TW200933906A - Solar cell with heterojunction and method of manufacturing the same - Google Patents

Solar cell with heterojunction and method of manufacturing the same

Info

Publication number
TW200933906A
TW200933906A TW97102769A TW97102769A TW200933906A TW 200933906 A TW200933906 A TW 200933906A TW 97102769 A TW97102769 A TW 97102769A TW 97102769 A TW97102769 A TW 97102769A TW 200933906 A TW200933906 A TW 200933906A
Authority
TW
Taiwan
Prior art keywords
layer
solar cell
substrate
type semiconductor
heterogeneous
Prior art date
Application number
TW97102769A
Other languages
Chinese (zh)
Other versions
TWI464889B (en
Inventor
Hui-Chuan Hsu
Original Assignee
Big Sun Energy Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Big Sun Energy Technology Inc filed Critical Big Sun Energy Technology Inc
Priority to TW097102769A priority Critical patent/TWI464889B/en
Publication of TW200933906A publication Critical patent/TW200933906A/en
Application granted granted Critical
Publication of TWI464889B publication Critical patent/TWI464889B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A solar cell includes a silicon substrate, a passivation layer, a backside electrode layer, a hetero-material layer and a transparent electroconductive layer. The silicon substrate has a front side and a backside. A front side of the passivation layer is connected to the backside of the silicon substrate. The backside electrode layer is electrically connected to the silicon substrate and penetrates through the passivation layer and extends out of a backside of the passivation layer. The hetero-material layer is formed on the front side of the silicon substrate. The hetero-material layer and the silicon substrate respectively absorb light rays with different wavelength ranges and thus generate a voltage difference. The transparent electroconductive layer is formed on the hetero-material layer. A method of manufacturing the solar cell is also disclosed.

