JP5021953B2 - Gas shielded arc welding solid wire for weathering steel and gas shielded arc welding method using the same - Google Patents

Gas shielded arc welding solid wire for weathering steel and gas shielded arc welding method using the same Download PDF

Info

Publication number
JP5021953B2
JP5021953B2 JP2006124713A JP2006124713A JP5021953B2 JP 5021953 B2 JP5021953 B2 JP 5021953B2 JP 2006124713 A JP2006124713 A JP 2006124713A JP 2006124713 A JP2006124713 A JP 2006124713A JP 5021953 B2 JP5021953 B2 JP 5021953B2
Authority
JP
Japan
Prior art keywords
mass
less
steel
content
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006124713A
Other languages
Japanese (ja)
Other versions
JP2007296541A (en
Inventor
励一 鈴木
利彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006124713A priority Critical patent/JP5021953B2/en
Priority to CNA2007100916501A priority patent/CN101062534A/en
Priority to KR1020070040951A priority patent/KR100876496B1/en
Publication of JP2007296541A publication Critical patent/JP2007296541A/en
Application granted granted Critical
Publication of JP5021953B2 publication Critical patent/JP5021953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0272Rods, electrodes, wires with more than one layer of coating or sheathing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/007Ferrous alloys, e.g. steel alloys containing silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)

Description

本発明は、耐候性鋼用ガスシールドアーク溶接ソリッドワイヤおよびガスシールドアーク溶接方法に係り、特に、電車などの車輌用に用いられ、耐候性鋼をガスシールドアーク溶接する耐候性鋼用ガスシールドアーク溶接ソリッドワイヤおよびこれを用いたガスシールドアーク溶接方法に関する。   The present invention relates to a gas shielded arc welding solid wire and a gas shielded arc welding method for weathering steel, and more particularly to a gas shielding arc for weathering steel that is used for vehicles such as trains and gas shielding arc welding of weathering steel. The present invention relates to a welded solid wire and a gas shielded arc welding method using the same.

従来より、耐候性鋼としては、JIS G3114が規定されている。このJIS G3114は、暴露状態であっても錆が安定で緻密な状態を形成し保護膜となることで腐食進行を阻止する性質を有している。また、耐候性鋼は、その化学成分として、CuとCr、さらには、Cu、Cr、Niを適量添加していることを特長としている。この鋼材に対し適用する溶接ソリッドワイヤとしては、JIS Z3315に規定された「耐候性鋼用炭酸ガスアーク溶接ソリッドワイヤ」がある。これらの耐候性鋼や耐候性鋼用溶接ソリッドワイヤは、設計耐久年度が長く、メンテナンスの軽減効果が大きい橋梁などに使われるケースが多い。   Conventionally, JIS G3114 has been defined as a weather resistant steel. This JIS G3114 has the property of preventing the progress of corrosion by forming a stable and dense state of rust even in an exposed state and forming a protective film. Further, the weather-resistant steel is characterized by adding appropriate amounts of Cu and Cr as well as Cu, Cr and Ni as chemical components. As a welding solid wire applied to this steel material, there is “a carbon dioxide arc welding solid wire for weathering steel” defined in JIS Z3315. These weather-resistant steels and welded solid wires for weather-resistant steels are often used for bridges, etc., which have a long design durability year and a large reduction effect on maintenance.

近年、このような耐候性鋼の利点をビル建築用として適用すべく、耐火鋼に耐候性機能を付与したワイヤも開発されている(例えば、特許文献1、2)。また、橋梁の高能率施工を目指し、大入熱・高パス間温度でも高強度、高靭性が得られる炭酸ガスアーク溶接用の耐候性鋼ソリッドワイヤも開発されている(例えば、特許文献3)。さらに、海岸付近に施設される橋梁の塩害腐食防止を目的に、Crの含有量を極力低減させるとともに、Niを多く添加したワイヤも開発されている(例えば、特許文献4、5)。
また、電車などの車輌の台車用として、鋼材としては、旧国鉄規格としてJRS 51304−2耐候性鋼があり、このJRS 51304−2耐候性鋼の溶接材料としては、一般的なJIS Z3315規格材が使われている。
特開平4−294891号公報(段落0013〜0026) 特開平5−200582号公報(段落0013〜0024) 特開2000−71091号公報(段落0015〜0036) 特開2003−311471号公報(段落0005〜0015) 特開2000−141081号公報(段落0008〜0030)
In recent years, in order to apply the advantages of such weather resistant steel for building construction, a wire having a weather resistant function added to fire resistant steel has also been developed (for example, Patent Documents 1 and 2). Also, aiming at high-efficiency construction of bridges, a weathering steel solid wire for carbon dioxide arc welding has been developed that can obtain high strength and high toughness even at high heat input and high-pass temperature (for example, Patent Document 3). Furthermore, for the purpose of preventing salt damage and corrosion of bridges installed near the coast, a wire containing a large amount of Ni while reducing the Cr content as much as possible has been developed (for example, Patent Documents 4 and 5).
In addition, as a steel material for a vehicle such as a train, there is JRS 51204-2 weathering steel as an old national railway standard, and as a welding material of this JRS 51204-2 weathering steel, a general JIS Z3315 standard material is used. Is used.
JP-A-4-294891 (paragraphs 0013 to 0026) Japanese Patent Laid-Open No. 5-200582 (paragraphs 0013 to 0024) JP 2000-71091 A (paragraphs 0015 to 0036) JP2003-31471A (paragraphs 0005 to 0015) JP 2000-148101 A (paragraphs 0008 to 0030)

しかしながら、従来より使用されている耐候性鋼に用いられる溶接材料のワイヤでは、以下に示す問題があった。
耐候性鋼が多く用いられる分野としては、橋梁や建築分野の他に、電車などの車輌の台車があげられるが、特許文献1〜5に記載の溶接材料のワイヤは、橋梁や建築分野向けに開発されたものであり、また、炭酸ガス溶接法を前提としたものであるため、スパッタが発生しやすい。そのため、これらのワイヤを用いて電車などの車輌の台車を溶接する場合には、(1)溶接部の外観が人目に触れるためスパッタ発生が非常に嫌われること、(2)C含有量が0.20質量%以上と高い鋳鉄・鋳鋼との異材継手が多く、高強度な溶接材料の使用や、溶込みが深く母材希釈率の高い炭酸ガスアーク溶接では割れの問題が発生しやすいこと、(3)異材継手において急激な成分変化を生じると、選択的に腐食が進むため、溶接金属にもある程度耐候性が必要とされること、(4)常に疲労状態に曝されることから母材とのなじみ性が良く、高靭性が必要であること、(5)同じく疲労破壊を防ぐために、必要に応じて残留応力を除去するべく溶接後応力除去焼鈍(SR)が行われるが、溶接ワイヤ設計として考慮されていない、などの問題があった。
また、最近では炭酸ガスアーク溶接法からArを主体とする混合ガスを用いた溶接法が多く使われるようになっている。そして、特に海外において寒冷地や高標高地への鉄道架設が進んできていることから、このような地域においても事故の際の車輌の衝突安全性を高めるため、従来の0〜−20℃程度の温度環境における靭性要求から、さらに低温の−45℃程度の温度環境における低温靭性が要求されるようになってきている。
しかし、特許文献1〜5に記載の溶接材料のワイヤは、炭酸ガス溶接法を前提としたものであり、また、低温靭性を備えていないため、これらの要求を満たすことはできないという問題があった。
また、電車などの車輌の台車用である耐候性鋼の溶接材料として、一般的なJIS Z3315規格材が使われているが、JIS Z3315では、シールドガスの区分も規定されておらず、靭性規定も0℃、−5℃しかない。また、JIS Z3325には低温用鋼用ワイヤが制定されているが、耐候性能は備わっていない。そのため、これらのワイヤでも前記要求を満たすことはできないという問題があった。
したがって、Ar系混合ガスを前提として、低温靭性が優れ、かつ耐候性も備わった溶接ワイヤは開発されていないのが実状である。
However, the welding material wire used for the weathering steel that has been used conventionally has the following problems.
As a field in which weathering steel is often used, in addition to the bridge and construction fields, there is a bogie of vehicles such as trains. However, the welding material wires described in Patent Documents 1 to 5 are suitable for the bridge and construction fields. Since it was developed and presupposes the carbon dioxide welding method, spatter is likely to occur. Therefore, when welding a carriage of a vehicle such as a train using these wires, (1) the appearance of the welded portion is invisible to the human eye, so that spatter generation is very disliked, and (2) the C content is 0. .There are many dissimilar joints of cast iron and cast steel that are as high as 20% by mass or more, and the use of high-strength welding materials and the problem of cracking are likely to occur in carbon dioxide arc welding with deep penetration and high base metal dilution rate. 3) When a sudden component change occurs in a dissimilar material joint, corrosion progresses selectively, so that the weld metal also needs some weather resistance, and (4) the base metal is always exposed to fatigue. (5) Similarly, in order to prevent fatigue failure, post-weld stress relief annealing (SR) is performed to remove residual stress as necessary. Not considered as, How there was a problem.
Recently, a welding method using a mixed gas mainly composed of Ar has been used from the carbon dioxide arc welding method. And since railway construction is progressing especially in cold regions and high altitude regions overseas, in order to improve the collision safety of vehicles in the event of such accidents in such regions, the conventional 0 to -20 ° C is required. Due to the demand for toughness in this temperature environment, low temperature toughness in a temperature environment at a lower temperature of about −45 ° C. has been required.
However, the welding material wires described in Patent Documents 1 to 5 are based on the carbon dioxide gas welding method and do not have low-temperature toughness, so that there is a problem that these requirements cannot be satisfied. It was.
In addition, a general JIS Z3315 standard material is used as a weathering steel welding material for a carriage of a vehicle such as a train. However, in JIS Z3315, the shielding gas classification is not stipulated. Are only 0 ° C and -5 ° C. JIS Z3325 has a low-temperature steel wire, but does not have weather resistance. For this reason, there is a problem that even these wires cannot satisfy the above requirements.
Therefore, on the premise of Ar-based mixed gas, a welding wire having excellent low temperature toughness and weather resistance has not been developed.

本発明はこれらの状況を鑑みて開発した技術であり、室温から−45℃程度までの環境でも高靭性を有するとともに、優れた低スパッタ性を有し、異材継手でも良好な耐候性、耐割れ性および強度を有するガスシールドアーク溶接ソリッドワイヤおよびこれを用いたガスシールドアーク溶接方法を提供することを目的とする。   The present invention is a technology developed in view of these circumstances, and has high toughness even in an environment from room temperature to about -45 ° C, has excellent low spattering property, and has good weather resistance and crack resistance even in a dissimilar joint. An object of the present invention is to provide a gas shielded arc welding solid wire having properties and strength and a gas shielded arc welding method using the same.

請求項に係る耐候性鋼用ガスシールドアーク溶接ソリッドワイヤは、Arと、COまたはOの1種以上との混合ガスを使用する耐候性鋼用ガスシールドアーク溶接ソリッドワイヤにおいて、前記ソリッドワイヤが鋼合金製のワイヤ素線の表面にCuメッキ層を設けたものであって、C:0.01〜0.12質量%、Si:0.20〜1.00質量%、Mn:1.00〜2.00質量%、P:0.007〜0.030質量%、S:0.025質量%以下、Cu:0.30〜0.60質量%、Cr:0.50〜0.80質量%、Al:0.020質量%以下、Ti:0.05〜0.17質量%、Mo:0.10質量%以下、N:0.0090質量%以下、O:0.0150質量%以下を含有し、残部がFeおよび不可避的不純物とからなり、Cu:0.30〜0.60質量%のうち、前記Cuメッキ層分がCu:0.25質量%以下であり、Cの含有量およびPの含有量を用いて、C×P×10で計算される係数が22以下であることを特徴とする。 The gas shielded arc welding solid wire for weathering steel according to claim 1 is a gas shielding arc welding solid wire for weathering steel using a mixed gas of Ar and one or more of CO 2 or O 2. The wire is a steel alloy wire with a Cu plating layer provided on the surface thereof. C: 0.01 to 0.12% by mass, Si: 0.20 to 1.00% by mass, Mn: 1 0.00-2.00 mass%, P: 0.007-0.030 mass%, S: 0.025 mass% or less, Cu: 0.30-0.60 mass%, Cr: 0.50-0. 80% by mass, Al: 0.020% by mass or less, Ti: 0.05 to 0.17% by mass, Mo: 0.10% by mass or less, N: 0.0090% by mass or less, O: 0.0150% by mass Containing the following, the balance consisting of Fe and inevitable impurities , Cu: 0.30 to 0.60 of the mass%, the Cu plating layer content Cu: is 0.25 wt% or less, with a content of content and P of C, C × P × 10 The coefficient calculated by 4 is 22 or less.

このような構成によれば、析出元素のTi、Alの他、O、Nも抑制することで、SR時の溶接金属の靭性低下を防止することができ、Alの抑制により、低スパッタ化を得ることができる。また、Cu、Crの他、通常添加しないPをあえて所定範囲添加することにより、非耐候性鋼との異材継手の場合でも耐候性能を確保し、局部腐食を防げることで、溶接金属の耐候性を確保することができる。また、CとPの溶接金属の耐割れ性に及ぼす相関パラメータの上限範囲を規定することで、溶接金属の耐侯性を確保しつつ割れを防ぐことができる。その他、C、Si、Mn所定量含有し、Moを抑制することで、溶接金属の強度を向上させることができ、Sを所定量含有することで、母材とのなじみ性が向上する。
また、Cuメッキ層を施すことにより、ワイヤの伸線性が優れ、また、耐錆性やチップの耐摩耗性を向上させることができる。Cuメッキ層を施す場合には、メッキのCuを低く規定することにより、溶接金属の低スパッタ化を得ることができる。
According to such a configuration, it is possible to prevent a decrease in toughness of the weld metal at the time of SR by suppressing O and N in addition to Ti and Al as precipitation elements. Obtainable. In addition to Cu and Cr, P which is not usually added is added in a predetermined range to ensure weatherability even in the case of dissimilar joints with non-weatherproof steel, and to prevent local corrosion. Can be secured. Further, by defining the upper limit range of the correlation parameter that affects the crack resistance of the weld metal of C and P, it is possible to prevent cracking while ensuring the weather resistance of the weld metal. In addition, by containing a predetermined amount of C, Si, Mn and suppressing Mo, the strength of the weld metal can be improved, and by containing a predetermined amount of S, the compatibility with the base material is improved.
Further, by applying the Cu plating layer, the wire drawability is excellent, and rust resistance and chip wear resistance can be improved. When a Cu plating layer is applied, the welding metal can be sputtered low by defining the Cu of plating low.

請求項に係る耐候性鋼用ガスシールドアーク溶接ソリッドワイヤは、前記耐候性鋼用ガスシールドアーク溶接ソリッドワイヤにおいて、さらに、Ni:0.05〜0.80質量%、B:0.0005〜0.0030質量%、K:0.5〜20ppmのうち1種以上を含有することを特徴とする。 The gas shielded arc welding solid wire for weathering steel according to claim 2 is the same as the gas shielding arc welding solid wire for weathering steel, further comprising Ni: 0.05 to 0.80 mass%, B: 0.0005. 0.0030 mass%, K: It contains 1 or more types among 0.5-20 ppm, It is characterized by the above-mentioned.

このような構成によれば、Ni、B、Kを所定量含有することで、溶接金属の耐候性の向上、低温靭性の向上、低スパッタ化をさらに促進することができる。   According to such a configuration, by including a predetermined amount of Ni, B, and K, it is possible to further promote the improvement of the weather resistance, the low temperature toughness, and the low sputtering of the weld metal.

請求項に係るガスシールドアーク溶接方法は、前記記載の耐候性鋼用ガスシールドアーク溶接ソリッドワイヤを使用し、耐候性鋼同士、または、耐候性鋼と炭素鋼とを溶接するガスシールドアーク溶接方法において、シールドガスとして、Ar:75〜95体積%で残部CO、Ar:90〜98体積%で残部O、およびAr:75〜95体積%で残部CO+Oのいずれか1種である混合ガスを使用することを特徴とする。 A gas shielded arc welding method according to claim 3 uses the above-described gas shielded arc welding solid wire for weathering steel and welds the weathering steels to each other or between weathering steel and carbon steel. In the method, Ar: 75 to 95% by volume of the remaining CO 2 , Ar: 90 to 98% by volume of the remaining O 2 , and Ar: 75 to 95% by volume of the remaining CO 2 + O 2 as the shielding gas It is characterized by using a mixed gas.

このような構成によれば、シールドガスとして、Ar+CO、Ar+OまたはAr+CO+Oの混合ガスを使用し、これらのガス組成を所定範囲とすることで、耐ブローホール性、低スパッタ性、高靭性、ビード形状改善に優れた溶接金属を得ることができる。 According to such a configuration, as a shielding gas, a mixed gas of Ar + CO 2 , Ar + O 2 or Ar + CO 2 + O 2 is used, and by setting these gas compositions to a predetermined range, blowhole resistance, low sputter resistance, A weld metal excellent in high toughness and bead shape improvement can be obtained.

本発明に係る耐候性鋼用ガスシールドアーク溶接ソリッドワイヤによれば、ソリッドワイヤの成分を所定範囲に規定することで、車輌の台車などの溶接に最適な耐候性鋼同士、あるいは耐候性鋼と鋳鋼・鋳鉄などの炭素鋼との異材継手のいずれにおいても、耐候性、低温靭性、強度、および耐割れ性が優れるとともに、低スパッタ性、ビード形状、耐ブローホール性、ワイヤ送給性などにも優れる溶接金属とすることができる。
また、本発明に係るガスシールドアーク溶接方法によれば、シールドガスの組成を所定範囲に規定することで、耐ブローホール性、低スパッタ性、低温靭性、ビード形状に優れる溶接金属とすることができ、耐候性鋼同士、あるいは耐候性鋼と鋳鋼・鋳鉄などの炭素鋼との異材継手のいずれにおいても、良好な溶接を行うことができる。
よって、本発明に係るワイヤや溶接方法により、車輌などの安全性、耐久性、疲労特性、美観などの向上に寄与することができる。
According to the gas shielded arc welding solid wire for weathering steel according to the present invention, by defining the components of the solid wire within a predetermined range, the weathering steels that are optimal for welding of vehicle carriages or the like, or weathering steel and All of the dissimilar joints with carbon steel such as cast steel and cast iron have excellent weather resistance, low temperature toughness, strength, and crack resistance, as well as low spatter, bead shape, blow hole resistance, wire feedability, etc. Can also be an excellent weld metal.
In addition, according to the gas shielded arc welding method of the present invention, by defining the composition of the shielding gas within a predetermined range, it is possible to obtain a weld metal having excellent blowhole resistance, low spatter resistance, low temperature toughness, and bead shape. In addition, good welding can be performed in any of weather resistant steels or in dissimilar joints of weather resistant steel and carbon steel such as cast steel and cast iron.
Therefore, the wire and welding method according to the present invention can contribute to improvements in safety, durability, fatigue characteristics, aesthetics, and the like of vehicles.

以下、本発明の実施の形態について詳細に説明する。
本発明は、ソリッドワイヤの成分を所定範囲に規定することを特徴とする耐候性鋼用ガスシールドアーク溶接ソリッドワイヤおよびこのワイヤを用い、シールドガスの組成を所定範囲に規定することを特徴とするガスシールドアーク溶接方法である。
これまで耐候性鋼用溶接ワイヤは橋梁・建築分野のみを対象として開発、使用されてきたため、CO溶接が前提で、かつ共金継手のみを想定する成分設計であった。しかし、本発明の目的は、低温での高靭性、低スパッタ性、異材継手耐候性、SR処理での性能安定性などを考慮して、Ar混合ガス(Ar+CO、Ar+O、Ar+CO+O)用として最適化した耐候性ソリッドワイヤである。
ソリッドワイヤは、鋼合金製のワイヤ素線からなるものであり、所定量のC、Si、Mn、P、S、Cu、Cr、Al、Ti、Mo、N、Oを含有し、残部がFeおよび不可避的不純物とからなり、CとPの溶接金属の耐割れ性に及ぼす相関パラメータの上限範囲を規定したものである。
また、このワイヤ素線の表面に、Cuメッキ層を設けてもよい。
Hereinafter, embodiments of the present invention will be described in detail.
The present invention is characterized in that the component of the solid wire is defined within a predetermined range, the gas shielded arc welding solid wire for weathering steel, and the wire is used, and the composition of the shielding gas is defined within a predetermined range. This is a gas shielded arc welding method.
Until now, since the welding wire for weathering steel has been developed and used only for the bridge and construction fields, it was a component design based on CO 2 welding and assuming only a metal joint. However, the object of the present invention is to provide Ar mixed gas (Ar + CO 2 , Ar + O 2 , Ar + CO 2 + O 2) in consideration of high toughness at low temperature, low spattering property, dissimilar joint weather resistance, performance stability in SR treatment, and the like. It is a weather-resistant solid wire optimized for use.
The solid wire is made of a steel alloy wire and contains a predetermined amount of C, Si, Mn, P, S, Cu, Cr, Al, Ti, Mo, N, and O, with the balance being Fe. In addition, the upper limit range of the correlation parameter affecting the crack resistance of the weld metal of C and P is defined.
Further, a Cu plating layer may be provided on the surface of the wire.

本発明者らは、低スパッタ化を得る目的の他、SR時の靭性低下を防止すべく、析出元素のTiやAl量を抑制すると共に、O、Nも抑制する必要性を見出した。さらに、耐候性を確保するためにCu、Cr、必要に応じてNiの他、通常添加しないPをあえて所定範囲添加することによって、非耐候性鋼との異材継手の場合に耐候性能を確保し、局部腐食を防げることを見出した。さらに、Pを積極添加すると、一般には耐割れ性が低下するが、CとPの耐割れ性に及ぼす相関を見出し、その相関パラメータの上限範囲を規定することで耐侯性を確保しつつ割れを防げる範囲を導いた。一方で、Cuメッキを施す場合には、Ar+CO溶接での溶滴移行特性を考慮して、Cu量をワイヤ全量とメッキ量のそれぞれについて規定することにより、さらなる低スパッタ化を得ている。これらの手法によって優れた低温靭性、低スパッタ性、耐候性、耐割れ性などを満足するワイヤとすることができることを見出した。
以下、ソリッドワイヤの成分の限定理由について説明する。
In addition to the purpose of achieving low spattering, the present inventors have found that it is necessary to suppress the amount of Ti and Al as precipitation elements and to suppress O and N in order to prevent toughness reduction during SR. Furthermore, in order to ensure the weather resistance, in addition to Cu, Cr, and optionally Ni, in addition to P, which is not usually added, a predetermined range is added to ensure weather resistance performance in the case of dissimilar joints with non-weather resistant steel. It was found that local corrosion can be prevented. Further, when P is positively added, crack resistance generally decreases. However, a correlation that affects the crack resistance of C and P is found, and cracking is ensured by ensuring the upper limit range of the correlation parameter while ensuring weather resistance. It led the range that can be prevented. On the other hand, when Cu plating is performed, considering the droplet transfer characteristics in Ar + CO 2 welding, the Cu content is regulated for each of the total wire amount and the plating amount, thereby further reducing the spatter. It has been found that a wire satisfying excellent low temperature toughness, low spattering property, weather resistance, crack resistance and the like can be obtained by these methods.
Hereinafter, the reasons for limiting the components of the solid wire will be described.

<C:0.01〜0.12質量%>
Cは、溶接部の強度を確保するために必要な元素である。車輌や橋梁分野で最も汎用的な鋼材強度である490N/mm以上の強度を得るためには、Cの含有量が最低0.01質量%であることが必要である。したがって、Cの含有量は、0.01質量%以上とする。一方、Cの含有量が0.12質量%を超えると、高温割れや低温割れ、CO爆発によるスパッタが発生しやすくなる。したがって、Cの含有量は、0.12質量%以下とする。なお、耐食性の面からは少ない方が好ましいため、より好ましくは0.08質量%以下とする。
<C: 0.01 to 0.12% by mass>
C is an element necessary for ensuring the strength of the weld. In order to obtain a strength of 490 N / mm 2 or more, which is the most general steel strength in the vehicle and bridge fields, the C content needs to be at least 0.01% by mass. Therefore, the C content is 0.01% by mass or more. On the other hand, when the content of C exceeds 0.12% by mass, high temperature cracking, low temperature cracking, and sputtering due to CO explosion easily occur. Therefore, the C content is 0.12% by mass or less. In addition, since it is preferable from the viewpoint of corrosion resistance, it is more preferably 0.08% by mass or less.

<Si:0.20〜1.00質量%>
Siは脱酸反応に必要な元素である。Siの含有量が0.20質量%未満では、脱酸不足でブローホールが発生し、また、強度不足となる。したがって、Siの含有量は0.20質量%以上、より好ましくは、0.40質量%以上とする。一方、Siの含有量が1.00質量%を超えると、靭性が低下し、スパッタも大粒化して増加する。したがって、Siの含有量は1.00質量%以下、より好ましくは、0.60質量%以下とする。
<Si: 0.20 to 1.00% by mass>
Si is an element necessary for the deoxidation reaction. When the Si content is less than 0.20 mass%, blow holes are generated due to insufficient deoxidation, and the strength is insufficient. Therefore, the Si content is 0.20% by mass or more, more preferably 0.40% by mass or more. On the other hand, when the content of Si exceeds 1.00% by mass, the toughness decreases, and the spatter also increases in size and increases. Therefore, the Si content is 1.00% by mass or less, and more preferably 0.60% by mass or less.

<Mn:1.00〜2.00質量%>
Mnもまた脱酸反応に必要な元素であり、強度確保のためにも必要である。Mnの含有量が1.00質量%未満では、脱酸不足でブローホールが発生し、また、靭性不足、強度不足となる。したがって、Mnの含有量は、1.00質量%以上とする。一方、Mnの含有量が2.00質量%を超えると、溶接部の強度が上がりすぎて低温割れを起こす。したがって、Mnの含有量は、2.00質量%以下とし、より好ましくは、低スパッタ性の点から、1.80質量%以下とする。
<Mn: 1.00 to 2.00% by mass>
Mn is also an element necessary for the deoxidation reaction, and is also necessary for securing the strength. When the Mn content is less than 1.00% by mass, blowholes are generated due to insufficient deoxidation, and toughness and strength are insufficient. Therefore, the Mn content is 1.00% by mass or more. On the other hand, if the Mn content exceeds 2.00% by mass, the strength of the welded portion increases so as to cause cold cracking. Therefore, the Mn content is 2.00% by mass or less, and more preferably 1.80% by mass or less from the viewpoint of low sputtering property.

<P:0.007〜0.030質量%>
Pは一般に耐割れ性を劣化させる元素として有名であり、一般の鋼材に対しては少ないほど好ましいが、Pには耐候性を向上させる効果があり、本発明には必須である。耐候性鋼同士だけでなく、耐候性機能を持たない鋳鉄や鋳鋼といった鋼材との異材継手の場合には、CuやCrといった他の耐候性機能を持つ成分が希釈されて溶接金属の耐候性機能が低下しやすい。そのため、Pをある程度添加することで、耐候性機能を確保することが出来る。Pは微量の含有量で有効であるが、最低0.007質量%が必要であるため、Pの含有量は、0.007質量%以上とする。一方、Pの含有量が0.030質量%を超えると、耐割れ性が劣化する。したがって、Pの含有量は、0.030質量%以下とする。
<P: 0.007 to 0.030 mass%>
P is generally well-known as an element that deteriorates cracking resistance and is preferably as small as possible for general steel materials. However, P has an effect of improving weather resistance and is essential for the present invention. In the case of dissimilar joints with steel materials such as cast iron and cast steel that do not have weather resistance functions as well as between weather resistant steels, other weather resistant function components such as Cu and Cr are diluted and the weather resistance function of the weld metal Is prone to decline. Therefore, the weather resistance function can be secured by adding P to some extent. P is effective with a small amount of content, but at least 0.007% by mass is necessary, so the content of P is 0.007% by mass or more. On the other hand, if the P content exceeds 0.030% by mass, the crack resistance deteriorates. Therefore, the P content is 0.030% by mass or less.

<S:0.025質量%以下>
Sもまた耐割れ性を劣化させる元素であり、靭性も低下させるが、0.025質量%以下であれば問題ない。したがって、Sの含有量は0.025質量%以下とする。一方、Sは母材とのなじみ性を向上させ、疲労強度を向上させる効果があり、好ましくは、Sの含有量が、0.005質量%以上であると耐割れ性を満足しつつ、外観と継手疲労性能を向上させることが出来る。しかし、Sは少ないほうが好ましいため、下限は設定しない。
<S: 0.025 mass% or less>
S is also an element that degrades cracking resistance and lowers toughness, but there is no problem if it is 0.025% by mass or less. Therefore, the content of S is set to 0.025% by mass or less. On the other hand, S has the effect of improving the conformability with the base material and improving the fatigue strength. Preferably, the S content is 0.005% by mass or more, while satisfying the crack resistance and the appearance. And joint fatigue performance can be improved. However, since it is preferable that S is small, no lower limit is set.

<Cu:0.30〜0.60質量%>
ここでのCuはワイヤ素線中のCu含有量とワイヤにメッキが施されている場合はそのメッキ分の付着量の合計である。
Cuは耐候性を高めるために必要な元素であり、Cuの含有量は、ワイヤ全体として最低0.30質量%必要である。したがって、Cuの含有量は、0.30質量%以上とする。一方、0.60質量%を超えると高温割れを発生しやすくなるため、Cuの含有量は、0.60質量%以下とする。
<Cu: 0.30 to 0.60 mass%>
Cu here is the total of the Cu content in the wire and the amount of adhesion of the plating when the wire is plated.
Cu is an element necessary for enhancing the weather resistance, and the content of Cu is required to be at least 0.30% by mass as the entire wire. Therefore, the Cu content is set to 0.30% by mass or more. On the other hand, if it exceeds 0.60 mass%, hot cracking is likely to occur, so the Cu content is set to 0.60 mass% or less.

<Cr:0.50〜0.80質量%>
Crもまた耐候性を高めるために必要な元素である。塩害耐食性にはCrは有害であるが、車輌用や一般橋梁用として使用する場合には、塩害耐食性は必要とされないので、一般的な耐候性鋼用としての性能を得るために積極的に添加する。耐候性を高めるためには、最低0.50質量%必要である。したがって、Crの含有量は、0.50質量%以上とする。一方、0.80質量%を超えると高強度になりすぎて低温割れが発生しやすくなるとともに靭性も低下する。したがって、Crの含有量は、0.80質量%以下とする。
<Cr: 0.50 to 0.80 mass%>
Cr is also an element necessary for improving the weather resistance. Cr is harmful to salt corrosion resistance, but when used for vehicles and general bridges, salt corrosion resistance is not required, so it is actively added to obtain performance for general weather resistant steel. To do. In order to increase the weather resistance, a minimum of 0.50% by mass is necessary. Therefore, the Cr content is 0.50% by mass or more. On the other hand, if it exceeds 0.80% by mass, the strength becomes too high and low-temperature cracking is likely to occur, and the toughness also decreases. Therefore, the Cr content is 0.80 mass% or less.

<Al:0.020質量%以下>
AlはSR時に低温靭性を劣化させると共に、スパッタを増加させる元素である。Alの含有量が0.020質量%を越えると靭性低下が顕著であり、さらにスパッタも多くなる。現在でも溶製時に清浄度を上げるためにアルミキルドといわれる脱酸、脱窒処理が行われることが多々あるが、この場合、Alの含有量が0.020質量%を超える場合が多い。したがって、積極的にAlの含有量が0.020質量%以下になるように留意して製鋼処理すべきである。なお、Alは少ないほうが好ましいため、下限は設定しない。
<Al: 0.020 mass% or less>
Al is an element that deteriorates low-temperature toughness during SR and increases spatter. When the Al content exceeds 0.020% by mass, the toughness is remarkably reduced, and spatter increases. Even today, deoxidation and denitrification treatment called aluminum kill is often performed to increase the cleanliness during melting, but in this case, the Al content often exceeds 0.020 mass%. Therefore, the steel making process should be carried out with careful attention so that the Al content is 0.020% by mass or less. In addition, since it is preferable that Al is less, no lower limit is set.

<Ti:0.05〜0.17質量%>
Tiは強い酸化性があり、シールドガス中のOやCOといった酸化性ガスと結びついて、一部はスラグに、一部は溶接金属に残留する。溶接金属中のTiは適量で結晶粒を微細化し、高靭性を得ることが出来る。しかし過剰になると粗大な析出物となり脆性破壊の起点となる。特にSR処理では靭性低下が顕著である。炭酸ガス用に比べてAr混合ガスは酸化性ガスの分圧が低いことから、Tiの少量添加で溶接金属の結晶粒を微細化し、高靭性を得ることが出来る。具体的には、Tiの含有量が0.17質量%を超えると、靭性が低下するので、Tiの含有量は、0.17質量%以下、より好ましくは0.14質量%以下とする。さらには0.10質量%以下とすると、SR時の靭性も向上するとともにスパッタも小粒化し溶接作業性が優れる。一方、Tiの含有量が0.05質量%未満では結晶粒微細化の効果が無くなり、−45℃程度の使用には適さなくなる。また、比較的小粒のスパッタが多量に発生するので、Tiの含有量は0.05質量%以上、より好ましくは、アーク安定性向上の観点から、0.07質量%以上とする。なお、耐候性鋼用ソリッドワイヤのJIS規格Z3315にはTiは規定されていない。一般的には炭酸ガス用としては、高電流用としてTi:0.18〜0.25質量%を添加し、短絡溶接の低電流用としては無添加とする場合が多い。しかし、本発明はAr混合ガス用として少量の添加が最適である。
<Ti: 0.05 to 0.17% by mass>
Ti has a strong oxidizing property, and is combined with an oxidizing gas such as O 2 or CO 2 in the shielding gas, and a part thereof remains in the slag and a part thereof in the weld metal. Ti in the weld metal can be refined by an appropriate amount to obtain high toughness. However, when it becomes excessive, it becomes a coarse precipitate and becomes a starting point of brittle fracture. Particularly in SR treatment, the toughness is significantly reduced. Compared with the carbon dioxide gas, the Ar mixed gas has a lower partial pressure of the oxidizing gas, and therefore, by adding a small amount of Ti, the crystal grains of the weld metal can be refined and high toughness can be obtained. Specifically, if the Ti content exceeds 0.17% by mass, the toughness decreases, so the Ti content is 0.17% by mass or less, more preferably 0.14% by mass or less. Furthermore, if it is 0.10 mass% or less, the toughness at the time of SR will be improved, the spatter will be reduced, and the welding workability will be excellent. On the other hand, if the Ti content is less than 0.05% by mass, the effect of crystal grain refinement is lost, and it is not suitable for use at about -45 ° C. In addition, since a relatively large amount of sputters having a small particle size are generated, the Ti content is 0.05% by mass or more, more preferably 0.07% by mass or more from the viewpoint of improving the arc stability. In addition, Ti is not prescribed | regulated to JIS specification Z3315 of the solid wire for weatherproof steel. In general, for carbon dioxide gas, Ti: 0.18 to 0.25% by mass is added for high current, and no addition is often used for low current for short circuit welding. However, the present invention is optimally added in a small amount for an Ar mixed gas.

<Mo:0.10質量%以下>
Moは一般的には溶接金属の高強度化の向上に用いられる元素である。しかし、車輌では上述したようにCの含有量が多い鋳鉄・鋳鋼との異材継手も多いため、溶接金属は強度過剰になりやすく、過剰強度は低温割れの発生に繋がる。したがって、鋼材に対して過剰な強度のオーバーマッチングは避ける必要がある。Moの含有量が0.10質量%を超えると、強度過剰による割れが発生しやすくなる。したがって、Moの含有量は、0.10質量%以下、好ましくは0.05質量%以下とする。なお、Moは少ないほうが好ましいため、下限は設定しない。
<Mo: 0.10% by mass or less>
Mo is an element generally used to improve the strength of weld metal. However, as described above, since there are many dissimilar joints with cast iron and cast steel having a high C content as described above, the weld metal tends to have excessive strength, and the excessive strength leads to the occurrence of cold cracking. Therefore, it is necessary to avoid overmatching of excessive strength with respect to the steel material. If the Mo content exceeds 0.10% by mass, cracking due to excessive strength tends to occur. Therefore, the Mo content is 0.10% by mass or less, preferably 0.05% by mass or less. In addition, since it is preferable that there is little Mo, a minimum is not set.

<N:0.0090質量%以下>
Nは靭性を低下させる元素である。シールド不良時にも大気から窒素が混入するため管理が必要であるが、ワイヤからも極力低減することが好ましい。Nの含有量が0.0090質量%を超えると靭性低下が顕著であることから、Nの含有量は0.0090質量%以下とし、より好ましくは、0.0070質量%以下とする。なお、Nは少ないほうが好ましいため、下限は設定しない。
<N: 0.0090 mass% or less>
N is an element that reduces toughness. Even when the shield is defective, nitrogen is mixed in from the atmosphere, so management is necessary, but it is preferable to reduce it as much as possible from the wire. When the N content exceeds 0.0090% by mass, the toughness is significantly reduced. Therefore, the N content is 0.0090% by mass or less, and more preferably 0.0070% by mass or less. In addition, since it is preferable that N is small, a lower limit is not set.

<O:0.0150質量%以下>
ワイヤ表面や溶滴表面の酸素量は、多い方が溶滴移行特性改善のためには好ましいものの、酸素は溶接金属に入ると酸化物を形成し、SR時に析出して脆化させる。そのため、ワイヤ全体としては少ない方が好ましい。したがって、Oの含有量は0.0150質量%以下とし、好ましくは0.0100質量%以下、さらに好ましくは0.0050質量%以下とする。なお、Oは少ないほうが好ましいため、下限は設定しない。
<O: 0.0150 mass% or less>
Although a larger amount of oxygen on the wire surface or droplet surface is preferable for improving droplet transfer characteristics, oxygen forms an oxide when it enters the weld metal, and precipitates and embrittles during SR. Therefore, it is preferable that the number of wires as a whole is small. Therefore, the O content is 0.0150% by mass or less, preferably 0.0100% by mass or less, and more preferably 0.0050% by mass or less. In addition, since it is preferable that O is small, a lower limit is not set.

<不可避的不純物>
不可避的不純物として、例えば、Nb、V、Zrなどを含有することが考えられるが、本発明の効果を妨げない範囲においてこれらを含有することは許容され、これらの含有量は、0.050質量%以下が好ましい。
<Inevitable impurities>
As unavoidable impurities, for example, it may be possible to contain Nb, V, Zr, etc., but it is allowed to contain them within a range not impeding the effects of the present invention, and the content thereof is 0.050 mass. % Or less is preferable.

<C×P×10で計算される係数:22以下>
上述のとおり、Cは強度の増強に、Pは異材継手の際に耐候性機能を補助するのに有効であるが、これらを含有することにより、高温割れ感受性も増大する。しかし、Cの含有量およびPの含有量を用いて、C×P×10で計算される係数を22以下に規定することにより、高温割れを防ぐことができる。つまり、C、Pにおいては、それぞれの範囲に規定するとともに、本式を満足する必要がある。なお、より好ましくは17以下である。
<Coefficient calculated by C × P × 10 4 : 22 or less>
As described above, C is effective for strengthening the strength and P is effective for assisting the weather resistance function in the case of the dissimilar material joint. However, inclusion of these increases the sensitivity to hot cracking. However, hot cracking can be prevented by defining the coefficient calculated by C × P × 10 4 to 22 or less using the C content and the P content. That is, for C and P, it is necessary to satisfy these expressions while defining the respective ranges. In addition, More preferably, it is 17 or less.

本発明に係る耐候性鋼用ガスシールドアーク溶接ソリッドワイヤにおいては、ワイヤ素線の表面にCuメッキ層を設けてもよい。
<メッキ層のCu:0.25質量%以下>
Cuメッキ層を施すことにより、ワイヤの伸線性が優れるため、低コストでの生産が可能となる。また、耐錆性やチップの耐摩耗性を向上させることができる。
Cuは熱間延性確保のために素線には添加せず、ワイヤにメッキしたメッキ分だけで全Cu規定量を添加する手段があるが、本発明では不可である。理由としては、これまでのCO溶接法用であれば溶滴移行の安定性にはさほどメッキ分は寄与しないが、本発明のAr+CO溶接の場合は、スプレー溶滴移行の安定性がワイヤや溶滴表面近傍の酸素量に強く影響を受ける。すなわち、Cuは非酸化性のため、メッキCuが厚いとワイヤ表面の酸素量は低く、溶滴表面付近の酸化反応が進まない。その結果、溶滴の酸素量が低く抑えられ、表面張力や粘性が小さく、溶滴離脱性が低下する。つまり、大粒のスパッタ発生や、ふらつきの原因となり、溶接作業性が低下する。したがって、メッキ層のCuの含有量は低い方が好ましく、0.25質量%以下であればスパッタ量抑制に対し許容範囲である。したがって、メッキ層のCuの含有量は、0.25質量%以下とし、より好ましくは0.20質量%以下とする。なお、メッキ層のCuの含有量は0質量%、つまりメッキ無しでも問題はない。
In the gas shielded arc welding solid wire for weather resistant steel according to the present invention, a Cu plating layer may be provided on the surface of the wire element.
<Cu of plating layer: 0.25 mass% or less>
By applying the Cu plating layer, the wire drawability is excellent, and production at a low cost becomes possible. Further, the rust resistance and the wear resistance of the chip can be improved.
In order to ensure hot ductility, Cu is not added to the strands, but there is a means for adding the total amount of Cu only by the amount plated on the wire, but this is not possible with the present invention. The reason for this is that, for conventional CO 2 welding methods, the plating content does not contribute much to the stability of droplet transfer, but in the case of the Ar + CO 2 welding of the present invention, the stability of spray droplet transfer is a wire. It is strongly affected by the amount of oxygen near the droplet surface. That is, since Cu is non-oxidizing, if the plated Cu is thick, the amount of oxygen on the wire surface is low, and the oxidation reaction near the droplet surface does not proceed. As a result, the amount of oxygen in the droplets is kept low, the surface tension and viscosity are small, and the droplet detachment property is lowered. That is, large spatters are generated and wobbling occurs, and welding workability is reduced. Accordingly, the Cu content in the plated layer is preferably low, and if it is 0.25% by mass or less, it is an allowable range for suppressing the sputtering amount. Therefore, the Cu content in the plating layer is 0.25% by mass or less, more preferably 0.20% by mass or less. The Cu content in the plating layer is 0% by mass, that is, there is no problem even if there is no plating.

ここで、ワイヤ成分は、Ni、B、Kのうち1種以上を含有することが好ましい。以下、これらの限定理由について説明する。   Here, the wire component preferably contains one or more of Ni, B, and K. Hereinafter, these reasons for limitation will be described.

<Ni:0.05〜0.80質量%>
Niは耐候性を向上させるために有効である。Cu、Cr、Pだけでは無塗装仕様は困難であるため、塗装使用とするが、Niを適量添加することで無塗装仕様とすることが可能である。Niの含有量は、0.05質量%未満ではその効果は発揮されないため、0.05質量%以上が好ましく、0.15質量%以上がより好ましい。一方、Niの含有量が0.80質量%を超えると、耐候性の効果が飽和するだけでなく、溶滴の粘性が高まりすぎてスパッタ発生量が増加しやすいとともに、ビードが凸状になって劣化しやすい。また、Niは高価な元素なのでコストが過大となりやすい。したがって、Niの含有量は、0.80質量%以下が好ましい。
<Ni: 0.05 to 0.80 mass%>
Ni is effective for improving the weather resistance. Since it is difficult to use unpainted specifications with Cu, Cr, and P alone, it is used for painting, but it is possible to achieve unpainted specifications by adding an appropriate amount of Ni. If the Ni content is less than 0.05% by mass, the effect is not exerted, so 0.05% by mass or more is preferable, and 0.15% by mass or more is more preferable. On the other hand, when the Ni content exceeds 0.80% by mass, not only the weather resistance effect is saturated, but also the viscosity of the droplets is increased so that the amount of spatter is easily increased and the bead becomes convex. It is easy to deteriorate. Moreover, since Ni is an expensive element, the cost tends to be excessive. Therefore, the Ni content is preferably 0.80% by mass or less.

<B:0.0005〜0.0030質量%>
Bは微量の添加で結晶粒微細化を促進し、低温靭性を向上させる効果がある。Bの含有量は、最低0.0005質量%でなければ微細化の効果は発揮されないことから、0.0005質量%以上が好ましく、0.0010質量%以上がより好ましい。一方、Bは高温割れを引き起こしやすい欠点もある。Bの含有量が0.0030質量%を超えると、割れが発生しやすくなる。したがって、Bの含有量は0.0030質量%以下が好ましく、Cの含有量が多い鋳鉄・鋳鋼との異材継手を考慮すると、0.0020質量%以下がより好ましい。
<B: 0.0005 to 0.0030 mass%>
B has the effect of promoting the refinement of crystal grains by adding a small amount and improving the low temperature toughness. The content of B is preferably 0.0005% by mass or more, and more preferably 0.0010% by mass or more because the effect of miniaturization is not exhibited unless the content is at least 0.0005% by mass. On the other hand, B also has a defect that easily causes hot cracking. If the content of B exceeds 0.0030% by mass, cracking is likely to occur. Therefore, the content of B is preferably 0.0030% by mass or less, and considering a dissimilar joint with cast iron / cast steel having a high C content, 0.0020% by mass or less is more preferable.

<K:0.5〜20ppm>
KはArを主元素とする混合ガス溶接時にアークを安定させ、スパッタを減らす元素として効果的である。炭酸ガス溶接では一般的にこのような効果は働かない。Kは溶製時に添加することは困難なので、一般的には(1)伸線工程中に炭酸カリウムなどのK入り伸線潤滑剤を使い、表面残留させる、(2)Kを含む溶液に浸漬させた後で焼鈍し、ワイヤ表面の粒界あるいは粒内に拡散させる、(3)青酸カリ溶液を用いて銅メッキを施すといった手段によって表面近傍に存在させる、などの方法により添加する。その効果は0.5ppmから有効であるため、Kの含有量は0.5ppm以上が好ましい。一方、Kの含有量が20ppmを超えると、アーク安定効果が飽和するとともにワイヤ表面の潤滑性が失われてワイヤ送給性が劣りやすく、また、メッキ密着性が悪くなって銅メッキが剥離し、やはりワイヤ送給性を損ないやすい。したがって、Kの含有量は20ppm以下が好ましい。
<K: 0.5 to 20 ppm>
K is effective as an element that stabilizes the arc and reduces spatter during mixed gas welding with Ar as the main element. Carbon dioxide welding generally does not have this effect. Since it is difficult to add K at the time of melting, generally (1) use K-drawing lubricant such as potassium carbonate during the drawing process to leave the surface, and (2) immerse in a solution containing K. After annealing, it is added by a method such as annealing and diffusing into the grain boundaries or grains on the surface of the wire, or (3) existing in the vicinity of the surface by means of copper plating using a potassium cyanide solution. Since the effect is effective from 0.5 ppm, the content of K is preferably 0.5 ppm or more. On the other hand, if the K content exceeds 20 ppm, the arc stabilizing effect is saturated and the lubricity of the wire surface is lost, and the wire feedability is liable to deteriorate, and the plating adhesion deteriorates and the copper plating peels off. After all, it is easy to impair the wire feedability. Therefore, the content of K is preferably 20 ppm or less.

次に、ガスシールドアーク溶接方法について説明する。
本発明のガスシールドアーク溶接方法は、前記した耐候性鋼用ガスシールドアーク溶接ソリッドワイヤを使用し、耐候性鋼同士、または、耐候性鋼と炭素鋼とを溶接するものであり、シールドガスとして、Ar+CO、Ar+OまたはAr+CO+O混合ガスを使用するものである。
Next, the gas shield arc welding method will be described.
The gas shielded arc welding method of the present invention uses the above-described gas shielded arc welding solid wire for weathering steel, welds the weathering steels together, or weathering steel and carbon steel, , Ar + CO 2 , Ar + O 2 or Ar + CO 2 + O 2 mixed gas is used.

<シールドガス組成:Ar+CO、Ar+O、Ar+CO+O
シールドガスはArを主体とし、少量の酸化性ガスCOあるいはOと混合した組成を前提とする。Ar+COの場合はArが75〜95体積%で残部CO、Ar+Oの場合はArが90〜98体積%で残部O、Ar+CO+Oの場合はArが75〜95体積%で残部CO+Oとする。
シールドガスがAr+CO、Ar+CO+Oの場合、Arが75体積%未満、Ar+Oの場合、Arが90体積%未満では、溶滴移行がスプレー状態を維持できず、スパッタが発生し、また、溶融池の過剰酸化のため、靭性が低下する。さらに、ビード形状もなじみ性が悪くオーバーラップ状となる。
シールドガスがAr+CO、Ar+CO+Oの場合、Arが95体積%、Ar+O系の場合、Arが98体積%を超えると、過剰なスプレーアーク状態となり、Arを巻込んでブローホールが発生する。また、溶融池の粘性が高くなりすぎてビード形状が凸になり、さらに、酸素源が少なすぎると、母材側陰極点が不安定となり、アーク発生方向が振れてしまい、スパッタも多く発生する。
<Shield gas composition: Ar + CO 2 , Ar + O 2 , Ar + CO 2 + O 2 >
The shield gas is mainly composed of Ar and presupposes a composition mixed with a small amount of oxidizing gas CO 2 or O 2 . Balance in Ar is 75-95 volume percent in the case of the balance O 2, Ar + CO 2 + O 2 if in the case of Ar + CO 2 Ar is the balance CO 2, Ar + O 2 at 75-95% by volume Ar is 90 to 98 vol% Let CO 2 + O 2 .
When the shielding gas is Ar + CO 2 , Ar + CO 2 + O 2 , Ar is less than 75% by volume, and when Ar + O 2 , if Ar is less than 90% by volume, the droplet transfer cannot maintain the spray state, and spatter is generated. The toughness decreases due to excessive oxidation of the molten pool. Furthermore, the bead shape also has poor conformability and becomes an overlap shape.
When the shielding gas is Ar + CO 2 , Ar + CO 2 + O 2 , Ar is 95% by volume, and when Ar + O 2 is used , if Ar exceeds 98% by volume, an excessive spray arc state occurs, and Ar is involved and blow holes are generated. To do. In addition, the viscosity of the molten pool becomes too high and the bead shape becomes convex, and if the oxygen source is too small, the base-side cathode spot becomes unstable, the arc generation direction fluctuates, and a lot of spatter is generated. .

<耐候性鋼>
適用される耐候性鋼としては、一般的に用いられるCu−Ni系、Cu−Cr系、Cu−Cr−Ni系の400〜490N/mm級鋼である。また、これらの耐候性鋼と鋳鋼、鋳鉄などの炭素鋼との異材溶接にも好適である。用途分野として車輌に好適であるが、一般耐候性用として問題のないものであるから、橋梁などの他分野で使うことは全く問題ない。
<Weather-resistant steel>
The weather resistant steel to be applied is a commonly used Cu-Ni, Cu-Cr, or Cu-Cr-Ni 400-490 N / mm grade 2 steel. Moreover, it is suitable also for dissimilar material welding with these weathering steels and carbon steels, such as cast steel and cast iron. Although it is suitable for a vehicle as a field of application, there is no problem for general weather resistance, so there is no problem in using it in other fields such as bridges.

次に、本発明に係るソリッドワイヤについて、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを比較して具体的に説明する。
先ず、表1〜3に示す組成を有するワイヤを使用して表4に示す溶接条件により鋼材を溶接した。溶接においては、表1〜3に示すシールドガス組成のシールドガスを使用した。なお、比較例において、本発明の構成を満たさないものについては、数値に下線を引いて示す。
鋼材としては、表5に示す490N/mm級耐候性鋼(a)と鋳鋼(b)を使用し、
耐候性鋼(a)同士(以下(a)/(a)とする)の継手および耐候性鋼(a)と鋳鋼(b)(以下(a)/(b)とする)の異材継手の2種類の溶接試験を行った。
図1は溶接母材の継手開先断面形状を示す模式図である。図1に示すように、傾斜した端面を有し、板厚が19mmである鋼材1(耐候性鋼(a))と、板厚が25mmである鋼材2(耐候性鋼(a)または鋳鋼(b))の2枚の鋼材1、2を、その傾斜端面を対向させて、端面の先端を5mm離間させた状態で配置した。そして、形成された開先に対してガスシールドアーク溶接することにより溶接金属3を形成した。
Next, the solid wire according to the present invention will be specifically described by comparing an example satisfying the requirements of the present invention with a comparative example not satisfying the requirements of the present invention.
First, steel materials were welded under the welding conditions shown in Table 4 using wires having the compositions shown in Tables 1 to 3. In welding, the shielding gas of the shielding gas composition shown in Tables 1-3 was used. In addition, in a comparative example, about the thing which does not satisfy | fill the structure of this invention, it shows by underlining a numerical value.
As steel materials, 490N / mm grade 2 weather resistant steel (a) and cast steel (b) shown in Table 5 are used,
2 of joints of weathering steels (a) (hereinafter referred to as (a) / (a)) and dissimilar joints of weathering steel (a) and cast steel (b) (hereinafter referred to as (a) / (b)) Various types of welding tests were conducted.
FIG. 1 is a schematic view showing a joint groove cross-sectional shape of a weld base material. As shown in FIG. 1, a steel material 1 (weather-resistant steel (a)) having an inclined end face and a plate thickness of 19 mm, and a steel material 2 (weather-resistant steel (a) or cast steel having a plate thickness of 25 mm ( The two steel materials 1 and 2 of b)) were arranged with their inclined end faces facing each other and the ends of the end faces separated by 5 mm. And the weld metal 3 was formed by carrying out gas shield arc welding with respect to the formed groove | channel.

Figure 0005021953
Figure 0005021953

Figure 0005021953
Figure 0005021953

Figure 0005021953
Figure 0005021953

Figure 0005021953
Figure 0005021953

Figure 0005021953
Figure 0005021953

次に、得られた溶接金属について、以下に示す、強度、低温靭性、耐候性、耐割れ性、低スパッタ性の試験と共に、耐ブローホール性、ビート形状、ワイヤ送給性の官能評価を行った。   Next, sensory evaluation of blowhole resistance, beat shape, and wire feedability was performed on the obtained weld metal, along with the following strength, low temperature toughness, weather resistance, crack resistance, and low spatter resistance tests. It was.

<強度>
強度については、溶接金属に620℃×1時間維持のSR処理を施し、(a)/(a)継手と(a)/(b)継手による引張試験を行った。
引張試験は、(a)/(a)継手において490N/mm以上の引張強さを合格値とした。
<Strength>
For strength, the weld metal was subjected to SR treatment at 620 ° C. × 1 hour and subjected to a tensile test using the (a) / (a) joint and the (a) / (b) joint.
In the tensile test, the tensile strength of 490 N / mm 2 or more in the (a) / (a) joint was regarded as an acceptable value.

<低温靭性>
低温靭性については、シャルピー衝撃試験により、(a)/(a)継手と(a)/(b)継手による−45℃、0℃のシャルピー吸収エネルギーを測定した。
シャルピー吸収エネルギーは(a)/(a)継手、(a)/(b)継手ともに−45℃で27J以上を合格とした。
<Low temperature toughness>
About low temperature toughness, the Charpy absorbed energy of -45 degreeC and 0 degreeC by (a) / (a) joint and (a) / (b) joint was measured by the Charpy impact test.
Charpy absorbed energy was determined to be 27 J or more at −45 ° C. for both the (a) / (a) joint and the (a) / (b) joint.

<耐候性>
耐候性については、(a)/(a)継手、(a)/(b)継手において耐候性能評価試験を実施した。耐候性能評価試験としては、JSSC(日本鋼構造協会)が推奨する腐食促進試験法である発露型腐食試験を用いた。この腐食試験条件を表6に示す。耐候性能は腐食減量が(a)/(a)継手の場合80mg/cm以下、異材継手である(a)/(b)継手を100mg/cm以下を合格とした。
<Weather resistance>
Regarding the weather resistance, a weather resistance performance evaluation test was performed on the joint (a) / (a) and the joint (a) / (b). As the weathering performance evaluation test, a dew type corrosion test which is a corrosion acceleration test method recommended by JSSC (Japan Steel Structure Association) was used. Table 6 shows the corrosion test conditions. As for the weather resistance performance, the corrosion weight loss was 80 mg / cm 2 or less in the case of the (a) / (a) joint, and the joint (a) / (b) which is a dissimilar joint was regarded as 100 mg / cm 2 or less.

<耐割れ性、耐ブローホール性、ビード形状、ワイヤ送給性>
(a)/(a)および(a)/(b)継手でのX線透過試験および超音波探傷による割れ(高温割れおよび低温割れ)とブローホールの有無の確認、その溶接時のビード形状とワイヤ送給性の官能評価を行った。割れやブローホールは無欠陥を合格とし、ビード形状は融合不良を防止するためにグラインダー整形が必要なかった場合、あるいは余盛における母材表面とのなじみ性が良いと判断される場合を合格(○)、融合不良を防止するためにグラインダー整形が必要であった場合、あるいは余盛における母材表面とのなじみ性が悪いと判断される場合を不合格(×)とした。ワイヤ送給性は送給不良によるアーク断続が発生しなかった場合を合格(○)、送給不良によるアーク断続が発生した場合を不合格(×)とした。
<Crack resistance, blow hole resistance, bead shape, wire feedability>
(A) / (a) and (a) / (b) X-ray transmission tests on joints, confirmation of presence or absence of cracks (hot cracking and cold cracking) and blowholes by ultrasonic testing, and bead shape during welding Sensory evaluation of wire feedability was performed. For cracks and blowholes, pass no defects, and for the bead shape, pass the case where grinder shaping is not necessary to prevent poor fusion, or when it is judged that the conformity with the surface of the base material is good ( (Circle)) When the grinder shaping was necessary in order to prevent the fusion failure, or the case where it was judged that the compatibility with the surface of the base material in the surplus was bad, it was determined as reject (x). The wire feedability was determined to be acceptable (◯) when no arc interruption due to poor feeding occurred and rejected (×) when arc interruption due to poor feeding occurred.

<低スパッタ性>
低スパッタ性については、溶接中、溶接後にシールドノズルに付着したスパッタを回収し、重量を測定することで、スパッタ発生量により評価した。低スパッタ性は付着量2.0g以下を低スパッタの範囲として合格とした。
これらの試験結果を表7〜8に示す。
なお、(a)/(b)継手の引張強さと、(a)/(a)継手および(a)/(b)継手の0℃の吸収エネルギーは、参考値として示している。
また、低スパッタ性、耐ブローホール性、ビート形状、ワイヤ送給性については、(a)/(a)継手のものについて示す。
<Low spattering property>
The low spattering property was evaluated based on the amount of spatter generated by collecting spatter adhering to the shield nozzle after welding and measuring the weight during welding. The low sputtering property was accepted as the low sputtering range with an adhesion amount of 2.0 g or less.
These test results are shown in Tables 7-8.
The tensile strength of the (a) / (b) joint and the absorbed energy at 0 ° C. of the (a) / (a) joint and (a) / (b) joint are shown as reference values.
Further, the low spatter property, blowhole resistance, beat shape, and wire feedability are shown for the (a) / (a) joint.

Figure 0005021953
Figure 0005021953

Figure 0005021953
Figure 0005021953

Figure 0005021953
Figure 0005021953

表7に示すように、No.1〜32は、全てのワイヤ成分およびガスシールド組成が本発明の範囲を満足している実施例あるいは参考例のため、(a)/(a)(耐候性鋼同士)の継手、(a)/(b)(耐候性と鋳鋼)の異材継手いずれにおいても、0℃から−45℃の低温域までのシャルピー吸収エネルギーや耐候性、耐割れ性が優れており、引張強度も母材の規格下限以上を確保している。また、(a)/(a)継手において、ブローホール、ビード形状不良などは全く発生しない。また、低スパッタ性やワイヤ送給性にも優れている。 As shown in Table 7 , N o. 1-32 are examples or reference examples in which all wire components and gas shield compositions satisfy the scope of the present invention , and (a) / (a) (weatherproof steels) joints, (a ) / (B) All the dissimilar joints (weather resistance and cast steel) have excellent Charpy absorption energy, weather resistance and crack resistance from 0 ° C to -45 ° C, and the tensile strength of the base metal The lower limit of the standard is secured. In addition, in the (a) / (a) joint, blowholes, bead shape defects and the like do not occur at all. Moreover, it is excellent in low spattering property and wire feeding property.

一方、表8に示すように、比較例No.33は、Cの含有量が下限未満のため、強度不足であった。比較例No.34は、Cの含有量が上限を超えるため、高温割れが発生し、強度が高まって低温割れも発生するとともに、スパッタも多かった。比較例No.35は、Siが下限未満のため、強度不足となるだけでなく、脱酸不足でブローホールも発生した。比較例No.36はSiが上限を超えるため、吸収エネルギーが低く、スパッタも多かった。比較例No.37は、Mnが下限未満のため、強度不足となるだけでなく、脱酸不足でブローホールも発生し、また、吸収エネルギーも低かった。比較例No.38は、Mnが上限を超えるため、強度が高くなりすぎ、低温割れが発生し、また、スパッタも増加した。比較例No.39、40は、Pがともに下限未満のため、異材継手の際に耐候性が失われ、腐食減量が多かった。比較例No.41は、Pが上限を超えるため、高温割れが発生した。   On the other hand, as shown in Table 8, Comparative Example No. No. 33 was insufficient in strength because the C content was less than the lower limit. Comparative Example No. In No. 34, since the C content exceeded the upper limit, hot cracking occurred, the strength increased, cold cracking also occurred, and there were many spatters. Comparative Example No. In No. 35, since Si was less than the lower limit, not only the strength was insufficient, but blow holes were also generated due to insufficient deoxidation. Comparative Example No. In No. 36, since Si exceeded the upper limit, the absorbed energy was low, and spatter was also high. Comparative Example No. No. 37 was not only insufficient in strength because Mn was less than the lower limit, but also generated blowholes due to insufficient deoxidation, and the absorbed energy was low. Comparative Example No. In No. 38, since Mn exceeded the upper limit, the strength became too high, low-temperature cracking occurred, and spatter increased. Comparative Example No. 39 and 40 had both P less than the lower limit, so the weather resistance was lost during dissimilar joints and there was a lot of corrosion weight loss. Comparative Example No. No. 41 was hot cracked because P exceeded the upper limit.

比較例No.42、43、44は、C、Pそれぞれ単独の範囲は規定を満足しているが、C×P×10が本発明の範囲を超えているため、高温割れが発生した。比較例No.45は、Sが上限を超えるため、高温割れが発生した。また、耐候性鋼同士ではかろうじて吸収エネルギーは満足したものの、異材継手の場合は満足しなかった。比較例No.46は、メッキ分のみで銅成分を構成しているが、その値が下限値未満であるため、腐食減量が多く耐候性が不足した。比較例No.47は、Cuが上限を超えるため、高温割れが発生した。比較例No.48は、銅メッキ量が上限を超えるため、溶滴形成時の表面酸化が抑制されたために、表面張力が高まり溶滴離脱性が悪く、スパッタが多かった。比較例No.49は、Crが下限未満のため、腐食減量が多く耐候性が不足した。比較例No.50はCrが上限を超えるため、吸収エネルギーが不足した。また、異材継手において強度過剰で低温割れが発生した。比較例No.51は、Alが上限を超えるため、吸収エネルギーが不足し、スパッタも多かった。 Comparative Example No. For 42, 43, and 44, the respective ranges of C and P each satisfy the specification, but C × P × 10 4 exceeds the range of the present invention, so that hot cracking occurred. Comparative Example No. In No. 45, since S exceeded the upper limit, hot cracking occurred. Moreover, although the absorption energy was barely satisfied between the weather resistant steels, the dissimilar joint was not satisfied. Comparative Example No. No. 46 constituted the copper component only by the plating component, but its value was less than the lower limit value, so that the corrosion weight loss was large and the weather resistance was insufficient. Comparative Example No. In No. 47, since Cu exceeded the upper limit, hot cracking occurred. Comparative Example No. In No. 48, since the copper plating amount exceeded the upper limit, surface oxidation during the formation of the droplets was suppressed, so that the surface tension increased and the droplet detachment property was poor, and there was a lot of sputtering. Comparative Example No. In No. 49, since Cr was less than the lower limit, the corrosion weight loss was large and the weather resistance was insufficient. Comparative Example No. No. 50 had insufficient absorbed energy because Cr exceeded the upper limit. Moreover, cold cracking occurred due to excessive strength in the dissimilar joint. Comparative Example No. In 51, since Al exceeded the upper limit, the absorbed energy was insufficient, and there was a lot of sputtering.

比較例No.52は、Tiが下限未満であるため、結晶粒が粗大となって吸収エネルギーが低かった。また、アーク安定性も劣りスパッタが多かった。比較例No.53は、JIS Z3315 YGA−50WそのままのワイヤでTiが含まれていない。そのため、これも同様に結晶粒が粗大となって吸収エネルギーが低く、また、アーク安定性も劣りスパッタが多かった。比較例No.54は、CO用のワイヤであり、Tiが上限を超えるものである。そのため、SR処理時に過剰なTi酸化物が析出することにより、吸収エネルギーが低下した。比較例No.55は、Moが上限を超えるため、異材継手の際に強度過剰となって低温割れが発生した。比較例No.56は、Nが上限を超えるため、ブローホールが発生し、そのため引張強さも低かった。また、脆化して吸収エネルギーも低かった。比較例No.57は、Oが上限を超えるため、溶融池での脱酸が促進され、吸収エネルギーが低下した。No.58は、Niが上限を超えるため、スパッタが多くなるとともに、溶融池の粘性が過剰となってビード形状が凸を呈した。そのため、パス毎に研削整形が必要であった。No.59はBが上限を超えるため、高温割れが発生した。No.60はKが上限を超えるため、ワイヤ表面の潤滑性が損なわれてワイヤ送給性が劣り、アーク不安定であった。 Comparative Example No. In No. 52, since Ti was less than the lower limit, the crystal grains were coarse and the absorbed energy was low. In addition, the arc stability was poor and there were many spatters. Comparative Example No. 53 is a JIS Z3315 YGA-50W wire as it is, and does not contain Ti. For this reason, the crystal grains are also coarse, the absorbed energy is low, the arc stability is inferior, and there is much sputtering. Comparative Example No. 54 is a wire for CO 2 and Ti exceeds the upper limit. Therefore, the absorbed energy was reduced due to the precipitation of excess Ti oxide during the SR treatment. Comparative Example No. In No. 55, since Mo exceeded the upper limit, the strength was excessive in the case of the dissimilar joint, and cold cracking occurred. Comparative Example No. As for No. 56, since N exceeded the upper limit, blow holes were generated, and the tensile strength was also low. Moreover, it was embrittled and the absorbed energy was low. Comparative Example No. In 57, since O exceeded the upper limit, deoxidation in the molten pool was promoted, and the absorbed energy decreased. No. As for No. 58, since Ni exceeded the upper limit, spatter increased and the viscosity of the molten pool became excessive, and the bead shape became convex. Therefore, grinding shaping is necessary for each pass. No. In 59, since B exceeded the upper limit, hot cracking occurred. No. Since K exceeded the upper limit of 60, the lubricity of the wire surface was impaired, the wire feedability was poor, and the arc was unstable.

比較例No.61は、シールドガスがAr+CO系であるが、Ar比率が下限未満であるため、溶滴移行がスプレー状態を維持できず、スパッタ発生量が多かった。また、溶融池の過剰酸化のため、吸収エネルギーも低かった。さらに、ビード形状もなじみ性が悪くオーバーラップ状となった。比較例No.62は、Ar+CO系であるが、Ar比率が上限を超えるため、過剰なスプレーアーク状態となり、Arを巻込んでブローホールが発生した。また、溶融池の粘性が高くなりすぎてビード形状が凸になった。比較例No.63は、シールドガスがAr+O系であるが、Ar比率が下限未満であるため、溶滴移行がスプレー状態を維持できず、スパッタ発生量が多かった。また、溶融池の過剰酸化のため、吸収エネルギーも低かった。さらに、ビード形状もなじみ性が悪くオーバーラップ状となった。比較例No.64は、Ar+O系であるが、Ar比率が上限を超えるため、過剰なスプレーアーク状態となり、Arを巻込んでブローホールが発生した。また、溶融池の粘性が高くなりすぎてビード形状が凸になった。さらに、酸素源が少なすぎて母材側陰極点が不安定となり、アーク発生方向が振れてしまい、スパッタも多く発生した。 Comparative Example No. In 61, the shielding gas is Ar + CO 2 , but since the Ar ratio is less than the lower limit, the droplet transfer cannot maintain the spray state, and the amount of spatter generated is large. Also, the absorbed energy was low due to excessive oxidation of the molten pool. In addition, the bead shape was poorly conformable and became an overlapped shape. Comparative Example No. 62 is an Ar + CO 2 system, but since the Ar ratio exceeded the upper limit, an excessive spray arc state occurred, and Ar was entrained to generate blowholes. Moreover, the viscosity of the molten pool became too high, and the bead shape became convex. Comparative Example No. In No. 63, the shielding gas is Ar + O 2 , but since the Ar ratio is less than the lower limit, the droplet transfer cannot maintain the spray state, and the amount of spatter generated is large. Also, the absorbed energy was low due to excessive oxidation of the molten pool. In addition, the bead shape was poorly conformable and became an overlapped shape. Comparative Example No. 64 is an Ar + O 2 system, but since the Ar ratio exceeded the upper limit, it became an excessive spray arc state, and Ar was entrained to generate blowholes. Moreover, the viscosity of the molten pool became too high, and the bead shape became convex. Furthermore, the oxygen source was too small, the base-side cathode spot became unstable, the arc generation direction was changed, and a lot of spatter was generated.

比較例No.65は、Ar+CO+O系であるが、Ar比率が下限未満であるため、溶滴移行がスプレー状態を維持できず、スパッタ発生量が多かった。また、溶融池の過剰酸化のため、吸収エネルギーも低かった。さらに、ビード形状もなじみ性が悪くオーバーラップ状となった。比較例No.66は、Ar+CO+O系であるが、Ar比率が上限を超えるため、過剰なスプレーアーク状態となり、Arを巻込んでブローホールが発生した。また、溶融池の粘性が高くなりすぎてビード形状が凸になった。比較例No.67は、CO用ワイヤの一種とCOガスの組合せの例である。そのため、スパッタ発生量が非常に多い、ビード形状のなじみ性が悪くオーバーラップ状となる、吸収エネルギーが低い、異材継手の際の溶込み過剰により低温割れ、高温割れの発生、異材継手の際の耐候性が低いといった数々の短所が生じた。 Comparative Example No. 65 is an Ar + CO 2 + O 2 system, but since the Ar ratio is less than the lower limit, the droplet transfer cannot maintain the spray state, and the amount of spatter generated is large. Also, the absorbed energy was low due to excessive oxidation of the molten pool. In addition, the bead shape was poorly conformable and became an overlapped shape. Comparative Example No. No. 66 is an Ar + CO 2 + O 2 system, but the Ar ratio exceeded the upper limit, so that an excessive spray arc state occurred, and Ar was entrained to generate blowholes. Moreover, the viscosity of the molten pool became too high, and the bead shape became convex. Comparative Example No. 67 is an example of a combination of a kind of CO 2 for wire and CO 2 gas. Therefore, the spatter generation amount is very large, the conformability of the bead shape is poor and overlapped, the absorbed energy is low, cold cracking due to excessive penetration in the dissimilar material joint, the occurrence of hot cracking, the dissimilar material joint There were a number of disadvantages, such as low weather resistance.

No.68は、C、Pそれぞれ単独の範囲は規定を満足しているが、C×P×10が本発明の範囲を超えているため、高温割れが発生した。No.69は、CO用のワイヤであり、Tiが上限を超えるものである。そのため、SR処理時に過剰なTi酸化物が析出することにより、吸収エネルギーが低下した。No.70は、シールドガスがAr+CO系であるが、Ar比率が下限未満であるため、溶滴移行がスプレー状態を維持できず、スパッタ発生量が多かった。また、溶融池の過剰酸化のため、吸収エネルギーも低かった。さらに、ビード形状もなじみ性が悪くオーバーラップ状となった。No.71は、Ar+O系であるが、Ar比率が上限を超えるため、過剰なスプレーアーク状態となり、Arを巻込んでブローホールが発生した。また、溶融池の粘性が高くなりすぎてビード形状が凸になった。さらに、酸素源が少なすぎて母材側陰極点が不安定となり、アーク発生方向が振れてしまい、スパッタも多く発生した。
以上、本発明の好適な実施形態について説明したが、本発明は前記実施形態に限定されるものではなく本発明の範囲を逸脱しない範囲で変更することができる。
No. 68, C, although P alone ranges satisfies the provisions, for C × P × 10 4 is beyond the scope of the present invention, hot cracking occurred. No. 69 is a wire for CO 2, in which Ti exceeds the upper limit. Therefore, the absorbed energy was reduced due to the precipitation of excess Ti oxide during the SR treatment. No. In No. 70, the shielding gas is Ar + CO 2 , but since the Ar ratio is less than the lower limit, the droplet transfer cannot maintain the spray state, and the amount of spatter generated is large. Also, the absorbed energy was low due to excessive oxidation of the molten pool. In addition, the bead shape was poorly conformable and became an overlapped shape. No. 71 is an Ar + O 2 system, but since the Ar ratio exceeded the upper limit, it became an excessive spray arc state, and Ar was entrained to generate blowholes. Moreover, the viscosity of the molten pool became too high, and the bead shape became convex. Furthermore, the oxygen source was too small, the base-side cathode spot became unstable, the arc generation direction was changed, and a lot of spatter was generated.
The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and can be modified without departing from the scope of the present invention.

継手開先断面形状を示す模式図である。It is a schematic diagram which shows a joint groove cross-sectional shape.

符号の説明Explanation of symbols

1 耐候性鋼
2 鋳鋼または耐候性鋼
3 溶接金属
1 Weather-resistant steel 2 Cast steel or weather-resistant steel 3 Weld metal

Claims (3)

Arと、COまたはOの1種以上との混合ガスを使用する耐候性鋼用ガスシールドアーク溶接ソリッドワイヤにおいて、
前記ソリッドワイヤが鋼合金製のワイヤ素線の表面にCuメッキ層を設けたものであって、
C:0.01〜0.12質量%、Si:0.20〜1.00質量%、Mn:1.00〜2.00質量%、P:0.007〜0.030質量%、S:0.025質量%以下、Cu:0.30〜0.60質量%、Cr:0.50〜0.80質量%、Al:0.020質量%以下、Ti:0.05〜0.17質量%、Mo:0.10質量%以下、N:0.0090質量%以下、O:0.0150質量%以下を含有し、残部がFeおよび不可避的不純物とからなり、Cu:0.30〜0.60質量%のうち、前記Cuメッキ層分がCu:0.25質量%以下であり、Cの含有量およびPの含有量を用いて、C×P×10で計算される係数が22以下であることを特徴とする耐候性鋼用ガスシールドアーク溶接ソリッドワイヤ。
In gas shielded arc welding solid wire for weathering steel using a mixed gas of Ar and one or more of CO 2 or O 2 ,
The solid wire is provided with a Cu plating layer on the surface of a wire element made of steel alloy,
C: 0.01-0.12 mass%, Si: 0.20-1.00 mass%, Mn: 1.00-2.00 mass%, P: 0.007-0.030 mass%, S: 0.025 mass% or less, Cu: 0.30 to 0.60 mass%, Cr: 0.50 to 0.80 mass%, Al: 0.020 mass% or less, Ti: 0.05 to 0.17 mass% %, Mo: 0.10% by mass or less, N: 0.0090% by mass or less, O: 0.0150% by mass or less, with the balance being Fe and inevitable impurities, Cu: 0.30-0 Among the 60 mass%, the Cu plating layer content is Cu: 0.25 mass% or less, and the coefficient calculated by C × P × 10 4 using the C content and the P content is 22 A gas shielded arc welding solid wire for weatherproof steel, characterized by:
前記耐候性鋼用ガスシールドアーク溶接ソリッドワイヤにおいて、さらに、Ni:0.05〜0.80質量%、B:0.0005〜0.0030質量%、K:0.5〜20ppmのうち1種以上を含有することを特徴とする請求項1に記載の耐候性鋼用ガスシールドアーク溶接ソリッドワイヤ。 In the gas-shielded arc-welded solid wire for weatherproof steel, Ni: 0.05 to 0.80 mass%, B: 0.0005 to 0.0030 mass%, and K: 0.5 to 20 ppm The gas-shielded arc-welded solid wire for weatherproof steel according to claim 1, comprising the above. 請求項1または請求項2に記載の耐候性鋼用ガスシールドアーク溶接ソリッドワイヤを使用し、耐候性鋼同士、または、耐候性鋼と炭素鋼とを溶接するガスシールドアーク溶接方法において、
シールドガスとして、Ar:75〜95体積%で残部CO、Ar:90〜98体積%で残部O、およびAr:75〜95体積%で残部CO+Oのいずれか1種である混合ガスを使用することを特徴とするガスシールドアーク溶接方法。
In the gas shielded arc welding method using the gas shielded arc welding solid wire for weathering steel according to claim 1 or claim 2 and welding the weathering steels or between the weathering steel and the carbon steel,
As a shielding gas, Ar: 75 to 95% by volume of the remaining CO 2 , Ar: 90 to 98% by volume of the remaining O 2 , and Ar: 75 to 95% by volume of the remaining CO 2 + O 2 A gas shielded arc welding method characterized by using gas.
JP2006124713A 2006-04-28 2006-04-28 Gas shielded arc welding solid wire for weathering steel and gas shielded arc welding method using the same Active JP5021953B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006124713A JP5021953B2 (en) 2006-04-28 2006-04-28 Gas shielded arc welding solid wire for weathering steel and gas shielded arc welding method using the same
CNA2007100916501A CN101062534A (en) 2006-04-28 2007-04-03 Gas protection arc welding solid wire for climate-resistant steel and gas protection arc welding using same
KR1020070040951A KR100876496B1 (en) 2006-04-28 2007-04-26 Gas shielded arc welding solid wire for weathering steel and gas shielded arc welding method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006124713A JP5021953B2 (en) 2006-04-28 2006-04-28 Gas shielded arc welding solid wire for weathering steel and gas shielded arc welding method using the same

Publications (2)

Publication Number Publication Date
JP2007296541A JP2007296541A (en) 2007-11-15
JP5021953B2 true JP5021953B2 (en) 2012-09-12

Family

ID=38766470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006124713A Active JP5021953B2 (en) 2006-04-28 2006-04-28 Gas shielded arc welding solid wire for weathering steel and gas shielded arc welding method using the same

Country Status (3)

Country Link
JP (1) JP5021953B2 (en)
KR (1) KR100876496B1 (en)
CN (1) CN101062534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108515255A (en) * 2018-04-04 2018-09-11 石家庄铁道大学 A kind of welding method of power shovel dipper
EP4144478A4 (en) * 2020-04-28 2023-10-18 Posco Welding wires for obtaining giga-grade welds, welded structures manufactured using same, and welding method thereof

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178737A (en) * 2008-01-30 2009-08-13 Kobe Steel Ltd Solid wire for carbon dioxide shielded arc welding
JP5284246B2 (en) * 2009-03-03 2013-09-11 株式会社神戸製鋼所 Solid wire for welding
CN102756219B (en) * 2011-04-25 2018-09-04 宝山钢铁股份有限公司 A kind of welding wire, wire rod and its application
CN102248324B (en) * 2011-06-27 2013-06-05 武汉钢铁(集团)公司 CO2 gas shield welding wire capable of reducing welding spatter
CN102658440B (en) * 2012-04-24 2014-07-23 宝山钢铁股份有限公司 High corrosion resistant type weather-resistant submerged arc welding wire and wire rod for railway vehicles
CN102990207A (en) * 2012-12-10 2013-03-27 南车四方车辆有限公司 Method for welding weather-proof steel plates
CN105195919A (en) * 2014-06-11 2015-12-30 鞍钢股份有限公司 Gas protection welding wire for high-strength weathering steel and steel for gas protection welding wire
CN106181114A (en) * 2015-04-29 2016-12-07 海宁瑞奥金属科技有限公司 The low spatter gas shield welding wire that arc stability is excellent
CN106312365A (en) * 2015-06-16 2017-01-11 鞍钢股份有限公司 A high-strength high-toughness weather-resistant gas protection welding wire for steel
CN105108451A (en) * 2015-08-10 2015-12-02 安徽富煌钢构股份有限公司 Welding method for dissimilar steel plate
CN105234584B (en) * 2015-08-13 2018-03-16 武汉铁锚焊接材料股份有限公司 A kind of high corrosion resistant type weathering steel Shielding Solid Welding Wire
CN105643139A (en) * 2016-03-25 2016-06-08 首钢总公司 Solid welding wire for high-strength weather-resistant steel
CN110385545B (en) * 2018-10-25 2022-01-11 唐山师范学院 Welding wire steel for manual argon arc welding
CN109483084A (en) * 2018-11-21 2019-03-19 四川石油天然气建设工程有限责任公司 One kind being used for acidic environment conveyance conduit welding material and welding method
CN113631321A (en) * 2019-03-29 2021-11-09 杰富意钢铁株式会社 Method for manufacturing high-strength welded joint for extremely low temperature
JP6771638B1 (en) * 2019-11-07 2020-10-21 株式会社神戸製鋼所 Gas shield arc welding wire
CN110802343B (en) * 2019-11-12 2021-10-15 钢铁研究总院 High-performance weather-resistant welding rod for coating-free weather-resistant bridge steel
CN111001907A (en) * 2019-12-05 2020-04-14 渤海造船厂集团有限公司 Welding wire for ultra-low carbon martensite high-strength and high-toughness gas metal arc welding
CN111015016A (en) * 2019-12-05 2020-04-17 渤海造船厂集团有限公司 Welding wire for ultra-low carbon martensite non-consumable electrode gas shielded welding
CN113695784B (en) * 2021-07-29 2022-09-16 钢铁研究总院 Preparation and application of welding wire/welding flux for FCB large linear energy submerged arc welding
CN115026388B (en) * 2022-06-27 2023-12-26 张家港荣盛特钢有限公司 Super-large linear energy double-wire electro-gas welding method with high transition coefficient
CN115283800A (en) * 2022-08-31 2022-11-04 中国铁建大桥工程局集团有限公司 Welding method for double-metal high-strength composite bridge steel X-shaped joint

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2780140B2 (en) * 1991-03-20 1998-07-30 新日本製鐵株式会社 Welding wire for fire-resistant steel with excellent weather resistance
JPH08132280A (en) * 1994-11-11 1996-05-28 Kawasaki Steel Corp Steel wire for gas shielded arc welding with extremely low spatter
WO2003064103A1 (en) 2002-01-31 2003-08-07 Jfe Steel Corporation Steel wire for carbon dioxide shielded arc welding and welding process using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108515255A (en) * 2018-04-04 2018-09-11 石家庄铁道大学 A kind of welding method of power shovel dipper
EP4144478A4 (en) * 2020-04-28 2023-10-18 Posco Welding wires for obtaining giga-grade welds, welded structures manufactured using same, and welding method thereof

Also Published As

Publication number Publication date
KR20070106429A (en) 2007-11-01
KR100876496B1 (en) 2008-12-31
JP2007296541A (en) 2007-11-15
CN101062534A (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP5021953B2 (en) Gas shielded arc welding solid wire for weathering steel and gas shielded arc welding method using the same
JP3758040B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
CA2550454C (en) Hardfacing electrode
JP5098217B2 (en) Welded joints of galvanized steel sheets excellent in corrosion resistance and zinc embrittlement cracking resistance of welds and methods for producing the same
EP3427890B1 (en) Flux-cored wire, manufacturing method of welded joint, and welded joint
CA3011332C (en) Flux-cored wire, manufacturing method of welded joint, and welded joint
EP2374571B1 (en) Flux-cored wire for gas-shielding arc welding
RU2638483C2 (en) Wire with flux core
KR100920549B1 (en) Flux-cored wire for gas shielded arc welding
EP3539715A1 (en) Flux-cored wire, method of manufacturing welded joint, and welded joint
EP2952287B1 (en) Covered electrode
JP4303655B2 (en) Welding method for galvanized steel sheets with excellent corrosion resistance and zinc embrittlement crack resistance
JP2012081514A (en) Fillet arc welding method of galvanized steel sheet
JP5744816B2 (en) Bond flux for submerged arc welding
US11161195B2 (en) Ni-based alloy wire for submerged arc welding and method of manufacturing welding joint
CN112512742B (en) Solid welding wire and method for manufacturing welded joint
JP6829111B2 (en) Filling material for TIG welding
JP2780140B2 (en) Welding wire for fire-resistant steel with excellent weather resistance
JP2000141081A (en) Solid wire for gas shielded arc welding
WO2013129263A1 (en) Welding joint and steel having exceptional galvanic corrosion resistance
JP2008264812A (en) Groove filler for submerged-arc welding
JP2022061805A (en) Method for manufacturing weld joint, and flux-cored cut wire for groove filling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120615

R150 Certificate of patent or registration of utility model

Ref document number: 5021953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3