TW200932412A - Solid welding wire for carbon dioxide gas welding - Google Patents

Solid welding wire for carbon dioxide gas welding Download PDF

Info

Publication number
TW200932412A
TW200932412A TW097145201A TW97145201A TW200932412A TW 200932412 A TW200932412 A TW 200932412A TW 097145201 A TW097145201 A TW 097145201A TW 97145201 A TW97145201 A TW 97145201A TW 200932412 A TW200932412 A TW 200932412A
Authority
TW
Taiwan
Prior art keywords
mass
slag
welding
electrode
less
Prior art date
Application number
TW097145201A
Other languages
Chinese (zh)
Other versions
TWI357369B (en
Inventor
Reiichi Suzuki
Toshihiko Nakano
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of TW200932412A publication Critical patent/TW200932412A/en
Application granted granted Critical
Publication of TWI357369B publication Critical patent/TWI357369B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

The present invention provide a solid welding wire for carbon dioxide gas welding, comprising C: 0.03-0.10 mass%, Si: 0.67-1.00 mass%, Mn: 1.81-2.50 mass%, S: 0.006-0.018 mass%, Ti: 0.100-0.150 mass%, B: 0.0015-0.0070 mass%, and Cu: 0.10-0.45 mass% including plating ingredient, wherein the parameters PBS and PMT as expressed in the following formulas satisfy the conditions: PBS ≤ 10 and PMT ≤ 32, and it is specified that P is less than 0.020 mass%, Nb is less than 0.04 mass%, V is less than 0.04 mass%, Al is less than 0.04 mass%, and the remaining is Fe and inevitable impurities. PBS=[B]x[S]x10<5>, and PMT=[Mn]x[Ti]x10<2>. Based on this composition, adequate weld penetration can be obtained even applied to narrow slot, so as to obtain weld metal with excellent mechanical properties including strength and toughness.

Description

200932412 九、發明說明 【發明所屬之技術領域】 本發明係關於對軟鋼或490至5 20N/mm2級高張力鋼 進行二氧化碳氣體遮蔽電弧熔接時所使用的二氧化碳氣體 熔接用實心焊條’特別是關於能以高效率進行熔接,並且 能夠獲得機械性能良好的熔接金屬的二氧化碳氣體遮蔽電 弧熔接用實心焊條。 ❹ 【先前技術】 近來’在建築鋼筋領域,以co2作爲遮蔽氣體的氣體 遮蔽電弧溶接法由於具有高效率的優點,故主要是採用該 方法。以前’該氣體遮蔽電弧熔接法幾乎都是利用人工的 半自動熔接法’但是爲了節省人力以降低成本以及利用夜 間或假日的無人操作而進一步提高熔接效率,利用機器人 的自動熔接也開始普及。另一方面,在熔接品質的方面以 〇 耐震性提高爲重點,爲了謀求熔接接頭部的性能提高,在 1997年的JASS6修訂及1999年的建築基準法修訂中,對 於熔接時的供熱、層間溫度進行上限管理。受到此動向的 影響,針對熔接焊條已開發出對應於高供熱、高層間溫度 的焊條,其對於490N/mm2級碳鋼鋼板容許高達最大供熱 40kJ/cm、層間溫度3 50°C,對於5 20N/mm2級碳鋼鋼板容 許高達最大供熱30kJ/cm、層間溫度250°C,在1 999年以 540N/mm2級=YGW18的方式JIS化。迄目前爲止,在高 供熱、高層間溫度下可獲得比以往焊條更優異的機械性能 -4- 200932412 之540N/mm2級焊條已急速地普及。另外, 級焊條在對於供熱和層間溫度難以管理的半 然較早普及,近年來,在機器人熔接的全自 540N/mm2級焊條的情形也開始變多。 習知的對應於二氧化碳氣體遮蔽熔接用 間溫度的焊條中,整體來說,Si、Mn、Ti 含量比以往的焊條更多,且會按照需要添尤 〇 、Al、Nb、V、Ni等。如此提高鋼的淬火性 晶粒微細化造成的韌性提高、加上析出硬化 作用,以提高強度。 然而,這些習知的焊條的實際情況是, 都沒有考慮到應用於機器人的熔接。習知的 、高層間溫度的焊條,存在著熔渣發生量過 的缺點。溶渣有絕緣性,因此堆積的熔渣會 性,成爲溶接滲透不足及熔渣污染等的缺陷 © 因。此外,只要稍微發生熔渣的不自然剝離 即使改變起弧位置而嘗試進行再起弧,仍會 錯誤,因此熔接機器人會判定錯誤而停止作 人的最大長處是節省人力,但在短時間內因 起電弧的不穩定化時,必須頻繁地靠人工進 業,或爲了修復起弧錯誤而必須進行起弧部 ,如此就無法發揮其長處。於是,爲了解決 提出一種熔接焊條,在最大供熱40kJ/cm、 3 5 0 °C的條件下具有490N/mm2級鋼所需要 該 540N/mm2 自動溶接中雖 動熔接中運用 大電流、高層 等的脫氧成分 口 Mo、B、Cr ,並藉由組合 及固溶硬化的 在設計時全部 對應於大電流 剩且剝離性差 阻礙電弧穩定 產生的直接原 ,熔接機器人 繼續發生起弧 業。熔接機器 熔渣堆積而引 行熔渣除去作 的熔渣除去等 該問題期望能 最高層間溫度 的機械性能, 200932412 且熔渣發生量少,剝離性也良好,連續積層高度大且效率 高。 針對該期望,作爲可改善熔渣剝離性的焊條,已開發 出日本特開2006-8 8 1 87號、日本特開2006-305605號、 日本特開2006- 1 5043 7號所記載的焊條。另外,不但熔渣 剝離性改善而且熔渣生成量也降低的焊條,在日本特開 2004-122170號、日本特開2006-2 6 64 3號中也已揭示。 ❹ 【發明內容】 然而,最近機器人熔接技術有顯著的進化。因此,已 能實現開槽角度30°的窄開槽化。亦即,以往開槽角度是 以35°爲標準,但爲了縮小開槽面積以減少層數並縮短熔 接時間、減少熔接焊條的使用量、減低熱應變,又爲了減 低層間溫度的上升以提昇強度及韌性等的熔接金屬的機械 性能,基於此目的已能實現30°左右的窄開槽化。如此般 ® 開槽角度變小時,由於焊炬嘴容易干擾開槽面,必然地從 焊炬前端到開槽底面的距離,所謂焊條突出長度大多會變 長’而容易因電弧力降低造成熔接滲透不良。另外,由於 突出長度變長,氣體遮蔽性變差,氮會從大氣混入到熔接 金屬中而有韌性降低的傾向》 以往,並沒有針對熔接焊條方面來開發防止熔接滲透 不良的技術。另外’也不存在既可實現既有的優異的熔渣 剝離性和熔渣量的最少化,同時具有優異的強度及韌性等 的機械性能的熔接焊條。於是,期望能開發出可防止熔接 -6- 200932412 人 在 槽 性 50 % 式 m 爲 滲透不良,具有優異的機械性能,且能對應於利用機器 進行多層熔接的窄開槽施工之最佳熔接焊條。 本發明是有鑑於前述問題點而開發完成者,其目的 於提供一種二氧化碳氣體熔接用實心焊條,即使在窄開 施工中也能夠獲得充分的熔接滲透,能夠得到強度及韌 等的機械性能優異的熔接金屬。 本發明的二氧化碳氣體熔接用實心焊條,含有C 0.03 〜0.10 質量 %、Si: 0.67 〜1.00 質量 %、Μη: 1.81 〜2. 質量 %、 S: 0.006〜0_018 質量 %、 Ti: 0.100〜0.150 質量 、B : 0.0015〜0.0070質量%、包括鍍敷成分的 Cu 〇·10~0·45質量%,剩餘是Fe和不可避免的雜質,由下 1及式2表示的參數PBS及ΡΜτ符合PBSS10,Ρμτ$32 並限定P : 0.020質量%以下、Nb : 0.04質量%以下、V 〇 . 04質量%以下、A1 : 0 · 04質量%以下。 〔式1〕200932412 IX. INSTRUCTIONS OF THE INVENTION [Technical Fields of the Invention] The present invention relates to a solid electrode for carbon dioxide gas welding used for carbon steel gas shielded arc welding of mild steel or 490 to 5 20 N/mm2 high-tensile steel. The welding is performed with high efficiency, and a solid electrode for arc welding of the carbon dioxide gas of the welded metal having good mechanical properties can be obtained. ❹ [Prior Art] Recently, in the field of building reinforcement, the gas shielded arc fusion method using co2 as a shielding gas is mainly used because of its high efficiency. In the past, the gas-shielding arc welding method almost always uses an artificial semi-automatic welding method. However, in order to save manpower and reduce costs, and to further improve the welding efficiency by utilizing nighttime or holiday unmanned operation, automatic welding using robots has also begun to spread. On the other hand, in terms of welding quality, the improvement of the shock resistance is focused on, and in order to improve the performance of the welded joint portion, in the 1997 JASS6 revision and the 1999 Building Standard Law revision, the heating and inter-layer heating during welding are performed. Temperature is capped. Affected by this trend, welding rods corresponding to high heating and high-rise temperatures have been developed for welded electrodes, which allow up to 40kJ/cm of maximum heating and 3 50°C of interlayer temperature for 490N/mm2 grade carbon steel sheets. 5 20N/mm2 grade carbon steel plate allows up to 30kJ/cm of maximum heating and 250°C between layers, and JIS in 999N/mm2 = YGW18 in 1999. Up to now, it has been able to obtain better mechanical properties than conventional welding rods at high heating and high-rise temperatures. -4- 200932412 The 540N/mm2 grade electrode has been rapidly popularized. In addition, the grade electrode has been popularized at a low level for heat supply and interlayer temperature. In recent years, the number of fully self-welding 540N/mm2 electrodes in the robot has begun to increase. In the electrode corresponding to the temperature between the carbon dioxide gas shielding and welding, the content of Si, Mn, and Ti is more than that of the conventional electrode as a whole, and eu, Al, Nb, V, Ni, and the like are added as needed. In this way, the hardenability of the steel is improved, and the toughness due to the grain refinement is increased, and the precipitation hardening action is added to increase the strength. However, the actual situation of these conventional electrodes is that they do not take into account the welding applied to the robot. Conventional and high-temperature electrodes have the disadvantage of excessive slag generation. Since the slag is insulative, the accumulated slag is likely to be a defect such as insufficient penetration and slag contamination. In addition, as long as the unnatural peeling of the slag occurs slightly, even if the arcing position is changed and the re-arcing is attempted, the error will still be wrong. Therefore, the welding robot will judge the error and stop the maximum strength of the person to save the manpower, but the arc is caused in a short time. In the case of destabilization, it is necessary to frequently enter the industry manually, or to start the arcing part in order to repair the arcing error, so that the advantages cannot be exerted. Therefore, in order to solve the problem of proposing a welding electrode, it is necessary to have a large current, a high-rise, etc. in the 540N/mm2 automatic fusion in the 490N/mm2 automatic melting under the conditions of maximum heating of 40 kJ/cm and 350 °C. The deoxidizing component ports Mo, B, and Cr, and the combination of solid solution hardening, all of which correspond to large currents at the time of design and poor peelability hinder the direct generation of arc stabilization, and the welding robot continues to occur in the arcing industry. The welding machine slag is deposited to remove the slag from the slag removal. This problem is expected to have the highest interlaminar temperature mechanical properties, 200932412, and the amount of slag generated is small, the peelability is also good, and the continuous stacking height is high and the efficiency is high. In response to this expectation, as the electrode which can improve the slag removability, the electrode described in Japanese Laid-Open Patent Publication No. 2006-8 8 1 87, JP-A-2006-305605, and JP-A No. 2006-15045. Further, an electrode which is improved not only in the slag removability but also in the amount of slag formation is disclosed in Japanese Laid-Open Patent Publication No. 2004-122170, No. 2006-2 6 64. ❹ [Summary] However, recent robotic fusion technology has undergone significant evolution. Therefore, narrow groove formation with a groove angle of 30° has been achieved. That is to say, the conventional groove angle is 35°, but in order to reduce the groove area to reduce the number of layers and shorten the welding time, reduce the amount of welding electrode used, reduce the thermal strain, and increase the strength to reduce the interlayer temperature. The mechanical properties of the welded metal such as toughness have been able to achieve a narrow groove of about 30° for this purpose. In this way, the angle of the groove becomes small. Since the torch tip easily interferes with the grooved surface, the distance from the front end of the torch to the bottom surface of the groove is inevitable. The so-called electrode protrusion length is often lengthened, and it is easy to cause weld penetration due to the reduction of the arc force. bad. In addition, since the protruding length is long, the gas shielding property is deteriorated, and nitrogen tends to be mixed into the molten metal from the atmosphere, and the toughness tends to decrease. Conventionally, there has been no development of a technique for preventing fusion penetration failure in terms of a welded electrode. Further, there is no welding electrode which can achieve the excellent mechanical properties such as excellent slag removability and slag amount, and excellent mechanical properties such as strength and toughness. Therefore, it is expected to develop an optimum welding electrode that can prevent the welding of -6-200932412 people in the groove type of 50%, which is poor in permeability, has excellent mechanical properties, and can correspond to narrow-grooving construction using a machine for multi-layer welding. . The present invention has been developed in view of the above problems, and an object of the present invention is to provide a solid electrode for carbon dioxide gas welding, which can obtain sufficient weld penetration even in a narrow-opening operation, and can provide excellent mechanical properties such as strength and toughness. Welding metal. The solid electrode for carbon dioxide gas welding of the present invention contains C 0.03 to 0.10% by mass, Si: 0.67 to 1.00% by mass, Μη: 1.81 to 2. mass%, S: 0.006 to 0_018% by mass, Ti: 0.100 to 0.150 mass, B: 0.0015 to 0.0070% by mass, including Cu 〇·10 to 0.45% by mass of the plating component, and the balance is Fe and unavoidable impurities. The parameters PBS and ΡΜτ represented by the following 1 and 2 are in accordance with PBSS10, Ρμτ$32 Further, P: 0.020 mass% or less, Nb: 0.04 mass% or less, V 〇. 04 mass% or less, and A1: 0 · 04 mass% or less. 〔Formula 1〕