Description

200933906 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種太陽能電池及其製造方法,尤其 關於一種具異質介面之太陽能電池及其製造方法。 【先前技術】 ' 太陽能電池是一種能量轉換的光電元件,它是經由 - 太陽光照射後,把光的能量轉換成電能,此種光電元件 〇 稱為太陽能電池(Solar Cell)。從物理學的角度來看,有 人稱之為光伏(Photovoltaic,簡稱PV)電池。 傳統的太陽能電池的主要材料,可以是石夕、珅化鎵 (GaAs)、磷化銦(InP)、蹄化録(CdTe)及疏化福(cdS)等。 利用這幾類材料所製造出的太陽能電池所吸收的光線的 波長範圍不同,也分別有其不同的應用領域。舉例而言, 基於矽材料之太陽能電池能轉換的光波長範圍是1 〇〇〇_ 13 00nm、基於珅化鎵(GaAs)材料之太陽能電池能轉換的 ❹光波長範圍是7〇〇-900nm、基於碲化錫(cdTe)材料之太 陽能電池能轉換的光波長範圍是500-9OOnm、而基於硫 - 化編(CdS)材料之太陽能電池能轉換的光波長範圍是4〇〇_ 600nm 〇 由於太陽光的波長分佈範圍报廣,單單利用石夕、石申 化鎵(GaAs)、麟化銦(InP)、碲化鑛(CdTe)或硫化録(cdS) 材料所製作出的太陽能電池僅有一部分的太陽光轉換成 電能。因此,習知技術一直無法克服此缺點。此外,習 知之太陽能電池之受光面通常形成有手指狀電極,因而 6 200933906 遮蔽部分受光面積,造成效率無法有效被提升。 【發明内容】 因此,本發明之一個目的係摇 _ a ^ j诉杈供一種具異質介面之 太陽能電池及其製造方法,其可 八j U吸收較大範圍的波長 的光線,並降低光線的遮蔽率。 提供一種具異質介面之太陽 一保護層、一背面電極層、 層°石夕基板具有一正面及一 Ο 為逹上述目的,本發明 能電池,其包含一矽基板、 一異質材料層及一透明導電 背面。保護層之一正面連結至矽基板之背面。背面電極 層電連接至石夕基板,並貫穿保護層而伸出保護層之一背 面。異質材料層形成㈣基板之正面上。異質材料層鱼 矽基板分別吸收不同波長範圍之光線而產生—電壓差。 透明導電層形成於異質材料層上。 本發明亦提供一種具異質介面之太陽能電池之製造 方法,包含以下步驟··提供一矽基板,矽基板具有一正 e面及一背面;於矽基板之背面上形成一保護層,保護層 之—正面面對矽基板之背面;於保護層之一背面形成— 背面電極層;燒結背面電極層,使背面電極層穿透保護 層而電連接至矽基板,·於矽基板之正面上形成一里質材 料層,異質材料層與矽基板分別吸收不同波長範圍之光 線而產生一電壓差;及於異質材料層上形成—透明導200933906 IX. Description of the Invention: [Technical Field] The present invention relates to a solar cell and a method of manufacturing the same, and more particularly to a solar cell having a heterogeneous interface and a method of fabricating the same. [Prior Art] 'A solar cell is an energy-converting photovoltaic element that converts light energy into electrical energy after being irradiated by sunlight. This photoelectric element is called a solar cell. From a physics point of view, some people call it Photovoltaic (PV) batteries. The main materials of conventional solar cells may be Shi Xi, gallium antimonide (GaAs), indium phosphide (InP), hoof (CdTe), and blush (cdS). The solar cells produced by these types of materials absorb different wavelengths of light, and each has its own different application fields. For example, a solar cell based on a germanium material can convert a light wavelength range of 1 〇〇〇 _ 1300 nm, and a solar cell based on a gallium arsenide (GaAs) material can convert a neon wavelength range of 7 〇〇 to 900 nm. Solar cells based on antimony telluride (cdTe) materials can convert light wavelengths in the range of 500-9OOnm, while solar cells based on sulfur-based (CdS) materials can convert light wavelengths in the range of 4〇〇 to 600nm. The wavelength range of light is widely reported, and only a part of the solar cells produced by using Shixi, Shishenhua gallium (GaAs), lining indium (InP), strontium ore (CdTe) or sulphide (cdS) materials are only partially used. The sunlight is converted into electrical energy. Therefore, conventional techniques have been unable to overcome this disadvantage. In addition, the light-receiving surface of a conventional solar cell is usually formed with a finger-shaped electrode, so that the light-receiving area of the shadow portion is partially blocked, and the efficiency cannot be effectively improved. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a solar cell having a heterogeneous interface and a method of fabricating the same, which can absorb light of a wide range of wavelengths and reduce light. Coverage rate. Providing a solar-protective layer having a heterogeneous interface, a back electrode layer, and a layer having a front surface and a top surface, the battery of the present invention comprising a germanium substrate, a heterogeneous material layer and a transparent Conductive back. One of the protective layers is bonded to the back side of the substrate. The back electrode layer is electrically connected to the stone substrate and extends through the protective layer to extend over the back side of one of the protective layers. A layer of heterogeneous material is formed on the front side of the (4) substrate. The heterogeneous material layer of the fish 矽 substrate absorbs light of different wavelength ranges to generate a voltage difference. A transparent conductive layer is formed on the layer of heterogeneous material. The invention also provides a method for manufacturing a solar cell with a heterogeneous interface, comprising the steps of: providing a substrate having a positive e-plane and a back surface; forming a protective layer on the back surface of the germanium substrate, the protective layer - facing the back side of the substrate; forming a back electrode layer on the back side of one of the protective layers; sintering the back electrode layer such that the back electrode layer penetrates the protective layer to electrically connect to the germanium substrate, and forms a front surface of the germanium substrate The lining material layer, the heterogeneous material layer and the ruthenium substrate respectively absorb light of different wavelength ranges to generate a voltage difference; and form a transparent guide on the heterogeneous material layer

