JP6486844B2 - Flux-cored wire for gas shielded arc welding - Google Patents

Flux-cored wire for gas shielded arc welding Download PDF

Info

Publication number
JP6486844B2
JP6486844B2 JP2016014826A JP2016014826A JP6486844B2 JP 6486844 B2 JP6486844 B2 JP 6486844B2 JP 2016014826 A JP2016014826 A JP 2016014826A JP 2016014826 A JP2016014826 A JP 2016014826A JP 6486844 B2 JP6486844 B2 JP 6486844B2
Authority
JP
Japan
Prior art keywords
flux
welding
wire
weld metal
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016014826A
Other languages
Japanese (ja)
Other versions
JP2017131950A (en
Inventor
直樹 坂林
直樹 坂林
雅哉 齋藤
雅哉 齋藤
木本 勇
勇 木本
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP2016014826A priority Critical patent/JP6486844B2/en
Publication of JP2017131950A publication Critical patent/JP2017131950A/en
Application granted granted Critical
Publication of JP6486844B2 publication Critical patent/JP6486844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

本発明は、490〜550MPa級鋼のガスシールドアーク溶接用フラックス入りワイヤに関し、特に大電流溶接でのスラグ剥離性および溶接作業性に優れ、さらに、大入熱・高パス間温度の溶接施工条件においても良好な機械的性能および優れた溶接金属を得ることができるガスシールドアーク溶接用フラックス入りワイヤに関する。   The present invention relates to a flux-cored wire for gas shielded arc welding of 490 to 550 MPa class steel, and is particularly excellent in slag peelability and welding workability in high current welding, and further, welding conditions for large heat input and high pass temperature In particular, the present invention relates to a flux-cored wire for gas shielded arc welding which can obtain good mechanical performance and excellent weld metal.

建築鉄骨分野において、溶接施工の能率向上を図るため、溶接用ソリッドワイヤを用いた高電流域でのガスシールドアーク溶接が行われている。溶接用ソリッドワイヤでの高電流溶接では、1層毎の溶着量が多いので溶接の高能率化が可能であるが、アークが不安定でスパッタ発生量が多く、ビード外観・形状が不良であるなど溶接作業性が悪いという問題がある。また、スパッタが大粒になるため、鋼板表面に付着したスパッタを除去する作業が困難で作業能率も不良であった。さらに、ワイヤ中にSi、MnやTiの脱酸成分やBを多く含有しているため、スラグ生成量が多く、かつスラグが溶接金属から剥離しにくいという問題があった。   In the field of building steel frames, in order to improve the efficiency of welding work, gas shield arc welding is performed in a high current region using a solid wire for welding. High current welding with solid wire for welding can increase the welding efficiency because there is a large amount of welding per layer, but the arc is unstable, the amount of spatter generated is large, and the bead appearance and shape are poor. There is a problem that welding workability is bad. Further, since the spatter becomes large, it is difficult to remove the spatter adhering to the steel plate surface, and the work efficiency is poor. Further, since the wire contains a large amount of deoxidizing components such as Si, Mn and Ti and B, there is a problem that the amount of slag generated is large and the slag is difficult to peel from the weld metal.

これら問題を解決する手段として、スパッタ発生量が少ないガスシールドアーク溶接用ソリッドワイヤの開発が行われており、例えば特開2006−95551号公報(特許文献1)には、ワイヤ表面に二硫化モリブデン、リン脂質および常温で液体の潤滑剤からなる送給潤滑剤を適量付着させることでワイヤ送給性を良好にし、溶接時のスパッタ発生量を低減する技術が開示されている。また、特開2009−255142号公報(特許文献2)には、ワイヤ表層下にアルカリ金属含浸部を有することでスパッタ発生量を低減できる溶接用ソリッドワイヤが提案されている。しかし、溶接用ソリッドワイヤでの高電流溶接では、発生するスパッタ自体が多いため、たとえワイヤ送給性が良好になってもスパッタ発生量を十分に低減できず、また、スラグ剥離性、ビード外観・形状も改善されないという問題があった。   As means for solving these problems, a solid wire for gas shielded arc welding with less spatter generation has been developed. For example, Japanese Patent Laid-Open No. 2006-95551 (Patent Document 1) discloses molybdenum disulfide on the wire surface. In addition, a technique is disclosed in which a suitable amount of a feed lubricant composed of a phospholipid and a lubricant that is liquid at room temperature is attached to improve wire feedability and reduce the amount of spatter generated during welding. Japanese Patent Application Laid-Open No. 2009-255142 (Patent Document 2) proposes a welding solid wire that has an alkali metal impregnated portion under the surface of the wire to reduce the amount of spatter generated. However, high current welding with welding solid wire generates a lot of spatter itself, so even if the wire feedability is good, the spatter generation amount cannot be reduced sufficiently, and slag peelability and bead appearance・ There was a problem that the shape was not improved.

近年では、更なる溶接施工の高能率化の目的から、大入熱・高パス間温度の溶接施工条件に対応するガスシールドアーク溶接用ソリッドワイヤが開発されておりJIS Z3312 YGW18に規定されている。このようなガスシールドアーク溶接用ソリッドワイヤは、溶接金属の強度および靭性の低下を招くことなく溶接施工が可能な条件として、引張強さが490MPa級の高張力鋼に対して、最大入熱40kJ/cm、最高パス間温度350℃の溶接施工条件が許容される。また、引張強さが520MPa級の高張力鋼に対しては、最大入熱30kJ/cm、最高パス間温度250℃の溶接施工条件が許容される。   In recent years, for the purpose of further improving the efficiency of welding, a solid wire for gas shielded arc welding corresponding to welding conditions of large heat input and high-pass temperature has been developed and is specified in JIS Z3312 YGW18. . Such a solid wire for gas shielded arc welding has a maximum heat input of 40 kJ with respect to a high-strength steel having a tensile strength of 490 MPa as a condition capable of welding without causing a decrease in the strength and toughness of the weld metal. / Cm and a welding condition of a maximum pass temperature of 350 ° C. are allowed. For high-tensile steel with a tensile strength of 520 MPa, welding conditions with a maximum heat input of 30 kJ / cm and a maximum interpass temperature of 250 ° C. are allowed.

大入熱・高パス間温度の溶接施工条件に対応したガスシールドアーク溶接用ソリッドワイヤは、例えば、特開平10−230387号公報(特許文献3)、特開平11−90678号公報(特許文献4)および特開2001−287086号公報(特許文献5)等にあるように、ワイヤ中にMo、Cr等を多く含有させたものが提案されている。これらソリッドワイヤによれば、大入熱・高パス間温度の溶接施工条件においても、溶接金属の強度および靭性を確保することが可能であるが、やはりアークが不安定でスパッタ発生量が多く、ビード外観・形状が不良でスラグ剥離性が悪いなど溶接作業性が悪いという問題があった。   For example, Japanese Patent Laid-Open No. 10-230387 (Patent Document 3) and Japanese Patent Laid-Open No. 11-90678 (Patent Document 4) disclose solid wires for gas shielded arc welding corresponding to welding conditions of large heat input and high pass temperature. ) And Japanese Patent Application Laid-Open No. 2001-287086 (Patent Document 5) and the like, a wire containing a large amount of Mo, Cr, or the like has been proposed. According to these solid wires, it is possible to ensure the strength and toughness of the weld metal even under welding conditions with high heat input and high pass temperature, but the arc is unstable and the amount of spatter is large. There was a problem that welding workability was poor such as poor bead appearance and shape and poor slag peelability.

また、大入熱・高パス間温度の溶接施工条件で溶接金属の強度および靭性を確保しつつ、溶接作業性が良好なガスシールドアーク溶接用ワイヤとして、例えば、特開2005−279683(特許文献6)、特開2011−25298号公報(特許文献7)には、大入熱・高パス間温度の溶接施工条件の下で、良好な溶接作業性が得られるとともに、機械的性能に優れた溶接金属が得られるフラックス入りワイヤが開示されている。しかし、これらのフラックス入りワイヤでは、溶接用ソリッドワイヤでの高電流溶接よりもスパッタ発生量は減少できるものの、やはりスパッタ発生量は総じて多く、また、スラグ生成量が多いので、スラグ巻込み等の溶接欠陥が発生しやすいという問題があった。   Further, as a gas shielded arc welding wire having good welding workability while ensuring the strength and toughness of the weld metal under the welding conditions of large heat input and high pass temperature, for example, JP-A-2005-279683 (Patent Document) 6), Japanese Patent Application Laid-Open No. 2011-25298 (Patent Document 7) has excellent welding workability and excellent mechanical performance under welding conditions of large heat input and high pass temperature. A flux cored wire from which a weld metal is obtained is disclosed. However, with these flux-cored wires, spatter generation can be reduced compared with high current welding with solid welding wire, but spatter generation is generally large and slag generation is large. There was a problem that welding defects were likely to occur.

一方、大入熱・高パス間温度の溶接施工条件で溶接金属の強度および靭性を確保し、スラグ剥離性が良好で溶接作業性および耐溶接割れ性が良好なガスシールドアーク溶接用ソリッドワイヤとして、例えば、特開2009−106966(特許文献8)には、スラグ結晶化度指数なる式でスラグ剥離性について評価し改善を行っている。このソリッドワイヤは、スラグ剥離性については良好であるがスパッタ発生量は多く、鋼板表面に多くのスパッタが付着するため除去作業が困難となり作業能率も悪いという問題があった。   On the other hand, as a solid wire for gas shielded arc welding that secures the strength and toughness of the weld metal under the welding conditions of high heat input and high-pass temperature, has good slag peelability, and has good welding workability and weld crack resistance For example, JP 2009-106966 A (Patent Document 8) evaluates and improves the slag peelability by an expression of slag crystallinity index. This solid wire has good slag removability, but a large amount of spatter is generated, and a lot of spatter adheres to the surface of the steel plate, so that the removal work becomes difficult and the work efficiency is poor.

特開2006−95551号公報JP 2006-95551 A 特開2009−255142号公報JP 2009-255142 A 特開平10−230387号公報JP-A-10-230387 特開平11−90678号公報Japanese Patent Laid-Open No. 11-90678 特開2001−287086号公報JP 2001-287086 A 特開2005−279683号公報JP 2005-279683 A 特開2011−25298号公報JP 2011-25298 A 特開2009−106966号公報JP 2009-106966 A

本発明は、上記問題点を解決するためになされたものであり、490〜550MPa級鋼の大電流溶接でスラグ剥離性が良好でスパッタ発生量が少なく、アークの安定性およびビード外観・形状が良好で、スラグ巻き込み等の溶接欠陥が少ないなど溶接作業性に優れ、さらに、大入熱および高パス間温度の溶接施工条件で適正な強度と靭性を有する溶接金属が得られるガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。   The present invention has been made in order to solve the above problems, and has high current welding of 490 to 550 MPa class steel with good slag releasability, low spatter generation, arc stability and bead appearance / shape. For gas shielded arc welding that is excellent in welding workability such as slag entrainment and has excellent welding workability, and can obtain weld metal with appropriate strength and toughness under welding conditions of high heat input and high pass temperature It aims at providing a flux cored wire.

本発明者らは、上記課題を解決するために、490〜550MPa級鋼の大電流溶接、さらに大入熱・高パス間温度でのガスシールドアーク溶接において、適正な強度および靭性を有する溶接金属が得られるとともに、アークが安定し、スラグ剥離性が良好でスパッタ発生量が少なく、ビード外観・形状が良好で、溶接欠陥が防止できるなど良好な溶接作業性が得られるガスシールドアーク溶接用フラックス入りワイヤの成分組成について詳細に検討した。   In order to solve the above-mentioned problems, the present inventors have developed a weld metal having appropriate strength and toughness in high-current welding of 490 to 550 MPa class steel, and further in gas shielded arc welding at a high heat input and high interpass temperature. Gas shielded arc welding flux that provides excellent welding workability such as stable arc, good slag removability, low spatter generation, good bead appearance and shape, and prevention of welding defects The component composition of the cored wire was examined in detail.

その結果、大電流溶接での溶接施工条件において、アークの安定性を維持しスパッタ発生量を低減させるべく、Na化合物とK化合物の量および弗素化合物量を適正にするとともに、SiOを適量含有させることでビード外観・形状を良好にすることを見出した。 As a result, in order to maintain the stability of the arc and reduce the amount of spatter generated under welding conditions for high current welding, the amount of Na compound and K compound and the amount of fluorine compound are made appropriate, and an appropriate amount of SiO 2 is contained. It has been found that the appearance and shape of the bead are improved.

また、大電流での溶接施工条件における溶接金属の適正な強度と同時に安定した高靭性を達成させるためには、ワイヤ中のスラグ生成剤である酸化物を極力減らし、合金成分のC、Si、Mn、Cu、Ti、B、Alのそれぞれの適正化が有効であることを知見した。さらに、ワイヤ中のMo、B量を適正にすることにより、大入熱・高パス間温度の溶接施工条件においても、溶接金属の靭性を低下させることなく高強度化が可能であることも知見した。   Moreover, in order to achieve stable high toughness at the same time as the appropriate strength of the weld metal under welding conditions with a large current, the oxide as the slag forming agent in the wire is reduced as much as possible, and the alloy components C, Si, It has been found that optimization of Mn, Cu, Ti, B, and Al is effective. Furthermore, it is also found that by making the Mo and B contents in the wire appropriate, it is possible to increase the strength without reducing the toughness of the weld metal even under welding conditions of high heat input and high pass temperature. did.

また、大電流での溶接施工条件において溶接金属の適正な強度と靭性を確保しつつ、スラグ剥離性を改善するため、スラグの表面張力、粘性、凝固温度およびスラグと溶着金属表面のぬれ性といった物理的性質について影響を与える成分を検討した。その結果、ワイヤ成分中のSi、Mn、Ti、S量の適正化がスラグ剥離性を改善することを知見した。   Also, in order to improve the slag peelability while ensuring the appropriate strength and toughness of the weld metal under the welding conditions at high current, the slag surface tension, viscosity, solidification temperature and wettability of the slag and weld metal surface The components that influence the physical properties were investigated. As a result, it has been found that optimization of the amounts of Si, Mn, Ti, and S in the wire component improves the slag peelability.

本発明はこれらの知見に基づいてなされたものであって、その要旨は、鋼製外皮にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、C:0.05〜0.18%、Si:0.6〜1.6%、Mn:1.8〜2.8%、S:0.008〜0.030%、Cu:0.05〜0.5%、Ti:0.05〜0.25%、B:0.0015〜0.010%を含有し、Al:0.01%以下で、かつ、Mn/(Si+Mn+Ti)の値が0.62以上、Ti/(Si+Mn+Ti)の値が0.06以下、Ti/Sの値が15以下で、さらに、ワイヤ全質量に対する質量%で、フラックス中に、弗素化合物:F換算値の合計で0.01〜0.1%、SiO:0.01〜0.2%、Na化合物およびK化合物:NaO換算値とKO換算値の合計で0.02〜0.15%を含有し、残部は鋼製外皮のFe、鉄粉、鉄合金粉のFe分および不可避的不純物からなることを特徴とする。
また、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、Mo:0.1〜0.5%をさらに含有することも特徴とするガスシールドアーク溶接用フラックス入りワイヤにある。
The present invention has been made on the basis of these findings, and the gist of the present invention is that in a flux-cored wire for gas shielded arc welding in which a steel outer shell is filled with a flux, in mass% with respect to the total mass of the wire, In total of outer skin and flux, C: 0.05 to 0.18%, Si: 0.6 to 1.6%, Mn: 1.8 to 2.8%, S: 0.008 to 0.030% Cu: 0.05-0.5%, Ti: 0.05-0.25%, B: 0.0015-0.010%, Al: 0.01% or less, and Mn / The value of (Si + Mn + Ti) is 0.62 or more, the value of Ti / (Si + Mn + Ti) is 0.06 or less, the value of Ti / S is 15 or less, and mass% with respect to the total mass of the wire. : 0.01 to 0.1% in total of F conversion value, SiO 2 : 0.01 to 0.2%, Na compound and K compound: 0.02 to 0.15% in total of Na 2 O converted value and K 2 O converted value, the balance being Fe of steel outer shell It is characterized by comprising the Fe content of iron powder and iron alloy powder and inevitable impurities.
In addition, the present invention provides a flux-cored wire for gas shielded arc welding, which further contains Mo: 0.1 to 0.5% in terms of mass% with respect to the total mass of the wire and is a total of the steel outer sheath and the flux.

本発明のガスシールドアーク溶接用フラックス入りワイヤによれば、大電流溶接において、スラグ剥離性が良好でスパッタ発生量が少なく、アークの安定性およびビード外観・形状が優れ、スラグ量が少なく溶接欠陥が防止できるなど溶接作業性が良好で、さらに、大入熱・高パス間温度の溶接施工条件においても溶接金属の強度および靭性を十分に確保し、高能率に高品質な溶接金属が得られるガスシールドアーク溶接用フラックス入りワイヤを提供することができる。   According to the flux-cored wire for gas shielded arc welding of the present invention, in high current welding, the slag peelability is good and the amount of spatter is small, the arc stability and the bead appearance / shape are excellent, the slag amount is small, and the welding defect Welding workability is good, and weld metal strength and toughness are sufficiently secured even under welding conditions with high heat input and high pass temperature, and high quality weld metal can be obtained with high efficiency. A flux-cored wire for gas shielded arc welding can be provided.

本発明のガスシールドアーク溶接用フラックス入りワイヤは、各成分組成それぞれの単独および共存による相乗効果によりなし得たもので、以下にそれぞれの各成分組成の限定理由を述べる。なお、各成分組成の含有率は、フラックス入りワイヤ全質量に対する質量%で表すものとし、その質量%に関する記載を単に%と記載して表すこととする。   The flux-cored wire for gas shielded arc welding according to the present invention can be obtained by the synergistic effect of each component composition individually and coexisting. The reasons for limitation of each component composition will be described below. In addition, the content rate of each component composition shall be represented by the mass% with respect to the total mass of a flux-cored wire, and the description regarding the mass% will be represented as simply%.

[鋼製外皮とフラックスの合計でC:0.05〜0.18%]
Cは、溶接金属の強度を向上するために必要な元素である。Cが0.05%未満であると、大電流での溶接施工条件で溶接金属の強度が得られない。一方、Cが0.18%を超えると、溶接金属の強度が過剰に高くなり、靭性が低下する。また、高温割れ感受性が高くなる。従って、鋼製外皮とフラックスの合計でCは0.05〜0.18%とする。なお、Cは、鋼製外皮に含まれる成分の他、フラックスから鉄粉および合金粉等として添加できる。
[C: 0.05 to 0.18% in total of steel outer shell and flux]
C is an element necessary for improving the strength of the weld metal. If C is less than 0.05%, the strength of the weld metal cannot be obtained under welding conditions with a large current. On the other hand, when C exceeds 0.18%, the strength of the weld metal becomes excessively high and the toughness is lowered. Moreover, the hot cracking sensitivity becomes high. Therefore, C is 0.05 to 0.18% in total of the steel outer shell and the flux. C can be added from the flux as iron powder, alloy powder, etc., in addition to the components contained in the steel shell.

[鋼製外皮とフラックスの合計でSi:0.6〜1.6%]
Siは、溶接金属の脱酸および溶接金属の強度確保のために添加する。大電流での溶接施工条件ではSiの消耗が多いが、Siが溶接金属に適量歩留まって強度を確保する必要がある。Siが0.6%未満であると、溶接金属が脱酸不足となり、大電流での溶接施工条件で溶接金属の強度および靭性が低下する。一方、Siが1.6%を超えると、溶接金属の強度が高くなり靭性が安定して得られない。また、溶接時に生成するスラグ量が増加してスラグ巻込み等の溶接欠陥が発生しやすくなる。従って、鋼製外皮とフラックスの合計でSiは0.6〜1.6%とする。なお、Siは、鋼製外皮に含まれる成分の他、フラックスから金属SiやFe−Si、Fe−Si−Mn等の合金粉により添加できる。
[Si: 0.6 to 1.6% in total of steel outer shell and flux]
Si is added to deoxidize the weld metal and ensure the strength of the weld metal. Under the welding conditions with a large current, the consumption of Si is large, but it is necessary to secure the strength by obtaining an appropriate amount of Si in the weld metal. When Si is less than 0.6%, the weld metal is insufficiently deoxidized, and the strength and toughness of the weld metal are reduced under welding conditions with a large current. On the other hand, if Si exceeds 1.6%, the strength of the weld metal is increased and the toughness cannot be stably obtained. In addition, the amount of slag generated during welding increases, and welding defects such as slag entrainment tend to occur. Therefore, Si is 0.6 to 1.6% in total of the steel outer shell and the flux. Si can be added from the flux by an alloy powder such as metal Si, Fe—Si, or Fe—Si—Mn in addition to the components contained in the steel outer sheath.

[鋼製外皮とフラックスの合計でMn:1.8〜2.8%]
Mnは、溶接金属の靭性確保と強度向上のために添加する。Mnが1.8%未満であると、大電流での溶接施工条件でMnの消耗が多くなり溶接金属の強度が低く、靭性が十分に確保できなくなる。一方、Mnが2.8%を超えると、溶接金属の靭性が安定して得られない。また、生成スラグ量が増加してスラグ巻込み等の溶接欠陥が発生しやすくなる。従って、鋼製外皮とフラックスの合計でMnは1.8〜2.8%とする。なお、Mnは、鋼製外皮に含まれる成分の他、フラックスから金属MnやFe−Mn、Fe−Si−Mn等の合金粉末により添加できる。
[Mn: 1.8 to 2.8% in total of steel outer shell and flux]
Mn is added to ensure the toughness and improve the strength of the weld metal. If Mn is less than 1.8%, the consumption of Mn increases under welding conditions with a large current, the strength of the weld metal is low, and sufficient toughness cannot be ensured. On the other hand, if Mn exceeds 2.8%, the toughness of the weld metal cannot be stably obtained. In addition, the amount of generated slag increases and welding defects such as slag entrainment tend to occur. Therefore, the total of the steel outer shell and the flux is Mn 1.8 to 2.8%. In addition, Mn can be added from an alloy powder such as metal Mn, Fe—Mn, and Fe—Si—Mn from a flux in addition to the components contained in the steel outer sheath.

[鋼製外皮とフラックスの合計でS:0.008〜0.030%]
Sは、スラグの溶接金属からの剥離を促進する作用と、スラグの結晶化度を低下する作用があり、スラグ剥離性の向上のために添加する。Sが0.008%未満であると、スラグ剥離性が不良となる。一方、Sが0.030%を超えると、溶接金属に割れが発生しやすくなる。従って、Sは0.008〜0.030%とする。なお、Sは、鋼製外皮に含まれる成分の他、フラックスからFe−S等の合金粉末により添加できる。
[S: 0.008 to 0.030% in total of steel outer shell and flux]
S has an action of promoting peeling of the slag from the weld metal and an action of reducing the crystallinity of the slag, and is added to improve the slag peelability. When S is less than 0.008%, the slag peelability becomes poor. On the other hand, if S exceeds 0.030%, cracks are likely to occur in the weld metal. Therefore, S is 0.008 to 0.030%. S can be added from the flux by an alloy powder such as Fe-S in addition to the components contained in the steel outer sheath.

[鋼製外皮とフラックスの合計でCu:0.05〜0.5%]
Cuは、析出強化作用を有し、溶接金属の組織を微細化して靭性を安定させる。Cuが0.05%未満であると、大電流での溶接施工条件で安定した溶接金属の靭性が得られない。一方、Cuが0.5%を超えると、析出脆化が生じて溶接金属の靭性が低下する。また、高温割れが発生しやすくなる。従って、鋼製外皮とフラックスの合計でCuは0.05〜0.5%とする。なお、Cuは、鋼製外皮に含まれる成分および鋼製外皮表面に施したCuめっき分の他、フラックスからの金属CuやFe−Si−Cu等の合金粉により添加できる。
[Cu total of steel outer shell and flux: 0.05 to 0.5%]
Cu has a precipitation strengthening action and refines the structure of the weld metal to stabilize the toughness. When Cu is less than 0.05%, stable weld metal toughness cannot be obtained under welding conditions with a large current. On the other hand, if Cu exceeds 0.5%, precipitation embrittlement occurs, and the toughness of the weld metal decreases. Moreover, it becomes easy to generate | occur | produce a hot crack. Therefore, Cu is made 0.05 to 0.5% in total of the steel outer shell and the flux. Cu can be added by an alloy powder such as metal Cu or Fe—Si—Cu from the flux in addition to the components contained in the steel outer shell and the Cu plating applied to the surface of the steel outer shell.

[鋼製外皮とフラックスの合計でTi:0.05〜0.25%]
Tiは、脱酸剤として作用するとともに、溶接金属中にTiの微細酸化物を生成し溶接金属の靭性をより向上させる。Tiが0.05%未満であると、大電流での溶接施工条件で溶接金属の靭性が低下する。一方、Tiが0.25%を超えると、スラグ生成量が増加してスラグ巻き込み等の欠陥が生じやすくなる。また、溶接金属中の固溶Tiが多くなり靭性が低下する。従って、鋼製外皮とフラックスの合計でTiは0.05〜0.25%とする。なお、Tiは、鋼製外皮に含まれる成分の他、フラックスからの金属TiやFe−Ti等の合金粉から添加できる。
[Ti in total of steel shell and flux: 0.05-0.25%]
Ti acts as a deoxidizer and generates a fine oxide of Ti in the weld metal to further improve the toughness of the weld metal. If Ti is less than 0.05%, the toughness of the weld metal decreases under welding conditions with a large current. On the other hand, if Ti exceeds 0.25%, the amount of slag generated increases and defects such as slag entrainment tend to occur. Moreover, the solid solution Ti in a weld metal increases and toughness falls. Therefore, Ti is 0.05 to 0.25% in total of the steel outer shell and the flux. Ti can be added from an alloy powder such as metal Ti or Fe—Ti from a flux in addition to components contained in the steel outer shell.

[鋼製外皮とフラックスの合計でB:0.0015〜0.010%]
Bは、大電流および大入熱・高パス間温度での溶接施工条件において溶接金属の組織を微細化して靭性を向上させる。Bが0.0015%未満であると、その効果が得られず、大電流および大入熱・高パス間温度での溶接施工条件で溶接金属の靭性が低下する。一方、Bが0.010%を超えると、溶接金属の強度が過剰に高くなると共に、粒界が脆化して靭性が低下する。従って、鋼製外皮とフラックスの合計でBは0.0015〜0.010%とする。なお、Bは、鋼製外皮に含まれる成分の他、Fe−Si−B、Fe−Mn−B等の合金粉により添加できる。
[B: 0.0015 to 0.010% in total of steel outer shell and flux]
B refines the structure of the weld metal and improves the toughness under the welding conditions at a large current, a large heat input and a high pass temperature. If B is less than 0.0015%, the effect cannot be obtained, and the toughness of the weld metal decreases under welding conditions at a large current and a large heat input / high pass temperature. On the other hand, if B exceeds 0.010%, the strength of the weld metal becomes excessively high, and the grain boundaries become brittle, resulting in a decrease in toughness. Therefore, B is 0.0015 to 0.010% in total of the steel outer shell and the flux. B can be added by alloy powders such as Fe-Si-B and Fe-Mn-B in addition to the components contained in the steel outer sheath.

[鋼製外皮とフラックスの合計でAl:0.01%以下]
Alは、0.01%を超えると、溶接金属中に酸化物となって残留し、溶接金属の靭性を低下させる。また、アークが不安定となりスパッタ発生量が増加する。従って、鋼製外皮とフラックスの合計で含有量は0.01%以下とする。なお、Alは必須の成分ではなく、含有率が0%でもよい。
[The total of steel outer shell and flux is Al: 0.01% or less]
If Al exceeds 0.01%, it remains as an oxide in the weld metal, and the toughness of the weld metal is reduced. Also, the arc becomes unstable and the amount of spatter generated increases. Therefore, the total content of the steel outer shell and the flux is 0.01% or less. Al is not an essential component, and the content may be 0%.

[Mn/(Si+Mn+Ti)の値が0.62以上]
スラグ剥離性はSi、MnおよびTiの比率が影響し、この三元系においてはMnが多く、Tiが少なければスラグ剥離性は良好となる。実験によりMn/(Si+Mn+Ti)の値が0.62以上であれば、スラグ剥離性は良好となる結果が得られた。従って、Mn/(Si+Mn+Ti)の値は0.62以上とする。
[The value of Mn / (Si + Mn + Ti) is 0.62 or more]
The slag peelability is affected by the ratio of Si, Mn and Ti. In this ternary system, Mn is large, and if Ti is small, the slag peelability is good. If the value of Mn / (Si + Mn + Ti) was 0.62 or more by experiment, a result that the slag peelability was good was obtained. Therefore, the value of Mn / (Si + Mn + Ti) is 0.62 or more.

[Ti/(Si+Mn+Ti)の値が0.06以下]
さらに、実験によりTi/(Si+Mn+Ti)の値が0.06以下であれば、スラグ剥離性は良好となる結果が得られた。従って、Ti/(Si+Mn+Ti)の値は0.06以下とする。
[Ti / (Si + Mn + Ti) value is 0.06 or less]
Furthermore, when the value of Ti / (Si + Mn + Ti) was 0.06 or less by an experiment, a result that the slag peelability was good was obtained. Therefore, the value of Ti / (Si + Mn + Ti) is set to 0.06 or less.

[Ti/Sの値が15以下]
Sは、スラグの溶接金属からの剥離を促進する作用と、スラグの結晶化度を低下する作用がある。Tiは強力な脱酸元素であるため、ほとんどのTiがTiOとしてスラグの主成分となる。実験結果よりTi/Sの値が15以下であればスラグ剥離性を改善する傾向が得られた。従って、Ti/Sの値は15以下とする。
[Ti / S value is 15 or less]
S has the effect | action which accelerates | stimulates peeling from the weld metal of slag, and the effect | action which reduces the crystallinity degree of slag. Since Ti is a powerful deoxidizing element, most of Ti becomes TiO 2 as a main component of slag. From the experimental results, when the value of Ti / S was 15 or less, a tendency to improve the slag peelability was obtained. Therefore, the value of Ti / S is set to 15 or less.

[フラックス中に含有する弗素化合物:F換算値の合計:0.01〜0.1%]
弗素化合物は、アークを集中させて安定させる効果がある。弗素化合物のF換算値の合計が0.01%未満では、この効果が得られず、アークが不安定でスパッタ発生量が多くなる。一方、弗素化合物のF換算値の合計が0.1%を超えると、アークが荒く不安定になり、スパッタ発生量が多くなる。従って、フラックス中に含有する弗素化合物のF換算値の合計は0.01〜0.1%とする。なお、弗素化合物は、フラックスからのCaF、NaF、LiF、MgF、KSiF、NaAlF、AlF等により添加でき、F換算値はそれらに含有されるF量の合計である。
[Fluorine compounds contained in flux: Total of F conversion values: 0.01 to 0.1%]
Fluorine compounds have the effect of concentrating and stabilizing the arc. If the total F converted value of the fluorine compound is less than 0.01%, this effect cannot be obtained, the arc is unstable, and the amount of spatter generated increases. On the other hand, if the total F converted value of the fluorine compound exceeds 0.1%, the arc becomes rough and unstable, and the amount of spatter generated increases. Therefore, the total F converted value of the fluorine compound contained in the flux is set to 0.01 to 0.1%. The fluorine compound can be added by CaF 2 , NaF, LiF, MgF 2 , K 2 SiF 6 , Na 3 AlF 6 , AlF 3, etc. from the flux, and the F-converted value is the total amount of F contained in them. is there.

[フラックス中に含有するSiO:0.01〜0.2%]
SiOは、大電流での溶接施工条件において、溶融スラグの粘性を高めてスラグ被包性を向上させてビード止端部のなじみを良好にし、ビード外観・形状を良好にする。SiOが0.01%未満であると、溶接ビードのビード止端部のなじみが悪くなり、ビード外観・形状が悪くなる。一方、SiOが0.2%を超えると、溶接金属中の酸素量が増加して靭性が低下する。また、スラグ量が多くなり、スラグ巻込み等の溶接欠陥が発生しやすくなる。従って、フラックス中に含有するSiOは0.01〜0.2%とする。なお、SiOは、フラックスからの珪砂や、珪酸ソーダおよび珪酸カリウムからなる水ガラスの固質成分等から添加できる。
[SiO 2 contained in flux: 0.01 to 0.2%]
SiO 2 increases the viscosity of the molten slag and improves the slag encapsulating property under good welding conditions with a large current to improve the familiarity of the bead toe and the bead appearance and shape. When the SiO 2 content is less than 0.01%, the familiarity of the bead toe portion of the weld bead is deteriorated, and the bead appearance and shape are deteriorated. On the other hand, if SiO 2 exceeds 0.2%, the amount of oxygen in the weld metal increases and the toughness decreases. In addition, the amount of slag increases and welding defects such as slag entrainment tend to occur. Thus, SiO 2 contained in the flux is 0.01 to 0.2%. Incidentally, SiO 2 is or silica sand from the flux, can be added from the solid matter component, such as water glass consisting of sodium silicate and potassium silicate.

[フラックス中に含有するNa化合物およびK化合物のNaO換算値とKO換算値の合計で0.02〜0.15%]
Na化合物およびK化合物は、アークをソフトにして安定にする。Na化合物およびK化合物のNaO換算値とKO換算値の合計が0.02%未満であると、アークが不安定になり、スパッタ発生量が多くなる。一方、Na化合物およびK化合物のNaO換算値とKO換算値の合計が0.15%を超えると、アークが強くなりすぎ、スパッタ発生量が多くなる。また、ビード止端部のなじみが悪くなり、ビード外観・形状が不良となる。従って、フラックス中に含有するNa化合物およびK化合物のNaO換算値とKO換算値の合計は0.02〜0.15%とする。なお、Na化合物やK化合物は、珪酸ソーダおよび珪酸カリウムからなる水ガラスの固質成分、KSiO、NaSiO、NaF、KSiF等の粉末から添加できる。
[0.02 to 0.15% in total of Na 2 O converted value and K 2 O converted value of Na compound and K compound contained in flux]
Na and K compounds soften and stabilize the arc. When the total of Na 2 O converted value and K 2 O converted value of Na compound and K compound is less than 0.02%, the arc becomes unstable and the amount of spatter generated increases. On the other hand, when the total of Na 2 O converted value and K 2 O converted value of Na compound and K compound exceeds 0.15%, the arc becomes too strong and the amount of spatter generated increases. In addition, the familiarity of the bead toes is deteriorated, and the bead appearance and shape are poor. Therefore, the total of Na 2 O converted value and K 2 O converted value of Na compound and K compound contained in the flux is 0.02 to 0.15%. Incidentally, Na compounds and K compounds may be added from sodium silicate and solid matter components of water glass consisting of potassium silicate, K 2 SiO 3, Na 2 SiO 3, NaF, powders such K 2 SiF 6.

[鋼製外皮とフラックスの合計でMo:0.1〜0.5%]
Moは、大入熱・高パス間温度の溶接施工条件において、溶接金属の強度を確保する効果を有するので必要に応じて添加する。Moが0.1%未満であると、これらの効果が十分に得られず、大入熱・高パス間温度での溶接施工条件で溶接金属の必要な強度が得られない。一方、Moが0.5%を超えると、溶接金属の強度が過剰に高くなり、靭性が安定して得られない。従って、鋼製外皮とフラックスの合計でMoは0.1〜0.5%とする。なお、Moは、鋼製外皮に含まれる成分の他、フラックスへの金属Mo粉やFe−Mo合金粉から添加できる。
[Mo: 0.1 to 0.5% in total of steel outer shell and flux]
Mo has the effect of ensuring the strength of the weld metal under the welding conditions of high heat input and high pass temperature, and is added as necessary. When Mo is less than 0.1%, these effects cannot be sufficiently obtained, and the required strength of the weld metal cannot be obtained under the welding conditions under high heat input and high pass temperature. On the other hand, if Mo exceeds 0.5%, the strength of the weld metal becomes excessively high and toughness cannot be stably obtained. Therefore, Mo is 0.1 to 0.5% in total of the steel outer shell and the flux. In addition, Mo can be added from the metal Mo powder and Fe-Mo alloy powder to a flux other than the component contained in a steel outer shell.

本発明のガスシールドアーク溶接用フラックス入りワイヤの残部は、鋼製外皮のFe、成分調整のために添加する鉄粉、Fe−Si、Fe−Si−Mn、Fe−Mn、Fe−Ti合金などの鉄合金粉のFe分および不可避的不純物である。   The balance of the flux-cored wire for gas shielded arc welding according to the present invention includes steel outer shell Fe, iron powder added for component adjustment, Fe-Si, Fe-Si-Mn, Fe-Mn, Fe-Ti alloy, etc. Of iron alloy powder and inevitable impurities.

本発明のガスシールドアーク溶接用フラックス入りワイヤの成分は以上説明したとおりであるが、その構造は鋼製外皮をパイプ状に成型し、その内部にフラックスを充填したものである。ワイヤの構造の種類としては、成形した鋼製外皮の合わせ目を溶接して得られる鋼製外皮に継目の無いワイヤと、鋼製外皮の合わせ目の溶接を行わないままとした鋼製外皮に継目を有するワイヤとに大別できる。本発明においては、何れの断面構造のワイヤも採用することができるが、鋼製外皮に継目を有するワイヤは、溶接金属の強度が高くなると低温割れが生じやすくなるので水分含有量の少ない原材料を用いる必要がある。一方、鋼製外皮に継目が無いワイヤは、ワイヤ中の全水素量を低減することを目的とした熱処理が可能であり、また製造後のフラックスの吸湿が無いため、溶接金属の拡散性水素量を低減し、耐低温割れ性の向上を図ることができるので、より好ましい。   The components of the flux-cored wire for gas shielded arc welding according to the present invention are as described above, but the structure is formed by forming a steel outer shell into a pipe shape and filling the inside with a flux. There are two types of wire structure: a seamless wire in the steel skin obtained by welding the seam of the molded steel skin, and a steel skin in which the seam of the steel skin is left unwelded. It can be roughly divided into wires having seams. In the present invention, any wire having a cross-sectional structure can be used. However, a wire having a seam in a steel outer shell tends to cause cold cracking when the strength of the weld metal is increased. It is necessary to use it. On the other hand, a wire with a seamless steel outer sheath can be heat-treated for the purpose of reducing the total amount of hydrogen in the wire, and since there is no moisture absorption of the flux after production, the amount of diffusible hydrogen in the weld metal This is more preferable because it is possible to improve the cold cracking resistance.

また、フラックス充填率は特に限定しないが、生産性の観点からワイヤ全質量に対して8〜20%とするのが好ましい。
なお、シールドガスは、炭酸ガスとし、シールドガスの流量は耐欠陥性および大気からの窒素の混入を防ぐために20〜35リットル/分であることが好ましい。
Moreover, although a flux filling rate is not specifically limited, It is preferable to set it as 8 to 20% with respect to the total wire mass from a viewpoint of productivity.
The shielding gas is carbon dioxide gas, and the flow rate of the shielding gas is preferably 20 to 35 liters / minute in order to prevent defects and prevent nitrogen from being mixed in from the atmosphere.

以下、本発明の効果を実施例により具体的に説明する。
JIS G3141に規定されるSPCCを(C:0.01〜0.05%)、鋼製外皮として使用し、鋼製外皮を成形する工程でU字型に成形した後にフラックスを充填し、鋼製外皮の合わせ目を溶接した継目が無いワイヤを造管して伸線し、表1および表2に示す各種成分のフラックス入りワイヤを試作した。ワイヤ径は1.4mmとした。
Hereinafter, the effect of the present invention will be described in detail with reference to examples.
SPCC specified in JIS G3141 (C: 0.01 to 0.05%) is used as a steel outer shell, and is formed into a U-shape in the process of forming the steel outer shell, and then filled with flux, and is made of steel. A seamless wire welded with an outer seam was piped and drawn, and flux-cored wires having various components shown in Tables 1 and 2 were produced. The wire diameter was 1.4 mm.

Figure 0006486844
Figure 0006486844

Figure 0006486844
Figure 0006486844

表1および表2に示す試作したフラックス入りワイヤを用いて、溶接作業性、スラグ剥離性、スパッタ発生量、溶接欠陥の有無および溶接金属性能の調査を行なった。
溶接作業性および溶接金属性能は、表3に示す条件No.がT1の施工条件で、35°レ形開先、ルートギャップ8mmの裏当金付きの開先を多層盛溶接した。調査項目は溶接時のアークの安定性、ビード外観・形状およびスラグ剥離性である。
Using the experimentally prepared flux-cored wires shown in Table 1 and Table 2, the welding workability, the slag peelability, the amount of spatter generation, the presence or absence of welding defects, and the weld metal performance were investigated.
The welding workability and the weld metal performance are shown in Condition No. 3 shown in Table 3. However, under the T1 construction conditions, a 35 ° -shaped groove and a groove with a backing metal with a root gap of 8 mm were subjected to multi-layer welding. The survey items are arc stability during welding, bead appearance and shape, and slag peelability.

Figure 0006486844
Figure 0006486844

スラグ剥離性は、溶接後のスラグの自然剥離状況から評価した。溶接終了後、溶接試験体を1時間空冷し、スラグが自己崩壊を起こし、自然に剥離したスラグの質量が全スラグ量の30%以上を良好、30%未満を不良と評価した。   The slag peelability was evaluated from the state of natural slag peeling after welding. After the welding was completed, the weld specimen was air-cooled for 1 hour, the slag was self-collapsed, and the mass of the slag that was naturally peeled was evaluated as good when 30% or more of the total slag amount was good and less than 30% as bad.

なお、溶接時のワイヤ送給は6m長さのコンジットケーブルを用いた。溶接終了後裏当金を削除してX線透過試験を実施した。また、溶接金属部からA0号引張試験片および衝撃試験を採取して機械的性能を調査した。引張強さは490〜670MPaを良好とし、靭性の評価は、0℃におけるシャルピー衝撃試験を各5本実施し、吸収エネルギーの平均値は80J以上、最低値は60J以上を良好とした。   In addition, the wire supply at the time of welding used the conduit cable of 6m length. After the welding was completed, the backing metal was deleted and an X-ray transmission test was performed. Further, A0 tensile test pieces and impact tests were taken from the weld metal part to investigate the mechanical performance. Tensile strength was good at 490 to 670 MPa, and toughness was evaluated by conducting five Charpy impact tests at 0 ° C., the average value of absorbed energy was 80 J or more, and the minimum value was 60 J or more.

スパッタの発生量は、銅製の捕集箱を用いて、表3に示す条件No.がT2の溶接条件でビードオンプレート溶接を30秒×5回繰り返し行い、1分間当たりのスパッタ発生量を算出した。これにより1分間当たりのスパッタ発生量が1.5g以下を良好とした。それらの結果を表4にまとめて示す。   The amount of spatter generated was determined according to the condition No. shown in Table 3 using a copper collection box. However, bead-on-plate welding was repeated 30 seconds × 5 times under the welding conditions of T2, and the amount of spatter generated per minute was calculated. As a result, the amount of spatter generated per minute was set to 1.5 g or less. The results are summarized in Table 4.

Figure 0006486844
Figure 0006486844

表1、表2および表4中のワイヤ記号1〜8が本発明例、ワイヤ記号9〜21は比較例である。本発明例であるワイヤ記号1〜8は、フラックス入りワイヤ中のC、Si、Mn、S、Cu、Ti、B、Al、Mn/(Si+Mn+Ti)、Ti/(Si+Mn+Ti)、Ti/Sの値が適正で、フラックス中の弗素化合物のF換算値の合計、SiO、Na化合物およびK化合物のNaO換算値とKO換算値の合計が適量であるので、大電流の溶接施工条件においてもアークが安定してスラグ剥離性およびビード外観・形状が良好で、スパッタ発生量が少なく、溶接欠陥がなく、溶接金属の引張強さおよび吸収エネルギーの平均値および最低値ともに良好で極めて満足な結果であった。 The wire symbols 1 to 8 in Tables 1, 2 and 4 are examples of the present invention, and the wire symbols 9 to 21 are comparative examples. Wire symbols 1 to 8, which are examples of the present invention, are values of C, Si, Mn, S, Cu, Ti, B, Al, Mn / (Si + Mn + Ti), Ti / (Si + Mn + Ti), Ti / S in the flux-cored wire. Is appropriate, and the total of F converted values of fluorine compounds in the flux and the total of Na 2 O converted values and K 2 O converted values of SiO 2 , Na compounds and K compounds are appropriate amounts, so that the welding conditions for large currents The arc is stable, the slag peelability and bead appearance and shape are good, the amount of spatter is small, there are no weld defects, and the average and minimum values of the tensile strength and absorbed energy of the weld metal are both excellent and extremely satisfactory. It was a result.

比較例中ワイヤ記号9は、Cが少ないので、溶接金属の引張強さが低かった。また、Mnが多いので、吸収エネルギーの最低値が低値で、スラグ生成量が多くなったのでスラグ巻き込み欠陥が生じた。
ワイヤ記号10は、Cが多いので、溶接金属の引張強さが高く吸収エネルギーが低値であった。また、クレータ部に割れが生じた。さらに、Sが少ないので、スラグ剥離性が不良であった。
Since the wire symbol 9 in the comparative example had a small amount of C, the tensile strength of the weld metal was low. Further, since Mn is large, the minimum value of the absorbed energy is low and the amount of slag generated is large, so that a slag entrainment defect occurs.
Since the wire symbol 10 has a lot of C, the tensile strength of the weld metal was high and the absorbed energy was low. Moreover, the crater part cracked. Furthermore, since there is little S, slag peelability was unsatisfactory.

ワイヤ記号11は、Siが少ないので、溶接金属の引張強さが低く吸収エネルギーも低値であった。また、Sが多いので、高温割れが発生した。
ワイヤ記号12は、Siが多いので、溶接金属の引張強さが高く吸収エネルギーの最低値が低く、スラグ量が増加してスラグ巻き込み欠陥が生じた。また、弗素化合物のF換算値の合計が少ないので、アークが不安定でスパッタ発生量が多かった。
Since the wire symbol 11 has a small amount of Si, the tensile strength of the weld metal was low and the absorbed energy was also low. Moreover, since there is much S, the hot crack generate | occur | produced.
Since the wire symbol 12 has a lot of Si, the tensile strength of the weld metal is high and the minimum value of absorbed energy is low, the amount of slag is increased, and slag entrainment defects are generated. Further, since the total F converted value of the fluorine compound is small, the arc is unstable and the amount of spatter generated is large.

ワイヤ記号13は、Mnが少ないので、溶接金属の引張強さが低く吸収エネルギーも低値であった。また、弗素化合物のF換算値の合計が多いので、アークが荒く不安定でスパッタ発生量が多かった。
ワイヤ記号14は、Alが多いので、溶接金属の吸収エネルギーが低く、アークが不安定でスパッタ発生量が多かった。また、SiOが少ないので、ビード外観・形状不良であった。
Since the wire symbol 13 has a small amount of Mn, the tensile strength of the weld metal was low and the absorbed energy was also low. Further, since the total of F converted values of the fluorine compound is large, the arc is rough and unstable, and the amount of spatter generated is large.
Since the wire symbol 14 has a large amount of Al, the absorbed energy of the weld metal is low, the arc is unstable, and the amount of spatter generated is large. In addition, since the SiO 2 is less, it was bead appearance and shape bad.

ワイヤ記号15は、Cuが少ないので、溶接金属の吸収エネルギーの最低値が低かった。また、Ti/(Si+Mn+Ti)の値が高いのでスラグ剥離性が不良であった。
ワイヤ記号16は、Cuが多いので、溶接金属の吸収エネルギーが低値であった。また、クレータ部に割れが生じた。さらに、NaO換算値とKO換算値の合計が多いので、アークが強くスパッタ発生量も多く、ビード外観・形状が不良であった。
Since the wire symbol 15 has a small amount of Cu, the minimum value of the absorbed energy of the weld metal was low. Moreover, since the value of Ti / (Si + Mn + Ti) was high, the slag peelability was poor.
Since the wire symbol 16 has a large amount of Cu, the absorbed energy of the weld metal was low. Moreover, the crater part cracked. Furthermore, since the total of Na 2 O converted value and K 2 O converted value was large, the arc was strong, the amount of spatter was large, and the bead appearance and shape were poor.

ワイヤ記号17は、Tiが少ないので、溶接金属の吸収エネルギーが低値であった。また、NaO換算値とKO換算値の合計が少ないので、アークが不安定でスパッタ発生量が多かった。
ワイヤ記号18は、SiOが多いので、溶接金属の吸収エネルギーが低値で、スラグ発生量が多くスラグ巻き込み欠陥が生じた。さらに、Mn/(Si+Mn+Ti)の値が低いので、スラグ剥離性が不良であった。
Since the wire symbol 17 has a small amount of Ti, the absorbed energy of the weld metal was low. Further, since the total of Na 2 O converted value and K 2 O converted value was small, the arc was unstable and the amount of spatter generated was large.
Since the wire symbol 18 has a large amount of SiO 2 , the absorbed energy of the weld metal is low, the slag generation amount is large, and slag entrainment defects occur. Furthermore, since the value of Mn / (Si + Mn + Ti) was low, the slag peelability was poor.

ワイヤ記号19は、Tiが多いので、溶接金属の吸収エネルギーが低値で、スラグ発生量が多くスラグ巻き込み欠陥が生じた。また、Ti/Sの値が高いので、スラグ剥離性が不良であった。   Since the wire symbol 19 has a large amount of Ti, the absorbed energy of the weld metal is low, the slag generation amount is large, and slag entrainment defects occur. Moreover, since the value of Ti / S was high, the slag peelability was poor.

ワイヤ記号20は、Ti/(Si+Mn+Ti)の値が高いので、スラグ剥離性が不良であった。また、Bが少ないので、溶接金属の吸収エネルギーが低値であった。
ワイヤ記号21は、Sが少ないので、スラグ剥離性が不良であった。また、Bが多いので、溶接金属の引張強さが高く吸収エネルギーが低値であった。
Since the wire symbol 20 had a high value of Ti / (Si + Mn + Ti), the slag peelability was poor. Further, since B is small, the absorbed energy of the weld metal was low.
Since the wire symbol 21 has a small amount of S, the slag peelability was poor. Moreover, since there is much B, the tensile strength of the weld metal was high and the absorbed energy was low.

実施例1と同様にJIS G3141に規定されるSPCCを(C:0.04%)、鋼製外皮として使用し、鋼製外皮を成形する工程でU字型に成形した後にフラックスを充填し、鋼製外皮の合わせ目を溶接した継目が無いワイヤを造管して伸線し、表5および表6に示す各種成分のフラックス入りワイヤを試作した。ワイヤ径は1.4mmとした。   As in Example 1, SPCC defined in JIS G3141 (C: 0.04%) was used as a steel outer shell, and was formed into a U shape in the process of forming the steel outer shell, and then filled with flux. A seamless wire welded with a steel outer seam was piped and drawn, and flux-cored wires having various components shown in Tables 5 and 6 were made as trial products. The wire diameter was 1.4 mm.

Figure 0006486844
Figure 0006486844

Figure 0006486844
Figure 0006486844

表5および表6に示す試作したフラックス入りワイヤを用いて、溶接作業性、スパッタ発生量の測定および溶接金属性能の調査を行なった。
溶接作業性および溶接金属性能は、表3に示す条件No.がT3の大入熱・高パス間温度の施工条件で、35°レ形開先、ルートギャップ8mmの裏当金付きの開先を多層盛溶接した。調査項目は実施例1と同様に溶接時のアークの安定性、ビード外観・形状およびスラグ剥離性である。
Using the experimentally prepared flux-cored wires shown in Tables 5 and 6, the welding workability, the amount of spatter generation, and the weld metal performance were investigated.
The welding workability and the weld metal performance are shown in Condition No. 3 shown in Table 3. However, under the construction conditions of T3 with large heat input and high pass temperature, a 35 ° -shaped groove and a groove with a backing metal with a root gap of 8 mm were welded in multiple layers. The investigation items are the stability of the arc during welding, the bead appearance / shape, and the slag peelability as in the case of Example 1.

スラグ剥離性は、溶接後のスラグの自然剥離状況から評価した。溶接終了後、溶接試験体を1時間空冷し、スラグが自己崩壊を起こし、自然に剥離したスラグの質量が全スラグ量の30%以上を良好、30%未満を不良と評価した。   The slag peelability was evaluated from the state of natural slag peeling after welding. After the welding was completed, the weld specimen was air-cooled for 1 hour, the slag was self-collapsed, and the mass of the slag that was naturally peeled was evaluated as good when 30% or more of the total slag amount was good and less than 30% as bad.

なお、溶接時のワイヤ送給は6m長さのコンジットケーブルを用いた。溶接終了後裏当金を削除してX線透過試験を実施した。また、溶接金属部からA0号引張試験片および衝撃試験を採取して機械的性能を調査した。引張強さは520〜740MPaを良好とし、靭性の評価は、0℃におけるシャルピー衝撃試験を各5本実施し、吸収エネルギーの平均値は80J以上、最低値は60J以上を良好とした。   In addition, the wire supply at the time of welding used the conduit cable of 6m length. After the welding was completed, the backing metal was deleted and an X-ray transmission test was performed. Further, A0 tensile test pieces and impact tests were taken from the weld metal part to investigate the mechanical performance. Tensile strength was good at 520 to 740 MPa, and toughness was evaluated by five Charpy impact tests at 0 ° C., the average value of absorbed energy was 80 J or more, and the minimum value was 60 J or more.

スパッタの発生量は、実施例1と同一の捕集方法で、1分間当たりのスパッタ発生量を算出した。1分間当たりのスパッタ発生量が1.5g以下を良好とした。それらの結果を表7にまとめて示す。   As the amount of spatter generated, the amount of spatter generated per minute was calculated using the same collection method as in Example 1. The amount of spatter generated per minute was set to 1.5 g or less. The results are summarized in Table 7.

Figure 0006486844
Figure 0006486844

表5、表6および表7中のワイヤ記号22〜24が本発明例、ワイヤ記号25および26は比較例である。本発明例であるワイヤ記号22〜24は、フラックス入りワイヤ中のC、Si、Mn、S、Cu、Ti、B、Al、Mo、Mn/(Si+Mn+Ti)、Ti/(Si+Mn+Ti)およびTi/Sの値が適正で、フラックス中の弗素化合物のF換算値の合計、SiO、Na化合物およびK化合物のNaO換算値とKO換算値の合計が適量であるので、大入熱・高パス間温度の溶接施工条件においてもアークが安定してスラグ剥離性およびビード外観・形状が良好で、スパッタ発生量が少なく、溶接欠陥がなく、溶接金属の引張強さおよび吸収エネルギーの平均値および最低値ともに良好で、極めて満足な結果であった。 The wire symbols 22 to 24 in Table 5, Table 6 and Table 7 are examples of the present invention, and the wire symbols 25 and 26 are comparative examples. Wire symbols 22 to 24, which are examples of the present invention, are C, Si, Mn, S, Cu, Ti, B, Al, Mo, Mn / (Si + Mn + Ti), Ti / (Si + Mn + Ti) and Ti / S in the flux-cored wire. Is appropriate, and the total of F converted values of fluorine compounds in the flux and the total of Na 2 O converted values and K 2 O converted values of SiO 2 , Na compounds and K compounds are appropriate amounts. Even under high-pass temperature welding conditions, the arc is stable, the slag peelability and bead appearance and shape are good, the amount of spatter is small, there are no weld defects, and the average value of the tensile strength and absorbed energy of the weld metal Both values were good and very satisfactory.

比較例中、ワイヤ記号25は、Mn/(Si+Mn+Ti)の値が低いので、スラグ剥離性が不良であった。また、Moが少ないので、溶接金属の引張強さが低かった。
ワイヤ記号26は、Ti/(Si+Mn+Ti)の値が高いので、スラグ剥離性が不良であった。また、Moが多いので、溶接金属の引張強さが高く吸収エネルギーの最低値が低かった。
In the comparative examples, the wire symbol 25 had a low value of Mn / (Si + Mn + Ti), and thus the slag peelability was poor. Moreover, since there is little Mo, the tensile strength of the weld metal was low.
Since the wire symbol 26 had a high value of Ti / (Si + Mn + Ti), the slag peelability was poor. Moreover, since there is much Mo, the tensile strength of the weld metal was high and the minimum value of absorbed energy was low.

Claims (2)

鋼製外皮にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、
C:0.05〜0.18%、
Si:0.6〜1.6%、
Mn:1.8〜2.8%、
S:0.008〜0.030%、
Cu:0.05〜0.5%、
Ti:0.05〜0.25%、
B:0.0015〜0.010%
を含有し、
Al:0.01%以下
で、かつ、
Mn/(Si+Mn+Ti)の値が0.62以上、
Ti/(Si+Mn+Ti)の値が0.06以下、
Ti/Sの値が15以下
で、さらに、ワイヤ全質量に対する質量%で、フラックス中に、
弗素化合物:F換算値の合計で0.01〜0.1%、
SiO:0.01〜0.2%、
Na化合物およびK化合物:NaO換算値とKO換算値の合計で0.02〜0.15%
を含有し、残部は鋼製外皮のFe、鉄粉、鉄合金粉のFe分および不可避的不純物からなることを特徴するガスシールドアーク溶接用フラックス入りワイヤ。
In the flux-cored wire for gas shielded arc welding, in which the steel outer shell is filled with flux, in mass% with respect to the total mass of the wire, the total of the steel outer shell and the flux,
C: 0.05 to 0.18%,
Si: 0.6 to 1.6%,
Mn: 1.8 to 2.8%
S: 0.008 to 0.030%,
Cu: 0.05 to 0.5%,
Ti: 0.05-0.25%,
B: 0.0015 to 0.010%
Containing
Al: 0.01% or less, and
The value of Mn / (Si + Mn + Ti) is 0.62 or more,
Ti / (Si + Mn + Ti) value is 0.06 or less,
The value of Ti / S is 15 or less, and further, in mass% with respect to the total mass of the wire, in the flux,
Fluorine compound: 0.01 to 0.1% in total in terms of F,
SiO 2: 0.01~0.2%,
Na compound and K compound: 0.02 to 0.15% in total of Na 2 O converted value and K 2 O converted value
A flux-cored wire for gas shielded arc welding, characterized in that the balance is made of Fe of steel outer shell, iron powder, Fe content of iron alloy powder and inevitable impurities.
ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、
Mo:0.1〜0.5%
をさらに含有することを特徴とする請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。
It is the mass% with respect to the total mass of the wire.
Mo: 0.1 to 0.5%
The flux-cored wire for gas shielded arc welding according to claim 1, further comprising:
JP2016014826A 2016-01-28 2016-01-28 Flux-cored wire for gas shielded arc welding Active JP6486844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016014826A JP6486844B2 (en) 2016-01-28 2016-01-28 Flux-cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016014826A JP6486844B2 (en) 2016-01-28 2016-01-28 Flux-cored wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2017131950A JP2017131950A (en) 2017-08-03
JP6486844B2 true JP6486844B2 (en) 2019-03-20

Family

ID=59502053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016014826A Active JP6486844B2 (en) 2016-01-28 2016-01-28 Flux-cored wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP6486844B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863862B2 (en) * 2017-08-30 2021-04-21 日鉄溶接工業株式会社 Flux-filled wire for gas shielded arc welding
JP6988323B2 (en) * 2017-09-27 2022-01-05 日本製鉄株式会社 Gas shield arc Welding flux-cored wire and welding joint manufacturing method
JP7027859B2 (en) * 2017-12-12 2022-03-02 日本製鉄株式会社 Gas shield arc Welding flux-cored wire and welding joint manufacturing method
JP6939508B2 (en) * 2017-12-19 2021-09-22 日本製鉄株式会社 Corrosion-resistant steel gas shield arc welding flux-cored wire and welding joint manufacturing method
WO2020110856A1 (en) * 2018-11-27 2020-06-04 日本製鉄株式会社 Flux-cored wire, and welding joint production method
JP7260316B2 (en) * 2019-02-05 2023-04-18 日鉄溶接工業株式会社 High current density gas-shielded arc welding method
JP7221742B2 (en) * 2019-03-07 2023-02-14 日鉄溶接工業株式会社 Pulse MAG multi-layer welding method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5038853B2 (en) * 2007-10-30 2012-10-03 日鐵住金溶接工業株式会社 Solid wire for carbon dioxide shielded arc welding
JP2009178737A (en) * 2008-01-30 2009-08-13 Kobe Steel Ltd Solid wire for carbon dioxide shielded arc welding
JP5207994B2 (en) * 2008-03-26 2013-06-12 日鐵住金溶接工業株式会社 Metal flux cored wire for Ar-CO2 mixed gas shielded arc welding
JP6188621B2 (en) * 2014-04-10 2017-08-30 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide shielded arc welding
JP6382114B2 (en) * 2015-01-07 2018-08-29 日鐵住金溶接工業株式会社 Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high strength steel

Also Published As

Publication number Publication date
JP2017131950A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6486844B2 (en) Flux-cored wire for gas shielded arc welding
JP6437378B2 (en) Flux-cored wire for gas shielded arc welding
JP6219259B2 (en) Flux-cored wire for gas shielded arc welding of high strength steel
JP6786427B2 (en) Flux-filled wire for gas shielded arc welding
JP6377591B2 (en) Metal flux cored wire for Ar-CO2 mixed gas shielded arc welding
JP5153421B2 (en) Flux-cored wire for gas shielded arc welding
JP5356142B2 (en) Gas shield arc welding method
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6382114B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high strength steel
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2010064087A (en) Flux cored wire for gas-shielded arc welding
JP3880826B2 (en) Flux-cored wire for gas shielded arc welding
JP6863862B2 (en) Flux-filled wire for gas shielded arc welding
JP6599808B2 (en) Flux-cored wire for electroslag welding of high strength steel
JP6786431B2 (en) Carbon-based flux-cored wire for carbon dioxide shield arc welding
JP7221742B2 (en) Pulse MAG multi-layer welding method
JP7247081B2 (en) Metallic flux-cored wire for gas-shielded arc welding
JP6951285B2 (en) Pulse MAG multi-layer welding method
JP7244399B2 (en) Flux-cored wire for gas-shielded arc welding
JP7221812B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel
JP2008049357A (en) Flux-cored wire for gas-shielded arc welding
JP2019123012A (en) Flux-cored wire for gas shield arc welding
JP7260316B2 (en) High current density gas-shielded arc welding method
JP7244337B2 (en) Flux-cored wire for electrogas arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190220

R150 Certificate of patent or registration of utility model

Ref document number: 6486844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250