Pbs=[B]x[S]x105 〔式2〕 Ρμτ = [Μη] X [Ti] X 1 02 在此,[]代表該元素在焊條中的含量(質量%)。 在該二氧化碳氣體熔接用實心焊條中,較佳爲含有 自 Mo: 0.25質量%以下、Cr: 0.25質量%以下及Ni 0.25質量%以下所構成群之中的至少1種。另外,較佳 每10kg焊條在焊條表面存在〇.〇1〜i.〇〇g的m〇S2。 200932412 【實施方式】 本發明人等針對焊條突出長度與熔滴的移行形態、以 及熔接滲透深度的關係進行硏究,結果閨明以下的事項。 在焊條進給量一定時,若突出長度變長,則從焊條前端至 焊嘴(chip)內通電點之間的電阻升高,由於溫度上升導致 容易熔融,因此從熔接機供應的熔接電流降低,但熔接電 壓上升。在熔接電流減少及熔接電壓增大的條件下,因爲 © 電弧反作用力小且移行空間(電弧長)長,焊條前端熔融而 落到熔接部的熔滴容易成爲大粒的完全球狀熔滴移行。電 弧的指向性變弱,以焊條爲中心的同心圓狀的熔滴落下區 域的面積擴大。另外,移行週期也變長,施加給母材的電 弧力變弱,熔接滲透深度變小。爲了避免此現象,防止完 全的球狀溶滴移行最爲有效,因此本發明人等發現,必須 抑制使熔滴大幅成長的因素。對熔滴的大小影響最大的是 Ti,焊條中的Ti含量越少,越可抑制熔滴成長,而成爲 © 短路移行,電弧的集中性增加,熔滴落下區域的面積縮小 ,熔接滲透深度增加。 在第1圖,橫軸爲焊條突出長度(mm),縱軸爲熔接 滲透深度(mm),而表示Ti含量、焊條突出長度、熔接滲 透深度的關係。其中,焊條進給量爲l〇m/分鐘。如第1 圖所示,焊條突出長度越長,熔接滲透深度越小,但是焊 條突出長度相同時,Ti含量越少,熔接滲透深度越大。 另外,Ti的氧化物是熔渣源,藉由使Ti量比以往更 少,能夠減輕因熔渣堆積而產生的問題點。 -8 - 200932412 另一方面,Ti與氮的親和性強,會與遮蔽不良時的 氮結合而防止氣孔的發生,具有防止金屬脆化的效果。減 少Ti會使氣孔發生及金屬脆化的問題發生,因此,爲了 使減少Ti所導致的熔接滲透深度的改善和氣孔發生及金 屬脆化的問題相抵,係進行Μη和B的含量的最佳化。 以下,對於本發明的二氧化碳氣體熔接用實心焊條的 成分添加理由及組成限定理由進行說明。 Q “ C : 0.0 3 ~ 0 · 1 0 質量 % ” C是用於確保強度的重要的添加元素,但是在未達 0.03質量%時,則不能確保高供熱、高層間溫度熔接時所 需要的強度。因此,C爲0.03質量%以上,較佳爲0.05 質量%以上。另一方面,若過剩地添加C,則高溫裂痕容 易發生。另外,若過剩地添加C,在電弧氣氛中,CO爆 發現象也會導致飛濺物產生量增加,而使電弧穩定性變差 。此外,若C含量多,則熔接金屬的強度過大,韌性反而 © 降低。若C含量超過0.10質量%,則這些影響變得顯著 ,因此其上限値定爲0.10質量%。 “Si: 0 · 6 7 〜1 0 0 質量0/〇,,Pbs=[B]x[S]x105 [Equation 2] Ρμτ = [Μη] X [Ti] X 1 02 Here, [] represents the content (% by mass) of the element in the electrode. In the solid electrode for welding carbon dioxide gas, at least one selected from the group consisting of Mo: 0.25 mass% or less, Cr: 0.25 mass% or less, and Ni 0.25 mass% or less is preferable. Further, it is preferable that m10S2 of 〇.〇1 to i.〇〇g exists on the surface of the electrode every 10 kg of the electrode. [Invention] The inventors of the present invention conducted an investigation into the relationship between the length of the electrode projection, the transition pattern of the droplet, and the penetration depth of the weld. As a result, the following matters were clarified. When the feed amount of the welding rod is constant, if the protruding length becomes long, the electric resistance from the tip end of the welding rod to the energization point in the chip rises, and the melting is easily caused by the temperature rise, so the welding current supplied from the fusion splicer is lowered. , but the welding voltage rises. Under the condition that the welding current is reduced and the welding voltage is increased, since the © arc reaction force is small and the traveling space (arc length) is long, the droplets which are melted at the front end of the electrode and fall to the welded portion are likely to become large spherical droplet transfer. The directivity of the arc is weakened, and the area of the concentric drop-shaped drop region centered on the electrode is enlarged. Further, the transition period is also lengthened, the arc force applied to the base material is weak, and the penetration depth of the fusion is small. In order to avoid this phenomenon, it is most effective to prevent the complete migration of the spherical droplets. Therefore, the inventors have found that it is necessary to suppress the factor which causes the droplets to grow substantially. The largest influence on the size of the droplets is Ti. The less the Ti content in the electrode, the more the droplet growth can be suppressed, and the short-circuit transition, the concentration of the arc increases, the area of the droplet drop area shrinks, and the penetration depth of the weld increases. . In Fig. 1, the horizontal axis represents the length of the electrode protrusion (mm), and the vertical axis represents the penetration depth (mm) of the weld, and represents the relationship between the Ti content, the length of the electrode protrusion, and the penetration depth of the weld. Among them, the feed amount of the electrode is l〇m/min. As shown in Fig. 1, the longer the protruding length of the welding rod, the smaller the penetration depth of the welding, but the smaller the Ti content, the smaller the penetration depth of the welding. Further, the oxide of Ti is a source of slag, and the amount of Ti is made smaller than in the related art, and problems caused by slag deposition can be alleviated. -8 - 200932412 On the other hand, Ti has a strong affinity with nitrogen, and combines with nitrogen in the case of poor shielding to prevent the occurrence of pores and has an effect of preventing metal embrittlement. Reducing Ti causes problems of pore formation and metal embrittlement. Therefore, in order to reduce the penetration depth of the weld caused by Ti and the problem of pore formation and metal embrittlement, the contents of Μη and B are optimized. . In the following, the reason for the component addition and the reason for the composition limitation of the solid electrode for carbon dioxide gas welding of the present invention will be described. Q "C : 0.0 3 ~ 0 · 1 0 mass % " C is an important additive element for ensuring strength, but when it is less than 0.03 mass%, it is not required to ensure high heat supply and high-temperature temperature welding. strength. Therefore, C is 0.03% by mass or more, preferably 0.05% by mass or more. On the other hand, if C is excessively added, a high temperature crack is likely to occur. Further, if C is excessively added, in the arc atmosphere, the CO explosion image also causes an increase in the amount of spatter generated, which deteriorates the arc stability. Further, if the C content is large, the strength of the welded metal is too large, and the toughness is lowered by ©. When the C content exceeds 0.10% by mass, these effects become remarkable, so the upper limit is made 0.10% by mass. "Si: 0 · 6 7 ~ 1 0 0 quality 0 / 〇,,