Si 形成 矽基 藉由上述實施樣態’可以在薄型化的矽基板上 異質材料層,以建構出具異質介面之太陽能電池。 7 200933906 板吸收長波長的光線,異質材料層吸收短波長的光線, 透明導電層同時具有抗反射及收集載子的功效。因此, 不需要具有習知技術之手指狀電極,使得光線遮蔽率可 以有效被降低,進而提升太陽能電池的效率。由於矽基 板不需要太厚,可以有效降低成本,並減少對矽晶圓之 依賴。 - 為讓本發明之上述内容能更明顯易懂,下文特舉一 * 較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 立圖1顯示依據本發明第一實施例之太陽能電池之示 意圖。如圖1所示,本實施例之太陽能電池包含一矽基 板10保護層20、一背面電極層30、一異質材料層4〇 及一透明導電層50。 矽基板ίο具有一正面10F及一背面1〇B。保護層Si forms a ruthenium substrate. The heterogeneous material layer can be formed on a thinned tantalum substrate by the above-described embodiment to construct a solar cell having a heterogeneous interface. 7 200933906 The board absorbs long-wavelength light. The heterogeneous material layer absorbs short-wavelength light. The transparent conductive layer has anti-reflection and collects carriers. Therefore, a finger electrode having a conventional technique is not required, so that the light shielding rate can be effectively reduced, thereby improving the efficiency of the solar cell. Since the ruthenium substrate does not need to be too thick, it can effectively reduce the cost and reduce the dependence on the ruthenium wafer. In order to make the above description of the present invention more comprehensible, a preferred embodiment will be described below in detail with reference to the accompanying drawings. [Embodiment] Fig. 1 shows the schematic of a solar cell according to a first embodiment of the present invention. As shown in FIG. 1, the solar cell of the present embodiment comprises a protective layer 20 of a substrate 10, a back electrode layer 30, a heterogeneous material layer 4A, and a transparent conductive layer 50. The substrate ίο has a front surface 10F and a back surface 1 〇 B. The protective layer

係由氮化矽或二氧化矽所構成。保護層2〇之一正面2〇F 〇連結至矽基板1〇之背面1〇B。背面電極層3〇電連接至 矽基板10,並貫穿保護層2〇而伸出保護層2〇之一背面 2〇B ^異質材料層4〇形成於矽基板1〇之正面i〇f上,異 質材料層40與矽基板1〇分別吸收不同波長範圍之光線 ,產生一電壓差。透明導電層5〇係由氧化銦鍚(ιτ〇)或 氧化辞(ΖηΟ)所構成,且透明導電層5〇形成於異質材料 層40上。 於本實施例中,矽基板10係為一 ρ型矽層,且異質 材料層40係為一 Ν型半導體層,其材料譬如是砷化鎵 200933906 (GaAs)、磷化銦(InP)、碲化鎘(cdTe)及硫化鎘(CdS)。或 者,矽基板10係為一 N型矽層,且異質材料層4〇係為 一 P型半導體層,其材料譬如是砷化鎵(GaAs)、磷化銦 (InP)、碲化鎘(CdTe)及硫化鎘(CdS)。異質材料層4〇可 以藉由沈積、濺鍍及蒸鍍法形成,藉由控制材料的成分 及濃度’即可控制所沈積材料為p型或N型。 - 圖2顯示依據本發明第二實施例之太陽能電池之示 . 意圖。如圖2所示,本實施例係類似於第一實施例,不 〇 同之處在於矽基板10係由一 P/N型矽層12及一 N/P型 石夕層14所組成,且異質材料層4〇係由一 p/N型半導體 層42及一 N/P型半導體層44所組成。 P/N i半導體層42之材料譬如是坤化錄(GaAs)、鱗 化銦(InP)、碲化鎘(cdTe)及硫化鎘(CdS)。N/P型半導體 層44之材料譬如是砷化鎵(GaAs)、磷化銦(Inp)、碲化鎘 (CdTe)及硫化鑛(CdS)。 圖3顯不依據本發明之太陽能電池之製造方法之流 ❹程圖。如圖3所示,本發明之太陽能電池之製造方法包 , 含以下步驟。 • 首先,於步驟S1,提供一矽基板10。矽基板1〇具 有一正面10F及一背面1〇B。 接著’於步驟S2,於矽基板10之背面ιοΒ上形成 一保濩層20。保護層20之一正面20F面對矽基板1〇之 背面10B。 然後,於步驟S3,於保護層2〇之一背面2〇B形成 一背面電極層30。背面電極層30之材料通常為銀膠。 200933906 接著,於步驟S4’燒結背面電極層3〇,使背面電極 層30穿透保護層20而電連接至矽基板1 〇。 然後’於步驟S5’於石夕基板1〇之正面上形成 一異質材料層40。異質材料層40與矽基板1 〇分別吸收 不同波長範圍之光線而產生一電壓差。 最後’於步驟S6,於異質材料層4〇上形成一透明 導電層50。各層的特性已經說明於上述内容中,於此不 再詳述。 〇 藉由本發明之上述構造,可以在薄型化的矽基板上 形成異質材料層,以建構出具異質介面之太陽能電池。 矽基板吸收長波長的光線,異質材料層吸收短波長的光 線,透明導電層同時具有抗反射及收集載子的功效。因 此’不需要具有習知技術之手指狀電極,使得光線遮蔽 率可以有效被降低,進而提升太陽能電池的效率。由於 矽基板不需要太厚,可以有效降低成本,並減少對矽晶 ❹ 在較佳實施例之詳細說明中所提出之㈣實施㈣ -用以方便說明本發明之技術内容,而非將本發明 ‘:制於上述實施例,在不超出本發明之精神及以下” 之範:圍之情況’所做之種種變化實施’皆屬於本發: 10 200933906 【圖式簡單說明】 圖1顯不依據本發明第一實施例之太陽能電池之示 意圖。 圖2顯示依據本發明第二實施例之太陽能電池之示 意圖。 圖3顯示依據本發明之太陽能電池之製造方法 ' 程圖。 • 【主要元件符號說明】 ® Sl-S6 :方法步驟 10 :碎基板 10B :背面 10F :正面 12 : P/N型矽層 14 : N/P型矽層 2〇 :保護層 20B :背面 ❹ 2〇F :正面 3 0 .背面電極層 4〇 :異質材料層 42 : P/N型半導體層 44 ·· N/P型半導體層 5〇 :透明導電層 11It is composed of tantalum nitride or hafnium oxide. One of the front faces of the protective layer 2 is connected to the back surface 1B of the substrate 1 . The back electrode layer 3 is electrically connected to the ruthenium substrate 10 and extends through the protective layer 2 〇 and protrudes from the back surface of the protective layer 2 〇 2 〇 B ^ the heterogeneous material layer 4 〇 is formed on the front surface 〇 of the 矽 substrate 1 , The heterogeneous material layer 40 and the ruthenium substrate 1 吸收 absorb light of different wavelength ranges, respectively, to generate a voltage difference. The transparent conductive layer 5 is made of indium oxide bismuth (ΖτΟ) or oxidized (ΖηΟ), and a transparent conductive layer 5 is formed on the heterogeneous material layer 40. In the present embodiment, the germanium substrate 10 is a p-type germanium layer, and the heterogeneous material layer 40 is a germanium-type semiconductor layer, such as gallium arsenide 200933906 (GaAs), indium phosphide (InP), germanium. Cadmium (cdTe) and cadmium sulfide (CdS). Alternatively, the germanium substrate 10 is an N-type germanium layer, and the heterogeneous material layer 4 is a P-type semiconductor layer, such as gallium arsenide (GaAs), indium phosphide (InP), and cadmium telluride (CdTe). ) and cadmium sulfide (CdS). The heterogeneous material layer 4 can be formed by deposition, sputtering, and evaporation, and the deposited material can be controlled to be p-type or N-type by controlling the composition and concentration of the material. - Figure 2 shows an illustration of a solar cell in accordance with a second embodiment of the present invention. As shown in FIG. 2, the present embodiment is similar to the first embodiment, and the difference is that the germanium substrate 10 is composed of a P/N type germanium layer 12 and an N/P type stone layer 14, and The heterogeneous material layer 4 is composed of a p/N type semiconductor layer 42 