引出し具でつまみ、CNTの配向方向とは直交する方向に引出した。このとき、図1(b)〜図1(c)に示すように、CNTの束が安定して長くつながり、CNTワイヤが製造できるか(紡糸できるか)否かを試験した。試験は、各条件の基板について、それぞれ、2〜4回行った。
3. CNT Wire Production Test A CNT wire production test was performed on each of the substrates on which CNTs were synthesized (substrates on which a metal catalyst layer was formed under the conditions of S1 to S27). Specifically, as shown in FIG. 1 (a), in the CNT matrix oriented on the substrate, one end of a bundle of CNTs at the end of the substrate is pinched with an extractor, and the orientation direction of the CNT is It was pulled out in the orthogonal direction. At this time, as shown in FIG. 1B to FIG. 1C, it was tested whether a bundle of CNTs was stably and long connected, and a CNT wire could be produced (spun). The test was performed 2 to 4 times for each substrate under each condition.

上記表1に、試験結果を示す。表1の「紡糸可否」において、○は紡糸できたことを表し、×は紡糸できなかったことを表す。また、図2に、S1〜S18、S20〜S27におけるFe膜厚、及びAl膜厚と、紡糸可否との相関関係を示す。図2において、○は紡糸できたことを表し、○が大きいほど、紡糸できた割合が高いことを表す。また、図2において、×は紡糸できなかったことを表す。また、図3に、紡糸できた場合に製造されたCNTワイヤを示す。図3に示すCNTワイヤは、引き出したCNTの束に撚りを掛け、撚り線にしたものである。   Table 1 shows the test results. In Table 1, “spinnability” indicates that spinning was possible, and x indicates that spinning was not possible. FIG. 2 shows the correlation between the Fe film thickness and the Al film thickness in S1 to S18 and S20 to S27, and whether or not spinning is possible. In FIG. 2, “◯” indicates that spinning has been performed, and the larger “◯” indicates that the proportion of spinning has been higher. In FIG. 2, x indicates that spinning could not be performed. FIG. 3 shows a CNT wire produced when spinning is possible. The CNT wire shown in FIG. 3 is obtained by twisting a bundle of drawn CNTs into a stranded wire.

表1及び図2に示すように、Fe−Al層の組成比が0.52〜0.75の範囲にあり、且つFe−Al層の膜厚が7.9nm以下4nm以上の範囲にある場合(条件1を充足する場合)に、紡糸できる確率が高かった。   As shown in Table 1 and FIG. 2, when the composition ratio of the Fe—Al layer is in the range of 0.52 to 0.75 and the film thickness of the Fe—Al layer is in the range of 7.9 nm or less and 4 nm or more. The probability of spinning was high (when Condition 1 was satisfied).

また、Fe−Al層の組成比が0.23〜0.52の範囲にあり、且つFe−Al層の膜厚が5.8〜7.9nmの範囲にある場合(条件2を充足する場合)に、紡糸できる確率が高かった。   Further, when the composition ratio of the Fe—Al layer is in the range of 0.23 to 0.52 and the thickness of the Fe—Al layer is in the range of 5.8 to 7.9 nm (when the condition 2 is satisfied) ), The probability of spinning was high.

尚、本発明は前記実施例になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
例えば、Fe−Al層は蒸着により形成してもよい。
Needless to say, the present invention is not limited to the above-described embodiments, and can be implemented in various modes without departing from the scope of the present invention.
For example, the Fe—Al layer may be formed by vapor deposition.

また、Fe−Al層のFe換算膜厚は、蛍光X線測定スペクトルにおける、Fe固有のピークの高さに基づいて算出することができる。同様に、Fe−Al層のAl換算膜厚は、蛍光X線測定スペクトルにおける、Al固有のピークの高さに基づいて算出することができる。なお、ピークの高さを求めるときは、蛍光X線測定スペクトルにベースラインを引いておき、ピークのトップからそのベースラインまでの長さをピークの高さとする。   Further, the Fe equivalent film thickness of the Fe—Al layer can be calculated based on the peak height unique to Fe in the fluorescent X-ray measurement spectrum. Similarly, the Al equivalent film thickness of the Fe—Al layer can be calculated based on the peak height unique to Al in the fluorescent X-ray measurement spectrum. When obtaining the peak height, a base line is drawn on the X-ray fluorescence measurement spectrum, and the length from the peak top to the base line is defined as the peak height.

また、Fe−Al層を形成するために用いるスパッタターゲットは、全体として均一な組成のFe−Al合金であってもよい。この場合、合金におけるFe/Al比を変化させることにより、Fe−Al層の組成比を調整することができる。   The sputter target used for forming the Fe—Al layer may be a Fe—Al alloy having a uniform composition as a whole. In this case, the composition ratio of the Fe—Al layer can be adjusted by changing the Fe / Al ratio in the alloy.

Claims (3)

表面に、FeとAlとの合金の層であるFe−Al層を有する基板上に、CNTを複数形成する工程と、
前記複数のCNTの一部を引き出す工程と、
を有するCNTワイヤの製造方法であって、
蛍光X線測定に基づき算出した前記Fe−Al層の組成比Fe/Alと、蛍光X線測定に基づき算出した前記Fe−Al層の膜厚と、蛍光X線測定に基づき算出した前記Fe−Al層のFe換算での膜厚であるFe膜厚とが、下記の条件1、条件2、及び条件3のうちのいずれかを充足することを特徴とするCNTワイヤの製造方法。
条件1:前記Fe−Al層の組成比Fe/Alは、0.52〜0.75の範囲にあり、且つ前記Fe−Al層の膜厚は、4〜7.9nmの範囲にある。
条件2:前記Fe−Al層の組成比Fe/Alは、0.23〜0.52の範囲にあり、且つ前記Fe−Al層の膜厚は、5.8〜7.9nmの範囲にある。
条件3:前記Fe−Al層の組成比Fe/Alは、0.52以下であり、且つ前記Fe−Al層の膜厚は、5.8nm以下であり、且つ前記Fe−Al層のFe膜厚が1.6nmより厚い範囲にある。
Forming a plurality of CNTs on a substrate having a Fe—Al layer, which is an alloy layer of Fe and Al, on the surface;
Extracting a part of the plurality of CNTs;
A CNT wire manufacturing method comprising:
The composition ratio Fe / Al of the Fe—Al layer calculated based on the fluorescent X-ray measurement, the film thickness of the Fe—Al layer calculated based on the fluorescent X-ray measurement, and the Fe— calculated based on the fluorescent X-ray measurement. A method for producing a CNT wire, wherein the Fe film thickness, which is the film thickness in terms of Fe of the Al layer, satisfies any one of the following conditions 1, 2 and 3.
Condition 1: The composition ratio Fe / Al of the Fe—Al layer is in the range of 0.52 to 0.75, and the film thickness of the Fe—Al layer is in the range of 4 to 7.9 nm.
Condition 2: The composition ratio Fe / Al of the Fe—Al layer is in the range of 0.23 to 0.52, and the film thickness of the Fe—Al layer is in the range of 5.8 to 7.9 nm. .
Condition 3: The composition ratio Fe / Al of the Fe—Al layer is 0.52 or less, the film thickness of the Fe—Al layer is 5.8 nm or less, and the Fe film of the Fe—Al layer The thickness is in the range thicker than 1.6 nm.
前記基板の表面に、前記Fe−Al層を形成する工程を有することを特徴とする請求項1に記載のCNTワイヤの製造方法。   The method for producing a CNT wire according to claim 1, further comprising a step of forming the Fe—Al layer on a surface of the substrate. 前記Fe−Al層は、スパッタ又は蒸着により形成された層であることを特徴とする請求項1又は2に記載のCNTワイヤの製造方法。   The method for producing a CNT wire according to claim 1 or 2, wherein the Fe-Al layer is a layer formed by sputtering or vapor deposition.
JP2010164118A 2009-12-28 2010-07-21 CNT wire manufacturing method Expired - Fee Related JP5494322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010164118A JP5494322B2 (en) 2009-12-28 2010-07-21 CNT wire manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009298383 2009-12-28
JP2009298383 2009-12-28
JP2010164118A JP5494322B2 (en) 2009-12-28 2010-07-21 CNT wire manufacturing method

Publications (2)

Publication Number Publication Date
JP2011153062A JP2011153062A (en) 2011-08-11
JP5494322B2 true JP5494322B2 (en) 2014-05-14

Family

ID=44539307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010164118A Expired - Fee Related JP5494322B2 (en) 2009-12-28 2010-07-21 CNT wire manufacturing method

Country Status (1)

Country Link
JP (1) JP5494322B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5508215B2 (en) * 2010-10-04 2014-05-28 株式会社神戸製鋼所 Method for producing substrate for forming carbon nanostructure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1086870A (en) * 1976-05-18 1980-09-30 Western Electric Company, Incorporated X-ray-fluorescence measurement of thin film thicknesses
JPS5429843A (en) * 1977-08-10 1979-03-06 Nippon Steel Corp Controlling method for composition and thickness of plated multicomponent alloy films
JP3711384B2 (en) * 2002-03-20 2005-11-02 独立行政法人産業技術総合研究所 Carbon nanotube aggregate array film and manufacturing method thereof
KR101536669B1 (en) * 2004-11-09 2015-07-15 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
JP2007091479A (en) * 2005-09-26 2007-04-12 Sonac Kk Method for production of carbon fiber
JP2007091480A (en) * 2005-09-26 2007-04-12 Sonac Kk Catalyst arrangement structure
JP2007090129A (en) * 2005-09-26 2007-04-12 Sonac Kk Catalyst arrangement structure
JP5018419B2 (en) * 2007-11-19 2012-09-05 富士通株式会社 Module structure, manufacturing method thereof, and semiconductor device

Also Published As

Publication number Publication date
JP2011153062A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP4589440B2 (en) Linear carbon nanotube structure
JP4504453B2 (en) Method for producing linear carbon nanotube structure
US7731930B2 (en) Carbon nanotube assembly and manufacturing method thereof
JP4589438B2 (en) Carbon nanotube composite
JP3740295B2 (en) Carbon nanotube device, manufacturing method thereof, and electron-emitting device
JP4589439B2 (en) Method for producing carbon nanotube composite
JP5243478B2 (en) Nanomaterial thin film
US20140021403A1 (en) Carbon nanotube composite and method of manufacturing the same
KR101954381B1 (en) CATALYST FREE SYNTHESIS OF VERTICALLY ALIGNED CNTs ON SiNW ARRAYS
JP5644537B2 (en) Carbon nanotube aggregate and method for producing the same
JP5353689B2 (en) CNT fiber and method for producing the same
JP2021020828A (en) Carbon nanotube, and method and apparatus for producing the same
US20120263951A1 (en) Electrically conducting nanocomposite wire comprising tow of multiwalled carbon nanotubes and transverse metal bridges
JP5494322B2 (en) CNT wire manufacturing method
US11673806B2 (en) Carbon nanotube composite assembled wire, heat-treated body of carbon nanotube composite assembled wire, method for manufacturing carbon nanotube composite assembled wire, and method for manufacturing heat-treated body of carbon nanotube composite assembled wire
KR101626936B1 (en) Carbon nanofibers with sharp tip structure and carbon nanofibers growth method using of palladium catalyst
WO2022137950A1 (en) Modified carbon nanotube forest, carbon nanotube aligned aggregate, gas-permeable sheet, catalyst electrode for fuel cells, electroconductive member, thread-like electroconductive member, interlayer heat-conductive material, and method for producing modified carbon nanotube forest
JP2010241655A (en) Substrate for synthesizing conductive fine fiber and manufacturing method of the same
KR101730985B1 (en) Carbon nanotube-energetic material composites having enhanced energy release and method for manufacturing the same
Gaikwad et al. Controlled growth of CuO nanowires on Cu grid via thermal oxidation process with enhanced field electron emission properties
Landi et al. Nanometal-Interconnected Carbon Conductors (NICCS) for Advanced Electric Machines (RIT Final Technical Report)
Bi et al. Synthesis, mechanical and electrical properties of carbon microcoils and nanocoils
TWI280228B (en) Method of fabricating carbon nanofiber
Golberg et al. Boron Nitride Nanotube, Nanocable and Nanocone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R151 Written notification of patent or utility model registration

Ref document number: 5494322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees