JP2009178737A - Solid wire for carbon dioxide shielded arc welding - Google Patents

Solid wire for carbon dioxide shielded arc welding Download PDF

Info

Publication number
JP2009178737A
JP2009178737A JP2008019482A JP2008019482A JP2009178737A JP 2009178737 A JP2009178737 A JP 2009178737A JP 2008019482 A JP2008019482 A JP 2008019482A JP 2008019482 A JP2008019482 A JP 2008019482A JP 2009178737 A JP2009178737 A JP 2009178737A
Authority
JP
Japan
Prior art keywords
mass
slag
wire
welding
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008019482A
Other languages
Japanese (ja)
Inventor
Reiichi Suzuki
励一 鈴木
Toshihiko Nakano
利彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008019482A priority Critical patent/JP2009178737A/en
Priority to TW097145201A priority patent/TW200932412A/en
Priority to CN200910001711XA priority patent/CN101497154B/en
Priority to KR1020090006840A priority patent/KR101073290B1/en
Publication of JP2009178737A publication Critical patent/JP2009178737A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid wire for carbon dioxide shielded arc welding, the solid wire that enables sufficient penetration to be obtained even in a narrow groove execution and that enables weld metal to be obtained which is superior in mechanical performance such as strength and toughness. <P>SOLUTION: The solid wire contains, by mass%, 0.03-0.10% C, 0.67-1.00% Si, 1.81-2.50% Mn, 0.006-0.018% S, 0.100-0.150% Ti, 0.0015-0.0070% B, and ≤0.10-0.45% Cu having solder content, with parameters P<SB>BS</SB>and P<SB>MT</SB>satisfying P<SB>BS</SB>≤10 and P<SB>MT</SB>≤32, controlling ≤0.020% P, ≤0.04% Nb, ≤0.04% V, ≤0.04% Al, with the balance being Fe and inevitable impurities, wherein P<SB>BS</SB>=[B]×[S]×10<SP>5</SP>and P<SB>MT</SB>=[Mn]×[Ti]×10<SP>2</SP>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は軟鋼又は490乃至520N/mm級高張力鋼を炭酸ガスシールドアーク溶接する際に使用される炭酸ガス溶接用ソリッドワイヤに関し、特に高能率で溶接可能であると共に、機械的性能が良好な溶接金属が得られる炭酸ガスシールドアーク溶接用ソリッドワイヤに関する。 The present invention relates to a solid wire for carbon dioxide welding used in carbon dioxide shielded arc welding of mild steel or 490 to 520 N / mm grade 2 high strength steel, and is particularly capable of high-efficiency welding and good mechanical performance. TECHNICAL FIELD The present invention relates to a solid wire for carbon dioxide shielded arc welding that can obtain a simple weld metal.

近時、建築鉄骨分野では、COをシールドガスとするガスシールドアーク溶接法が、その高能率性の利点から主として使用されている。従前、このガスシールドアーク溶接法は、人手による半自動溶接法が殆どであったが、省人化によるコストダウン及び夜間又は休日の無人運転による更に一層の溶接能率向上を目的として、ロボットによる自動溶接も普及してきている。一方、溶接品質の面では耐震性向上を主眼として溶接継手部の性能向上を図るべく、1997年のJASS6改定及び1999年の建築基準法改定において、溶接時の入熱・パス間温度に上限管理が規定された。この動向を受けて、溶接ワイヤも490N/mm級炭素鋼鋼板に対して最大入熱40kJ/cm、パス間温度350℃まで、520N/mm級炭素鋼鋼板に対して最大入熱30kJ/cm、パス間温度250℃まで許容できるものとして、大入熱・高パス間温度対応ワイヤが開発され、1999年に540N/mm級=YGW18としてJIS化された。以後、今日まで、従前のワイヤよりも大入熱・高パス間温度で優れた機械的性能が得られる540N/mm級ワイヤが急速に普及している。また、この540N/mm級ワイヤは、入熱及びパス間温度を管理しにくい半自動溶接での普及が早かったが、近時、ロボット溶接による全自動溶接にも540N/mm級ワイヤが適用されることが多くなってきている。 Recently, in the field of building steel frames, gas shielded arc welding using CO 2 as a shielding gas is mainly used because of its high efficiency. Previously, this gas shielded arc welding method was mostly a semi-automatic welding method by hand. However, automatic welding by a robot was aimed at reducing costs by saving labor and further improving welding efficiency by unattended operation at night or on holidays. Has also become popular. On the other hand, in terms of welding quality, in order to improve the performance of welded joints with an emphasis on improving earthquake resistance, the upper limit control of heat input and interpass temperature during welding was made in the 1997 JASS 6 revision and the 1999 Building Standards Law revision. Was stipulated. In response to this trend, the welding wire also has a maximum heat input of 40 kJ / cm for a 490 N / mm grade 2 carbon steel plate and a maximum heat input of 30 kJ / for a 520 N / mm grade 2 carbon steel plate up to 350 ° C. between passes. A wire with a high heat input and a high inter-pass temperature was developed as being acceptable up to a temperature of cm and an inter-pass temperature of 250 ° C., and in 1999, JIS was established as 540 N / mm 2 class = YGW18. Since then, to date, 540 N / mm class 2 wires, which can obtain superior mechanical performance at a higher heat input and higher inter-pass temperature than the conventional wires, have been rapidly spread. In addition, this 540 N / mm class 2 wire has been widely used in semi-automatic welding where it is difficult to control heat input and interpass temperature, but recently, 540 N / mm class 2 wire has also been applied to fully automatic welding by robot welding. There has been a lot to be done.

従来の炭酸ガス溶接用大電流・高パス間温度対応ワイヤとしては、特許文献1乃至16に記載のワイヤが公知である。これらのワイヤは、全般的に、Si、Mn、Tiといった脱酸成分を従来ワイヤよりも多く含有し、かつMo、B、Cr、Al、Nb、V、Ni等を必要に応じて添加している。これによって、鋼の焼入れ性を高め、結晶粒微細化による靭性の向上と、更に析出硬化及び固溶硬化の作用とを組み合わせることにより、強度を高めている。   As conventional carbon dioxide welding high current / high pass temperature compatible wires, the wires described in Patent Documents 1 to 16 are known. These wires generally contain more deoxidizing components such as Si, Mn, and Ti than conventional wires, and Mo, B, Cr, Al, Nb, V, Ni, etc. are added as necessary. Yes. As a result, the hardenability of the steel is increased, and the strength is increased by combining the improvement of toughness by crystal grain refinement and the effects of precipitation hardening and solid solution hardening.

しかしながら、これらの従来のワイヤは、全てロボットによる溶接に使用することを考慮して設計されていないのが実情である。従来の大電流・高パス間温度対応ワイヤでは、スラグ発生量が過剰で、かつ剥離性が劣るという欠点があった。スラグは絶縁性のため、堆積したスラグはアーク安定性を阻害し、溶込み不足及びスラグ巻きといった欠陥発生の直接原因となる。更に、多少なりともスラグが自然剥離しなければ、溶接ロボットがスタート位置をずらしながら再アークを試みてもアークスタートミスを続け、溶接ロボットはエラー判定して停止してしまう。溶接ロボットは無人化することで最大の長所を発揮するが、短時間でスラグが堆積し、アークの不安定化を引き起こしてしまっては、人手によるスラグ除去作業が高い頻度で必要となったり、アークスタートミスから復帰するためにアークスタート部のスラグ除去を行う必要が生じるなど、その長所を発揮できない。そこで、この問題を解決すべく、最大入熱40kJ/cm・最高パス間温度350℃の条件で490N/mm級鋼に必要十分な機械的性能を有し、かつスラグ発生量が少なく、剥離性も良好であり、連続積層高さが大きい高能率な溶接ワイヤが望まれていた。 However, the fact is that these conventional wires are not designed in consideration of use for welding by robots. Conventional high current / high pass temperature compatible wires have the disadvantages of excessive slag generation and poor peelability. Since the slag is insulative, the accumulated slag impedes arc stability and directly causes defects such as insufficient penetration and slag winding. Furthermore, if the slag does not peel off to any extent, even if the welding robot tries to re-arc while shifting the start position, an arc start error will continue, and the welding robot will determine an error and stop. Welding robots show the greatest advantage by being unmanned, but if slag accumulates in a short time and causes arc instability, manual slag removal work is frequently required, The advantages such as the need to remove the slag from the arc start portion in order to recover from the arc start mistake cannot be exhibited. Therefore, in order to solve this problem, it has necessary and sufficient mechanical performance for 490 N / mm grade 2 steel under the conditions of maximum heat input 40 kJ / cm and maximum interpass temperature 350 ° C., and the amount of slag generated is small and peeling Therefore, a highly efficient welding wire having a high continuous lamination height is desired.

この要望に対し、スラグ剥離性を改善したワイヤとして、特許文献17乃至19に記載のワイヤが開発されている。また、スラグ剥離性改善と共にスラグ生成量をも低減したワイヤが特許文献20、21に開示されている。   In response to this demand, the wires described in Patent Documents 17 to 19 have been developed as wires with improved slag peelability. Further, Patent Documents 20 and 21 disclose wires in which the amount of slag generation is reduced along with the improvement of slag peelability.

特開平10−230387号公報JP-A-10-230387 特開平11−90678号公報Japanese Patent Laid-Open No. 11-90678 特開2000−317678号公報JP 2000-317678 A 特開2001−287086号公報JP 2001-287086 A 特開2002−321087号公報JP 2002-321087 A 特開2002−346789号公報JP 2002-346789 A 特開2002−79395号公報JP 2002-79395 A 特開2002−103082号公報JP 2002-103082 A 特開2003−119550号公報JP 2003-119550 A 特開2003−136281号公報JP 2003-136281 A 特開2004−195543号公報JP 2004-195543 A 特開2004−202572号公報JP 2004-202572 A 特開2004−237361号公報JP 2004-237361 A 特開2004−98143号公報JP 2004-98143 A 特開平11−239892号公報Japanese Patent Laid-Open No. 11-239892 特開2004−237333号公報JP 2004-237333 A 特開2006−88187号公報JP 2006-88187 A 特開2006−305605号公報JP 2006-305605 A 特開2006−150437号公報JP 2006-150437 A 特開2004−122170号公報JP 2004-122170 A 特開2006−26643号公報JP 2006-26643 A

しかしながら、近時のロボット溶接技術の進化は著しいものがある。このため、開先角度も30°の狭開先化が実現されている。即ち、従来、開先角度は35°が標準であったが、開先面積の縮小によるパス数減と溶接時間短縮、溶接ワイヤの使用量削減、熱歪の低減、パス間温度上昇の低減による強度及び靭性等の溶接金属の機械的性能向上を目的として、30°程度の狭開先化が実現可能となってきている。このように、開先角度が小さくなると、トーチノズルが開先面に干渉しやすくなるため、必然的にチップ先端から開先底面までの距離、所謂ワイヤ突出し長さが長くなることが多く、アーク力低下による溶込み不良が発生しやすくなることが判明した。また、突出し長さが長くなることで、ガスシールド性が劣化して、溶接金属中に大気から窒素が混入し、靭性を低下させる傾向もある。   However, the recent progress in robot welding technology is remarkable. For this reason, a narrow groove with a groove angle of 30 ° is realized. That is, conventionally, the groove angle is 35 ° as standard, but by reducing the number of passes and shortening the welding time by reducing the groove area, reducing the amount of welding wire used, reducing thermal strain, and reducing the temperature rise between passes. For the purpose of improving the mechanical performance of weld metal such as strength and toughness, it is possible to realize a narrow groove of about 30 °. As described above, since the torch nozzle easily interferes with the groove surface when the groove angle becomes small, the distance from the tip end to the groove bottom surface, that is, the so-called wire protrusion length is inevitably increased, and the arc force It has been found that poor penetration due to lowering tends to occur. Further, since the protruding length is increased, the gas shielding property is deteriorated, and nitrogen is mixed into the weld metal from the atmosphere, so that the toughness tends to be lowered.

従来、溶接ワイヤ面から溶込み不良を防止する技術を開示したものはない。また、従来の優れたスラグ剥離性とスラグ量の最少化を実現しつつ、強度及び靱性といった機械的性能が優れた溶接ワイヤは存在しない。そこで、溶け込み不良が防止され、機械的性能も優れていて、ロボットによる多層溶接での狭開先施工にも対応できる最適な溶接ワイヤの開発が要望されている。   Conventionally, there is no disclosure of a technique for preventing poor penetration from the surface of the welding wire. In addition, there is no welding wire having excellent mechanical performance such as strength and toughness while realizing the conventional excellent slag peelability and minimization of the amount of slag. Therefore, there is a demand for the development of an optimum welding wire that prevents penetration failure and has excellent mechanical performance and can also be applied to narrow groove construction by multi-layer welding by a robot.

本発明はかかる問題点に鑑みてなされたものであって、狭開先施工においても十分な溶け込みが得られ、強度及び靭性等の機械的性能が優れた溶接金属が得られる炭酸ガス溶接用ソリッドワイヤを提供することを目的とする。   The present invention has been made in view of such problems, and is capable of achieving sufficient penetration even in narrow groove construction, and a solid for carbon dioxide welding that provides a weld metal having excellent mechanical properties such as strength and toughness. The object is to provide a wire.

本発明に係る炭酸ガス溶接用ソリッドワイヤは、C:0.03乃至0.10質量%、Si:0.67乃至1.00質量%、Mn:1.81乃至2.50質量%、S:0.006乃至0.018質量%、Ti:0.100乃至0.150質量%、B:0.0015乃至0.0070質量%、めっき分含むCu:0.10乃至0.45質量%以下を含有し、下記数式1及び数式2で表されるパラメータPBS及びPMTがPBS≦10、PMT≦32を満足し、P:0.020質量%以下、Nb:0.04質量%以下、V:0.04質量%以下、Al:0.04質量%以下に規制し、残部Fe及び不可避不純物であることを特徴とする。 The solid wire for carbon dioxide welding according to the present invention includes C: 0.03 to 0.10% by mass, Si: 0.67 to 1.00% by mass, Mn: 1.81 to 2.50% by mass, S: 0.006 to 0.018% by mass, Ti: 0.100 to 0.150% by mass, B: 0.0015 to 0.0070% by mass, Cu content including plating: 0.10 to 0.45% by mass or less And the parameters P BS and P MT represented by the following formulas 1 and 2 satisfy P BS ≦ 10 and P MT ≦ 32, P: 0.020 mass% or less, Nb: 0.04 mass% or less V: 0.04% by mass or less, Al: 0.04% by mass or less, and remaining Fe and inevitable impurities.

Figure 2009178737
Figure 2009178737

Figure 2009178737
Figure 2009178737

この炭酸ガス溶接用ソリッドワイヤにおいて、Mo:0.25質量%以下、Cr:0.25質量%以下、及びNi:0.25質量%以下からなる群から選択された少なくとも1種を含有することが好ましい。また、ワイヤ表面にMoSが、ワイヤ10kgあたり、0.01乃至1.00g存在することが好ましい。 The solid wire for carbon dioxide welding contains at least one selected from the group consisting of Mo: 0.25% by mass or less, Cr: 0.25% by mass or less, and Ni: 0.25% by mass or less. Is preferred. Further, it is preferable that MoS 2 is present on the wire surface in an amount of 0.01 to 1.00 g per 10 kg of the wire.

本発明者等は、ワイヤ突出し長さと溶滴の移行形態、そして溶込み深さの関係について研究を行った結果、以下の事象を解明した。ワイヤ送給量一定においては、突出し長さが長くなると、ワイヤ先端からチップ内通電点までの間の電気抵抗が高まり、温度上昇により溶融しやすくなるため、溶接機から供給される溶接電流が低下する一方、溶接電圧は上昇する。溶接電流の減少及び溶接電圧の増大の条件においては、ワイヤ先端が溶融して溶接部へ落下する溶滴は、アーク反力が小さく、かつ移行空間(アーク長)が長いので、大粒の完全グロビュール移行になりやすい。アークの指向性は弱くなり、ワイヤを中心とした同心円状の溶滴落下域の面積は拡大する。また、移行周期も長くなって、母材へ与えられるアーク力は弱くなり、溶込み深さが小さくなる。この現象を避けるためには、完全なグロビュール溶滴移行を防ぐのが最も効果的であり、そのためには溶滴を大きく成長させる因子を抑制することが必要であることを、本発明者等が見出した。この溶滴の大きさに最も影響を及ぼすのがTiであり、ワイヤ中のTi含有量が少ないほど、溶滴成長を抑え、短絡移行となって、アークの集中性が増加し、溶滴落下域の面積が縮小し、溶込み深さが増す。   As a result of studies on the relationship between the wire protrusion length, the droplet transfer form, and the penetration depth, the present inventors have elucidated the following events. When the wire feed amount is constant, the longer the protrusion length, the higher the electrical resistance between the wire tip and the current-carrying point in the chip, and the easier it is to melt due to the temperature rise. On the other hand, the welding voltage rises. Under conditions where the welding current is decreased and the welding voltage is increased, the droplet that melts at the tip of the wire and falls to the weld zone has a small arc reaction force and a long transition space (arc length). Prone to transition. The directivity of the arc becomes weaker, and the area of the concentric droplet drop area centered on the wire increases. In addition, the transition period becomes longer, the arc force applied to the base material becomes weaker, and the penetration depth becomes smaller. In order to avoid this phenomenon, it is most effective to prevent complete globule droplet transfer, and it is necessary for the present inventors to suppress factors that cause the droplet to grow greatly. I found it. Ti has the greatest effect on the size of the droplet. The smaller the Ti content in the wire, the more the droplet growth is suppressed and the short-circuit transition is achieved, and the concentration of the arc is increased. The area of the zone is reduced and the penetration depth is increased.

図1は、横軸にワイヤ突き出し長さ(mm)をとり、縦軸に溶け込み深さ(mm)をとって、Ti含有量と、ワイヤ突き出し長さと、溶け込み深さとの関係を示すグラフ図である。但し、ワイヤ送給量は10m/分である。この図1に示すように、ワイヤ突き出し長さが長くなるほど、溶け込み深さが小さくなるが、ワイヤ突き出し長さが同一である場合は、Ti含有量が少なくなるほど、溶け込み深さが大きくなることが示されている。   FIG. 1 is a graph showing the relationship between the Ti content, the wire protrusion length, and the penetration depth, with the wire protrusion length (mm) on the horizontal axis and the penetration depth (mm) on the vertical axis. is there. However, the wire feed rate is 10 m / min. As shown in FIG. 1, the longer the wire protrusion length, the smaller the penetration depth. However, when the wire protrusion length is the same, the smaller the Ti content, the greater the penetration depth. It is shown.

また、Ti酸化物はスラグ源であり、Ti量を従来よりも少なくすることにより、スラグ堆積で生じる問題点を軽減できる。   Moreover, Ti oxide is a slag source, and the problems caused by slag deposition can be reduced by reducing the amount of Ti as compared with the prior art.

一方、Tiは窒素との親和性が強く、シールド不良時の窒素と結合してブローホールの発生を防止し、金属脆化を防ぐ効果がある。Tiを少なくすることはブローホールの発生及び金属脆化の問題を生じさせることになるため、Tiの減少による溶け込み深さの改善と、ブローホールの発生及び金属脆化の問題とを相殺させるために、Mn及びBの含有量の最適化を行った。   On the other hand, Ti has a strong affinity with nitrogen, and has an effect of preventing the occurrence of blowholes by combining with nitrogen at the time of shielding failure and preventing metal embrittlement. Reducing Ti causes the problem of blowholes and metal embrittlement, so that the improvement of the penetration depth due to the decrease of Ti and the problem of blowholes and metal embrittlement are offset. In addition, the contents of Mn and B were optimized.

以下に、本発明の炭酸ガス溶接用ソリッドワイヤの成分添加理由及び組成限定理由について説明する。   Below, the reason for adding components and the reason for limiting the composition of the solid wire for carbon dioxide welding of the present invention will be described.

「C:0.03乃至0.10質量%」
Cは強度を確保する為に重要な添加元素であるが、0.03質量%未満では大入熱・高パス間温度溶接時に必要強度を確保できない。このため、Cは0.03質量%以上、望ましくは0.05質量%以上とする。一方、Cを過剰に添加すると高温割れが発生しやすくなる。また、Cを過剰に添加すると、アーク雰囲気中においてCO爆発現象によりスパッタ発生量も増加し、アーク安定性が劣化する。更に、C含有量が多いと、溶接金属の強度が過大となり、靭性が逆に低下する。C含有量が0.10質量%を超えると、これらの影響が顕著になるため、上限値を0.10質量%とする。
“C: 0.03 to 0.10% by mass”
C is an important additive element for securing the strength, but if it is less than 0.03% by mass, the required strength cannot be secured at the time of large heat input and high pass temperature welding. For this reason, C is 0.03 mass% or more, desirably 0.05 mass% or more. On the other hand, when C is added excessively, hot cracking tends to occur. If C is added excessively, the amount of spatter generated by the CO explosion phenomenon in the arc atmosphere also increases, and the arc stability deteriorates. Furthermore, when there is much C content, the intensity | strength of a weld metal will become excessive and toughness will fall conversely. If the C content exceeds 0.10% by mass, these effects become significant, so the upper limit is set to 0.10% by mass.

「Si:0.67乃至1.00質量%」
Siは、主として、強度確保と脱酸による気孔欠陥防止のために添加する。また、Siの添加は、スラグ量を増大させるものの、スラグ剥離性は向上する。これらの効果は、Si含有量が0.67質量%以上で有効である。Si含有量が0.67質量%未満では、スラグ剥離性が悪く、アークが不安定化する。Siの更に好ましい下限値は0.75質量%である。一方、Siを1.00質量%を超えて過剰に添加すると、スラグ量が過剰となり、アーク安定性が劣化すると共に、靱性値が低下する。このため、Siの上限値を1.00質量%とする。
“Si: 0.67 to 1.00% by mass”
Si is mainly added to ensure strength and prevent pore defects due to deoxidation. Moreover, although addition of Si increases the amount of slag, slag peelability improves. These effects are effective when the Si content is 0.67% by mass or more. When the Si content is less than 0.67% by mass, the slag peelability is poor and the arc becomes unstable. A more preferable lower limit value of Si is 0.75% by mass. On the other hand, when Si is added excessively exceeding 1.00 mass%, the amount of slag becomes excessive, the arc stability deteriorates, and the toughness value decreases. For this reason, the upper limit of Si is set to 1.00% by mass.

「Mn:1.81乃至2.50質量%」
Mnは溶接金属の脱酸効果があり、また溶接金属の強度を上昇させ、高靱性な溶接金属を得る効果がある。狭開先対応機能を備えたロボットシステムでは最大ワイヤ突出し長さが長く設定され、シールド不良によるブローホール発生及び靱性低下が起き易いので、ロボット用ワイヤとしてMnを比較的多く添加し、これらの欠点を防止することができる。このためには、Mn含有量は少なくとも1.81質量%以上添加することが必要である。一方、Mn含有量が2.50質量%を超えると、スラグ量が増大すると共に、スラグ剥離性が低下する。その結果、アーク安定性も劣化する。なお、後述するように、Ti量との関係によっては、Mnの上限値は更に低く抑制される。
“Mn: 1.81 to 2.50 mass%”
Mn has the effect of deoxidizing the weld metal, and also has the effect of increasing the strength of the weld metal and obtaining a highly tough weld metal. In robot systems equipped with a function to cope with narrow gaps, the maximum wire protrusion length is set long, and blowholes and toughness are liable to deteriorate due to shielding failure. Therefore, a relatively large amount of Mn is added as a robot wire. Can be prevented. For this purpose, it is necessary to add at least 1.81% by mass or more of Mn content. On the other hand, when the Mn content exceeds 2.50% by mass, the amount of slag increases and the slag peelability decreases. As a result, arc stability also deteriorates. As will be described later, depending on the relationship with the amount of Ti, the upper limit value of Mn is further suppressed.

「S:0.006乃至0.018質量%」
Sはその添加により溶融池の表面張力が低下し、凝固時の物理的凹凸を減少させて溶接金属の表面を滑らかにする効果がある。これにより、スラグ剥離性を向上させることができる。Sが0.006質量%未満では、この効果は現れず、剥離性が悪いことに起因してアーク安定性が劣化する。一方、Sを0.018質量%を超えて添加しても、溶接金属の表面形状改善効果は飽和してしまう上に、高温割れが発生しやすくなる。また、スラグの形態が粒状化し、ア−クによる溶融を妨げ、部分的なアーク不安定原因となると共に、靱性も低下する。従って、Sの上限値は0.018質量%である。なお、後述するように、B量との関係によって、Sの上限値は更に低く抑制される。
“S: 0.006 to 0.018 mass%”
The addition of S lowers the surface tension of the molten pool and has the effect of reducing the physical unevenness during solidification and smoothing the surface of the weld metal. Thereby, slag peelability can be improved. If S is less than 0.006% by mass, this effect does not appear, and arc stability deteriorates due to poor peelability. On the other hand, even if S is added in an amount exceeding 0.018% by mass, the effect of improving the surface shape of the weld metal is saturated and hot cracking is likely to occur. Moreover, the form of slag is granulated, preventing melting by arc, causing partial arc instability and reducing toughness. Therefore, the upper limit of S is 0.018% by mass. As will be described later, the upper limit value of S is further suppressed by the relationship with the B amount.

「Ti:0.100乃至0.150質量%」
Tiは高電流城でのアーク安定性を向上させる効果がある。一般的には、Tiを0.20質量%前後添加するワイヤが多い。本発明のワイヤの組成の特徴の一つは、Ti含有量が一般的なものよりも低いことである。Tiが0.100質量%未満では、アーク安定性が劣化し、スパッタ発生量が増加する。よって、Tiは0.100質量%以上添加することが必要である。一方、Ti含有量を高めると、上述した溶滴移行形態の変異により、溶け込み深さが減少し、ワイヤ突出し長さが長い場合に溶込み不良が生じやすくなる。Ti含有量が0.150質量%を超えると、完全グロビュール溶滴移行となり、溶込み不良が生じるため、上限値を0.150質量%とする。なお、後述するように、Mn含有量との関係によっては、Ti含有量の上限値は更に低く抑制される。ロボット溶接の場合は、最適電圧及び溶接速度を常に最適に設定することができるので、Ti含有量が低めであっても、アーク安定性が劣化することはない。
“Ti: 0.100 to 0.150 mass%”
Ti has an effect of improving arc stability in a high current castle. In general, there are many wires to which Ti is added at about 0.20 mass%. One of the characteristics of the composition of the wire of the present invention is that the Ti content is lower than the general one. When Ti is less than 0.100% by mass, the arc stability deteriorates and the amount of spatter generated increases. Therefore, it is necessary to add 0.100% by mass or more of Ti. On the other hand, when the Ti content is increased, the penetration depth is reduced due to the above-described variation of the droplet transfer form, and poor penetration tends to occur when the wire protrusion length is long. If the Ti content exceeds 0.150 mass%, complete globule droplet transfer occurs and poor penetration occurs, so the upper limit is set to 0.150 mass%. As will be described later, depending on the relationship with the Mn content, the upper limit of the Ti content is further suppressed. In the case of robot welding, the optimum voltage and welding speed can always be set optimally, so that the arc stability does not deteriorate even when the Ti content is low.

「B:0.0015乃至0.0070質量%」
Bは少量の添加で溶接金属の結晶粒の微細化による強度と靱性を向上させる効果がある。B含有量が0.0015質量%未満では、溶接金属の強度と靱性の向上効果が現れず、これらの機械的特性が不足する。このため、Bは0.0015質量%を下限値とする。一方、Bを0.0070質量%を超えて過剰に添加すると、高温割れが発生しやすくなる。従って、B含有量は0.0070質量%を上限値とする。なお、S量との関係によって、B含有量の上限値は更に低く抑制される。
“B: 0.0015 to 0.0070 mass%”
B has the effect of improving the strength and toughness by refining the crystal grains of the weld metal with a small amount of addition. When the B content is less than 0.0015% by mass, the effect of improving the strength and toughness of the weld metal does not appear, and these mechanical properties are insufficient. For this reason, B sets 0.0015 mass% as a lower limit. On the other hand, when B is added excessively exceeding 0.0070 mass%, hot cracking tends to occur. Therefore, the B content has an upper limit of 0.0070% by mass. In addition, the upper limit of B content is further suppressed by the relationship with the amount of S.

「Cu:0.10乃至0.45質量%」
Cuは過剰添加で高温割れを発生させやすくなると共に、スラグの性質を変化させて剥離性を劣化させる。その結果、アーク安定性が劣化する。ワイヤ素線にCuを積極的に添加させる必要はなく、通電性、耐錆性、伸線性及び意匠性改善のために、ワイヤ表面に施される銅めっき中のCu分として添加されるものが殆どである。Cuが0.10質量%として換算される量以下のめっき量では、めっき膜の膜厚が薄すぎて通電性が悪く、アーク不安定が生じ、スパッタが増加する。一方、Cu含有量が0.45質量%を超えると、高温割れ及びスラグ剥離性が問題となるので、Cuの上限値は0.45質量%とする。なお、Cuは線材に含まれるものと、銅めっき分とを合計した値とする。
“Cu: 0.10 to 0.45 mass%”
When Cu is added excessively, it becomes easy to generate hot cracks, and the properties of the slag are changed to deteriorate the peelability. As a result, arc stability is degraded. There is no need to positively add Cu to the wire element, and what is added as a Cu component in the copper plating applied to the wire surface in order to improve the electrical conductivity, rust resistance, wire drawing and design. It is almost. When the plating amount is less than or equal to the amount converted to Cu of 0.10% by mass, the thickness of the plating film is too thin, the electrical conductivity is poor, arc instability occurs, and spatter increases. On the other hand, if the Cu content exceeds 0.45 mass%, hot cracking and slag peelability become problems, so the upper limit value of Cu is 0.45 mass%. In addition, Cu is taken as the value which added the thing contained in a wire, and a copper plating part.

「PBS≦10 (PBS=[B]×[S]×10)」
BとSは共に高温割れを引き起こす元素であり、BとSの含有量を夫々単独で規定すること以外に、両元素を相互に関連をもって規制することにより、高温割れを防止する必要がある。即ち、狭開先の溶接施工では高温割れが発生しやすいため、従来以上に割れ防止には留意する必要があり、これらのB及びSの含有量を単独で規制すること以外に、相互に関連をもって規制することが必要である。
“P BS ≦ 10 (P BS = [B] × [S] × 10 5 )”
Both B and S are elements that cause hot cracking. In addition to defining the contents of B and S independently, it is necessary to prevent hot cracking by regulating both elements in relation to each other. In other words, high-temperature cracking is likely to occur in narrow groove welding, so it is necessary to pay more attention to prevention of cracking than before, and these contents are mutually related in addition to regulating the contents of B and S independently. It is necessary to regulate with

図2は横軸にS含有量をとり、縦軸にB含有量をとって、割れ発生等と、これらのS及びB含有量との関係を示すグラフ図である。図2に示すように、本願発明者等による実験研究の結果、PBS>10の範囲では、B及びSが共に本発明における規定範囲でも、両元素とも高い含有量範囲にあるため、割れが生じることを知見した。従って、相関パラメータPBSを[B]×[S]×10と定義した場合、このPBSを10以下とすることが必要である。 FIG. 2 is a graph showing the relationship between the occurrence of cracks and these S and B contents, with the S content on the horizontal axis and the B content on the vertical axis. As shown in FIG. 2, as a result of the experimental study by the inventors of the present application, in the range of P BS > 10, both B and S are in the specified range in the present invention, and both elements are in a high content range, It was found that it occurred. Therefore, when the correlation parameter P BS is defined as [B] × [S] × 10 5, it is necessary to the P BS 10 or less.

「PMT≦32 (PMT=[Mn]×[Ti]×10)」
MnとTiはスラグの主要生成元素であり、MnとTiの含有量を夫々単独で規定すること以外に、両元素を相互に相関をもって規制することによって、過剰なスラグ発生を防止する必要がある。
PMT ≦ 32 ( PMT = [Mn] × [Ti] × 10 2 )”
Mn and Ti are the main generation elements of slag, and in addition to defining the contents of Mn and Ti independently, it is necessary to prevent the occurrence of excessive slag by regulating both elements in correlation with each other. .

図3は横軸にMn含有量をとり、縦軸にTi含有量をとって、スラグ量等と、これらのMn及びTi含有量との関係を示すグラフ図である。図3に示すように、PMT>32の範囲では、Mn及びTiがいずれも本発明の規定範囲内でも、両元素とも含有量が高いため、スラグ生成量が多くなり、スラグ剥離性も悪くなるため、アークの安定性が劣化することを本願発明者等が知見した。また、スラグ量が増大すると、頻繁にスラグ除去を行なう必要があり、運転効率が低下してしまう。従って、相関パラメータPMTを[Mn]×[Ti]×10と定義した場合、このPMTを32以下とすることが必要である。 FIG. 3 is a graph showing the relationship between the slag amount and these Mn and Ti contents with the Mn content on the horizontal axis and the Ti content on the vertical axis. As shown in FIG. 3, in the range of P MT > 32, both Mn and Ti are within the specified range of the present invention, and both elements have a high content, so the amount of slag generated is large and the slag peelability is poor. Therefore, the inventors of the present application have found that the stability of the arc deteriorates. Moreover, when the amount of slag increases, it is necessary to frequently remove slag, and the operation efficiency is lowered. Therefore, when the correlation parameter PMT is defined as [Mn] × [Ti] × 10 2 , it is necessary to set the PMT to 32 or less.

「P:0.020質量%以下」
Pは高温割れを発生させる主要元素の一つであり、Pを積極的に添加する必要性はない。従って、高温割れが問題とならない上限値として、Pの上限値を0.020質量%に設定する。
“P: 0.020 mass% or less”
P is one of the main elements that cause hot cracking, and there is no need to add P actively. Therefore, the upper limit value of P is set to 0.020% by mass as an upper limit value at which hot cracking does not cause a problem.

「Nb:0.04質量%以下、V:0.04質量%以下、Al:0.04質量%以下」
Nb、V、Alは低入熱溶接条件において、溶接金属の靱性を低下させてしまう。このため、これらの元素は、積極的に添加することは回避すべきであり、靱性劣化を無視できる許容範囲の上限として、これらの元素の規制上限値を夫々0.04質量%とする。
“Nb: 0.04 mass% or less, V: 0.04 mass% or less, Al: 0.04 mass% or less”
Nb, V, and Al reduce the toughness of the weld metal under low heat input welding conditions. For this reason, it should be avoided that these elements are positively added, and the upper limit value of these elements is set to 0.04 mass% as the upper limit of the allowable range in which toughness deterioration can be ignored.

「Mo:0.25質量%以下、Cr:0.25質量%以下、及びNi:0.25質量%以下」
Mo、Cr、Niは溶接金属の焼き入れ性を向上させ、強度を上昇させるために、積極的に添加することが好ましい。これらのMo、Cr、Niは、より高い入熱及びパス間温度でも、適度な強度を維持できる。これらの元素の添加は、特に、下限を設ける必要はないが、0.05質量%以上の添加でその効果が顕著となる。一方、これらの元素を0.25質量%を超えて添加すると、溶接金属のミクロ組織がマルテンサイト化し、靱性が低下してしまう。従って、これらの元素は、添加する場合は、夫々0.25質量%以下とする。
“Mo: 0.25 mass% or less, Cr: 0.25 mass% or less, and Ni: 0.25 mass% or less”
Mo, Cr, and Ni are preferably added positively in order to improve the hardenability of the weld metal and increase the strength. These Mo, Cr, and Ni can maintain moderate strength even at higher heat input and interpass temperature. The addition of these elements is not particularly required to have a lower limit, but the effect becomes remarkable when 0.05% by mass or more is added. On the other hand, if these elements are added in an amount exceeding 0.25 mass%, the microstructure of the weld metal becomes martensite and the toughness decreases. Therefore, when these elements are added, the content is 0.25% by mass or less.

「ワイヤ表面のMoS:ワイヤ10kgあたり0.01乃至1.00g」
ワイヤ送給性はスラグ剥離性に大きな影響を及ぼす。ワイヤ送給が安定することにより溶融池形成もまた安定となり、生成されたスラグの厚さが均一となり、熱収縮の歪が均一に作用することにより、全面剥離しやすくなる。ワイヤ表面のMoSはチップ・ワイヤ間の給電点における融着を低下し、ワイヤ迭給性向上につながる。従来のワイヤ送給性向上手段としては、ワイヤ表面の粒界に沿って過剰酸化させる方法があるが、この方法では、O量が過剰になってスラグ量が増大するという欠点がある。これに対し、MoSの塗布は、他の送給性向上手段に比べて、スラグ量を増大させることがないため、本発明のワイヤのワイヤ迭給性向上手段として好適である。この効果はワイヤ10kgあたり0.01g以上のMoSの付着で有効である。一方、ワイヤ10kgあたり1.00gを超えてMoSを付着させると、送給系内への堆積が始まり、逆にMoSが詰まることによる送給不良が発生し、スラグ性状に影響を及ぼして、剥離性を低下させることになる。その結果、アーク安定性が劣化する。従って、ワイヤ表面に、ワイヤ10kgあたり0.01乃至1.00gのMoSを存在させることが好ましい。
“MoS 2 on wire surface: 0.01 to 1.00 g per 10 kg of wire”
Wire feedability has a great influence on slag peelability. When the wire feed is stabilized, the formation of the molten pool is also stabilized, the thickness of the generated slag becomes uniform, and the heat shrinkage strain acts uniformly, so that the entire surface is easily peeled. MoS 2 on the surface of the wire reduces fusion at the feeding point between the chip and the wire, leading to an improvement in wire feedability. As a conventional means for improving the wire feedability, there is a method of excessive oxidation along the grain boundary on the surface of the wire, but this method has a drawback that the amount of O becomes excessive and the amount of slag increases. On the other hand, application of MoS 2 does not increase the amount of slag as compared with other feedability improving means, and is therefore suitable as the wire feedability improving means for the wire of the present invention. This effect is effective with the adhesion of 0.01 g or more of MoS 2 per 10 kg of wire. On the other hand, when MoS 2 is deposited exceeding 1.00 g per 10 kg of wire, deposition in the feeding system starts, and conversely, feeding failure due to clogging of MoS 2 occurs, affecting the slag properties. This will reduce the peelability. As a result, arc stability is degraded. Accordingly, it is preferable that 0.01 to 1.00 g of MoS 2 be present on the wire surface per 10 kg of the wire.

以下、本発明の効果を説明するために、本発明の範囲に入る実施例のワイヤと、本発明の範囲から外れる比較例のワイヤとについて、溶接試験を実施した結果について説明する。図4(a)乃至(c)は、溶接試験体形状と開先形状を示す図である。図4(a)は開先部を拡大して示す断面図、図4(b)は試験体の正面図、図4(c)は側面図である。ダイヤフラム1がその面を垂直にして配置され、丸型鋼管3がその軸を水平にし、丸型鋼管3の端面をダイヤフラム1に対向させて配置されている。この丸型鋼管3の端面が面取りされて、ダイヤフラム1との間にレ型開先が形成されている。また、丸型鋼管3の内面に筒状の裏当て金2が配置されている。そして、この開先部を溶接トーチ4により周溶接した。   Hereinafter, in order to explain the effect of the present invention, the results of performing a welding test on the wire of the example that falls within the scope of the present invention and the wire of the comparative example that falls outside the scope of the present invention will be described. 4 (a) to 4 (c) are diagrams showing a welded specimen shape and a groove shape. 4A is an enlarged sectional view showing the groove portion, FIG. 4B is a front view of the test body, and FIG. 4C is a side view. The diaphragm 1 is disposed with its surface vertical, the round steel pipe 3 is disposed with its axis horizontal, and the end surface of the round steel pipe 3 is opposed to the diaphragm 1. The end face of the round steel pipe 3 is chamfered, and a lave groove is formed between the round steel pipe 3 and the diaphragm 1. A cylindrical backing metal 2 is disposed on the inner surface of the round steel pipe 3. The groove was circumferentially welded with a welding torch 4.

下記表1は溶接条件を示す。また、下記表2はダイヤフラム1,鋼管3及び裏当て金2の鋼板の組み合わせを示し、表3はダイヤフラム1、鋼管3及び裏当金2の組成(質量%)を示す。図4に示す溶接試験体を、表1に示す溶接条件で市販の鉄骨建築用ロボット溶接システムを使用して溶接した。なお、ダイヤフラム1と鋼管3は高炉材であるのに対し、裏当て金2は市販の電炉材であり、裏当て金2は著しく窒素含有量が高く、溶接性が劣るものである。開先角度は一般的には35°、ルートギャップは7mmであるが、この溶接試験では、開先角度が30°、ルートギャップが5mmの狭開先施工としている。そして、溶接終了後のスラグの剥離性をデジタル画像処理により算出し、スラグ量を計測し、溶接金属の強度と靱性の指標として引張試験とシャルピー衝撃試験を実施した。また、溶接中のアークの安定性とスパッタ発生量も記録した。更に、溶込み不足と高温割れの発生の有無を超音波探傷試験にて調べた。   Table 1 below shows the welding conditions. Table 2 below shows combinations of the diaphragm 1, the steel pipe 3, and the backing metal 2, and Table 3 shows the composition (mass%) of the diaphragm 1, the steel pipe 3, and the backing metal 2. The weld specimen shown in FIG. 4 was welded using a commercially available steel building construction robot welding system under the welding conditions shown in Table 1. The diaphragm 1 and the steel pipe 3 are blast furnace materials, whereas the backing metal 2 is a commercially available electric furnace material, and the backing metal 2 has a remarkably high nitrogen content and poor weldability. The groove angle is generally 35 ° and the root gap is 7 mm. In this welding test, narrow groove construction with a groove angle of 30 ° and a root gap of 5 mm is adopted. Then, the slag peelability after completion of welding was calculated by digital image processing, the amount of slag was measured, and a tensile test and a Charpy impact test were performed as indicators of the strength and toughness of the weld metal. The stability of the arc during welding and the amount of spatter generated were also recorded. Furthermore, the presence or absence of insufficient penetration and the occurrence of hot cracking was examined by an ultrasonic flaw detection test.

下記表4は、実施例及び比較例のワイヤ組成(質量%)を示す。また、下記表5は、溶接試験の試験結果を示す。なお、表4の組成で、「<0.***」としているのは、組成の分析結果が一般的な分析精度の下限値未満の値であることを示し、工業的には含有していないものである。   Table 4 below shows the wire compositions (mass%) of Examples and Comparative Examples. Table 5 below shows the test results of the welding test. In the composition of Table 4, “<0. ***” indicates that the analysis result of the composition is less than the lower limit value of general analysis accuracy, which is industrially contained. There is nothing.

表5に示す各特性の評価方法については以下のとおりである。スラグの剥離性評価方法については、剥離性とスラグ量の評価は鋼管の板厚が薄い条件1(表2参照)でのみ計測した。なお、条件1でスラグ剥離性が良好であった溶接ワイヤは条件2でも同じく良好であることを確認している。溶接開始点が最終パスの溶接に入る際に、ワイヤから90°戻った地点を中心として前後100mm、合計200mmを写真撮影した(図4(b)及び(c)参照)。次に、そのビード外観写真を、(a)スラグが自然剥離した部分と(b)スラグが付着したままの部分とに2値化して、その分布を求めた。画像解析ソフトによりそれぞれのピクセルの合計を計算し、(a)/((a)+(b))×100でスラグ剥離率(%)を求めた。スラグ剥離率が15%以上のものを、スラグ剥離性良好と判定した。   The evaluation method of each characteristic shown in Table 5 is as follows. About the slag peelability evaluation method, the peelability and the slag amount were measured only under condition 1 (see Table 2) where the steel pipe was thin. In addition, it has confirmed that the welding wire whose slag peelability was favorable on condition 1 is also favorable on condition 2. When the welding start point entered the welding of the final pass, 100 mm front and back, a total of 200 mm, were photographed centered on the point returned 90 ° from the wire (see FIGS. 4B and 4C). Next, the bead appearance photograph was binarized into (a) a part where the slag naturally peeled and (b) a part where the slag was adhered, and the distribution was obtained. The total of each pixel was calculated by image analysis software, and the slag peeling rate (%) was obtained by (a) / ((a) + (b)) × 100. Those having a slag peel rate of 15% or more were judged to have good slag peelability.

次に、スラグ量については、ビード外観写真撮影後に自然剥離したものも含めて、全てのスラグを回収し、重量測定した。このスラグ量が12g以下のものを、スラグ量が良好であるとした。   Next, with regard to the amount of slag, all slag was collected and weighed, including those that spontaneously peeled off after bead appearance photography. A slag amount of 12 g or less was determined to be good.

溶接金属の引張試験とシャルピー衝撃試験は、条件2(表2参照)において、JIS Z3111のA2号(平行部直径6mm)及び標準試験片(10mm角)を、夫々図5及び図6に示す位置より採取し、試験に供した。なお、引張試験は室温の20℃、シャルピー衝撃試験は0℃、3本平均を評価値とした。引張強さが490N/mm以上、シャルピー衝撃試験が平均70J以上を合格とした。 The weld metal tensile test and Charpy impact test were conducted under conditions 2 (see Table 2) with JIS Z3111 A2 (parallel part diameter 6 mm) and standard test piece (10 mm square) shown in FIGS. 5 and 6 respectively. More samples were collected and used for testing. Note that the tensile test was performed at 20 ° C. at room temperature, and the Charpy impact test was performed at 0 ° C. and the average of three samples was evaluated. The tensile strength was 490 N / mm 2 or more, and the average Charpy impact test was 70 J or more.

アーク安定性は溶接中の官能評価によるもので、特にスラグがアークの発生を邪魔し、乱すことがなかった場合を良好と判断した。なお、ワイヤ送給不良に起因するアークの乱れが生じた場合も不合格とした。   The arc stability was determined by sensory evaluation during welding. In particular, it was judged that the slag did not disturb the generation of the arc and was not disturbed. In addition, the case where the disturbance of the arc resulting from the wire feeding failure occurred was also rejected.

スパッタ発生量は条件1(表2参照)における溶接終了後にシールドノズルに付着したスパッタを回収し、重量測定したものである。スパッタ発生量が6g以下を良好と判定した。   The amount of spatter generated is the weight measured by collecting spatter adhering to the shield nozzle after welding in Condition 1 (see Table 2). A spatter generation amount of 6 g or less was determined to be good.

Figure 2009178737
Figure 2009178737

Figure 2009178737
Figure 2009178737

Figure 2009178737
Figure 2009178737

Figure 2009178737
Figure 2009178737

Figure 2009178737
Figure 2009178737

Figure 2009178737
Figure 2009178737

Figure 2009178737
Figure 2009178737

Figure 2009178737
Figure 2009178737

Figure 2009178737
Figure 2009178737

表5に示すように、本発明の実施例1乃至18は、各成分の組成範囲が本発明の請求項1乃至3にて規定した範囲内にあるので、スラグの剥離性、スラグ量、溶接金属の強度、靱性、アークの安定性、低スパッタ性、溶込み性能、及び耐割れ性が全て良好であり、優れた溶接作業性と溶接金属の優れた機械的性質が得られている。   As shown in Table 5, in Examples 1 to 18 of the present invention, the composition range of each component is within the range defined in claims 1 to 3 of the present invention, so slag peelability, slag amount, welding Metal strength, toughness, arc stability, low spattering, penetration performance, and crack resistance are all good, and excellent welding workability and excellent mechanical properties of the weld metal are obtained.

一方、比較例19乃至50は本発明の範囲から外れるものであるが、比較例19はCが過少であり、溶接金属の強度が不足した。比較例20はCが過剩であり、溶接金属に高温割れが発生し、強度が過剰で低靱性化した。また、スパッタも多く、アーク安定性が悪かったため、連続溶接性も劣化した。比較例21はSiが過少であり、溶接金属の強度が不足し、スラグ剥離性も悪く、スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。また、脱酸不足でブローホールも発生した。比較例22はSiが過剰であり、溶接金属の靱性が不足し、スラグ量が過剰で邪魔となり、アークが不安定となって連続溶接性が劣化した。比較例23はMnが過少であり、靱性が低く、脱酸不足でブローホールも発生した。比較例24はMnが過剰であり、スラグ量が多く、剥離性も悪かった。また、スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。比較例25はTiが過少であり、スパッタ発生量が多く、アーク安定性が劣り、シールドノズル詰まりが生じやすいため、連続溶接性が劣化した。比較例26、27はTiが過剰であり、溶滴移行が完全グロビュール移行となったため、溶込み不良が多発した。比較例28はMn、Tiの各成分は夫々規定範囲を満足しているが、パラメータPMTが大きすぎたため、スラグ量が多く、剥離性も悪かった。また、スラグが邪魔で、アーク不安定となり、連続溶接性が劣化した。比較例29はSが過少であり、スラグの剥離性が悪く、スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。比較例30はSが過剰であり、靭性が低いと共に高温割れも発生した。スラグは剥離性は良いものの、付着しているものは粒状化し、厚さが増してアークの安定性を損なっていた。その結果、連続溶接性が劣化した。 On the other hand, Comparative Examples 19 to 50 are out of the scope of the present invention, but Comparative Example 19 has an insufficient amount of C and lacks the strength of the weld metal. In Comparative Example 20, C was excessive, hot cracks were generated in the weld metal, the strength was excessive, and the toughness was reduced. Moreover, since there was much spatter and arc stability was bad, continuous weldability also deteriorated. In Comparative Example 21, the amount of Si was too small, the strength of the weld metal was insufficient, the slag peelability was poor, the slag was obstructed and the arc became unstable, and the continuous weldability deteriorated. In addition, blow holes were generated due to insufficient deoxidation. In Comparative Example 22, Si was excessive, the toughness of the weld metal was insufficient, the amount of slag was excessive and obstructed, the arc became unstable, and the continuous weldability deteriorated. In Comparative Example 23, Mn was insufficient, toughness was low, and blow holes were generated due to insufficient deoxidation. In Comparative Example 24, Mn was excessive, the amount of slag was large, and the peelability was poor. Moreover, the arc became unstable due to the slag and the continuous weldability deteriorated. In Comparative Example 25, Ti was excessive, the amount of spatter was large, the arc stability was poor, and the shield nozzle was easily clogged, so that the continuous weldability deteriorated. In Comparative Examples 26 and 27, Ti was excessive, and the droplet transfer was a complete globule transfer, so that poor penetration occurred frequently. In Comparative Example 28, each component of Mn and Ti satisfied the specified range, but because the parameter PMT was too large, the amount of slag was large and the peelability was poor. In addition, the slag was an obstacle, the arc became unstable, and the continuous weldability deteriorated. In Comparative Example 29, S was too small, the slag peelability was poor, the slag became an obstacle and the arc became unstable, and the continuous weldability deteriorated. In Comparative Example 30, S was excessive, the toughness was low, and hot cracking occurred. Although the slag has good releasability, the adhered slag is granulated, and the thickness is increased to impair the stability of the arc. As a result, continuous weldability deteriorated.

比較例31はS及びBの各成分は本発明の規定範囲を満足しているが、パラメータPBSが大きすぎたため、耐割れ性が損なわれ、割れが発生した。比較例32はPが過剰であり、靭性が低いと共に高温割れも発生した。比較例33はCuが過少であり、銅めっき層の厚さが薄いため、通電不良となり、微小融着が多発してアークが不安定化し、スパッタも増加した。比較例34はCuが過剰であり、高温割れが発生すると共にスラグ剥離性も悪く、スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。比較例35はBが不足しており、強度と靭性が不足した。比較例36はBが過剰であり、高温割れが発生した。 In Comparative Example 31, each component of S and B satisfied the specified range of the present invention, but because the parameter PBS was too large, crack resistance was impaired and cracking occurred. In Comparative Example 32, P was excessive, the toughness was low, and hot cracking occurred. In Comparative Example 33, the amount of Cu was too small and the copper plating layer was thin, resulting in poor energization, frequent frequent fusion, destabilization of the arc, and increased spatter. In Comparative Example 34, Cu was excessive, high-temperature cracking occurred and slag peelability was poor, the slag became an obstacle and the arc became unstable, and the continuous weldability deteriorated. In Comparative Example 35, B was insufficient and the strength and toughness were insufficient. In Comparative Example 36, B was excessive and hot cracking occurred.

比較例37はMn、Ti、B、及びSの各元素は、夫々単独で本発明の規定範囲を満足しているが、パラメータPMT、PBSが本発明の規定範囲を超えている。このため、スラグ量が多く、スラグ剥離性も悪かった。また、スラグが邪魔でアーク不安定となり、連続溶接性が劣化し、更に高温割れも発生した。比較例38乃至40は夫々Nb、V、Alが過剰であり、靱性が低下した。比較例41乃至43は夫々Mo、Cr、Niが過剰であり、強度が向上したものの、この強度が過剰であり、逆に靭性が低下した。比較例44はMoS付着量が過剰であり、コンジットライナー等の送給系にMoSが堆積して詰まり、ワイヤ送給が非常に不安定となった。その結果、アーク安定性が損なわれ、スラグ分布が不均一化して悪影響を及ぼし、スラグ剥離性が低下した。結果、スラグが邪魔で、連続溶接性が劣化した。 In Comparative Example 37, each element of Mn, Ti, B, and S independently satisfies the specified range of the present invention, but the parameters P MT and P BS exceed the specified range of the present invention. For this reason, there was much slag amount and slag peelability was also bad. Moreover, the arc became unstable due to the slag, the continuous weldability deteriorated, and hot cracking also occurred. In Comparative Examples 38 to 40, Nb, V, and Al were excessive and the toughness was lowered. In Comparative Examples 41 to 43, Mo, Cr, and Ni were excessive and the strength was improved, but this strength was excessive and the toughness was decreased. In Comparative Example 44, the adhesion amount of MoS 2 was excessive, and MoS 2 was deposited and clogged in the feeding system such as a conduit liner, and the wire feeding became very unstable. As a result, the arc stability was impaired, the slag distribution became non-uniform and adversely affected, and the slag peelability was reduced. As a result, the slag was in the way and the continuous weldability deteriorated.

比較例45はTiが過剰であり、Sが過少であり、Bが無添加である。このため、Ti過剰により、溶液移行が完全グロビュールとなったため、溶込み不良が多発した。更に、Sが過少なことから、スラグ剥離性も悪かった。また、スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。更に、B無添加のため、強度及び靱性が不足した。比較例46はTiが過剰であり、S及びMnが過少である。Ti過剰により溶滴移行が完全グロビュール移行となったため、溶込み不良が多発した。更に、Sが過少なことから、剥離性も悪かった。スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。Mnが過少のため、強度及び靭性が不足すると共に、脱酸不足でブローホールも発生した。比較例47はCが過剰であり、Mnが不足し、Ti及びBが無添加である。このため、Mn不足とB無添加により、強度及び靱性が不足し、脱酸不足でブローホールも発生した。C過剰により高温割れが発生し、更にTi無添加も相乗してスパッタが極めて多く、アーク安定性が悪かった。   In Comparative Example 45, Ti is excessive, S is excessive, and B is not added. For this reason, since migration of the solution became complete globule due to excessive Ti, poor penetration occurred frequently. Furthermore, since S was too small, slag peelability was also bad. Moreover, the arc became unstable due to the slag and the continuous weldability deteriorated. Furthermore, since B was not added, strength and toughness were insufficient. In Comparative Example 46, Ti is excessive and S and Mn are excessive. Since the droplet transfer became complete globule transfer due to excessive Ti, poor penetration occurred frequently. Furthermore, since S was too small, the peelability was also poor. The arc became unstable due to the slag and the continuous weldability deteriorated. Since Mn was too small, strength and toughness were insufficient, and blow holes were also generated due to insufficient deoxidation. In Comparative Example 47, C is excessive, Mn is insufficient, and Ti and B are not added. For this reason, the strength and toughness were insufficient due to the lack of Mn and the addition of B, and blow holes were also generated due to insufficient deoxidation. Hot cracking occurred due to the excess of C, and furthermore, spatter was extremely large in synergy with addition of Ti, and the arc stability was poor.

比較例48はTi、PMT、Moが過剰であり、Si及びSが不足する。このため、Ti過剰により溶滴移行が完全グロビュール移行となったため、溶込み不良が多発した。更に、Si及びSが過少なことから、スラグ剥離性も悪かった。スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。また、Mo過剰により靱性が不足した。更に、Si不足による脱酸不足で、ブロ−ホールも発生した。比較例49はSiとSが過剰であり、Tiが不足し、Bが無添加である。B無添加により靭性が低下し、強度も低かった。Si及びSが過剰のため、スラグ量が多く、かつ粒状化してアーク安定性を損なった。その結果、連続溶接性が劣化した。また、Ti不足によりスパッタが多発した。S過剰のため、高温割れも発生した。比較例50はSiが不足し、Bが過剰であり、PBSが大きすぎる。Si不足により溶接金属の強度が不足し、スラグ剥離性も悪く、スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。Si不足により脱酸不足でブローホールも発生した。また、PBSが大きすぎるため、高温割れも発生した。 In Comparative Example 48, Ti, P MT , and Mo are excessive, and Si and S are insufficient. For this reason, since the droplet transfer became complete globule transfer due to excessive Ti, poor penetration occurred frequently. Furthermore, since there was too little Si and S, the slag peelability was also bad. The arc became unstable due to the slag and the continuous weldability deteriorated. Moreover, the toughness was insufficient due to excess Mo. Further, blowholes were generated due to insufficient deoxidation due to insufficient Si. In Comparative Example 49, Si and S are excessive, Ti is insufficient, and B is not added. The addition of B decreased the toughness and the strength. Since Si and S were excessive, the amount of slag was large and granulated to impair arc stability. As a result, continuous weldability deteriorated. Moreover, spatter frequently occurred due to lack of Ti. Due to the excess of S, hot cracking also occurred. In Comparative Example 50, Si is insufficient, B is excessive, and PBS is too large. Due to the lack of Si, the strength of the weld metal was insufficient, the slag removability was poor, the slag was obstructed and the arc became unstable, and the continuous weldability deteriorated. Blow holes also occurred due to insufficient deoxidation due to insufficient Si. Moreover, since PBS was too large, hot cracking also occurred.

ワイヤ成分におけるTi量とワイヤ突出し長さが溶込み深さに及ぼす影響を示す図である。It is a figure which shows the influence which Ti amount and wire protrusion length in a wire component have on the penetration depth. 本請求におけるBとSの範囲の示す図である。It is a figure which shows the range of B and S in this claim. 本請求におけるMnとTiの範囲の示す図である。It is a figure which shows the range of Mn and Ti in this claim. 溶接試験体形状と開先形状を示す図である。It is a figure which shows a welding test body shape and a groove shape. 溶接金属引張試験片の採取位置である。This is the sampling position of the weld metal tensile test piece. 溶接金属シャルピー衝撃試験片の採取位置である。This is the sampling position of the weld metal Charpy impact test piece.

符号の説明Explanation of symbols

1 ダイヤフラム
2 裏当て金
3 丸型鋼管
4 トーチ
1 Diaphragm 2 Backing Metal 3 Round Steel Pipe 4 Torch

Claims (3)

C:0.03乃至0.10質量%、Si:0.67乃至1.00質量%、Mn:1.81乃至2.50質量%、S:0.006乃至0.018質量%、Ti:0.100乃至0.150質量%、B:0.0015乃至0.0070質量%、めっき分含むCu:0.10乃至0.45質量%以下を含有し、下記数式で表されるパラメータPBS及びPMTがPBS≦10、PMT≦32を満足し、P:0.020質量%以下、Nb:0.04質量%以下、V:0.04質量%以下、Al:0.04質量%以下に規制し、残部Fe及び不可避不純物であることを特徴とする炭酸ガス溶接用ソリッドワイヤ。
BS=[B]×[S]×10
MT=[Mn]×[Ti]×10
C: 0.03 to 0.10% by mass, Si: 0.67 to 1.00% by mass, Mn: 1.81 to 2.50% by mass, S: 0.006 to 0.018% by mass, Ti: 0.100 to 0.150 mass%, B: 0.0015 to 0.0070 wt%, including plating min Cu: 0.10 to contain 0.45 wt% or less, the parameter P BS represented by the following formula And P MT satisfies P BS ≦ 10 and P MT ≦ 32, P: 0.020 mass% or less, Nb: 0.04 mass% or less, V: 0.04 mass% or less, Al: 0.04 mass solid wire carbon dioxide gas welding, wherein the% restricted to the following, the balance Fe and unavoidable impurities.
P BS = [B] × [S] × 10 5
P MT = [Mn] × [Ti] × 10 2
Mo:0.25質量%以下、Cr:0.25質量%以下、及びNi:0.25質量%以下からなる群から選択された少なくとも1種を含有することを特徴とする請求項1に記載の炭酸ガス溶接用ソリッドワイヤ。 It contains at least 1 sort (s) selected from the group which consists of Mo: 0.25 mass% or less, Cr: 0.25 mass% or less, and Ni: 0.25 mass% or less. Solid wire for carbon dioxide welding. ワイヤ表面にMoSが、ワイヤ10kgあたり、0.01乃至1.00g存在することを特徴とする請求項1又は2に記載の炭酸ガス溶接用ソリッドワイヤ。 The solid wire for carbon dioxide gas welding according to claim 1 or 2, wherein 0.01 to 1.00 g of MoS 2 is present on the wire surface per 10 kg of the wire.
JP2008019482A 2008-01-30 2008-01-30 Solid wire for carbon dioxide shielded arc welding Pending JP2009178737A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008019482A JP2009178737A (en) 2008-01-30 2008-01-30 Solid wire for carbon dioxide shielded arc welding
TW097145201A TW200932412A (en) 2008-01-30 2008-11-21 Solid welding wire for carbon dioxide gas welding
CN200910001711XA CN101497154B (en) 2008-01-30 2009-01-06 Solid wire for carbon-dioxide shield welding
KR1020090006840A KR101073290B1 (en) 2008-01-30 2009-01-29 Solid wire for carbonic acid gas welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008019482A JP2009178737A (en) 2008-01-30 2008-01-30 Solid wire for carbon dioxide shielded arc welding

Publications (1)

Publication Number Publication Date
JP2009178737A true JP2009178737A (en) 2009-08-13

Family

ID=40944543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008019482A Pending JP2009178737A (en) 2008-01-30 2008-01-30 Solid wire for carbon dioxide shielded arc welding

Country Status (4)

Country Link
JP (1) JP2009178737A (en)
KR (1) KR101073290B1 (en)
CN (1) CN101497154B (en)
TW (1) TW200932412A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199106A (en) * 2014-04-10 2015-11-12 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide gas shielded arc welding
JP2017131950A (en) * 2016-01-28 2017-08-03 日鐵住金溶接工業株式会社 Flux-cored wire for gas shield arc welding
JP2018134648A (en) * 2017-02-20 2018-08-30 新日鐵住金株式会社 Solid wire for gas shield arc-welding for corrosion resistant steel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905392B (en) * 2010-08-26 2012-04-25 宜昌猴王焊丝有限公司 High-toughness low-alloy solid welding wire
CN103464871B (en) * 2013-09-06 2016-03-30 海宁瑞奥金属科技有限公司 A kind of high tenacity CO 2gas protecting welding wire and application thereof
CN106181114A (en) * 2015-04-29 2016-12-07 海宁瑞奥金属科技有限公司 The low spatter gas shield welding wire that arc stability is excellent
CN106216877B (en) * 2016-07-26 2018-08-31 江苏省沙钢钢铁研究院有限公司 A kind of high durable gas protecting welding wire of welding property excellent
CN112589333A (en) * 2020-11-24 2021-04-02 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Dissimilar steel welded joint

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4628027B2 (en) * 2004-07-12 2011-02-09 株式会社神戸製鋼所 Solid wire for gas shielded arc welding
KR100726043B1 (en) * 2004-09-22 2007-06-08 가부시키가이샤 고베 세이코쇼 Solid wire for gas-shielded arc welding
JP4673048B2 (en) 2004-12-01 2011-04-20 日鐵住金溶接工業株式会社 Gas shielded arc welding wire
JP5021953B2 (en) * 2006-04-28 2012-09-12 株式会社神戸製鋼所 Gas shielded arc welding solid wire for weathering steel and gas shielded arc welding method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199106A (en) * 2014-04-10 2015-11-12 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide gas shielded arc welding
JP2017131950A (en) * 2016-01-28 2017-08-03 日鐵住金溶接工業株式会社 Flux-cored wire for gas shield arc welding
JP2018134648A (en) * 2017-02-20 2018-08-30 新日鐵住金株式会社 Solid wire for gas shield arc-welding for corrosion resistant steel

Also Published As

Publication number Publication date
TWI357369B (en) 2012-02-01
CN101497154B (en) 2013-03-27
CN101497154A (en) 2009-08-05
TW200932412A (en) 2009-08-01
KR20090083869A (en) 2009-08-04
KR101073290B1 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP5137468B2 (en) Solid wire for carbon dioxide shielded arc welding
KR101764519B1 (en) Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint
JP2009178737A (en) Solid wire for carbon dioxide shielded arc welding
KR20060050038A (en) Solid wire for gas shielded arc welding
KR100920549B1 (en) Flux-cored wire for gas shielded arc welding
JP2006289395A (en) Solid wire for gas shielded arc welding
JP5137426B2 (en) Solid wire for carbon dioxide shielded arc welding
JP2011245519A (en) Weld metal excellent in hot crack resistance
CN112621016B (en) Welding material, weld metal, and electroslag welding method
JP2005246479A (en) Multilayer carbon dioxide gas shielded arc welding method for steel plate
JP4768310B2 (en) Solid wire for gas shielded arc welding
JP2005230906A (en) Gas shielded arc welding method
JP4549143B2 (en) Solid wire for gas shielded arc welding
JP3686545B2 (en) A groove filler for simple single-sided submerged arc welding and a welding method using the same.
JP7129831B2 (en) Welding wire for ferritic stainless steel, fillet welding method, and manufacturing method for automotive exhaust parts
KR100726043B1 (en) Solid wire for gas-shielded arc welding
JP2005329460A (en) Electrogas arc welding method excellent in brittle fracture initiation resistance characteristics of weld zone
JP2022102850A (en) SOLID WIRE FOR GAS SHIELD ARC WELDING USED FOR WELD OF LOW Si STEEL, JOINTING METHOD OF LOW Si STEEL, AND REPAIR METHOD OF LOW Si STEEL
JP5480705B2 (en) Copper plated solid wire for carbon dioxide shielded arc welding
JP2007313558A (en) Solid wire for gas-shielded arc welding
JP3716980B2 (en) Ferritic stainless steel welded structure
JP6331746B2 (en) Ferritic stainless steel welding wire
JP3642178B2 (en) TIG welding wire for steel welding
JP4673048B2 (en) Gas shielded arc welding wire
JP2006198623A (en) Solid wire for gas shield arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201