and an N/P type semiconductor layer 44. The material of the P/N i semiconductor layer 42 is, for example, Kunhua (GaAs), indium arsenide (InP), cadmium telluride (cdTe), and cadmium sulfide (CdS). The material of the N/P type semiconductor layer 44 is, for example, gallium arsenide (GaAs), indium phosphide (Inp), cadmium telluride (CdTe), and sulfide ore (CdS). Fig. 3 is a flow chart showing a method of manufacturing a solar cell according to the present invention. As shown in Fig. 3, the method for manufacturing a solar cell of the present invention comprises the following steps. • First, in step S1, a substrate 10 is provided. The substrate 1 has a front surface 10F and a back surface 1B. Next, in step S2, a protective layer 20 is formed on the back surface of the substrate 10. The front surface 20F of one of the protective layers 20 faces the back surface 10B of the crucible substrate 1A. Then, in step S3, a back electrode layer 30 is formed on the back surface 2B of one of the protective layers 2''. The material of the back electrode layer 30 is usually silver paste. 200933906 Next, the back electrode layer 3 is sintered in step S4', and the back electrode layer 30 is penetrated through the protective layer 20 to be electrically connected to the germanium substrate 1 . Then, a layer of the heterogeneous material 40 is formed on the front surface of the Shixi substrate 1' in step S5'. The heterogeneous material layer 40 and the germanium substrate 1 吸收 respectively absorb light of different wavelength ranges to generate a voltage difference. Finally, in step S6, a transparent conductive layer 50 is formed on the heterogeneous material layer 4?. The characteristics of each layer have been described in the above, and will not be described in detail herein. With the above configuration of the present invention, a heterogeneous material layer can be formed on a thinned germanium substrate to construct a solar cell having a heterogeneous interface. The ruthenium substrate absorbs long-wavelength light, and the heterogeneous material layer absorbs short-wavelength light. The transparent conductive layer has both anti-reflection and carrier-collecting effects. Therefore, a finger electrode having a conventional technique is not required, so that the light shielding rate can be effectively reduced, thereby improving the efficiency of the solar cell. Since the ruthenium substrate does not need to be too thick, the cost can be effectively reduced, and the (4) implementation (4) proposed in the detailed description of the preferred embodiment is reduced to facilitate the description of the technical contents of the present invention, instead of the present invention. ': The above embodiment is carried out without departing from the spirit of the present invention and the following: "The various changes made by the situation" are all in this issue: 10 200933906 [Simple description of the diagram] Figure 1 shows no basis 2 is a schematic view of a solar cell according to a second embodiment of the present invention. Fig. 2 is a view showing a solar cell according to a second embodiment of the present invention. Fig. 3 is a view showing a method of manufacturing a solar cell according to the present invention. 】 ® Sl-S6 : Method Step 10 : Broken Substrate 10B : Back 10F : Front 12 : P/N Type 矽 Layer 14 : N/P Type 矽 Layer 2 〇 : Protective Layer 20B : Back ❹ 2 〇 F : Front 3 0 Back surface electrode layer 4: Heterogeneous material layer 42: P/N type semiconductor layer 44 · N/P type semiconductor layer 5: Transparent conductive layer 11