Si主要是爲了確保強度和防止因脫氧造成的氣孔缺 陷而添加。另外,Si的添加雖然會使熔渣量增大,但熔 渣剝離性提高。這些效果在Si含量爲0.67質量%以上時 有效。Si含量未達0.67質量%時,熔渣剝離性差,電弧 變得不穩定化。Si更佳的下限値爲0.75質量%。另一方 面,若過剩地添加Si而超過1.00質量%,則熔渣量過剩 200932412 ,電弧穩定性變差,且韌性値降低。因此Si的上限値爲 1 . 0 0質量%。 “ Mn : 1 .8 1〜2.50 質量 %” Μη具有熔接金屬的脫氧效果,又會使熔接金屬的強 ' 度上升,具有得到高韌性的熔接金屬的效果。在具備窄開 槽對應功能的機器人系統,最大焊條突出長度設定成較長 ,容易發生因遮蔽不良引起的氣孔發生及韌性降低,因此 ❹ 作爲機器人用焊條會添加較多Μη以防止這些缺點。因此 ,Μη含量至少須添加1 . 8 1質量%以上。另一方面,若Μη 含量超過2.5 0質量%,則熔渣量增大,並且熔渣剝離性降 低,結果電弧穩定性也變差。還有,如後述,根據其與 Ti量的關係,Μη的上限値必須抑制成更低。 “ S : 0 · 0 0 6 〜0 · 0 1 8 質量0/〇 ” 藉由添加S,會使熔池的表面張力降低,使凝固時的 物理性凹凸減少,而具有使熔接金屬的表面光滑的效果。 Ο 藉此能夠使熔渣剝離性提高。當s未達0.006質量%時, 該效果無法呈現,且起因於剝離性差而導致電弧穩定性變 差。另一方面,即使添加s超過0.018質量%,不僅熔接 金屬的表面形狀改善效果已達飽和,此外還容易發生高溫 裂痕。另外,會使熔渣的形態粒狀化,妨礙電弧進行熔融 ,成爲局部電弧不穩定的原因,並且韌性也降低。因此S 的上限値爲〇. 〇 1 8質量%。還有,如後述,根據其與Β量 的關係,S的上限値須抑制成更低。 “ T i : 0 _ 1 0 0 ~ 0 . 1 5 0 質量 % ” -10- 200932412 Τι具有使高電流域的電弧穩定性提高的效果。一般 來說’添加Ti在0·20質量%左右的焊條較多。本發明的 焊條的組成的特徵之一,係Ti含量比一般的焊條更低。 當Ti未達Ο.ιοο質量%時,電弧穩定性差,飛濺物產生量 增加。因此,T i必須添加〇 .丨〇 〇質量%以上。另一方面, 若提高Ti含量,則由於上述的熔滴移行形態的變化,導 致熔接滲透深度減少,焊條突出長度較長時容易發生熔接 〇 滲透不良。若Ti含量超過0.150質量%,則會成爲完全球 狀的溶滴移行,而發生熔接滲透不良,因此其上限値定爲 0.150質量%。又如後述,根據其與Μη含量的關係,Ti 含量的上限値須抑制成更低。在機器人熔接的情況,由於 能始終設定成最佳電壓及熔接速度,因此即使Ti含量低 ,電弧穩定性也不會變差。 “B: 0.001 5〜0.0070 質量 %” 藉由添加少量的B,能使熔接金靥的結晶粒微細化, 〇 因此具有使強度和韌性提高的效果。B含量未達0.0015 質量%時,熔接金屬的強度和韌性的提高效果無法呈現, 這些機械特性不足。因此,B以0.0015質量%爲下限値。 另一方面,若過剩地添加B而超過0.0070質量% ’則容 易發生高溫裂痕。因此,B含量以〇.0070質量%爲上限値 。還有,根據其與S量的關係’ B含量的上限値須抑制成 更低。 “ Cu : 0.1 〇〜0.45 質量 %”Si is mainly added to ensure strength and prevent porosity defects caused by deoxidation. Further, although the addition of Si increases the amount of slag, the slag releasability is improved. These effects are effective when the Si content is 0.67 mass% or more. When the Si content is less than 0.67 mass%, the slag removability is poor and the arc becomes unstable. The lower limit 更 of Si is more preferably 0.75 mass%. On the other hand, when Si is excessively added and exceeds 1.00% by mass, the amount of slag is excessively increased at 200932412, the arc stability is deteriorated, and the toughness 値 is lowered. Therefore, the upper limit Si of Si is 1.0% by mass. "Mn: 1.8 to 2.50 mass%" Μη has a deoxidizing effect of the weld metal, and the strength of the weld metal is increased, and the effect of obtaining a weld metal having high toughness is obtained. In a robot system with a narrow slot-corresponding function, the maximum electrode projection length is set to be long, and the occurrence of porosity and toughness due to shielding failure are likely to occur. Therefore, more Μ is added as a robot electrode to prevent these disadvantages. Therefore, the Μη content must be added at least 1.81% by mass or more. On the other hand, when the Μη content exceeds 0.25 mass%, the amount of slag increases, and the slag releasability is lowered, and as a result, the arc stability is also deteriorated. Further, as will be described later, the upper limit Μ of Μη must be suppressed to be lower depending on the relationship with the amount of Ti. “S : 0 · 0 0 6 ~ 0 · 0 1 8 Mass 0/〇” By adding S, the surface tension of the molten pool is lowered, the physical unevenness at the time of solidification is reduced, and the surface of the welded metal is smoothed. Effect.借此 By this, the slag releasability can be improved. When s is less than 0.006 mass%, the effect is not exhibited, and the arc stability is deteriorated due to poor peelability. On the other hand, even if the addition of s exceeds 0.018 mass%, not only the surface shape improving effect of the welded metal is saturated, but also high temperature cracking is likely to occur. Further, the form of the slag is granulated, the arc is prevented from being melted, and local arc instability is caused, and the toughness is also lowered. Therefore, the upper limit of S is 〇. 〇 18% by mass. Further, as will be described later, the upper limit of S is not required to be suppressed to be lower depending on the relationship with the amount of enthalpy. “T i : 0 _ 1 0 0 ~ 0 . 1 5 0 mass % ” -10- 200932412 Τι has an effect of improving arc stability in a high current range. In general, there are many welding rods in which Ti is added at about 0.20 mass%. One of the characteristics of the composition of the electrode of the present invention is that the Ti content is lower than that of a general electrode. When Ti is less than ι.ιοο% by mass, the arc stability is poor and the amount of spatter generated is increased. Therefore, T i must be added with 〇 丨〇 〇 mass % or more. On the other hand, if the Ti content is increased, the melt penetration depth is reduced due to the change in the above-described droplet transfer mode, and the weld enthalpy penetration is likely to occur when the electrode has a long projection length. When the Ti content exceeds 0.150% by mass, the completely spherical droplet transfer is caused, and the fusion penetration failure occurs, so the upper limit is made 0.150% by mass. As will be described later, the upper limit of the Ti content is not required to be suppressed to be lower depending on the relationship with the Μη content. In the case where the robot is welded, since the optimum voltage and the welding speed can be always set, the arc stability does not deteriorate even if the Ti content is low. "B: 0.001 5 to 0.0070% by mass" By adding a small amount of B, the crystal grains of the fused gold ruthenium can be made fine, and thus the effect of improving strength and toughness is enhanced. When the B content is less than 0.0015% by mass, the effect of improving the strength and toughness of the welded metal cannot be exhibited, and these mechanical properties are insufficient. Therefore, B is 0.0015 mass% as the lower limit. On the other hand, when B is excessively added and exceeds 0.0070% by mass, high temperature cracking is likely to occur. Therefore, the B content is 〇.0070% by mass as the upper limit 値 . Further, the upper limit of the 'B content' is not required to be suppressed to be lower depending on the relationship with the amount of S. "Cu : 0.1 〇~0.45 mass %"

Cu在過剩添加時容易使高溫裂痕發生’並且使熔渣 -11 - 200932412 的性質改變而使剝離性變差。結果導致電弧穩定性變差。 不須在焊條線材中積極地添加Cu,在大部分的情況,是 爲了改善導電性、耐鏽性、伸線性及美觀性,其以焊條表 面所實施的鍍銅中的Cu成分的狀態來添加。Cu換算成 • 0.10質量%以下的鍍敷量時,鍍膜的膜厚過薄而造成導電 性差,發生電弧不穩定,飛濺物增加。另一方面,若Cu 含量超過0.45質量%,則高溫裂痕及熔渣剝離性成爲問題 0 ,因此Cu的上限値0.45質量%。還有,Cu是將線材中所 含的量和銅鍍成分加以合計的値。 ** PBs ^ 10 (Pbs = [B]x[S]x105)” B和S都是引起高溫裂痕的元素,除了分別單獨規定 B和S的含量以外,還必須將兩元素以互相關連的方式進 行限制,以防止高溫裂痕。亦即,因爲在窄開槽的熔接施 工中容易發生高溫裂痕,故必須比以往更注意裂痕的防止 ,除了分別單獨規定此B和S的含量以外,還必須將兩 〇 元素以互相關連的方式進行限制。 在第2圖,橫軸爲S含量,縱軸爲B含量,而表示 裂痕發生等與S及B含量的關係。如第2圖所示,依本 發明人等的實驗硏究的結果發現,在PBS&gt;10的範圍,即 使B和S都在本發明的規定範圍,但因爲兩種元素都處 於高的含量範圍’所以會發生裂痕。因此,將相關參數 Pbs定義爲Pbs = [B]x[S]x105時([B]、[S]分別表示焊條中 的B含量(質量%)、S含量(質量%)),該pBS必須爲1〇以 下。 -12- 200932412 “ PMTS 32 (PMT = [Mn]x[Ti]xl02)” Μη和Ti是熔渣的主要生成元素,除了分別單獨規定 Μη和Ti的含量以外,還必須將兩元素以互相關連的方式 進行限制,以防止過剩的熔渣發生。 在第3圖,橫軸爲Μη含量,縱軸爲Ti含量,而表 示熔渣含量等與Μη及Ti含量的關係。本發明人等發現 ,如第3圖所示,在PMT &gt; 32的範圍,即使Μη和Ti都 © 在本發明的規定範圍內,但因爲兩種元素含量都高,所以 熔渣生成量多,熔渣剝離性也變差,因此電弧的穩定性差 。另外,若熔渣量增大,則必須頻繁地進行熔渣去除,運 轉效率降低。因此,將相關參數PMT定義爲PMT=[Mn]x [Ti]xl02時,([Mn]、[Ti]分別表示焊條中的Μη含量(質量 %)、Ti含量(質量%)),該ΡΜΤ必須爲32以下。 “ Ρ : 0.0 2 0質量%以下” Ρ是使高溫裂痕發生的主要元素之一,沒有積極地添 Ο 加ρ的必要性。因此作爲高溫裂痕不會構成問題的上限値 ,Ρ的上限値設定爲0.020質量%。 “ Nb : 0.04質量%以下、V : 0.04質量%以下、Α1 : 0.04質量%以下”When Cu is excessively added, it is easy to cause high-temperature cracks to occur, and the properties of slag-11 - 200932412 are changed to deteriorate the peeling property. As a result, the arc stability is deteriorated. It is not necessary to actively add Cu to the electrode wire, and in most cases, it is to improve conductivity, rust resistance, linearity, and aesthetics, and it is added in the state of Cu component in copper plating performed on the surface of the electrode. . When Cu is converted to a plating amount of 0.10% by mass or less, the film thickness of the plating film is too small, resulting in poor conductivity, arc instability, and spatter. On the other hand, when the Cu content exceeds 0.45 mass%, the high temperature crack and the slag peelability become a problem of 0, so the upper limit of Cu is 0.45 mass%. Further, Cu is a combination of the amount contained in the wire and the copper plating component. ** PBs ^ 10 (Pbs = [B]x[S]x105)" Both B and S are elements that cause high temperature cracks. In addition to separately specifying the B and S content, the two elements must be interconnected. Restrictions are made to prevent high temperature cracks. That is, since high temperature cracks are likely to occur in the welding of narrow slots, it is necessary to pay more attention to the prevention of cracks than before, in addition to separately specifying the contents of B and S, respectively. The two elements are restricted by mutual correlation. In Fig. 2, the horizontal axis represents the S content, and the vertical axis represents the B content, which indicates the relationship between the occurrence of cracks and the content of S and B. As shown in Fig. 2, As a result of experimental investigations by the inventors, it has been found that in the range of PBS &gt; 10, even if both B and S are within the prescribed range of the present invention, cracks occur because both elements are in a high content range. The relevant parameter Pbs is defined as Pbs = [B]x[S]x105 ([B], [S] respectively represent B content (% by mass), S content (% by mass) in the electrode), and the pBS must be 1〇 The following. -12- 200932412 “PMTS 32 (PMT = [Mn]x[Ti]xl02)” Μη and Ti are melting The main generating elements of the slag, in addition to separately specifying the contents of Μη and Ti, must also limit the two elements in a cross-correlation manner to prevent excessive slag from occurring. In Fig. 3, the horizontal axis represents the Μη content, vertical The axis is the Ti content, and indicates the relationship between the slag content and the like and the content of Μ and Ti. The inventors have found that, as shown in Fig. 3, in the range of PMT &gt; 32, even Μη and Ti are © in the present invention. In the predetermined range, since the content of both elements is high, the amount of slag formed is large, and the slag removability is also deteriorated, so the stability of the arc is poor. In addition, if the amount of slag is increased, slag must be frequently performed. Removal, the operation efficiency is reduced. Therefore, when the relevant parameter PMT is defined as PMT=[Mn]x [Ti]xl02, ([Mn], [Ti] respectively represent the Μη content (% by mass) and the Ti content (quality) in the electrode %)), the ΡΜΤ must be 32 or less. “ Ρ : 0.0 2 0% by mass or less Ρ Ρ is one of the main elements that cause high temperature cracks to occur, and there is no need to actively add ρ. Therefore, it will not be a high temperature crack. The upper limit of the problem, the upper limit of the plan Set to 0.020 mass%. "Nb: 0.04 mass% or less, V: 0.04 mass% or less, Α1: 0.04 mass% or less"

Nb、V、A1在低供熱熔接條件下,會使熔接金屬的韌 性降低。因此,應該避免積極地添加這些元素,作爲可忽 視韌性降低的容許範圍的上限,將這些元素的上限値分別 定爲0 . 〇 4質量%。 “ Mo : 0.25質量%以下、Cr : 0.25質量%以下、Ni : -13- 200932412 0.2 5質量% ”Nb, V, and A1 reduce the toughness of the weld metal under low heat welding conditions. Therefore, it is necessary to avoid the positive addition of these elements as the upper limit of the allowable range in which the toughness can be neglected, and the upper limit 値 of these elements is set to 0. 〇 4% by mass. “Mo : 0.25 mass% or less, Cr: 0.25 mass% or less, Ni: -13- 200932412 0.2 5 mass% ”

Mo、Cr、Ni會使熔接金屬的淬火性提高而使強度上 升,宜積極地添加。Mo、Cr、Ni即使在更高的供熱及層 間溫度下也能夠維持適度的強度。這些元素的添加並不需 要設定下限,但只要Mo、Cr和Ni中至少一個添加0.05 '質量%以上,其效果就很顯著。另一方面,若這些元素的 添加量超過0.25質量%,熔接金屬的微組織會麻田散鐵化 © 而造成韌性降低。因此,這些元素在添加時分別設定爲 0.25質量%以下。 “焊條表面的MoS2:每10kg焊條爲〇_〇1〜l.OOg” 焊條進給性對熔渣剝離性有很大影響。焊條進給穩定 會使得熔池形成穩定,所生成的熔渣的厚度均一,熱收縮 的應變均一地發揮作用,由此容易進行全面剝離。焊條表 面的M〇S2會降低焊嘴、焊條間的供電點的熔合,有助於 焊條進給性的提高。以往的焊條進給性提高方法,有沿著 © 焊條表面的晶界使其過剩氧化的方法,在該方法,因〇 量過剩,會造成熔渣量增大。相對於此,M〇S2的塗布與 其他的進給性提高方法相比,不會使熔渣量增大,因此適 合作爲本發明的焊條的焊條進給性提高方法。該效果在每 10kg焊條附著O.Olg以上的MoS2是有效的。另—方面, 若每10kg焊條附著MoS2超過l_〇〇g,則會開始在進給系 統內形成堆積’因Mo S2堵塞反而會導致進給不良發生, 對熔渣性造成影響,而使剝離性降低。結果使電弧穩定性 變差。因此較佳爲’在每10kg焊條中,於焊條表面存在 -14- 200932412 0.01~1.00g 的 m〇s2 ° 〔實施例〕 以下,爲了說明本發明的效果,對於包含於本發明的 範圍之實施例的焊條和脫離本發明的範圍的比較例的焊條 ,說明實施熔接試驗的結果。第4(a)〜(C)圖是表示熔接試 驗體形狀和開槽形狀的圖。第4(a)圖是放大顯示開槽部的 Ο 截面圖,4(b)圖是試驗體的前視圖,4(C)圖是側視圖。將 隔板(diaphragm)l垂直配置,圓型鋼管3的軸呈水平配置 ’且使圓型鋼管3的端面與隔板1相對向。該圆型鋼管3 的端面被實施去角,在與隔板1之間形成卜型開槽。另外 ’在圓型鋼管3的內面配置筒狀的襯墊2。然後,藉由焊 炬4對該開槽部進行環縫熔接。 下述表1顯示熔接條件。另外,下述表2顯示隔板1 、鋼管3和襯墊2的鋼板的組合,表3顯示隔板1、鋼管 ® 3和襯墊2的組成(質量%)。以表1所示的熔接條件,使 .用市售的鋼筋建築用機器人溶接系統,對第4圖所示的熔 接試驗體進行熔接。還有,隔板1和鋼管3爲高爐材,相 對於此,襯墊2爲市售的電爐材,襯墊2氮含量非常高, 熔接性差。開槽角度一般爲35°,根隙(root gap)爲7mm, 但在該熔接試驗中,進行開槽角度3 0°、根隙5mm的窄開 槽施工。然後,藉由數位影像處理算出熔接結束後的熔渣 的剝離性,測定熔渣量,作爲熔接金屬的強度和韌性的指 標是實施拉伸試驗和夏比衝擊試驗。另外,也記錄熔接中 -15- 200932412 的電弧的穩定性和飛濺物產生量。此外,藉由超音波探傷 試驗來調査是否發生熔接滲透不良和高溫裂痕。 下述表4顯示實施例和比較例的焊條的組成(質量%) 。另外’下述表5顯示熔接試驗的試驗結果。還有,在表 4的組成中顯示爲“&lt;〇.***”的,表示組成的分析結果爲 未達一般分析精度的下限値的値,在工業上是未含有的。 關於表5所示的各特性的評價方法如下所述。關於熔 Q 渣剝離性評價方法,剝離性和熔渣量的評價只在鋼管的板 厚薄的條件1(參照表2)下進行計測。還有確認出,在條 件1下熔渣剝離性良好的熔接焊條,在條件2下也同樣良 好。在熔接開始點進入到最終層的熔接時,以從焊條返回 90°的地點爲中心,對其前後1 〇〇mm、亦即合計200mm拍 攝照片(參照第4(b)及(c)圖)。接著,將此焊珠(bead)外觀 照片二値化爲(a)熔渣自然剝離的部分和(b)熔渣附著的部 分,並求取其分布。利用影像分析軟體分別計算各像素的 〇 合計量,以(a)/((a) + (b))xl00求出熔渣剝離率(%)。熔渣 剝離率爲1 5 %以上的判定爲熔渣剝離性良好。 接著,關於熔渣量,是回收全部的熔渣(也包括在焊 珠外観照片拍攝後自然剝離的),對其進行重量測定。該 熔渣量爲12g以下的判定爲熔渣量良好。 熔接金屬的拉伸試驗和夏比衝擊試驗,是在條件2下 (參照表2),分別從第5圖及第6圖所示的位置採取JIS Z 3111的A2號(平行部直徑6mm)及標準試驗片(l〇mm見方 )供進行試驗。還有,拉伸試驗在20 °C的室溫下’夏比衝 -16- 200932412 擊試驗爲 〇°C ,以3個平均作爲評價値。抗拉強度爲 4 90N/mm2以上,夏比衝擊試驗平均70J以上爲合格。 電弧穩定性是根據熔接中的感官評價,熔渣沒有干擾 打亂電弧的發生的情況判斷爲良好。還有,起因於焊條進 給不良而造成電弧不穩的情況也是不合格的。 飛濺物產生量是在條件1下(參照表2)的熔接結束後 ,回收附著在焊嘴(shield nozzle)上的飛濺物,進行重量 © 測定。飛濺物產生量爲6g以下判定爲良好。 〔表1〕 熔接機種 鋼筋熔接機器人 熔接電源、極性 直流機'逆極性 遮蔽氣體 C〇2、流量25升/分鐘 焊條直徑 1.2mm 供熱 最大 40kJ/cm 層間溫度 最大350°C 姿勢 向下 焊條突出長度 27 至 35mm 熔渣除去 條件1 :無、條件2:有 焊嘴附著的飛濺物除去和清掃 條件1 :無、條件2:有 〔表2〕 隔板 鋼管 襯墊 條件1 (薄板) SN490C 板厚 25mmx450mm 見方 STKN490B 壁厚16mmx外徑350mm SN490A 壁厚9mmx外徑334mm 條件2 (厚板) SN490C 板厚 75mmx800mm 見方 STKN490B 壁厚60mmx外徑700mm SN490A 壁厚9mmx夕f徑640mm -17- 200932412Mo, Cr, and Ni increase the hardenability of the weld metal and increase the strength, and it is preferable to add it positively. Mo, Cr, and Ni maintain moderate strength even at higher heating and interlayer temperatures. The addition of these elements does not require a lower limit, but as long as at least one of Mo, Cr, and Ni is added at 0.05 '% by mass or more, the effect is remarkable. On the other hand, if the addition amount of these elements exceeds 0.25 mass%, the microstructure of the welded metal may cause turbidity and ironiness to cause a decrease in toughness. Therefore, these elements are each set to be 0.25 mass% or less at the time of addition. "MoS2 on the surface of the electrode: 每_〇1~l.OOg per 10kg of electrode" The feedability of the electrode has a great influence on the slag removability. Stable feed of the electrode will stabilize the formation of the molten pool, the thickness of the generated slag will be uniform, and the strain of heat shrinkage will uniformly function, thereby facilitating the overall peeling. M〇S2 on the surface of the electrode will reduce the fusion of the feed point between the tip and the electrode, which will help improve the feedability of the electrode. In the conventional method for improving the feedability of the electrode, there is a method of excessively oxidizing along the grain boundary of the surface of the electrode, and in this method, the amount of slag is increased due to excessive amount of ruthenium. On the other hand, since the application of M〇S2 does not increase the amount of slag compared with other methods of improving the feedability, it is suitable to improve the electrode feedability of the electrode of the present invention. This effect is effective in attaching MoS2 of more than O.Olg per 10 kg of the electrode. On the other hand, if MoS2 adheres to more than l_〇〇g per 10kg of welding rod, it will start to form in the feed system. 'The blockage of Mo S2 will cause the feed failure to occur, which will affect the slag property and cause the stripping. Reduced sex. As a result, the arc stability is deteriorated. Therefore, it is preferable that 'there is -14 to 200932412 0.01 to 1.00 g of m 〇 s 2 ° per 10 kg of the electrode. [Examples] Hereinafter, in order to explain the effects of the present invention, the implementation of the scope of the present invention is included. The electrode of the example and the electrode of the comparative example which deviated from the scope of the present invention are the results of the welding test. Figs. 4(a) to 4(C) are views showing the shape of the welded test piece and the shape of the groove. Fig. 4(a) is a cross-sectional view showing the grooving portion in an enlarged manner, Fig. 4(b) is a front view of the test body, and Fig. 4(C) is a side view. The diaphragms 1 are vertically arranged, the shafts of the circular steel tubes 3 are horizontally disposed, and the end faces of the circular steel tubes 3 are opposed to the separators 1. The end face of the circular steel pipe 3 is chamfered to form a grooved groove with the separator 1. Further, a cylindrical spacer 2 is placed on the inner surface of the circular steel pipe 3. Then, the grooved portion is subjected to circumferential seam welding by the welding torch 4. Table 1 below shows the welding conditions. Further, Table 2 below shows combinations of the steel sheets of the separator 1, the steel pipe 3, and the gasket 2, and Table 3 shows the composition (% by mass) of the separator 1, the steel pipe ® 3, and the gasket 2. With the welding conditions shown in Table 1, the welded test body shown in Fig. 4 was welded by a commercially available robotic robot welding system. Further, the separator 1 and the steel pipe 3 are blast furnace materials, and the gasket 2 is a commercially available electric furnace material, and the gasket 2 has a very high nitrogen content and poor weldability. The groove angle is generally 35°, and the root gap is 7 mm. However, in the welding test, a narrow groove construction with a groove angle of 30° and a root gap of 5 mm was performed. Then, the peeling property of the slag after the completion of the welding was calculated by digital image processing, and the amount of slag was measured. The strength and toughness of the welded metal were measured by a tensile test and a Charpy impact test. In addition, the stability of the arc and the amount of spatter generated in the fusion -15-200932412 were also recorded. In addition, ultrasonic flaw detection tests were conducted to investigate whether weld penetration and high temperature cracks occurred. Table 4 below shows the composition (% by mass) of the electrodes of the examples and the comparative examples. Further, Table 5 below shows the test results of the welding test. Further, in the composition of Table 4, "&lt;〇.***" is shown, and the analysis result of the composition is a 値 which does not reach the lower limit of the general analysis accuracy, and is not industrially contained. The evaluation methods of the respective characteristics shown in Table 5 are as follows. Regarding the melting Q slag peeling evaluation method, the evaluation of the peeling property and the slag amount was carried out only under the condition 1 (see Table 2) in which the thickness of the steel pipe was thin. Further, it was confirmed that the welded electrode having good slag removability under Condition 1 was also good under Condition 2. At the point where the welding start point is welded to the final layer, a photograph is taken at a position of 1 mm before and after the electrode is returned to the front side of the electrode, that is, a total of 200 mm (see Figures 4(b) and (c)). . Next, the appearance of the bead is dilated into (a) a portion where the slag is naturally peeled off and (b) a portion where the slag adheres, and the distribution thereof is determined. The image analysis software calculates the measurement of each pixel separately, and the slag peeling rate (%) is obtained by (a) / ((a) + (b)) xl00. The slag peeling rate was 15% or more, and it was judged that the slag removability was good. Next, regarding the amount of slag, all of the slag was recovered (including the natural peeling after photographing of the outer surface of the bead), and the weight was measured. When the amount of the slag was 12 g or less, it was judged that the amount of slag was good. The tensile test and the Charpy impact test of the welded metal were carried out under the condition 2 (refer to Table 2), and the A2 No. (parallel diameter 6 mm) of JIS Z 3111 was taken from the positions shown in Figs. 5 and 6 respectively. Standard test pieces (l〇mm square) are available for testing. Also, the tensile test was carried out at room temperature of 20 °C in the Charpy Chong-16-200932412 test, which was 〇°C, and the three averages were used as the evaluation 値. The tensile strength is 4 90 N/mm 2 or more, and the Charpy impact test is 70 J or more on average. The arc stability was judged to be good according to the sensory evaluation in the welding, and the slag did not interfere with the occurrence of the arc. Also, the situation in which the arc is unstable due to poor electrode feeding is also unacceptable. The spatter generation amount is after the welding of Condition 1 (refer to Table 2) is completed, and the spatter attached to the shield nozzle is collected and the weight is measured. It was judged that the amount of spatter generated was 6 g or less. [Table 1] Welding machine type welding robot welding power supply, polar DC machine 'reverse polarity shielding gas C 〇 2, flow rate 25 liters / minute electrode diameter 1.2mm Heating maximum 40kJ / cm Inter-layer temperature maximum 350 ° C posture downward welding rod protruding Length 27 to 35mm Slag removal condition 1: None, Condition 2: Spatter removal and cleaning conditions with tip attachment 1 : None, Condition 2: Yes [Table 2] Partition steel pipe gasket condition 1 (thin plate) SN490C plate Thick 25mmx450mm square STKN490B wall thickness 16mmx outer diameter 350mm SN490A wall thickness 9mmx outer diameter 334mm condition 2 (thick plate) SN490C plate thickness 75mmx800mm square STKN490B wall thickness 60mmx outer diameter 700mm SN490A wall thickness 9mmx eve f diameter 640mm -17- 200932412

〔表3〕 用途/鋼種 C Si Μη Ρ s N 隔板/SN490C 0.15 0.35 1.45 0.010 0.003 0.0029 鋼管/STKN490B 0.09 0.12 1.02 0.010 0.003 0.0035 襯墊/SN490A 0.11 0.13 0.46 0.017 0.022 0.0125 〔表 4-1〕 焊條化學組成(質量%) No C Si Μη Ti S P Cu B Pbs Pmt 1 0.06 0.80 1.85 0.15 0.009 0.011 0.20 0.0030 2.7 27.8 2 0.09 0.90 2.00 0.14 0.010 0.012 0.23 0.0020 2.0 28.0 3 0.04 0.95 2.35 0.12 0.008 0.010 0.27 0.0054 4.3 28.2 4 0.05 0.75 1.89 0.15 0.006 0.009 0.25 0.0045 2.7 28.4 實 5 0.07 0.70 2.45 0.13 0.008 0.015 0.17 0.0040 3.2 31.9 施 6 0.03 0.88 1.95 0.15 0.012 0.007 0.30 0.0060 7.2 29.3 例 7 0.10 0.85 1.84 0.14 0.018 0.013 0.21 0.0055 9.9 25.8 δ 0.06 0.67 1.90 0.15 0.007 0.008 0.15 0.0070 4.9 28.5 9 0.05 1.00 1.85 0.11 0.008 0.005 0.45 0.0040 3.2 20.4 10 0.07 0.90 1.81 0.15 0.008 0.010 0.20 0.0035 2.8 27.2 11 0.06 0.75 1.88 0.10 0.016 0.010 0.28 0.0050 8.0 18.8 12 0.07 0.90 1.90 0.14 0.010 0.012 0.10 0.0025 2.5 26.6 13 0.06 0.80 2.10 0.14 0.009 0.011 0.20 0.0015 1.4 29.4 14 0.06 0.69 1.82 0.13 0.010 0.008 0.40 0.0046 4.6 23.7 15 0.08 0.90 1.90 0.11 0.011 0.011 0.25 0.0018 2.0 20.9 16 0.05 0.82 1.87 0.13 0.007 0.012 0.17 0.0040 2.8 24.3 17 0.05 0.85 1.97 0.14 0.006 0.007 0.25 0.0035 2.1 27.6 18 0.06 0.80 2.20 0.14 0.010 0.020 0.20 0.0044 4.4 30.8 -18- 200932412[Table 3] Use / Steel type C Si Μ Ρ s N Separator / SN490C 0.15 0.35 1.45 0.010 0.003 0.0029 Steel pipe / STKN490B 0.09 0.12 1.02 0.010 0.003 0.0035 Liner / SN490A 0.11 0.13 0.46 0.017 0.022 0.0125 [Table 4-1] Welding rod chemistry Composition (% by mass) No C Si Μη Ti SP Cu B Pbs Pmt 1 0.06 0.80 1.85 0.15 0.009 0.011 0.20 0.0030 2.7 27.8 2 0.09 0.90 2.00 0.14 0.010 0.012 0.23 0.0020 2.0 28.0 3 0.04 0.95 2.35 0.12 0.008 0.010 0.27 0.0054 4.3 28.2 4 0.05 0.75 1.89 0.15 0.006 0.009 0.25 0.0045 2.7 28.4 Real 5 0.07 0.70 2.45 0.13 0.008 0.015 0.17 0.0040 3.2 31.9 Application 6 0.03 0.88 1.95 0.15 0.012 0.007 0.30 0.0060 7.2 29.3 Example 7 0.10 0.85 1.84 0.14 0.018 0.013 0.21 0.0055 9.9 25.8 δ 0.06 0.67 1.90 0.15 0.007 0.008 0.15 0.0070 4.9 28.5 9 0.05 1.00 1.85 0.11 0.008 0.005 0.45 0.0040 3.2 20.4 10 0.07 0.90 1.81 0.15 0.008 0.010 0.20 0.0035 2.8 27.2 11 0.06 0.75 1.88 0.10 0.016 0.010 0.28 0.0050 8.0 18.8 12 0.07 0.90 1.90 0.14 0.010 0.012 0.10 0.0025 2.5 26.6 13 0.06 0.80 2.10 0.14 0.009 0.0 11 0.20 0.0015 1.4 29.4 14 0.06 0.69 1.82 0.13 0.010 0.008 0.40 0.0046 4.6 23.7 15 0.08 0.90 1.90 0.11 0.011 0.011 0.25 0.0018 2.0 20.9 16 0.05 0.82 1.87 0.13 0.007 0.012 0.17 0.0040 2.8 24.3 17 0.05 0.85 1.97 0.14 0.006 0.007 0.25 0.0035 2.1 27.6 18 0.06 0.80 2.20 0.14 0.010 0.020 0.20 0.0044 4.4 30.8 -18- 200932412

〔表 4-2〕[Table 4-2]

No 焊條化學組成(質量%) M〇S2 g/焊條 l〇Kg Nb V A1 Mo Cr Ni 實 施 例 1 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.010 &lt;0.005 &lt;0.01 2 &lt;0.005 &lt;0.005 &lt;0.005 0.20 &lt;0.005 &lt;0.005 0.20 3 &lt;0.005 &lt;0.005 &lt;0.005 0.02 &lt;0.005 &lt;0.005 &lt;0.01 4 &lt;0.005 &lt;0.005 &lt;0.005 0.15 0.010 &lt;0.005 &lt;0.01 5 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 6 &lt;0.005 &lt;0.005 &lt;0.005 0.22 0.060 &lt;0.005 0.18 7 &lt;0.005 &lt;0.005 &lt;0.005 0.06 0.020 &lt;0.005 0.54 8 0.04 &lt;0.005 &lt;0.005 0.13 0.010 &lt;0.005 &lt;0.01 9 &lt;0.005 &lt;0.005 &lt;0.005 0.01 0.23 &lt;0.005 &lt;0.01 10 &lt;0.005 0.04 0.011 0.25 &lt;0.005 0.10 0.29 11 0.050 &lt;0.005 &lt;0.005 0.03 0.200 0.25 &lt;0.01 12 &lt;0.005 0.050 &lt;0.005 &lt;0.005 &lt;0.005 0.020 0.77 13 0.009 &lt;0.005 0.04 &lt;0.005 0.030 0.050 0.98 14 &lt;0.005 &lt;0.005 &lt;0.005 0.15 &lt;0.005 0.010 &lt;0.01 15 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.010 &lt;0.005 &lt;0.01 16 &lt;0.005 &lt;0.005 &lt;0.005 0.10 &lt;0.005 &lt;0.005 0.03 17 0.01 &lt;0.005 &lt;0.005 &lt;0.005 0.030 &lt;0.005 &lt;0.01 18 &lt;0.005 0.01 0.02 0.20 0.15 0.15 0.30 -19- 200932412No electrode chemical composition (% by mass) M〇S2 g/electrode l〇Kg Nb V A1 Mo Cr Ni Example 1 &lt;0.005 &lt;0.005 &lt; 0.005 &lt; 0.005 0.010 &lt; 0.005 &lt; 0.01 2 &lt; 0.005 &lt;; 0.005 &lt; 0.005 0.20 &lt; 0.005 &lt; 0.005 0.20 3 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.02 &lt; 0.005 &lt; 0.005 &lt; 0.01 4 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.15 0.010 &lt; 0.005 &lt; 0.01 5 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.01 6 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.22 0.060 &lt; 0.005 0.18 7 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.06 0.020 &lt;0.005 0.54 8 0.04 &lt; 0.005 &lt; 0.005 0.13 0.010 &lt; 0.005 &lt; 0.01 9 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.01 0.23 &lt; 0.005 &lt; 0.01 10 &lt; 0.005 0.04 0.011 0.25 &lt; 0.005 0.10 0.29 11 0.050 &lt; 0.005 &lt; 0.005 0.03 0.200 0.25 &lt; 0.01 12 &lt; 0.005 0.050 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.020 0.77 13 0.009 &lt; 0.005 0.04 &lt; 0.005 0.030 0.050 0.98 14 &lt; 0.005 &lt; 0.005 &lt;0.005 0.15 &lt;0.005 0.010 &lt;0.01 15 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.010 &lt;0.005 &Lt; 0.01 16 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.10 &lt; 0.005 &lt; 0.005 0.03 17 0.01 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.030 &lt; 0.005 &lt; 0.01 18 &lt; 0.005 0.01 0.02 0.20 0.15 0.15 0.30 - 19- 200932412

〔表 4-3〕 No. C Si Μη Ti S P Cu B Pbs Pmt 比 較 例 19 0.02 0.75 1.85 0.13 0.008 0.006 0.25 0.0040 3.2 24.1 20 0.11 0.92 2.30 0.13 0.008 0.010 0.19 0.0030 2.4 29.9 21 0.05 0.66 1.85 0.15 0.010 0.015 0.25 0.0020 2.0 27.8 22 0.08 1.02 2.10 0.14 0.015 0.011 0.28 0.0050 7.5 29.4 23 0.09 0.82 1.80 0.12 0.010 0.016 0.18 0.0035 3.5 21.6 24 0.08 0.75 2.52 0.11 0.009 0.010 0.20 0.0044 4.0 27.7 25 0.04 0.80 1.99 0.09 0.014 0.008 0.15 0.0040 5.6 17.9 26 0.06 0.85 1.82 0.16 0.011 0.007 0.29 0.0045 5.0 29.1 27 0.07 0.95 2.00 0.17 0.013 0.012 0.21 0.0018 2.3 34.0 28 0.06 0.80 2.30 0.14 0.009 0.009 0.20 0.0048 4.3 32.2 29 0.08 0.81 1.90 0.12 0.005 0.007 0.22 0.0025 1.3 22.8 30 0.03 0.90 1.98 0.14 0.019 0.016 0.23 0.0030 5.7 27.7 31 0.06 0.86 1.87 0.13 0.016 0.013 0.30 0.0064 10.2 24.3 32 0.07 0.90 1.82 0.15 0.009 0.021 0.25 0.0016 1.4 27.3 33 0.05 0.83 2.05 0.14 0.008 0.005 0.08 0.0026 2.1 28.7 34 0.05 0.77 1.87 0.14 0.013 0.009 0.47 0.0063 8.2 26.2 35 0.06 0.88 1.87 0.15 0.009 0.015 0.40 0.0013 1.2 28.1 36 0.10 0.69 1.95 0.14 0.012 0.011 0.20 0.0072 8.6 27.3 37 0.03 0.80 2.40 0.15 0.018 0.008 0.26 0.0058 10.4 36.0 38 0.04 0.70 1.87 0.12 0.015 0.012 0.19 0.0030 4.5 22.4 39 0.08 0.81 1.84 0.15 0.006 0.010 0.15 0.0041 2.5 27.6 40 0.07 0.88 1.95 0.14 0.007 0.006 0.26 0.0055 3.9 27.3 41 0.09 0.90 1.83 0.13 0.009 0.008 0.19 0.0045 4.1 23.8 42 0.07 0.86 1.85 0.15 0.009 0.013 0.26 0.0039 3.5 27.8 43 0.08 0.77 1.99 0.12 0.009 0.010 0.20 0.0025 2.3 23.9 44 0.06 0.89 1.90 0.14 0.011 0.010 0.18 0.0066 7.3 26.6 45 0.07 0.90 1.95 0.23 0.003 0.012 0.25 &lt;0.0001 0.0 44.9 46 0.08 0.79 1.72 0.19 0.005 0.019 0.17 0.0043 2.2 32.7 47 0.11 0.80 1.45 &lt;0.01 0.012 0.010 0.25 0.0001 0.1 0.0 48 0.06 0.50 2.00 0.18 0.004 0.012 0.20 0.0019 0.8 36.0 49 0.07 1.10 1.82 0.05 0.025 0.006 0.20 &lt;0.0001 0.0 9.1 50 0.06 0.25 1.95 0.15 0.015 0.010 0.25 0.0101 15.2 29.3 -20- 200932412 〔表 4-4〕 No Nb V A1 Mo Cr Ni M〇S2 19 &lt;0.005 &lt;0.005 &lt;0.005 0.15 &lt;0.005 &lt;0.005 0.05 20 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 21 &lt;0.005 &lt;0.005 &lt;0.005 0.22 &lt;0.005 &lt;0.005 0.15 22 &lt;0.005 &lt;0.005 &lt;0.005 0.16 &lt;0.005 &lt;0.005 0.25 23 &lt;0.005 &lt;0.005 &lt;0.005 0.13 0.005 &lt;0.005 0.50 24 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.78 25 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.35 26 &lt;0.005 &lt;0.005 &lt;0.005 0.17 &lt;0.005 0.010 0.45 27 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.90 28 &lt;0.005 &lt;0.005 &lt;0.005 0.13 &lt;0.005 0.020 &lt;0.01 29 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.010 0.10 30 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 31 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 32 &lt;0.005 &lt;0.005 &lt;0.005 0.10 &lt;0.005 &lt;0.005 &lt;0.01 33 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 比 34 0.080 &lt;0.005 0.010 0.005 &lt;0.005 &lt;0.005 &lt;0.01 較 35 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 例 36 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.50 37 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.65 38 0.050 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.26 39 0.010 0.050 &lt;0.005 0.060 &lt;0.005 &lt;0.005 0.15 40 &lt;0.005 &lt;0.005 0.050 &lt;0.005 0.150 &lt;0.005 0.11 41 &lt;0.005 &lt;0.005 &lt;0.005 0.27 &lt;0.005 &lt;0.005 &lt;0.01 42 &lt;0.005 &lt;0.005 &lt;0.005 0.010 0.28 &lt;0.005 &lt;0.01 43 0.010 &lt;0.005 0.010 &lt;0.005 0.020 0.27 0.05 44 &lt;0.005 0.006 &lt;0.005 &lt;0.005 &lt;0.005 0.15 1.10 45 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.150 0.010 &lt;0.01 46 &lt;0.005 &lt;0.005 0.01 0.20 0.010 0.010 &lt;0.01 47 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 48 0.010 0.010 0.010 0.40 0.050 0.020 0.12 49 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.02 50 &lt;0.005 &lt;0.005 &lt;0.005 0.18 0.09 0.01 0.10 -21 - 200932412[Table 4-3] No. C Si Μη Ti SP Cu B Pbs Pmt Comparative Example 19 0.02 0.75 1.85 0.13 0.008 0.006 0.25 0.0040 3.2 24.1 20 0.11 0.92 2.30 0.13 0.008 0.010 0.19 0.0030 2.4 29.9 21 0.05 0.66 1.85 0.15 0.010 0.015 0.25 0.0020 2.0 27.8 22 0.08 1.02 2.10 0.14 0.015 0.011 0.28 0.0050 7.5 29.4 23 0.09 0.82 1.80 0.12 0.010 0.016 0.18 0.0035 3.5 21.6 24 0.08 0.75 2.52 0.11 0.009 0.010 0.20 0.0044 4.0 27.7 25 0.04 0.80 1.99 0.09 0.014 0.008 0.15 0.0040 5.6 17.9 26 0.06 0.85 1.82 0.16 0.011 0.007 0.29 0.0045 5.0 29.1 27 0.07 0.95 2.00 0.17 0.013 0.012 0.21 0.0018 2.3 34.0 28 0.06 0.80 2.30 0.14 0.009 0.009 0.20 0.0048 4.3 32.2 29 0.08 0.81 1.90 0.12 0.005 0.007 0.22 0.0025 1.3 22.8 30 0.03 0.90 1.98 0.14 0.019 0.016 0.23 0.0030 5.7 27.7 31 0.06 0.86 1.87 0.13 0.016 0.013 0.30 0.0064 10.2 24.3 32 0.07 0.90 1.82 0.15 0.009 0.021 0.25 0.0016 1.4 27.3 33 0.05 0.83 2.05 0.14 0.008 0.005 0.08 0.0026 2.1 28.7 34 0.05 0.77 1.87 0.14 0.013 0.009 0.47 0.0063 8.2 26.2 35 0.06 0.88 1.87 0.15 0 .009 0.015 0.40 0.0013 1.2 28.1 36 0.10 0.69 1.95 0.14 0.012 0.011 0.20 0.0072 8.6 27.3 37 0.03 0.80 2.40 0.15 0.018 0.008 0.26 0.0058 10.4 36.0 38 0.04 0.70 1.87 0.12 0.015 0.012 0.19 0.0030 4.5 22.4 39 0.08 0.81 1.84 0.15 0.006 0.010 0.15 0.0041 2.5 27.6 40 0.07 0.88 1.95 0.14 0.007 0.006 0.26 0.0055 3.9 27.3 41 0.09 0.90 1.83 0.13 0.009 0.008 0.19 0.0045 4.1 23.8 42 0.07 0.86 1.85 0.15 0.009 0.013 0.26 0.0039 3.5 27.8 43 0.08 0.77 1.99 0.12 0.009 0.010 0.20 0.0025 2.3 23.9 44 0.06 0.89 1.90 0.14 0.011 0.010 0.18 0.0066 7.3 26.6 45 0.07 0.90 1.95 0.23 0.003 0.012 0.25 &lt;0.0001 0.0 44.9 46 0.08 0.79 1.72 0.19 0.005 0.019 0.17 0.0043 2.2 32.7 47 0.11 0.80 1.45 &lt;0.01 0.012 0.010 0.25 0.0001 0.1 0.0 48 0.06 0.50 2.00 0.18 0.004 0.012 0.20 0.0019 0.8 36.0 49 0.07 1.10 1.82 0.05 0.025 0.006 0.20 &lt;0.0001 0.0 9.1 50 0.06 0.25 1.95 0.15 0.015 0.010 0.25 0.0101 15.2 29.3 -20- 200932412 [Table 4-4] No Nb V A1 Mo Cr Ni M〇S2 19 &lt ;0.005 &lt;0.005 &lt;0.005 0.15 &lt;; 0.005 &lt; 0.005 0.05 20 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.01 21 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.22 &lt; 0.005 &lt; 0.005 0.15 22 &lt; 0.005 &lt;0.005 &lt; 0.005 0.16 &lt; 0.005 &lt; 0.005 0.25 23 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.13 0.005 &lt; 0.005 0.50 24 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.78 &lt;0.005 &lt;0.005 &lt;; 0.005 &lt; 0.005 0.90 28 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.13 &lt; 0.005 0.020 &lt; 0.01 29 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.010 0.10 30 &lt; 0.005 &lt; 0.005 &lt;; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.01 31 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.01 32 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.10 &lt; 0.005 &lt;0.005 &lt;0.01 33 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.01 ratio 34 0.080 &lt; 0. 005 0.010 0.005 &lt;0.005 &lt;0.005 &lt;0.01 is 35 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 Example 36 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;; 0.005 &lt; 0.005 0.50 37 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.65 38 0.050 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 39 0.010 0.050 &lt; 0.005 0.060 &lt; 0.005 &lt; 0.005 0.15 40 &lt; 0.005 &lt; 0.005 0.050 &lt; 0.005 0.150 &lt; 0.005 0.11 41 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.27 &lt; 0.005 &lt; 0.005 &lt; 0.01 42 &lt; 0.005 &lt; 0.005 &lt;0.005 0.010 0.28 &lt;0.005 &lt;0.01 43 0.010 &lt;0.005 0.010 &lt;0.005 0.020 0.27 0.05 44 &lt; 0.005 0.006 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.15 1.10 45 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt;0.005 0.150 0.010 &lt;0.01 46 &lt;0.005 &lt;0.005 0.01 0.20 0.010 0.010 &lt;0.01 47 &lt;0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.01 48 0.010 0.010 0.010 0.40 0.050 0.020 0.12 49 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0 .005 0.02 50 &lt;0.005 &lt;0.005 &lt;0.005 0.18 0.09 0.01 0.10 -21 - 200932412

〔表 5-1 〕 No 熔接滲 透不良 剝離率 % 熔渣量 g 抗拉強度 Mpa 吸收能 量J 電弧穩 定性 飛濺物 量g 裂痕 氣孔 1 無 220 8.4〇 572〇 146〇 〇 4.0〇 無 M 2 無 24〇 9.2〇 600〇 164〇 ◎ 3.7〇 Μ /w\ M y\\\ 3 無 20〇 10.6〇 536〇 155〇 〇 4.5〇 /ill* Mil. 無 4 無 15〇 10.50 608〇 174〇 〇 4.6〇 杯 /1 無 5 無 16〇 11.8〇 575〇 11〇〇 〇 4.9〇 並 、N Μ 6 並 JIW 29〇 9_0〇 496〇 122〇 ◎ 3.5〇 Αιττ &gt;1 SN 無 實 7 無 22〇 10.30 595〇 73〇 ◎ 5.8〇 無 Μ JiS\ 施 8 魅 150 11.20 556〇 74〇 〇 4.3〇 Μ /w\ Μ 例 9 無 19〇 11.6〇 599〇 72〇 〇 5.3〇 無 Μ /»w 10 1111* 20〇 10.00 628〇 73〇 ◎ 3.7〇 Μ /\\\ 11 無 21〇 7.5〇 605〇 75〇 〇 5.9〇 無 Μ &gt;1、、 12 4m 20〇 8.5〇 555〇 145〇 〇 5.0〇 Μ. Μ 13 無 19〇 9.6〇 588〇 71〇 ◎ 4.5〇 Μ 無 14 並 M、、 21〇 8.00 598〇 124〇 〇 4.6〇 M y\\\ 15 無 22〇 8.4〇 574〇 1500 〇 4.2〇 無 Μ 16 無 18〇 7.7〇 560〇 123〇 ◎ 4.9〇 1MI' Ji\\ 無 17 1111* 150 9.0〇 555〇 167〇 〇 4.2〇 ^11 V Π1 r \\ 無 18 無 17〇 10.20 581〇 1〇〇〇 ◎ 5.0〇 並 無 -22- 200932412[Table 5-1] No Weld penetration poor peeling rate % Slag amount g Tensile strength Mpa Absorbed energy J Arc stability Spoil amount g Cracked pores No 220 8.4〇572〇146〇〇4.0〇No M 2 No 24〇 9.2〇600〇164〇◎ 3.7〇Μ /w\ M y\\\ 3 No 20〇10.6〇536〇155〇〇4.5〇/ill* Mil. No 4 No 15〇10.50 608〇174〇〇4.6〇杯/1 No 5 No 16〇11.8〇575〇11〇〇〇4.9〇, N Μ 6 and JIW 29〇9_0〇496〇122〇◎ 3.5〇Αιττ &gt;1 SN No real 7 No 22〇10.30 595〇73 〇◎ 5.8〇无〇 JiS\施8 Charm 150 11.20 556〇74〇〇4.3〇Μ /w\ Μ Example 9 None 19〇11.6〇599〇72〇〇5.3〇无Μ /»w 10 1111* 20〇10.00 628〇73〇◎ 3.7〇Μ /\\\ 11 No 21〇7.5〇605〇75〇〇5.9〇无Μ &gt;1, 12 4m 20〇8.5〇555〇145〇〇5.0〇Μ. Μ 13 None 19〇9.6〇588〇71〇◎ 4.5〇Μ No 14 and M, 21〇8.00 598〇124〇〇4.6〇M y\\\ 15 No 22〇8.4〇574〇1500 〇4.2〇无Μ16 No 18〇7.7〇560〇123〇◎ 4.9〇1MI' Ji\\ No 17 1111* 150 9.0〇555〇167〇〇4.2〇^11 V Π1 r \\ No 18 No 17〇10.20 581〇1〇〇〇◎ 5.0〇没有-22- 200932412

〔表 5-2〕[Table 5-2]

No 熔接滲 透不良 剝離率 % 熔濟暈 g 抗拉強度 Mpa 吸收能 量j 電弧穩 定性 飛濺物 量g 裂痕 氣孔 19 無 20〇 8.5〇 485χ 132〇 ◎ 4.70 4m- /i\\ 無 20 無 17〇 10.40 615〇 65χ X 6.6x 有 無 21 Arrf. 热 14χ 7.5〇 486χ 144〇 X 5.1〇 M /\w 有 22 Μ 28〇 12_2χ 604〇 63χ X 5.5〇 ^w\ Μ /\w 23 無 25〇 6.2〇 542〇 66χ 〇 5.7〇 4nr ITlt? 有 24 Μ 12χ 12.6χ 629〇 Π9〇 X 5.1〇 無 &gt;1、N 25 yfrrr. IHI- 27〇 5.8〇 555〇 91〇 X 6.4x ill!' /iw Μ y\\\ 26 有 15〇 11.5〇 587〇 135〇 ◎ 3.9〇 illr Μ 27 有 150 11.30 596〇 139〇 〇 4.4〇 無 Μ /\w 28 Jnt- 無 14χ 12.4χ 6100 124〇 X 4.9〇 無 無 29 Αττ 無 14χ 10.70 576〇 1600 X 3.8〇 無 並 30 無 20〇 9.1〇 535〇 67χ X 5.1〇 有 Se 31 無 17〇 8.3〇 546〇 75〇 〇 5.4〇 有 Am Itn? 川、 32 ΊΠγ 22〇 9.0〇 524〇 76χ 〇 5.2〇 有 無 33 無 190 10.00 600〇 142〇 X 6.4x 無 無 比 34 無 14χ 9.1〇 561〇 83〇 X 5.2〇 有 Μ /*\Ν 較 35 無 17〇 8.5〇 485χ 65χ 〇 4.2〇 無 Μ &gt;1 \Ν 例 36 4nf 無 20〇 9.2〇 602〇 1500 ◎ 4.4〇 有 無 37 無 13χ 12.5χ 641〇 89〇 X 4.1〇 有 ίΕΕ 38 無 21〇 7.9〇 572〇 68χ ◎ 5.2〇 無 並 /\\\ 39 無 19〇 8.7〇 598〇 64χ ◎ 5.00 Μ 無 40 Μ 180 9.5〇 609〇 65χ ◎ 5.2〇 ΙΓ 热 Μ j\w 41 無 22〇 8.1〇 660〇 68χ 〇 4.8〇 無 ττΗτ »\ 42 Ίηγ 、Ν 21〇 8.2〇 638〇 66χ 〇 4.9〇 無 Μ y»\\ 43 Μ /\s\ 18〇 9.1〇 614〇 69χ ◎ 4.4〇 無 無 44 Μ y«\\ 14χ 8.5〇 599〇 129〇 X 5.7〇 無 Μ 45 有 5χ 11.00 484χ 66χ X 5.2〇 Μ 夕》、、 Μ 46 有 11χ 11.20 486χ 64χ X 4.3〇 益 w 有 47 Μ 20〇 4.5〇 480χ 42χ X 12.5x 有 有 48 有 9χ 1〇.4〇 625〇 60χ X 3.9〇 Μ /»Λ\ 有 49 無 28〇 12.3χ 479χ 49χ X 9.8x 有 無 50 Μ &lt;Μ、Ν 7χ 10.10 488χ 155〇 X 5.1〇 有 有 -23- 200932412 如表5所示,本發明的實施例1~18,各成分的組成 範圍是在本發明規定的範圔內’因此熔渣的剝離性、熔渣 量、熔接金屬的強度、韌性、電弧穩定性、低飛濺物性、 熔接滲透性能及耐裂痕性全部良好,能夠得到優異的熔接 作業性和熔接金屬優異的機械性質。 '另一方面,比較例19~ 50脫離本發明的範圍,其中比 較例19其C過少,熔接金屬的強度不足。比較例20其C 〇 過剩,在熔接金屬發生高溫裂痕,強度過剩而韌性低。另 外,飛濺物也多,電弧穩定性差,因此連續熔接性也變差 。比較例21其Si過少,熔接金屬的強度不足,熔渣剝離 性也差,熔渣干擾造成電弧不穩定,連續熔接性差。另外 ,因脫氧不足還發生氣孔。比較例22其Si過剩,熔接金 屬的韌性不足,熔渣量過剩並成爲干擾,電弧不穩定,連 續熔接性差。比較例23其Μη過少,韌性低,因脫氧不 足還發生氣孔。比較例24其Μη過剩,熔渣量多,剝離 Ο 性也差。另外,熔渣干擾使電弧不穩定,連續熔接性差。 比較例25其Ti過少,飛濺物產生量多,電弧穩定性差, 焊嘴容易發生堵塞,因此連續熔接性差。比較例26、27 其Ti過剩,熔滴移行成爲完全的球狀熔滴移行,因此熔 接滲透不良大量發生。比較例28其Mn、Ti的各成分雖 然分別符合規定範圍,但是參數PMT過大,因此熔渣量多 ,剝離性也差。另外,熔渣干擾而使電弧不穩定,連續熔 接性差。比較例29其S過少,熔渣的剝離性差,熔渣干 擾而電弧不穩定,連續熔接性差。比較例30其S過剩, -24- 200932412 韌性低,並且還發生高溫裂痕。熔渣雖然剝離性良好,但 是附著物形成粒狀化,厚度增加而損害電弧的穩定性。結 果造成連續熔接性差。 比較例31其S和B的各成分雖然符合本發明的規定 範圍,但參數PBS過大,因此耐裂痕性差,有裂痕發生。 ' 比較例32其P過剩,韌性低,並且也發生高溫裂痕。比 較例33其Cu過少,銅銨層的厚度薄,因此導電不良。微 © 小熔合大量發生而使電弧不穩定,飛濺物也增加。比較例 34其Cu過剩,高溫裂痕發生,並且熔渣剝離性也差,熔 渣干擾使電弧不穩定,連續熔接性差。比較例3 5其B不 足,強度和韌性不足。比較例3 6其B過剩,高溫裂痕發 生。 比較例37其Mn、Ti、B及S元素各個單獨雖符合本 發明的規定範圍,但是參數Pmt、PBS超出本發明的規定 範圍。因此,熔渣量多,熔渣剝離性也差。另外,熔渣干 G 擾使電弧不穩定,連續熔接性差,此外還發生高溫裂痕。 比較例38〜40分別爲Nb、V ' A1過剩,韌性降低。比較 例41〜43分別爲Mo、Cr、Ni過剩,雖然強度提高但該強 度變得過剩,反而造成軔性降低。比較例44其Mo S2附 著量過剩,在管路(conduit liner)等進給系統中發生MoS2 堆積堵塞,焊條進給非常不穩定。結果電弧穩定性變差, 熔渣分布不均一而產生不良影響’熔渣剝離性降低。結果 熔渣會干擾而使連續熔接性變差。 比較例45其Ti過剩’ S過少,未添加B。因此’由 -25- 200932412 於Ti過剩導致熔滴移行成爲完全的球狀熔滴移行,因此 熔接滲透不良大量發生。此外由於s過少’熔渣剝離性也 差。另外,熔渣干擾使電弧不穩定,連續熔接性差。此外 ,因爲未添加B,所以強度及韌性不足。比較例46其Ti 過剩,S和Μη過少。由於Ti過剩導致熔滴移行成爲完全 的球狀熔滴移行’因此熔接滲透不良大量發生。此外’由 於S過少,剝離性也差。熔渣干擾使電弧不穩定,連續熔 © 接性差。因爲Μη過少,所以強度及朝性不足,並且因脫 氧不足還發生氣孔。比較例47其c過剩’ Μη不足,未 添加Ti及Β。因此,由於Μη不足和未添加Β’導致強度 和韌性不足’因脫氧不足還發生氣孔。由於C過剩而發生 高溫裂痕,另外再配合上未添加Ti’造成飛濺物極多’ 電弧穩定性差。 比較例48其Ti、Pmt、Mo過剩但Si及S不足。因 此,由於Ti過剩導致熔滴移行成爲完全的球狀熔滴移行 Ο ,因此熔接滲透不良大量發生。此外’由於Si及S過少 ,熔渣剝離性也差。熔渣干擾使電弧不穩定’連續熔接性 差。另外,Mo過剩導致韌性不足。此外,因si不足造成 脫氧不足,還發生氣孔。比較例49其Si和S過剩,Ti不 足,未添加B。由於未添加B,韌性降低,強度也低。因 爲Si和S過剩,所以熔渣量多,並且粒狀化而損害電弧 穩定性。結果連續熔接性差。另外’由於Ti不足導致飛 濺物大量發生。因爲S過剩,高溫裂痕也發生。比較例 50其Si不足,B過剩,PBS過大。由於Si不足導致熔接 -26- 200932412 金屬的強度不足,熔渣剝離性也差,熔渣干擾使電弧不穩 定,連續熔接性差。由於Si不足導致脫氧不足,也發生 氣孔。另外,因爲PBS過大,所以高溫裂痕也會發生。 【圖式簡單說明】 第1圖是表示焊條成分中的Ti量和焊條突出長度對 熔接滲透深度造成的影響。 © 第2圖是表示本發明中的B和S的範圍。 第3圖是表示本發明中的Μη和Ti的範圍。 第4(a)(b)(e)圖是表示熔接試驗體形狀和開槽形狀。 第5圖是熔接金屬拉伸試驗片的採取位置。 第6圖是熔接金屬夏比衝擊試驗片的採取位置。 【主要元件符號說明】 1 :隔板 ❹ 2 :襯墊 3 :鋼管 4 :焊炬 -27-No Welding penetration poor peeling rate % Melting halo g Tensile strength Mpa Absorbing energy j Arc stability Splash amount g Cracking hole 19 No 20〇8.5〇485χ 132〇◎ 4.70 4m- /i\\ No 20 No 17〇10.40 615 〇65χ X 6.6x with or without 21 Arrf. Heat 14χ 7.5〇486χ 144〇X 5.1〇M /\w There are 22 Μ 28〇12_2χ 604〇63χ X 5.5〇^w\ Μ /\w 23 No 25〇6.2〇542〇 66χ 〇5.7〇4nr ITlt? There are 24 Μ 12χ 12.6χ 629〇Π9〇X 5.1〇无&gt;1, N 25 yfrrr. IHI- 27〇5.8〇555〇91〇X 6.4x ill!' /iw Μ y\ \\ 26 has 15〇11.5〇587〇135〇◎ 3.9〇illr Μ 27 has 150 11.30 596〇139〇〇4.4〇无Μ /\w 28 Jnt- no 14χ 12.4χ 6100 124〇X 4.9〇No 29 Αττ No 14χ 10.70 576〇1600 X 3.8〇无和30 No 20〇9.1〇535〇67χ X 5.1〇Se 31 No 17〇8.3〇546〇75〇〇5.4〇Am Itn? Sichuan, 32 ΊΠγ 22〇9.0〇 524〇76χ 〇5.2〇With or without 33 No 190 10.00 600〇142〇X 6.4x No incomparable 34 No 14χ 9.1〇561〇83 〇X 5.2〇有Μ/*\Ν Compared with 35 no 17〇8.5〇485χ 65χ 〇4.2〇无Μ &gt;1 \Ν Example 36 4nf No 20〇9.2〇602〇1500 ◎ 4.4〇有373713χ12.5χ 641 〇89〇X 4.1〇ίΕΕ 38 No 21〇7.9〇572〇68χ ◎ 5.2〇无和/\\\ 39 No 19〇8.7〇598〇64χ ◎ 5.00 Μ No 40 Μ 180 9.5〇609〇65χ ◎ 5.2〇 ΙΓ hot Μ j\w 41 no 22 〇 8.1 〇 〇 〇 χ » 〇 〇 τ τ » » » » » » » » » γ γ y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y 9.1〇614〇69χ ◎ 4.4〇无无44 Μ y«\\ 14χ 8.5〇599〇129〇X 5.7〇无Μ 45 There are 5χ 11.00 484χ 66χ X 5.2〇Μ 夕》, Μ 46 χ11χ 11.20 486χ 64χ X 4.3〇益 w There are 47 Μ 20〇4.5〇480χ 42χ X 12.5x There are 48 9χ 1〇.4〇625〇60χ X 3.9〇Μ /»Λ\ There are 49 No 28〇12.3χ 479χ 49χ X 9.8x Yes No 50 Μ &lt;Μ,Ν 7χ 10.10 488χ 155〇X 5.1〇有-23-200932412 As shown in Table 5, the embodiments 1 to 18 of the present invention, each The composition range is within the specification of the present invention. Therefore, the slag removability, the slag amount, the strength of the weld metal, the toughness, the arc stability, the low spatter property, the weld penetration property, and the crack resistance are all good. Excellent weld workability and excellent mechanical properties of the weld metal are obtained. On the other hand, Comparative Examples 19 to 50 deviated from the scope of the present invention, in which Comparative Example 19 had too little C and the strength of the welded metal was insufficient. In Comparative Example 20, C 〇 was excessive, and high-temperature cracks occurred in the welded metal, and the strength was excessive and the toughness was low. In addition, there are many spatters and the arc stability is poor, so the continuous weldability is also deteriorated. In Comparative Example 21, Si was too small, the strength of the weld metal was insufficient, and the slag removability was also poor, and the slag interference caused the arc to be unstable and the continuous weldability was poor. In addition, pores also occur due to insufficient deoxygenation. In Comparative Example 22, Si was excessive, the toughness of the welded metal was insufficient, the amount of molten slag was excessive and interference was caused, the arc was unstable, and the continuous weldability was poor. In Comparative Example 23, the enthalpy η was too small, the toughness was low, and pores were generated due to insufficient deoxidation. In Comparative Example 24, the Μη was excessive, the amount of slag was large, and the peeling property was also poor. In addition, slag interference makes the arc unstable and has poor continuous weldability. In Comparative Example 25, the amount of spatter was too small, the amount of spatter generated was large, the arc stability was poor, and the tip was likely to be clogged, so that the continuous weldability was poor. In Comparative Examples 26 and 27, Ti was excessive, and the droplet transfer became a complete spherical droplet transfer, so that a large number of poor penetration of the weld occurred. In Comparative Example 28, although the respective components of Mn and Ti were each in compliance with the predetermined range, the parameter PMT was too large, so that the amount of slag was large and the peeling property was also poor. In addition, the slag interferes to make the arc unstable and the continuous fusion property is poor. In Comparative Example 29, the S was too small, the slag had poor peelability, the slag was disturbed, the arc was unstable, and the continuous weldability was poor. In Comparative Example 30, the S was excessive, and -24-200932412 was low in toughness, and high temperature cracks also occurred. Although the slag has good peelability, the deposit is granulated and the thickness is increased to impair the stability of the arc. As a result, the continuous weldability is poor. In Comparative Example 31, although the respective components of S and B were in compliance with the scope of the present invention, the parameter PBS was too large, so that the crack resistance was poor and cracking occurred. Comparative Example 32 had a P excess, low toughness, and high temperature cracking also occurred. In Comparative Example 33, the Cu content was too small, and the thickness of the copper-ammonium layer was thin, so that the conductivity was poor. Micro © Small fusion occurs in a large amount to make the arc unstable and the spatter increases. In Comparative Example 34, Cu was excessive, high-temperature cracks occurred, and slag removability was also poor, and slag interference caused arc instability and poor continuous weldability. Comparative Example 3 5 has insufficient B and insufficient strength and toughness. Comparative Example 3 6 has a B excess and a high temperature crack occurs. In Comparative Example 37, each of the Mn, Ti, B, and S elements was individually within the prescribed range of the present invention, but the parameters Pmt and PBS were outside the scope of the present invention. Therefore, the amount of slag is large, and the slag removability is also poor. In addition, the slag dry G disturbance causes the arc to be unstable, the continuous weldability is poor, and high temperature cracks also occur. In Comparative Examples 38 to 40, Nb and V 'A1 were excessive, and the toughness was lowered. In Comparative Examples 41 to 43, Mo, Cr, and Ni were excessive, and although the strength was increased, the strength was excessive, and conversely, the enthalpy was lowered. In Comparative Example 44, the Mo S2 adhesion amount was excessive, and MoS2 accumulation clogging occurred in the feed system such as a conduit liner, and the electrode feeding was extremely unstable. As a result, the arc stability is deteriorated, and the slag distribution is uneven and adversely affected. The slag removability is lowered. As a result, the slag interferes and the continuous weldability deteriorates. In Comparative Example 45, the Ti excess 'S was too small, and B was not added. Therefore, the surplus of Ti from -25 to 200932412 causes the droplet transfer to become a complete spherical droplet transfer, so that a large number of poor penetration of the weld occurs. In addition, since s is too small, the slag removability is also poor. In addition, slag interference makes the arc unstable and has poor continuous weldability. In addition, since B is not added, strength and toughness are insufficient. In Comparative Example 46, Ti was excessive, and S and Μη were too small. Since the excess of Ti causes the droplet to migrate into a complete spherical droplet transfer, the fusion penetration is largely caused. In addition, since S is too small, the peelability is also poor. The slag interference makes the arc unstable, and the continuous fusion is poor. Since Μη is too small, strength and tropism are insufficient, and stomata also occur due to insufficient oxygenation. In Comparative Example 47, c excess Μη was insufficient, and Ti and Β were not added. Therefore, insufficient strength and toughness due to insufficient Μη and no addition of Β' cause stomata due to insufficient deoxidation. High temperature cracks occur due to excess C, and the addition of Ti' does not result in a large amount of spatters. In Comparative Example 48, Ti, Pmt, and Mo were excessive but Si and S were insufficient. Therefore, since the excess of Ti causes the droplet transfer to become a complete spherical droplet transfer Ο, a large number of poor penetration of the weld occurs. In addition, since the Si and S are too small, the slag removability is also poor. The slag interference makes the arc unstable, and the continuous weldability is poor. In addition, excess Mo leads to insufficient toughness. In addition, due to insufficient si, deoxygenation is insufficient, and pores also occur. In Comparative Example 49, Si and S were excessive, Ti was insufficient, and B was not added. Since B is not added, the toughness is lowered and the strength is also low. Since Si and S are excessive, the amount of slag is large and granulated to impair arc stability. As a result, the continuous weldability is poor. In addition, a large amount of flying spatter occurs due to insufficient Ti. Because of the excess of S, high temperature cracks also occur. In Comparative Example 50, Si was insufficient, B was excessive, and PBS was too large. Welding due to insufficient Si -26- 200932412 The strength of the metal is insufficient, the slag peeling property is also poor, the slag interference makes the arc unstable, and the continuous welding property is poor. Porosity also occurs due to insufficient deoxidation due to insufficient Si. In addition, because the PBS is too large, high temperature cracks can also occur. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing the influence of the amount of Ti in the composition of the electrode and the protruding length of the electrode on the penetration depth of the weld. © Fig. 2 is a view showing ranges of B and S in the present invention. Fig. 3 is a view showing the range of Μη and Ti in the present invention. The fourth (a), (b) and (e) drawings show the shape of the welded test piece and the shape of the groove. Fig. 5 is a taken position of the welded metal tensile test piece. Figure 6 is the taken position of the welded metal Charpy impact test piece. [Main component symbol description] 1 : Partition ❹ 2 : Liner 3 : Steel pipe 4 : Welding torch -27-

Claims (1)

200932412 十、申請專利範圍 1·-δ =氧化碳氣體熔接用實心焊條,其特徵在於·· 含有 c: 0.03 〜〇.1〇 質量 %、Si: 0.67 〜1.00 質量 %、 Μη. 1.81 〜2·5〇 質量%、s: 0.006 〜0.018 質量 %、Ti: 〇·1〇〇~〇_150 質量 %、B: 0.0015 〜0.0070 質量 %、包括鍍敷 成分的Cu: 0.1 〇〜0.45質量%,剩餘是Fe和不可避免的雜 質; © 由丁式表示的參數PBS及PMT符合PBS S 10,PmtS 32 ’並限定P : 0.020質量%以下、Nb : 0.04質量%以下、V :0·04質量°/°以下、A1 : 〇.〇4質量%以下, Pbs = [B]x[S]x 1 〇5 PMT = [Mn]x[Ti]xl 〇2 在此’[]代表該元素在焊條中含量(質量%)。 2.如申請專利範圍第1項記載的二氧化碳氣體熔接用 實心焊條,其中,進一步含有選自Mo: 0.25質量%以下 O ^ Cr: 0.25 質量%以下及Ni ·· 0.25質量%以下所構成群中 的至少1種。 3 ·如申請專利範圍第1或2記載的二氧化碳氣體熔接 用實心焊條,其中,每10kg焊條中,在焊條表面存在 0.01~1 .00g 的 m〇s2 ° -28-200932412 X. Patent application range 1·-δ = solid electrode for welding carbon oxide gas, characterized in that it contains c: 0.03 ~ 〇.1 〇 mass%, Si: 0.67 1.00 1.00 mass%, Μη. 1.81 〜2· 5〇% by mass, s: 0.006 to 0.018% by mass, Ti: 〇·1〇〇~〇_150% by mass, B: 0.0015 to 0.0070% by mass, Cu including plating component: 0.1 〇 to 0.45% by mass, and remaining It is Fe and unavoidable impurities; © The parameters of butyl and PMT are in accordance with PBS S 10, PmtS 32 ' and define P: 0.020 mass% or less, Nb: 0.04 mass% or less, V: 0·04 mass °/ ° below, A1 : 〇.〇4 mass% or less, Pbs = [B]x[S]x 1 〇5 PMT = [Mn]x[Ti]xl 〇2 Here, '[] represents the content of the element in the electrode (quality%). 2. The solid electrode for carbon dioxide gas welding according to the first aspect of the invention, wherein the solid electrode is selected from the group consisting of Mo: 0.25 mass% or less, O^Cr: 0.25 mass% or less, and Ni··0.25 mass% or less. At least one of them. 3. The solid electrode for carbon dioxide gas welding according to claim 1 or 2, wherein, for every 10 kg of the electrode, there is 0.01 to 1.00 g of m〇s2 ° -28- on the surface of the electrode.
TW097145201A 2008-01-30 2008-11-21 Solid welding wire for carbon dioxide gas welding TW200932412A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008019482A JP2009178737A (en) 2008-01-30 2008-01-30 Solid wire for carbon dioxide shielded arc welding

Publications (2)

Publication Number Publication Date
TW200932412A true TW200932412A (en) 2009-08-01
TWI357369B TWI357369B (en) 2012-02-01

Family

ID=40944543

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097145201A TW200932412A (en) 2008-01-30 2008-11-21 Solid welding wire for carbon dioxide gas welding

Country Status (4)

Country Link
JP (1) JP2009178737A (en)
KR (1) KR101073290B1 (en)
CN (1) CN101497154B (en)
TW (1) TW200932412A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905392B (en) * 2010-08-26 2012-04-25 宜昌猴王焊丝有限公司 High-toughness low-alloy solid welding wire
CN103464871B (en) * 2013-09-06 2016-03-30 海宁瑞奥金属科技有限公司 A kind of high tenacity CO 2gas protecting welding wire and application thereof
JP6188621B2 (en) * 2014-04-10 2017-08-30 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide shielded arc welding
CN106181114A (en) * 2015-04-29 2016-12-07 海宁瑞奥金属科技有限公司 The low spatter gas shield welding wire that arc stability is excellent
JP6486844B2 (en) * 2016-01-28 2019-03-20 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
CN106216877B (en) * 2016-07-26 2018-08-31 江苏省沙钢钢铁研究院有限公司 A kind of high durable gas protecting welding wire of welding property excellent
JP6787171B2 (en) * 2017-02-20 2020-11-18 日本製鉄株式会社 Corrosion-resistant steel gas shield arc welding solid wire
CN112589333A (en) * 2020-11-24 2021-04-02 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Dissimilar steel welded joint

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4628027B2 (en) * 2004-07-12 2011-02-09 株式会社神戸製鋼所 Solid wire for gas shielded arc welding
KR100726043B1 (en) * 2004-09-22 2007-06-08 가부시키가이샤 고베 세이코쇼 Solid wire for gas-shielded arc welding
JP4673048B2 (en) 2004-12-01 2011-04-20 日鐵住金溶接工業株式会社 Gas shielded arc welding wire
JP5021953B2 (en) * 2006-04-28 2012-09-12 株式会社神戸製鋼所 Gas shielded arc welding solid wire for weathering steel and gas shielded arc welding method using the same

Also Published As

Publication number Publication date
TWI357369B (en) 2012-02-01
KR20090083869A (en) 2009-08-04
CN101497154B (en) 2013-03-27
CN101497154A (en) 2009-08-05
KR101073290B1 (en) 2011-10-12
JP2009178737A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
TW200932412A (en) Solid welding wire for carbon dioxide gas welding
TWI316885B (en) Solid wire
KR101849058B1 (en) ARC WELDING METHOD FOR Zn PLATED STEEL SHEET AND ARC WELDED JOINT
JP6810019B2 (en) Gas shielded arc welding wire and gas shielded arc welding method
CN106488825B (en) Vertical narrow groove gas-shielded arc welding method
JP5980128B2 (en) Manufacturing method of arc-welded structural members
JP5137468B2 (en) Solid wire for carbon dioxide shielded arc welding
CN107848082A (en) Flux-cored wire for gas-shielded arc welding
KR101600174B1 (en) Flux cored wire for gas shielded arc welding
TW200911443A (en) Solid soldering wire for carbon dioxide gas protection arc welding
US10189105B2 (en) Shielding gas for mag welding, mag welding method, and welded structure
JP4385028B2 (en) MIG brazing welding method
JP6776798B2 (en) Multi-layer submerged arc welding method
JPH10216934A (en) Gas shielded metal arc welding method for circumferential joint of steel tube, and wire for gas shielded metal arc welding
JP6777609B2 (en) Multi-electrode gas shield arc welding method
KR102190331B1 (en) Arc welding method of hot-dip Zn-based plated steel sheet with excellent weld appearance and welding strength, and method of manufacturing welded members
JP2857329B2 (en) Gas shielded arc welding method
JP4766958B2 (en) Welding wire for Zn-based plated steel sheet and welding method for Zn-based plated steel sheet
JP2014065066A (en) Flux cored wire for horizontal gas shielded arc welding
JP2004261858A (en) Wire for welding martensitic stainless steel pipe
JP2003103399A (en) Flux-filled wire for welding weather resistant steel
KR20170054824A (en) But joint welding material
KR101760830B1 (en) Flux cored wire for self-shielded electrogas arc welding
CN117916055A (en) Bonding flux for submerged arc welding and weld metal
WO2023037920A1 (en) Bond flux for submerged arc welding, and weld metal