Claims (1)

200933906 十、申請專利範圍: 1. 一種具異質介面之太陽能電池,包含: 一矽基板,其具有一正面及—背面; 一保護層,該保護層之一正面連結至該石夕基板之該 背面; • -背面電極層’其電連接至該矽基板,並貫穿該保 護層而伸出該保護層之一背面; 一異質材料層,形成於該矽基板之該正面上,該異 ©質材料層與該矽基板分別吸收不同波長範圍之光線而產 生一電壓差;及 一透明導電層,形成於該異質材料層上。 2. 如申請專利範圍第丨項所述之具異質介面之太陽 能電池’其中該矽基板係為一 P型矽層,且該異質材料 層係為一N型半導體層。 3. 如申請專利範圍第2項所述之具異質介面之太陽 能電池,其中該N型半導體層之材料係選自於由砷化鎵 © (GaAs)、磷化銦(InP)、碲化鎘(CdTe)及硫化鎘(Cds)所組 成之群組。 4. 如申請專利範圍第1項所述之具異質介面之太陽 能電池,其中該矽基板係為一 N型矽層,且該異質材料 層係為一 P型半導體層。 5·如申請專利範圍第4項所述之具異質介面之太陽 能電池,其中該P型半導體層之材料係選自於由砷化鎵 (GaAs)、磷化銦(InP)、碲化鎘(CdTe)及硫化鎘(cds)所組 成之群組。 12 200933906 .所述之具異質介面之太陽 ^化矽或二氧化矽所構成。 項所述之具異質介面之太陽 、由氧化銦録(Iτ〇)或氧化鋅 6. 如申請專利範圍第 能電池,其中該保護層係由 7. 如申請專利範圍第 能電池,其中該透明導電層 (ZnO)所構成。 8·如申請專利範圍第1 3所述之具異質介面 能電池,其中該⑦基板係由 質介面之缝 P型梦層及一 N型碎層所 組成,該異質材料層係由一N ❹ 1平導體層及一 P型丰導· 體層所組成。 干守 9.如申請專利範圍第8項所述之具異質介面之太陽 能電池,其"N型半導體層之材料係選自於由砷化鎵 (GaAs)、磷化銦(InP)、碲化鎘(CdTe)及硫化鎘(Cds)所組 成之群組。 10.如申請專利範圍第9項所述之具異質介面之太 陽能電池,其中該P型半導體層之材料係選自於由砷化 鎵(GaAs)、磷化銦(inp)、碲化鎘(cdTe)及硫化鎘(CdS)所 0 組成之群組。 11· 一種具異質介面之太陽能電池之製造方法,包含 以下步驟: 提供一矽基板,該矽基板具有一正面及一背面; 於該矽基板之該背面上形成一保護層’該保護層之 一正面面對該矽基板之該背面; 於該保護層之一背面形成一背面電極層; 燒結該背面電極層,使該背面電極層穿透該保護層 而電連接至該矽基板; 13 200933906 於該矽基板之該正面上形成一異質材料層,該異質 材料層與該石夕基板分別吸收不同波長範圍之光線而產生 一電壓差;及 於該異質材料層上形成一透明導電層。 12_如申請專利範圍第11項所述之具異質介面之太 陽能電池之製造方法,其中該矽基板係為一 p型石夕層, * 且該異質材料層係為一N型半導體層。 - I3.如申請專利範圍第12項所述之具異質介面之太 〇陽能電池之製造方法,其中該N型半導體層之材料係選 自於由砷化鎵(GaAs)、填化銦(InP)、碲化録(CdTe)及硫 化録(CdS)所組成之群組。 14.如申請專利範圍第n項所述之具異質介面之太 陽能電池之製造方法,其中該矽基板係為一 N型矽層, 且該異質材料層係為一 p型半導體層。 15·如申請專利範圍第14項所述之具異質介面之太 陽能電池之製造方法,其中該p型半導體層之材料係選 Ο自於由砷化鎵(GaAs)、磷化銦GnP)、碲化鎘(CdTe)及硫 • 化錫(CdS)所組成之群組。 16. 如申請專利範圍第U項所述之具異質介面之太 陽能電池之製造方法,其中該保護層係由氮化碎或二氧 化矽所構成。 17. 如申睛專利範圍第u項所述之具異質介面之太 陽能電池之製造方法,其中該透明導電層係由氧化钢錫 (ITO)或氧化鋅(zn〇)所構成。 18. 如中4專利n圍第u項所述之具異質介面之太 14 200933906 陽能電池之製造方法’其中該矽基板係由一 p型矽層及 一 N型矽層所組成,該異質材料層係由一 N型半導體層 及一 P型半導體層所組成。 19.如申請專利範圍第18項所述之具異質介面之太 陽能電池之製造方法’其中該N型半導體層之材料係選 自於由砷化鎵(GaAs)、磷化銦(Inp)、碲化録(cdTe)及硫 , 化鎘(CdS)所組成之群組。 • 20.如申請專利範圍第19項所述之具異質介面之太 〇 陽能電池之製造方法,其中該p型半導體層之材料係選 自於由砷化鎵(GaAs)、磷化銦(InP)、碲化鎘(CdTe)及硫 化鎘(CdS)所組成之群組。 ❹ 15200933906 X. Patent application scope: 1. A solar cell with a heterogeneous interface, comprising: a substrate having a front side and a back side; a protective layer, one of the protective layers being frontally connected to the back side of the Shishi substrate a back electrode layer 'electrically connected to the germanium substrate and extending through the protective layer to extend from the back side of the protective layer; a heterogeneous material layer formed on the front side of the germanium substrate, the foreign material The layer and the germanium substrate respectively absorb light of different wavelength ranges to generate a voltage difference; and a transparent conductive layer is formed on the heterogeneous material layer. 2. A solar cell having a heterointerface as described in the scope of the patent application, wherein the substrate is a P-type germanium layer, and the heterogeneous material layer is an N-type semiconductor layer. 3. The solar cell having a heterointerface as described in claim 2, wherein the material of the N-type semiconductor layer is selected from gallium arsenide (GaAs), indium phosphide (InP), and cadmium telluride. A group consisting of (CdTe) and cadmium sulfide (Cds). 4. The solar cell having a heterogeneous interface according to claim 1, wherein the germanium substrate is an N-type germanium layer, and the heterogeneous material layer is a P-type semiconductor layer. 5. The solar cell having a heterointerface as described in claim 4, wherein the material of the P-type semiconductor layer is selected from the group consisting of gallium arsenide (GaAs), indium phosphide (InP), and cadmium telluride ( Group of CdTe) and cadmium sulfide (cds). 12 200933906 . The composition of the heterogeneous interface of the solar enthalpy or cerium oxide. The heterogeneous interface of the sun, recorded by indium oxide (Iτ〇) or zinc oxide. 6. The energy source of the invention is as claimed in claim 7, wherein the protective layer is made of 7. Conductive layer (ZnO). 8. The heterogeneous interface energy battery according to claim 13 , wherein the 7 substrate is composed of a P-type dream layer and an N-type fragment layer of a material interface, and the heterogeneous material layer is composed of a N ❹ 1 flat conductor layer and a P-type rich and thin layer. 9. A solar cell having a heterointerface as described in claim 8 of the patent application, wherein the material of the N-type semiconductor layer is selected from gallium arsenide (GaAs), indium phosphide (InP), germanium. Group of cadmium (CdTe) and cadmium sulfide (Cds). 10. The heterojunction solar cell of claim 9, wherein the material of the P-type semiconductor layer is selected from the group consisting of gallium arsenide (GaAs), indium phosphide (inp), and cadmium telluride ( Group of cdTe) and cadmium sulfide (CdS). 11) A method for manufacturing a solar cell having a heterogeneous interface, comprising the steps of: providing a substrate having a front surface and a back surface; forming a protective layer on the back surface of the germanium substrate Facing the back surface of the substrate; forming a back electrode layer on the back surface of the protective layer; sintering the back electrode layer, and electrically connecting the back electrode layer to the germanium substrate; 13 200933906 Forming a heterogeneous material layer on the front surface of the germanium substrate, the heterogeneous material layer and the litmus substrate respectively absorb light of different wavelength ranges to generate a voltage difference; and forming a transparent conductive layer on the heterogeneous material layer. The method of manufacturing a solar cell having a heterogeneous interface according to claim 11, wherein the germanium substrate is a p-type layer, and the heterogeneous material layer is an N-type semiconductor layer. - I3. The method for manufacturing a solar cell having a heterojunction according to claim 12, wherein the material of the N-type semiconductor layer is selected from the group consisting of gallium arsenide (GaAs) and indium-filled ( A group consisting of InP), CdTe and CdS. 14. The method of manufacturing a solar cell having a heterojunction according to claim n, wherein the germanium substrate is an N-type germanium layer, and the heterogeneous material layer is a p-type semiconductor layer. 15. The method of manufacturing a solar cell having a heterojunction according to claim 14, wherein the material of the p-type semiconductor layer is selected from gallium arsenide (GaAs), indium phosphide (GnP), germanium. A group consisting of cadmium (CdTe) and sulfur (CdS). 16. A method of manufacturing a solar cell having a heterojunction as described in claim U, wherein the protective layer is composed of nitrided or cerium oxide. 17. A method of manufacturing a solar cell having a heterojunction as described in claim U, wherein the transparent conductive layer is composed of tin oxide (ITO) or zinc oxide (zn). 18. The manufacturing method of the heterogeneous interface as described in the fourth paragraph of the Chinese Patent No. 4 200933906, wherein the substrate is composed of a p-type layer and an N-type layer, the heterogeneity The material layer is composed of an N-type semiconductor layer and a P-type semiconductor layer. 19. The method of manufacturing a solar cell having a heterojunction according to claim 18, wherein the material of the N-type semiconductor layer is selected from the group consisting of gallium arsenide (GaAs), indium phosphide (Inp), and germanium. A group consisting of cdTe and sulfur and cadmium (CdS). 20. The method of manufacturing a solar cell having a heterojunction according to claim 19, wherein the material of the p-type semiconductor layer is selected from the group consisting of gallium arsenide (GaAs) and indium phosphide ( Group of InP), cadmium telluride (CdTe) and cadmium sulfide (CdS). ❹ 15
TW097102769A 2008-01-25 2008-01-25 Solar cell with heterojunction and method of manufacturing the same TWI464889B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097102769A TWI464889B (en) 2008-01-25 2008-01-25 Solar cell with heterojunction and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097102769A TWI464889B (en) 2008-01-25 2008-01-25 Solar cell with heterojunction and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW200933906A true TW200933906A (en) 2009-08-01
TWI464889B TWI464889B (en) 2014-12-11

Family

ID=44866098

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097102769A TWI464889B (en) 2008-01-25 2008-01-25 Solar cell with heterojunction and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI464889B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214719A (en) * 2011-06-10 2011-10-12 山东力诺太阳能电力股份有限公司 Back contact heterojunction solar battery based on N-type silicon slice

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI240426B (en) * 2005-01-13 2005-09-21 Chung-Hua Li Manufacturing method for laminated structure of solar cell, electrode of solar cell, and the solar cell
US7375378B2 (en) * 2005-05-12 2008-05-20 General Electric Company Surface passivated photovoltaic devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214719A (en) * 2011-06-10 2011-10-12 山东力诺太阳能电力股份有限公司 Back contact heterojunction solar battery based on N-type silicon slice

Also Published As

Publication number Publication date
TWI464889B (en) 2014-12-11

Similar Documents

Publication Publication Date Title
JP6522684B2 (en) Solar cell
KR100974226B1 (en) Backside surface passivation and reflection layer for Si solar cell by high-k dielectrics
KR101631450B1 (en) Solar cell
US20110056544A1 (en) Solar cell
US8779281B2 (en) Solar cell
KR101103770B1 (en) Compound Semiconductor Solar Cells and Methods of Fabricating the Same
JP2003515934A (en) Diode structures, especially for thin-film solar cells
CN106025087A (en) Tandem solar cell and manufacturing method thereof
JP6366914B2 (en) Multi-junction solar cell
TW201725746A (en) Tandem solar cell and method for manufacturing thereof, and solar panel
US20170243999A1 (en) Solar cell
CN106663715A (en) Solar cell
CN102097514B (en) Solar cell
US20220059294A1 (en) Photovoltaic structure and method of fabrication
KR20120035756A (en) Solar cell
JP6463937B2 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
WO2015077477A1 (en) Solar cells having selective contacts and three or more terminals
JP5968244B2 (en) Photoelectric conversion module and manufacturing method thereof
JP2013532911A (en) Photovoltaic power generation apparatus and manufacturing method thereof
KR20110080663A (en) Solar cell apparatus
KR101474487B1 (en) Thin film solar cell and Method of fabricating the same
TW200933906A (en) Solar cell with heterojunction and method of manufacturing the same
KR101338549B1 (en) Solar cell and method of fabricating the same
CN107810562A (en) Solar module
JP2014503129A (en) Solar cell and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees