JP2019123012A - Flux-cored wire for gas shield arc welding - Google Patents

Flux-cored wire for gas shield arc welding Download PDF

Info

Publication number
JP2019123012A
JP2019123012A JP2018192082A JP2018192082A JP2019123012A JP 2019123012 A JP2019123012 A JP 2019123012A JP 2018192082 A JP2018192082 A JP 2018192082A JP 2018192082 A JP2018192082 A JP 2018192082A JP 2019123012 A JP2019123012 A JP 2019123012A
Authority
JP
Japan
Prior art keywords
flux
total
welding
steel
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018192082A
Other languages
Japanese (ja)
Other versions
JP6951313B2 (en
Inventor
直樹 坂林
Naoki Sakabayashi
直樹 坂林
笹木 聖人
Masahito Sasaki
聖人 笹木
竜太朗 千葉
Ryutaro Chiba
竜太朗 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to US16/248,457 priority Critical patent/US20190217423A1/en
Priority to NO20190052A priority patent/NO20190052A1/en
Publication of JP2019123012A publication Critical patent/JP2019123012A/en
Application granted granted Critical
Publication of JP6951313B2 publication Critical patent/JP6951313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

To provide a flux-cored wire for gas shield arc welding in which a weld workability in all position welding is favorable, a spatter generation amount is small, and a weld metal excellent in low-temperature toughness is obtained.SOLUTION: A flux-cored wire for gas shield arc welding is characterized by including: 0.04-0.08 mass% of C in a steel coat based on total mass of the steel coat; and in mass% based on total mass of wire and in the sum of the steel coat and flux, 0.05-0.12% C, 0.1-0.6% Si, 1.5-3.5% Mn, 0.002-0.015% B, and 0.3-1.5% the sum of AlOconversion value of Al and the same conversion value of Al oxides; and in the flux, 5-10% TiOconversion value, 0.2-0.7% SiOconversion value, 0.1-0.6% ZrOconversion value, 0.2-0.8% Mg, 0.02-0.15% F conversion value, and 0.03-0.20% the sum of NaO and KO conversion values.SELECTED DRAWING: None

Description

本発明は、軟鋼から490MPa級高張力鋼及び低温鋼等の鋼構造物を溶接する際に用いられるガスシールドアーク溶接用フラックス入りワイヤに関し、特に全姿勢溶接での溶接作業性が良好で、スパッタ発生量が少なく、かつ、低温靭性に優れた溶接金属を得る上で好適なガスシールドアーク溶接用フラックス入りワイヤに関する。   The present invention relates to a flux-cored wire for gas shielded arc welding used for welding steel structures such as mild steel to 490 MPa class high strength steel and low temperature steel, and particularly, the welding workability in all position welding is excellent, The present invention relates to a flux cored wire for gas shielded arc welding, which is suitable for obtaining a weld metal having a low generation amount and excellent low temperature toughness.

ガスシールドアーク溶接用フラックス入りワイヤは、高能率で溶接作業性に優れることから、造船、橋梁、海洋構造物、鉄骨等の各種溶接構造物の建造に広く用いられている。特にルチール系フラックス入りワイヤは、全姿勢溶接での溶接作業性が非常に優れており、造船、鉄骨及び海洋構造物等の分野を中心に広く使用されている。   BACKGROUND OF THE INVENTION Flux-cored wires for gas shielded arc welding are widely used in the construction of various welding structures such as shipbuilding, bridges, offshore structures, steel frames, etc. because they are highly efficient and excellent in welding workability. In particular, a rutile-based flux cored wire is very excellent in welding workability in all position welding, and is widely used mainly in the fields of shipbuilding, steel frames and offshore structures.

しかし、ルチール系フラックス入りワイヤは、TiO2を主体とした金属酸化物を多く含有するため、低温環境で行った場合、溶接金属の低温靭性が劣るという問題があった。 However, since the rutile-based flux cored wire contains a large amount of metal oxide mainly composed of TiO 2 , there is a problem that the low temperature toughness of the weld metal is inferior when carried out in a low temperature environment.

溶接金属の低温靭性に優れるルチール系フラックス入りワイヤについては、これまで様々な開発が行われている。例えば、特許文献1には、フラックス入りワイヤ中のTiO2、Mg、B、Ti、Mn、K、Na及びSiの含有量を規定することで、良好な溶接作業性と優れた溶接金属の低温靭性が得られるフラックス入りワイヤが開示されている。しかし、特許文献1の開示技術では、TiO2以外の金属酸化物が規定されておらず、アークの安定性、スラグ被包性及び耐メタル垂れ性が悪く、十分な溶接作業性が得られない。 Various developments have been made on the rutile-based flux cored wire which is excellent in the low temperature toughness of the weld metal. For example, Patent Document 1 describes that the content of TiO 2 , Mg, B, Ti, Mn, K, Na, and Si in the flux cored wire is good for good welding workability and excellent welding metal low temperature. A flux cored wire is disclosed that provides toughness. However, in the technology disclosed in Patent Document 1, metal oxides other than TiO 2 are not defined, and the stability of the arc, the slag encapsulation property and the metal sag resistance are poor, and sufficient welding workability can not be obtained. .

また、特許文献2には、フラックス入りワイヤ中のTiO2、SiO2、Si、Mn、Mg、B、Al、Ca及びNi、Ti、Zrの1種または2種以上の含有量を規定することで、良好な溶接作業性と優れた溶接金属の低温靭性が得られるフラックス入りワイヤが開示されている。この特許文献2の開示技術によれば、TiO2とSiO2の適量添加でビード形状やスラグ被包性等の溶接作業性を改善し、Ca、Al、Ti及びBとの相乗効果で溶接金属の低温靭性を向上できる。しかし、特許文献2の開示技術は、アークの安定性やスラグ剥離性が劣っており、十分な溶接作業性は得られない。 Further, in Patent Document 2, the content of one or more of TiO 2 , SiO 2 , Si, Mn, Mg, B, Al, Ca and Ni, Ti, Zr in the flux cored wire is defined. There is disclosed a flux cored wire which provides good welding workability and excellent low temperature toughness of the weld metal. According to the disclosed technology of this patent document 2, welding workability such as bead shape and slag encapsulation property is improved by adding appropriate amounts of TiO 2 and SiO 2 , and a weld metal is obtained by a synergistic effect with Ca, Al, Ti and B. Low temperature toughness can be improved. However, the technology disclosed in Patent Document 2 is inferior in arc stability and slag removability, and sufficient welding workability can not be obtained.

特許文献3には、フラックス入りワイヤ中のC、Si、Mn、Ni、Al、B、TiO2、Al23、SiO2、ZrO2、Mg、Na2O、K2O等の含有量を規定することで、良好な溶接作業性と優れた溶接金属の低温靭性が得られるフラックス入りワイヤが開示されている。この特許文献3の開示技術によれば、TiO2、Al23、SiO2、ZrO2、Mg、Na2O、K2O等の金属酸化物の適量添加で、ビード形状、スラグ剥離性及びアークの安定性に優れるなど良好な溶接作業性を有し、かつ、C、Si、Mn、Ni、Bの適量添加で溶接金属の低温靭性を向上させることが可能となる。しかし、特許文献3の開示技術は、鋼製外皮中のCの含有量に関する規定がないため、鋼製外皮からCを多く添加した場合、アークが過剰にシャープになり、スパッタ発生量が多くなる。また特許文献3の開示技術は、立向上進溶接でメタル垂れが発生しやすくなり、ビード形状が不良になり、十分な溶接作業性が得られない。また特許文献3の開示技術は、弗素化合物の規定も無いためアークが弱くなり、立向上進溶接及び立向下進溶接でメタル垂れが発生しやすくなり、ビード形状が不良になりやすいという問題があった。 Patent Document 3 describes the content of C, Si, Mn, Ni, Al, B, TiO 2 , Al 2 O 3 , SiO 2 , ZrO 2 , Mg, Na 2 O, K 2 O, etc. in a flux cored wire. A flux-cored wire is disclosed that provides good welding workability and excellent low temperature toughness of the weld metal. According to the disclosed technique of this patent document 3, the bead shape and the slag removability by adding a proper amount of metal oxides such as TiO 2 , Al 2 O 3 , SiO 2 , ZrO 2 , ZrO 2 , Mg, Na 2 O and K 2 O And has excellent welding workability such as excellent stability of the arc, and it is possible to improve the low temperature toughness of the weld metal by adding appropriate amounts of C, Si, Mn, Ni and B. However, the technology disclosed in Patent Document 3 does not specify the content of C in the steel shell, so when a large amount of C is added from the steel shell, the arc becomes excessively sharp and the spatter generation amount increases. . Further, according to the technology disclosed in Patent Document 3, metal sag tends to occur in vertical welding, so that the bead shape becomes defective and sufficient welding workability can not be obtained. Further, the technology disclosed in Patent Document 3 has a problem that the arc weakens because there is no definition of a fluorine compound, metal sag tends to occur in vertical welding and vertical welding, and bead shape tends to be defective. there were.

特開平9−262693号公報Unexamined-Japanese-Patent No. 9-262693 特開平6−238483号公報Unexamined-Japanese-Patent No. 6-238483 特開2016−203179号公報JP, 2016-203179, A

そこで本発明は、上述した問題点に鑑みて案出されたものであり、軟鋼から490MPa級高張力鋼及び低温鋼等の鋼構造物を溶接するにあたり、全姿勢溶接での溶接作業性が良好で、スパッタ発生量が少なく、かつ、低温靭性に優れた溶接金属が得られるガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。   Therefore, the present invention has been devised in view of the above-mentioned problems, and in welding steel structures such as 490 MPa class high tensile steel and low temperature steel from mild steel, the welding workability in all position welding is good. It is an object of the present invention to provide a flux cored wire for gas shielded arc welding, which can provide a weld metal having a low spatter generation rate and excellent low temperature toughness.

本発明者らは、ガスシールドアーク溶接用フラックス入りワイヤについて、全姿勢溶接でアークの安定性が良好でスパッタ発生量が少ないなど溶接作業性が良好で、かつ、低温靭性が良好な溶接金属を得るべく種々検討を行った。   For the flux shielded wire for gas shield arc welding, the present inventors have good weldability such as good stability of arc in all position welding and little spatter generation, and good weld metal with good low temperature toughness. We made various studies to get it.

その結果、フラックス入りワイヤ中にC、Mnを適量添加することで十分な溶接金属の強度を確保しつつ、Si、Bを適量添加することで溶接金属の低温靭性が向上できることを見出した。また、NiまたはTiを適量添加することで溶接金属の低温靭性をさらに向上できることも見出した。   As a result, it has been found that the low temperature toughness of the weld metal can be improved by adding a proper amount of Si and B while securing a sufficient strength of the weld metal by adding a proper amount of C and Mn to the flux cored wire. It has also been found that the low temperature toughness of the weld metal can be further improved by adding an appropriate amount of Ni or Ti.

また、溶接作業性に関し、アークの安定性が良好でスパッタ発生量が少ないフラックス入りワイヤ成分を調整した結果、フラックス入りワイヤの鋼製外皮中のCの含有量を最適な範囲に限定することで、アークの安定性を改善するとともに、溶滴サイズを細かくしてスパッタ発生量を少なくできることを見出した。さらに、Na化合物及びK化合物を適量添加することで、アークの安定性が向上することを見出した。   In addition, with regard to welding workability, as a result of adjusting the flux-cored wire component with good stability of the arc and small spatter generation amount, the content of C in the steel sheath of the flux-cored wire is limited to the optimum range. It has been found that the stability of the arc can be improved and the droplet size can be reduced to reduce the amount of spatter generated. Furthermore, it has been found that the stability of the arc is improved by adding an appropriate amount of Na compound and K compound.

また、フラックス入りワイヤ中にTi酸化物、Si酸化物、Zr酸化物、Al及びAl酸化物、Mg、弗素化合物を適量添加することで、ビード形状、スラグ被包性、スラグ剥離性、耐メタル垂れ性を改善して溶接作業性を良好にできることを見出した。また、Biを適量添加することで、スラグ剥離性をさらに改善できることも見出した。   Also, by adding an appropriate amount of Ti oxide, Si oxide, Zr oxide, Al and Al oxide, Mg, and a fluorine compound to the flux cored wire, bead shape, slag encapsulation, slag removability, metal resistance It has been found that the welding property can be improved by improving the sag. It has also been found that the slag removability can be further improved by adding an appropriate amount of Bi.

すなわち、本発明の要旨は、鋼製外皮にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、鋼製外皮中のCが鋼製外皮全質量に対する質量%で0.04〜0.08%であり、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、C:0.05〜0.12%、Si:0.1〜0.6%、Mn:1.5〜3.5%、B:0.002〜0.015%、AlのAl23換算値及びAl酸化物のAl23換算値の合計:0.3〜1.5%を含有し、さらに、ワイヤ全質量に対する質量%で、フラックス中に、Ti酸化物のTiO2換算値の合計:5〜10%、Si酸化物のSiO2換算値の合計:0.2〜0.7%、Zr酸化物のZrO2換算値の合計:0.1〜0.6%、Mg:0.2〜0.8%、弗素化合物のF換算値の合計:0.02〜0.15%、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計:0.03〜0.20%を含有し、残部が鋼製外皮のFe、鉄粉のFe分、鉄合金粉のFe分及び不可避不純物からなることを特徴とする。 That is, the gist of the present invention is that, in the flux cored wire for gas shielded arc welding, which is obtained by filling a flux into a steel shell, C in the steel shell is 0.04 to 0.% by mass% with respect to the total mass of the steel shell. C: 0.05 to 0.12%, Si: 0.1 to 0.6%, Mn: 1.5 to 08%, in mass% with respect to the total mass of the wire, in total of the steel sheath and the flux 3.5%, B: 0.002 to 0.015%, the total of Al 2 O 3 converted value of Al and Al 2 O 3 converted value of Al oxide: 0.3 to 1.5% is contained, Furthermore, in the flux, the total of TiO 2 converted value of Ti oxide: 5 to 10%, the total of SiO 2 converted value of Si oxide: 0.2 to 0.7%, in mass% with respect to the total mass of the wire. Sum of ZrO 2 converted values of Zr oxide: 0.1 to 0.6%, Mg: 0.2 to 0.8%, fluorine The sum of F conversion values of elementary compounds: 0.02 to 0.15%, the sum of Na 2 O conversion values of Na compounds and K compounds and K 2 O conversion values: 0.03 to 0.20%, It is characterized in that the balance is composed of Fe of steel shell, Fe of iron powder, Fe of iron alloy powder and unavoidable impurities.

また、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、Ni:0.1〜0.6%、Ti:0.05〜0.50%の1種または2種をさらに含有することを特徴とする。   In addition, it further contains one or two of Ni: 0.1 to 0.6%, Ti: 0.05 to 0.50% in total of steel sheath and flux in mass% with respect to the total mass of the wire. It is characterized by

さらに、ワイヤ全質量に対する質量%で、フラックス中に、Bi:0.005〜0.020%をさらに含有することも特徴とするガスシールドアーク溶接用フラックス入りワイヤにある。   Further, the present invention is the flux-cored wire for gas shielded arc welding, further characterized by further containing Bi: 0.005 to 0.020% in the flux in mass% with respect to the total mass of the wire.

本発明を適用したガスシールドアーク溶接用フラックス入りワイヤによれば、軟鋼から490MPa級高張力鋼及び低温鋼等の鋼構造物を溶接するにあたり、全姿勢溶接での溶接作業性が良好で、スパッタ発生量を低減でき、かつ、低温靭性に優れた溶接金属が得られるので、溶接能率の向上及び溶接部の品質の向上を図ることができる。   According to the flux cored wire for gas shielded arc welding to which the present invention is applied, welding workability in all position welding is good in welding steel structures such as 490MPa class high tensile steel and low temperature steel from mild steel, Since the amount of generation can be reduced and a weld metal having excellent low temperature toughness can be obtained, it is possible to improve the welding efficiency and the quality of the welded portion.

以下、本発明を適用したガスシールドアーク溶接用フラックス入りワイヤの鋼製外皮の成分組成及びその含有量と、各成分組成の限定理由について説明する。なお、成分組成の含有量は質量%で表すこととし、その質量%を表すときには単に%と記載して表すこととする。   Hereinafter, the component composition and content of the steel sheath of the flux cored wire for gas shielded arc welding to which the present invention is applied, and the reasons for limitation of the respective component compositions will be described. In addition, content of a component composition shall be represented by mass%, and when expressing the mass%, it shall be described only as% and represented.

[鋼製外皮のC:鋼製外皮全質量に対する質量%で0.04〜0.08%]
鋼製外皮のCは、アークを安定させて溶滴を細粒化させる効果がある。鋼製外皮のCが0.04%未満であると、アークが不安定で溶滴の細粒化が困難となってスパッタ発生量が多くなる。一方、鋼製外皮のCが0.08%を超えると、アークが強くなりすぎて、スパッタ発生量及びヒューム発生量が多くなる。また、立向上進溶接では、メタル垂れが発生しやすくなり、ビード形状が不良になる。したがって、鋼製外皮のCは鋼製外皮全質量に対する質量%で0.04〜0.08%とする。
[C of steel shell: 0.04 to 0.08% by mass relative to the total weight of the steel shell]
C of the steel shell has the effect of stabilizing the arc and making the droplets finer. If the C content of the steel shell is less than 0.04%, the arc is unstable, and it is difficult to refine the droplet, and the spatter generation amount increases. On the other hand, when the C content of the steel sheath exceeds 0.08%, the arc becomes too strong, and the spatter generation amount and the fume generation amount increase. In addition, in vertical advancement welding, metal sag tends to occur and the bead shape becomes defective. Therefore, C of the steel shell is set to 0.04 to 0.08% by mass based on the total mass of the steel shell.

以下、各成分組成の含有量は、フラックス入りワイヤ全質量に対する質量%で表す。   Hereinafter, the content of each component composition is represented by mass% to the total mass of the flux cored wire.

[鋼製外皮とフラックスの合計でC:0.05〜0.12%]
Cは、溶接金属の強度を向上させる効果がある。Cが0.05%未満では、十分な溶接金属の強度が得られない。一方、Cが0.12%を超えると、溶接金属中にCが過剰に歩留まり、溶接金属の強度が過剰に高くなって低温靱性が低下する。したがって、鋼製外皮とフラックスの合計でCは0.05〜0.12%とする。なお、Cは、鋼製外皮に含まれる成分の他、フラックスから金属粉及び合金粉等から添加できる。
[C: 0.05 to 0.12% in total of steel sheath and flux]
C has the effect of improving the strength of the weld metal. If C is less than 0.05%, sufficient weld metal strength can not be obtained. On the other hand, when C exceeds 0.12%, C is excessively produced in the weld metal, and the strength of the weld metal is excessively increased to lower the low temperature toughness. Therefore, C is made into 0.05 to 0.12% by the sum total of a steel-made outer skin and a flux. C can be added from metal powder, alloy powder and the like from flux in addition to the components contained in the steel shell.

[鋼製外皮とフラックスの合計でSi:0.1〜0.6%]
Siは、脱酸剤として作用し、溶接金属の低温靭性を向上させる効果がある。Siが0.1%未満では、その効果が得られず、溶接金属の低温靭性が低下する。一方、Siが0.6%を超えると、溶接時に生成するスラグ量が多くなり、スラグ巻込みが発生する。また、溶接金属中にSiが過剰に歩留まり、かえって溶接金属の低温靱性が低下する。したがって、鋼製外皮とフラックスの合計でSiは0.1〜0.6%とする。なお、Siは、鋼製外皮に含まれる成分の他、フラックスから金属Si、Fe−Si、Fe−Si−Mn等の合金粉末から添加できる。
[Si: 0.1 to 0.6% in total of steel skin and flux]
Si acts as a deoxidizer and has the effect of improving the low temperature toughness of the weld metal. If Si is less than 0.1%, the effect can not be obtained and the low temperature toughness of the weld metal is reduced. On the other hand, when Si exceeds 0.6%, the amount of slag generated at the time of welding increases, and slag entrapment occurs. In addition, excessive Si in the weld metal leads to a decrease in the yield, and the low temperature toughness of the weld metal is reduced. Therefore, Si is made 0.1 to 0.6% in the sum total of steel skin and flux. In addition to the components contained in the steel shell, Si can be added from flux and alloy powder such as metal Si, Fe-Si, Fe-Si-Mn, and the like.

[鋼製外皮とフラックスの合計でMn:1.5〜3.5%]
Mnは、脱酸剤として作用するとともに、溶接金属中に歩留まって溶接金属の強度と低温靱性を向上させる効果がある。Mnが1.5%未満では、溶接金属中にMnが十分に歩留まらず、溶接金属の低温靭性が低下するとともに、十分な強度が得られない。一方、Mnが3.5%を超えると、Mnが溶接金属中に過剰に歩留まり、溶接金属の強度が高くなって低温靱性が低下する。したがって、鋼製外皮とフラックスの合計でMnは1.5〜3.5%とする。なお、Mnは、鋼製外皮に含まれる成分の他、フラックスから金属Mn、Fe−Mn、Fe−Si−Mn等の合金粉末から添加できる。
[Mn: 1.5 to 3.5% in total of steel sheath and flux]
Mn acts as a deoxidizer and has the effect of remaining in the weld metal and improving the strength and low temperature toughness of the weld metal. When Mn is less than 1.5%, Mn is not sufficiently obtained in the weld metal, and the low temperature toughness of the weld metal is lowered, and sufficient strength can not be obtained. On the other hand, when Mn exceeds 3.5%, the Mn is excessively retained in the weld metal, and the strength of the weld metal increases to lower the low temperature toughness. Therefore, Mn is 1.5 to 3.5% in total of the steel shell and the flux. In addition, Mn can be added from alloy powders, such as metal Mn, Fe-Mn, and Fe-Si-Mn, from a flux other than the component contained in steel outer_layer | skins.

[鋼製外皮とフラックスの合計でB:0.002〜0.015%]
Bは、微量の添加で溶接金属の組織を微細化して溶接金属の低温靱性を向上させる効果がある。Bが0.002%未満では、その効果が十分に得られず、溶接金属の低温靭性が低下する。一方、Bが0.015%を超えると、高温割れが発生しやすくなる。したがって、鋼製外皮とフラックスの合計でBは0.002〜0.015%とする。なお、Bは、鋼製外皮に含まれる成分の他、フラックスからの金属B、Fe−B、Fe−Mn−B等の合金粉末から添加できる。
[B: 0.002 to 0.015% in total of steel skin and flux]
B has the effect of improving the low temperature toughness of the weld metal by refining the structure of the weld metal with a small amount of addition. If B is less than 0.002%, the effect is not sufficiently obtained, and the low temperature toughness of the weld metal is reduced. On the other hand, if B exceeds 0.015%, high temperature cracking is likely to occur. Therefore, B is set to 0.002 to 0.015% in total of the steel shell and the flux. In addition, B can be added from alloy powder, such as metal B from a flux, Fe-B, Fe-Mn-B, besides the component contained in steel outer_skin | epidermis.

[鋼製外皮とフラックスの合計でAlのAl23換算値及びAl酸化物のAl23換算値の合計:0.3〜1.5%]
Al及びAl酸化物は、溶接時に溶融スラグの融点や粘性を調整して、特に立向上進溶接での耐メタル垂れ性及びビード形状を改善する効果がある。AlのAl23換算値及びAl酸化物のAl23換算値の合計が0.3%未満では、その効果が十分に得られず、立向上進溶接でメタル垂れが発生しやすくなり、ビード形状が不良になる。一方、AlのAl23換算値及びAl酸化物のAl23換算値の合計が1.5%を超えると、Al酸化物として溶接金属中に過剰に残留し、溶接金属の低温靭性が低下する。したがって、鋼製外皮とフラックスの合計でAlのAl23換算値及びAl酸化物のAl23換算値の合計は0.3〜1.5%とする。なお、Alは鋼製外皮に含まれる成分の他、フラックスからの金属Al、Fe−Al等の合金粉末から、Al酸化物はフラックスからのアルミナ、カリ長石等から添加できる。
Total of terms of Al 2 O 3 value of terms of Al 2 O 3 value of Al in the sum of the steel sheath and the flux and Al oxides: from 0.3 to 1.5%]
Al and Al oxides have the effect of adjusting the melting point and viscosity of the molten slag at the time of welding, and in particular, improving the metal sag resistance and bead shape in vertical welding. The total is less than 0.3% in terms of Al 2 O 3 value of terms of Al 2 O 3 value and Al oxides of Al, the effect is insufficient, the metal dripping is likely to occur in the vertical upward advance welding , The bead shape is bad. On the other hand, if the total in terms of Al 2 O 3 value of terms of Al 2 O 3 value and Al oxides of Al exceeds 1.5%, excess remains in the weld metal as Al oxides, low-temperature toughness of the weld metal Decreases. Therefore, the sum of terms of Al 2 O 3 value of terms of Al 2 O 3 value and Al oxides Al in total the steel sheath and the flux and from 0.3 to 1.5%. Al can be added from the alloy powder of metal Al, Fe-Al and the like from the flux, and Al oxide can be added from alumina, potassium feldspar and the like from the flux, in addition to the components contained in the steel shell.

[フラックス中のTi酸化物のTiO2換算値の合計:5〜10%]
Ti酸化物は、スラグの主成分であり、溶接時に溶融スラグの融点や粘性を調整して耐メタル垂れ性、スラグ被包性、スラグ剥離性及びビード形状を改善する効果がある。Ti酸化物のTiO2換算値の合計が5%未満では、スラグ生成量が少なくなるので、各姿勢溶接でスラグ被包性、スラグ剥離性及びビード形状が不良になる。また、立向上進溶接及び立向下進溶接では、メタル垂れが発生しやすくなる。一方、Ti酸化物のTiO2換算値の合計が10%を超えると、スラグ生成量が多くなりすぎ、各姿勢溶接で溶接部にスラグ巻込み等の溶接欠陥が発生しやすくなる。また、溶接金属中にTi酸化物が過剰に残存して溶接金属の低温靱性が低下する。したがって、フラックス中のTi酸化物のTiO2換算値の合計は5〜10%とする。なお、Ti酸化物は、フラックスからのルチール、酸化チタン、チタンスラグ、イルミナイト等から添加される。
[Total TiO 2 converted value of Ti oxide in flux: 5 to 10%]
Ti oxide is a main component of slag, and has the effect of adjusting the melting point and viscosity of the molten slag at the time of welding to improve metal sag resistance, slag encapsulation, slag removability and bead shape. If the total TiO 2 conversion value of the Ti oxide is less than 5%, the amount of slag formation decreases, so the slag encapsulation property, the slag removability and the bead shape become poor in each position welding. In addition, in vertical advancement welding and vertical downward welding, metal sag tends to occur. On the other hand, when the total of the TiO 2 converted value of Ti oxide exceeds 10%, the amount of slag formation is too large, and welding defects such as slag entrapment and the like are easily generated in the welded portion in each position welding. In addition, excessive Ti oxide remains in the weld metal to lower the low temperature toughness of the weld metal. Therefore, the total of the TiO 2 conversion value of Ti oxide in flux is made into 5 to 10%. In addition, Ti oxide is added from the flux from a rutile, a titanium oxide, a titanium slag, illuminite etc.

[フラックス中のSi酸化物のSiO2換算値の合計:0.2〜0.7%]
Si酸化物は、溶接時に溶融スラグの粘性や融点を調整してスラグ被包性を改善する効果がある。Si酸化物のSiO2換算値の合計が0.2%未満では、この効果が十分に得られず、各姿勢溶接でスラグ被包性が悪くなってビード形状が不良になる。一方、Si酸化物のSiO2換算値の合計が0.7%を超えると、溶接金属中にSi酸化物が過剰に残存するとともに、溶融スラグの塩基度が低下して溶接金属中の酸素量が増加し、溶接金属の低温靭性が低下する。したがって、フラックス中のSi酸化物のSiO2換算値の合計は0.2〜0.7%とする。なお、Si酸化物は、フラックスから珪砂、カリ長石、ジルコンサンド、珪酸ソーダ等から添加できる。
[Total of SiO 2 converted values of Si oxide in flux: 0.2 to 0.7%]
Si oxide is effective in adjusting the viscosity and melting point of the molten slag at the time of welding to improve the slag covering property. If the total of the SiO 2 conversion value of Si oxide is less than 0.2%, this effect is not sufficiently obtained, and the slag covering property is deteriorated in each position welding, and the bead shape becomes defective. On the other hand, when the total of the SiO 2 conversion value of Si oxide exceeds 0.7%, the Si oxide excessively remains in the weld metal, and the basicity of the molten slag decreases, and the oxygen amount in the weld metal Increase and the low temperature toughness of the weld metal decreases. Therefore, the total of the SiO 2 conversion value of Si oxide in the flux is 0.2 to 0.7%. In addition, Si oxide can be added from a silica sand, a potassium feldspar, a zircon sand, a sodium silicate etc. from a flux.

[フラックス中のZr酸化物のZrO2換算値の合計:0.1〜0.6%]
Zr酸化物は、溶接時に溶融スラグの粘性や融点を調整し、特に立向上進溶接での耐メタル垂れ性及びビード形状を改善する効果がある。Zr酸化物のZrO2換算値が0.1%未満では、この効果が十分に得られず、立向上進溶接でメタル垂れが発生しやすくなり、ビード形状が不良になる。一方、Zr酸化物のZrO2換算値が0.6%を超えると、各姿勢溶接でスラグ剥離性が不良になる。したがって、フラックス中のZr酸化物のZrO2換算値の合計は0.1〜0.6%とする。なお、Zr酸化物は、フラックスからジルコンサンド、酸化ジルコニウム等から添加できるとともに、Ti酸化物に微量含有される。
[Total of ZrO 2 converted values of Zr oxides in flux: 0.1 to 0.6%]
The Zr oxide has an effect of adjusting the viscosity and melting point of the molten slag at the time of welding, and in particular, improving the metal sag resistance and bead shape in vertical welding. If the ZrO 2 conversion value of the Zr oxide is less than 0.1%, this effect can not be sufficiently obtained, and metal sag tends to occur in vertical welding, resulting in poor bead shape. On the other hand, when the ZrO 2 conversion value of the Zr oxide exceeds 0.6%, the slag removability becomes poor in each position welding. Therefore, the total of the ZrO 2 conversion value of the Zr oxide in the flux is 0.1 to 0.6%. The Zr oxide can be added from the flux from zircon sand, zirconium oxide, etc. and is contained in a small amount in the Ti oxide.

[フラックス中のMg:0.2〜0.8%]
Mgは、強脱酸剤として作用して溶接金属中の酸素を低減し、溶接金属の低温靱性を向上させる効果がある。Mgが0.2%未満では、この効果が十分に得られず、脱酸不足となって溶接金属の低温靱性が低下する。一方、Mgが0.8%を超えると、溶接時にアーク中で激しく酸素と反応してアークが不安定になり、スパッタ発生量が多くなって溶接ビード付近の鋼板表面にスパッタが多く付着する。したがって、フラックス中のMgは0.2〜0.8%とする。なお、Mgは、フラックスから金属Mg、Al−Mg等の合金粉末から添加できる。
[Mg in flux: 0.2 to 0.8%]
Mg acts as a strong deoxidizer to reduce oxygen in the weld metal and has an effect of improving the low temperature toughness of the weld metal. When the content of Mg is less than 0.2%, this effect can not be sufficiently obtained, so that deoxidation is insufficient and the low temperature toughness of the weld metal is lowered. On the other hand, when the content of Mg exceeds 0.8%, the reaction with oxygen in the arc is severe at the time of welding, the arc becomes unstable, and the spatter generation amount increases, and a large amount of spatter adheres to the steel sheet surface near the weld bead. Therefore, Mg in the flux is set to 0.2 to 0.8%. In addition, Mg can be added from alloy powders, such as metal Mg and Al-Mg, from a flux.

[フラックス中の弗素化合物のF換算値の合計:0.02〜0.15%]
弗素化合物は、アークを強くするとともに、特に立向上進溶接及び立向下進溶接で耐メタル垂れ性及びビード形状を改善する効果がある。弗素化合物のF換算値の合計が0.02%未満では、この効果が十分に得られず、アークが弱くなり、立向上進溶接及び立向下進溶接でメタル垂れが発生しやすくなり、ビード形状が不良になる。一方、弗素化合物のF換算値の合計が0.15%を超えると、アークが強くなりすぎて、立向上進溶接でメタル垂れが発生しやすくなり、ビード形状が不良になる。したがって、フラックス中の弗素化合物のF換算値の合計は0.02〜0.15%とする。なお、弗素化合物は、CaF2、NaF、LiF、MgF2、K2SiF6、Na3AlF6、AlF3等から添加でき、F換算値はこれらに含有されるF量の合計である。
[Sum of F conversion values of fluorine compounds in flux: 0.02 to 0.15%]
The fluorine compound has the effect of strengthening the arc and improving the metal sag resistance and the bead shape particularly in ups and downs and ups and downs welding. If the total F-converted value of the fluorine compound is less than 0.02%, this effect can not be obtained sufficiently, the arc becomes weak, and metal sag tends to occur in vertical advancement welding and vertical downward welding, and beads The shape is bad. On the other hand, if the total of the F converted value of the fluorine compound exceeds 0.15%, the arc becomes too strong, and metal sag tends to occur in the rising and advancing welding, and the bead shape becomes defective. Therefore, the total of the F conversion values of the fluorine compound in the flux is 0.02 to 0.15%. The fluorine compound can be added from CaF 2 , NaF, LiF, MgF 2 , K 2 SiF 6 , Na 3 AlF 6 , AlF 3 or the like, and the F conversion value is the sum of the amounts of F contained in these.

[フラックス中のNa化合物及びK化合物のNa2O換算値及びK2O換算値の合計:0.03〜0.20%]
Na化合物及びK化合物は、アーク安定剤として作用し、アークの安定性を改善する効果がある。Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が0.03%未満であると、アークが不安定となってスパッタ発生量が多くなる。一方、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が0.20%を超えると、アーク長が長くなって不安定になり、スパッタ発生量及びヒューム発生量が多くなる。また、立向上進溶接及び立向下進溶接でメタル垂れが発生しやすくなり、ビード形状が不良になる。したがって、フラックス中のNa化合物及びK化合物のNa2O換算値及びK2O換算値の合計は0.03〜0.20%とする。なお、Na化合物及びとK化合物は、珪酸ソーダ及び珪酸カリからなる水ガラスの固質成分、弗化ソーダ、チタン酸ナトリウム、珪弗化カリ、珪弗化ソーダ等から添加できる。
[Sum of Na 2 O-converted value and K 2 O-converted value of Na compound and K compound in flux: 0.03 to 0.20%]
Na compounds and K compounds act as arc stabilizers and have the effect of improving the stability of the arc. If the sum of the Na 2 O converted value and the K 2 O converted value of the Na compound and the K compound is less than 0.03%, the arc becomes unstable and the spatter generation amount increases. On the other hand, if the sum of the Na 2 O converted value and the K 2 O converted value of the Na compound and the K compound exceeds 0.20%, the arc length becomes long and becomes unstable, and the spatter generation amount and the fume generation amount are large. Become. In addition, metal drooping tends to occur in vertical advancement welding and vertical downward welding, and the bead shape becomes defective. Therefore, the sum of the Na 2 O converted value and the K 2 O converted value of the Na compound and the K compound in the flux is set to 0.03 to 0.20%. The Na compound and the K compound can be added from the solid component of water glass consisting of sodium silicate and potassium silicate, sodium fluoride, sodium titanate, potassium silicon fluoride, sodium silicon fluoride and the like.

[鋼製外皮とフラックスの合計でNi:0.1〜0.6%]
Niは、溶接金属の低温靱性をより向上させる効果がある。Niが0.1%未満では、溶接金属の低温靱性をより向上する効果が十分に得られない。一方、Niが0.6%を超えると、溶接金属の引張強さが過剰に高くなる場合があり、また、高温割れが発生しやすくなる。したがって、鋼製外皮とフラックスの合計でNiは0.1〜0.6%とする。なお、Niは、鋼製外皮に含まれる成分の他、フラックスからの金属Ni、Fe−Ni等の合金粉末から添加できる。
[Ni in total of steel sheath and flux: 0.1 to 0.6%]
Ni has the effect of further improving the low temperature toughness of the weld metal. If Ni is less than 0.1%, the effect of further improving the low temperature toughness of the weld metal can not be sufficiently obtained. On the other hand, if Ni exceeds 0.6%, the tensile strength of the weld metal may become excessively high, and high temperature cracking is likely to occur. Therefore, the sum of the steel shell and the flux is 0.1 to 0.6%. In addition, Ni can be added from alloy powders, such as metal Ni from a flux, and Fe-Ni other than the component contained in steel outer_layer | skins.

[鋼製外皮とフラックスの合計でTi:0.05〜0.50%]
Tiは、溶接金属の組織を微細化して低温靭性を向上させる効果がある。Tiが0.05%未満では、溶接金属の低温靭性をより向上する効果が十分に得られない。一方、Tiが0.50%を超えると、靭性を阻害する上部ベイナイト組織を生成し、溶接金属の低温靭性が低下する。したがって、鋼製外皮とフラックスの合計でTiは0.05〜0.50%とする。なお、Tiは、鋼製外皮に含まれる成分の他、フラックスからの金属Ti、Fe−Ti等の合金粉末から添加できる。
[Ti: 0.05 to 0.50% in total of steel sheath and flux]
Ti has the effect of refining the structure of the weld metal and improving the low temperature toughness. If Ti is less than 0.05%, the effect of further improving the low temperature toughness of the weld metal can not be sufficiently obtained. On the other hand, when Ti exceeds 0.50%, the upper bainite structure which inhibits toughness is generated, and the low temperature toughness of the weld metal is lowered. Therefore, Ti is made into 0.05 to 0.50% by the sum total of steel skin and flux. In addition, Ti can be added from alloy powders, such as metal Ti from flux, and Fe-Ti other than the component contained in steel outer_skin | epidermis.

[鋼製外皮とフラックスの合計でBi:0.005〜0.020%]
Biは、溶接金属からのスラグの剥離を促進させ、スラグ剥離性をさらに改善する効果がある。Biが0.005%未満では、この効果が十分に得られず、全姿勢溶接で十分なスラグ剥離性が得られない場合がある。一方、Biが0.020%を超えると、溶接金属の低温靭性が低下する。また、高温割れが発生しやすくなる。したがって、鋼製外皮とフラックスの合計でBiは0.005〜0.020%とする。なお、Biは、フラックスからの金属Bi等の合金粉末から添加できる。
[Bi: 0.005 to 0.020% in total of steel skin and flux]
Bi promotes the separation of slag from the weld metal and has the effect of further improving the slag removability. If Bi is less than 0.005%, this effect may not be sufficiently obtained, and sufficient slag removability may not be obtained in all-position welding. On the other hand, when Bi exceeds 0.020%, the low temperature toughness of the weld metal is reduced. In addition, high temperature cracking is likely to occur. Therefore, Bi is made 0.005 to 0.020% in the sum of the steel shell and the flux. In addition, Bi can be added from alloy powder, such as metal Bi from a flux.

本発明のガスシールドアーク溶接用フラックス入りワイヤの残部は、鋼製外皮のFe、添加する鉄粉のFe分、Fe−Mn、Fe−Si合金等の鉄合金粉のFe分及び不可避不純物である。なお、成分調整のためにFeO、MnO等を添加してもよい。不可避不純物については特に限定しないが、耐高温割れ性の観点から、Pは0.020%以下、Sは0.010%以下が好ましい。   The balance of the flux cored wire for gas shielded arc welding of the present invention is Fe of steel shell, Fe content of iron powder to be added, Fe content of iron alloy powder such as Fe-Mn, Fe-Si alloy etc. and unavoidable impurities . In addition, you may add FeO, MnO, etc. for component adjustment. The unavoidable impurities are not particularly limited, but from the viewpoint of high temperature cracking resistance, P is preferably 0.020% or less and S is preferably 0.010% or less.

鉄粉は、成分調整のために添加する鉄粉である。この鉄粉は、鉄である以上、Fe分が含まれることは明らかである。Cは、フラックスから金属粉及び合金粉等から添加されるが、これら金属粉及び合金粉は、成分調整のために意図的に添加する鉄粉とは相違するものである。このため鉄粉にはCは原則として含まれない。逆に鉄粉の量がいかなるものであっても、Cの含有量に影響を及ぼすものではない。他の成分Mn、Si等も同様である。   Iron powder is iron powder to be added for component adjustment. As long as this iron powder is iron, it is clear that it contains Fe. C is added from flux to metal powder, alloy powder and the like, and these metal powder and alloy powder are different from iron powder intentionally added for component adjustment. Therefore, C is not included in iron powder in principle. Conversely, the amount of iron powder does not affect the C content. The same applies to other components such as Mn and Si.

なお、本発明のガスシールドアーク溶接用フラックス入りワイヤは、鋼製外皮をパイプ状に形成し、内部にフラックスを充填する構造であり、鋼製外皮の合わせ目を溶接して継目の無いタイプと、鋼製外皮の合わせ目を溶接しないでかしめる継目を有するタイプに大別できる。継目の無いタイプはフラックス入りワイヤ中の水素量を低減することを目的とした熱処理が可能であり、かつ、製造後のフラックス入りワイヤの吸湿が少ないので、溶接金属の拡散性水素を低減でき、耐割れ性の向上を図ることができるので、より好ましい。   The flux-cored wire for gas shielded arc welding of the present invention has a structure in which a steel sheath is formed in a pipe shape and the flux is filled inside, and the seamed type of the steel sheath is welded to a seamless type This type can be roughly classified into types having seams that are not welded and welded to joints of steel skins. The seamless type is capable of heat treatment aimed at reducing the amount of hydrogen in the flux cored wire, and because the moisture absorption of the flux cored wire after manufacture is small, the diffusible hydrogen of the weld metal can be reduced, It is more preferable because cracking resistance can be improved.

また、フラックス充填率は特に制限はしないが、生産性の観点から、ワイヤ全質量に対して8〜20%とするのが好ましい。   The flux filling rate is not particularly limited, but is preferably 8 to 20% with respect to the total wire mass from the viewpoint of productivity.

以下、本発明の効果を実施例により具体的に説明する。   Hereinafter, the effects of the present invention will be specifically described by way of examples.

鋼製外皮に表1に示す各種成分組成のJIS G3141 SPCCを使用し、該鋼製外皮をU字型に成形、フラックスを充填率10〜16%で充填してC字型に成形した後、鋼製外皮の合わせ目を溶接して造管、伸線し、表2及び表3に示す各種成分のフラックス入りワイヤを試作した。なお、試作したワイヤ径は1.2mmとした。   Using JIS G3141 SPCC of various composition shown in Table 1 for steel shell, molding the steel shell into a U shape, filling it with a filling rate of 10 to 16% and molding it into a C shape, The joints of the steel sheaths were welded, piped and drawn, and flux-cored wires of various components shown in Tables 2 and 3 were produced. The diameter of the prototype wire was 1.2 mm.

Figure 2019123012
Figure 2019123012

Figure 2019123012
Figure 2019123012

Figure 2019123012
Figure 2019123012

表2、3においてAl23換算値を換算する上で根拠となるAlの含有量も併記している。 In Tables 2 and 3, the content of Al, which is a basis for converting the Al 2 O 3 conversion value, is also shown.

これら試作ワイヤを用い、立向上進溶接、立向下進溶接、水平すみ肉溶接による溶接作業性及び溶着金属の機械性能を調査した。   Using these trial-made wires, we investigated the welding workability by vertical advancement welding, vertical downward welding, horizontal fillet welding, and the mechanical performance of the deposited metal.

溶接作業性は、板厚16mmのJIS G 3106に準拠したSM490B鋼板をT字に組んだ試験体に、表4に示す溶接条件で、立向上進溶接、立向下進溶接、水平すみ肉溶接を行い、その際のアーク状態、スパッタ発生状態、スラグ被包性、スラグ剥離性、ビード形状の良否、メタル垂れの有無を目視確認で調査した。また、JIS Z 3181に準じて破断面の確認を行い、スラグ巻込み等の溶接欠陥の有無を調査した。   The welding workability is as follows: T-shaped test pieces of SM490B steel plate in accordance with JIS G 3106 with a thickness of 16 mm, under the welding conditions shown in Table 4, vertical welding, vertical welding, horizontal fillet welding At that time, the arc state, the spatter generation state, the slag covering property, the slag removability, the quality of the bead shape, and the presence or absence of the metal sag were examined by visual check. In addition, the fractured surface was confirmed in accordance with JIS Z 3181, and the presence or absence of welding defects such as slag inclusion was investigated.

Figure 2019123012
Figure 2019123012

溶着金属試験は、板厚20mmのJIS G 3106に準拠したSM490B鋼板を用い、JIS Z 3111に準じて溶接を行い、溶着金属の板厚方向中心から引張試験片(A0号)及び衝撃試験片(Vノッチ試験片)を採取し、機械試験を実施した。引張試験の評価は、引張強さが490〜670MPaを良好とした。衝撃試験の評価は、−30℃におけるシャルピー衝撃試験を行い、繰返し3本の吸収エネルギーの平均が47J以上を良好とした。その際、初層溶接時に高温割れの有無を目視確認で調査した。これら結果を表5及び表6にまとめて示す。   The weld metal test is performed using a SM490B steel plate conforming to JIS G 3106 with a thickness of 20 mm according to JIS Z 3111, and tensile test pieces (A0) and impact test pieces (from the center in the plate thickness direction of the weld metal) V-notch test pieces were taken and mechanical tests were performed. Evaluation of the tensile test made tensile strength 490-670 Mpa good. The evaluation of the impact test carried out a Charpy impact test at -30 ° C, and the average of absorbed energy of 3 repetitions made 47 J or more good. At that time, the presence or absence of a high temperature crack was investigated by visual inspection at the time of first layer welding. These results are summarized in Tables 5 and 6.

Figure 2019123012
Figure 2019123012

Figure 2019123012
Figure 2019123012

表2及び表5のワイヤ記号W1〜W20は本発明例であり、表3及び表6のワイヤ記号W21〜W35は比較例である。本発明例であるW1〜W20は、鋼製外皮のC、フラックス入りワイヤ中の鋼製外皮とフラックスの合計でC、Si、Mn、B、AlのAl23換算値及びAl酸化物のAl23換算値の合計、フラックス中のTi酸化物のTiO2換算値の合計、Si酸化物SiO2換算値の合計、Zr酸化物ZrO2換算値の合計、Mg、弗素化合物のF換算値の合計、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が適正であるので、アークが安定してスパッタ発生量が少なく、立向上進溶接及び立向下進溶接でメタル垂れがなく、各姿勢溶接でスラグ被包性、スラグ剥離性及びビード形状が良好で、スラグ巻込み等の溶接欠陥が無く溶接作業性が良好で、高温割れも発生しなかった。また、溶着金属の引張強さ及び吸収エネルギーも良好であった。 Wire symbols W1 to W20 in Tables 2 and 5 are examples of the present invention, and wire symbols W21 to W35 in Tables 3 and 6 are comparative examples. W1 to W20 which are examples of the present invention are C of a steel outer skin, a total of steel outer skin and flux in a flux cored wire, C, Si, Mn, B, Al converted value of Al 2 O 3 and Al oxide Total of Al 2 O 3 converted value, total of TiO 2 converted value of Ti oxide in flux, total of Si oxide SiO 2 converted value, total of Zr oxide ZrO 2 converted value, Mg, F converted of fluorine compound Since the sum of the values, the Na 2 O converted value and the K 2 O converted value of the Na compound and the K compound are appropriate, the arc is stable and the spatter generation amount is small, and the vertical advance welding and vertical reverse welding There was no metal sag, and in each posture welding, the slag covering property, the slag removability and the bead shape were good, there were no welding defects such as slag inclusion, and the welding workability was good and no high temperature cracking occurred. In addition, the tensile strength and the absorbed energy of the deposited metal were also good.

また、ワイヤ記号W1、W4、W7、W8、W10、W11、W13及びW19は、Niが適量添加されているので、溶着金属の吸収エネルギーが70J以上であった。ワイヤ記号W3、W4、W7、W9、W12、W15及びW19は、Tiが適量添加されているので、溶着金属の吸収エネルギーが70J以上であった。また、ワイヤ記号W4、W7及びW19は、Ni及びTiが適量添加されているので溶着金属の吸収エネルギーが70J以上であった。さらに、ワイヤ記号W1、W3、W6、W7、W11、W13、W14、W18及びW20は、Biが適量添加されているので、スラグ剥離性が極めて良好であった。   Further, in the wire symbols W1, W4, W7, W8, W10, W11, W13, and W19, since an appropriate amount of Ni was added, the absorbed energy of the deposited metal was 70 J or more. In the wire symbols W3, W4, W7, W9, W12, W15 and W19, since an appropriate amount of Ti was added, the absorbed energy of the deposited metal was 70 J or more. Further, in the wire symbols W4, W7 and W19, since Ni and Ti were added in appropriate amounts, the absorbed energy of the deposited metal was 70 J or more. Furthermore, in the wire symbols W1, W3, W6, W7, W11, W13, W14, W18 and W20, an appropriate amount of Bi was added, so the slag removability was extremely good.

比較例中ワイヤ記号W21は、鋼製外皮のCが少ないので、アークが不安定で、スパッタ発生量が多かった。また、フラックス中のTiが多いので、溶着金属の吸収エネルギーが低かった。   In the wire symbol W21 in the comparative example, since the C of the steel sheath was small, the arc was unstable and the spatter generation amount was large. Moreover, since there was much Ti in the flux, the absorbed energy of the deposited metal was low.

ワイヤ記号W22は、鋼製外皮のCが多いので、アークが強くなりすぎて、スパッタ発生量及びヒューム発生量が多かった。また、立向上進溶接でメタル垂れが発生し、ビード形状が不良であった。また、鋼製外皮とフラックスの合計でSiが多いので、溶着金属の吸収エネルギーが低く、全ての溶接姿勢でスラグ巻込みが発生した。   The wire symbol W22 had a large amount of C in the steel sheath, so the arc became too strong and the spatter generation amount and the fume generation amount were large. In addition, metal drooping occurred during vertical advancement welding, and the bead shape was defective. In addition, since the total amount of Si in the steel shell and the flux is high, the absorbed energy of the deposited metal is low, and slag inclusion occurs in all the welding positions.

ワイヤ記号W23は、鋼製外皮とフラックスの合計でCが少ないので、溶着金属の引張強さが低かった。また、フラックス中のSi酸化物のSiO2換算値の合計が少ないので、全ての溶接姿勢でスラグ被包性及びビード形状が不良であった。 Since the wire symbol W23 has a small amount of C in total of the steel sheath and the flux, the tensile strength of the deposited metal is low. Further, since the sum of SiO 2 converted value of Si oxide in the flux is small, the slag encapsulated and bead shape was poor in all welding positions.

ワイヤ記号W24は、鋼製外皮とフラックスの合計でCが多いので、溶着金属の引張強さが高く、吸収エネルギーが低かった。また、フラックス中のZr酸化物のZrO2換算値が多いので、全ての溶接姿勢でスラグ剥離性が不良であった。さらに、フラックス中のBiが少ないので、スラグ剥離性を改善する効果が得られなかった。 The wire symbol W24 had a large amount of C in total of the steel sheath and the flux, so the tensile strength of the deposited metal was high and the absorbed energy was low. Moreover, since the ZrO 2 conversion value of the Zr oxide in the flux is large, the slag removability was poor in all the welding positions. Furthermore, since there was little Bi in the flux, the effect of improving the slag removability was not obtained.

ワイヤ記号W25は、鋼製外皮とフラックスの合計でSiが少ないので、溶着金属の吸収エネルギーが低かった。また、鋼製外皮とフラックスの合計でNiが少ないので、溶着金属の吸収エネルギーを向上させる効果が得られなかった。   The wire symbol W25 had a low amount of Si in the sum of the steel sheath and the flux, so the absorbed energy of the deposited metal was low. In addition, since the sum of the steel shell and the flux is low in Ni, the effect of improving the absorbed energy of the deposited metal can not be obtained.

ワイヤ記号W26は、鋼製外皮とフラックスの合計でMnが少ないので、溶着金属の引張強さ及び吸収エネルギーが低かった。また、鋼製外皮とフラックスの合計でAlのAl23換算値とAl酸化物のAl23換算値の合計が少ないので、立向上進溶接でメタル垂れが発生し、ビード形状が不良であった。 Since the wire symbol W26 has a small amount of Mn in total of the steel sheath and the flux, the tensile strength and the absorbed energy of the deposited metal are low. Further, since the sum of terms of Al 2 O 3 value of terms of Al 2 O 3 value and Al oxide Al in the sum of the steel sheath and the flux is small, the metal sag occurs in vertical upward proceeds welding bead shape defect Met.

ワイヤ記号W27は、鋼製外皮とフラックスの合計でMnが多いので、溶着金属の引張強さが高く、吸収エネルギーが低かった。また、フラックス中のMgが多いので、アークが不安定で、スパッタ発生量が多かった。   The wire symbol W27 had a large amount of Mn in total of the steel sheath and the flux, so the tensile strength of the deposited metal was high and the absorbed energy was low. Moreover, since there was much Mg in the flux, the arc was unstable and the amount of spatter generated was large.

ワイヤ記号W28は、鋼製外皮とフラックスの合計でBが少ないので、溶着金属の吸収エネルギーが低かった。また、鋼製外皮とフラックスの合計でTiが少ないので、溶着金属の吸収エネルギーを向上させる効果が得られなかった。さらに、フラックス中の弗素化合物のF換算値の合計が多いので、アーク強くなりすぎて、立向上進溶接でメタル垂れが発生し、ビード形状が不良であった。   The wire symbol W28 had a low B in total of the steel sheath and the flux, so the absorbed energy of the deposited metal was low. In addition, since the total amount of the steel shell and the flux is small in Ti, the effect of improving the absorbed energy of the deposited metal can not be obtained. Furthermore, since the total of the F conversion values of the fluorine compound in the flux is large, the arc becomes too strong, and metal sag occurs in the vertical advancement welding, and the bead shape is defective.

ワイヤ記号W29は、鋼製外皮とフラックスの合計でBが多いので、溶接部に高温割れが発生した。また、フラックス中のSi酸化物のSiO2換算値の合計が多いので、溶着金属の吸収エネルギーが低かった。さらに、フラックス中のNa化合物及びK化合物のNa2O換算値及びK2O換算値の合計が多いので、アークが不安定で、スパッタ発生量及びヒューム発生量が多かった。また、立向上進溶接及び立向下進溶接でメタル垂れが発生し、ビード形状が不良であった。 In the wire symbol W29, there are a large amount of B in total of the steel sheath and the flux, so that high temperature cracks occurred in the weld. Moreover, since the total of the SiO 2 conversion value of Si oxide in the flux is large, the absorbed energy of the deposited metal was low. Furthermore, since the total of the Na 2 O converted value and the K 2 O converted value of the Na compound and K compound in the flux is large, the arc is unstable and the spatter generation amount and the fume generation amount are large. In addition, metal sag occurred in vertical advancement welding and vertical downward welding, and the bead shape was defective.

ワイヤ記号W30は、鋼製外皮とフラックスの合計でAlのAl23換算値とAl酸化物のAl23換算値の合計が多いので、溶着金属の吸収エネルギーが低かった。また、鋼製外皮とフラックスの合計でNiが多いので、溶着金属の引張強さが高く、溶接部に高温割れが発生した。 As the wire with wire symbol W30, since the sum of terms of Al 2 O 3 value of terms of Al 2 O 3 value and Al oxide Al in the sum of the steel sheath and the flux is large, the absorption energy of the weld metal was low. In addition, since the sum of the steel shell and the flux contained a large amount of Ni, the tensile strength of the deposited metal was high, and high temperature cracking occurred in the welded portion.

ワイヤ記号W31は、フラックス中のTi酸化物のTiO2換算値の合計が多いので、溶着金属の吸収エネルギーが低かった。また、全ての溶接姿勢でスラグ巻込みが発生した。さらに、フラックス中のZr酸化物のZrO2換算値の合計が少ないので、立向上進溶接でメタル垂れが発生し、ビード形状が不良であった。 In the wire symbol W31, the absorbed energy of the deposited metal was low because the total of the TiO 2 converted values of the Ti oxides in the flux is large. In addition, slag inclusion occurred in all welding postures. Furthermore, since the total of the ZrO 2 converted value of the Zr oxide in the flux is small, metal sag occurs in the vertical welding, and the bead shape is defective.

ワイヤ記号W32は、フラックス中のMgが少ないので、溶着金属の吸収エネルギーが低かった。また、フラックス中のNa化合物及びK化合物のNa2O換算値及びK2O換算値の合計が少ないので、アークが不安定で、スパッタ発生量が多かった。 In the wire symbol W32, the absorbed energy of the deposited metal was low because there was less Mg in the flux. In addition, since the total of the Na 2 O converted value and the K 2 O converted value of the Na compound and the K compound in the flux is small, the arc is unstable and the spatter generation amount is large.

ワイヤ記号W33は、フラックス中の弗素化合物のF換算値の合計が少ないので、アークが弱くなり、立向上進溶接及び立向下進溶接でメタル垂れが発生し、ビード形状が不良であった。   In the wire symbol W33, since the total of the F converted values of the fluorine compound in the flux is small, the arc becomes weak, metal sag occurs in vertical advance welding and vertical downward welding, and the bead shape is defective.

ワイヤ記号W34は、フラックス中のTi酸化物のTiO2換算値の合計が少ないので、立向上進溶接及び立向下進溶接でメタル垂れが発生し、全ての溶接姿勢でスラグ被包性、スラグ剥離性及びビード形状が不良であった。また、フラックス中のBiが少ないので、スラグ剥離性を改善する効果が得られなかった。 Since the wire symbol W34 has a small total of TiO 2 converted values of Ti oxide in the flux, metal sag occurs in vertical advancing welding and vertical descending welding, and slag covering property and slag in all welding positions The peelability and the bead shape were poor. Moreover, since there was little Bi in flux, the effect of improving slag removability was not acquired.

ワイヤ記号W35は、鋼製外皮とフラックスの合計でMnが少ないので、溶着金属の引張強さ及び吸収エネルギーが低かった。また、鋼製外皮とフラックスの合計でのNiが少ないので、溶着金属の吸収エネルギーを向上させる効果が得られなかった。   Since the wire symbol W35 has a small amount of Mn in total of the steel sheath and the flux, the tensile strength and the absorbed energy of the deposited metal are low. In addition, since the total amount of Ni in the steel shell and the flux is small, the effect of improving the absorbed energy of the deposited metal can not be obtained.

Claims (3)

鋼製外皮にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、
鋼製外皮中のCが鋼製外皮全質量に対する質量%で0.04〜0.08%であり、
ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、
C:0.05〜0.12%、
Si:0.1〜0.6%、
Mn:1.5〜3.5%、
B:0.002〜0.015%、
AlのAl23換算値及びAl酸化物のAl23換算値の合計:0.3〜1.5%を含有し、
さらに、ワイヤ全質量に対する質量%で、フラックス中に、
Ti酸化物のTiO2換算値の合計:5〜10%、
Si酸化物のSiO2換算値の合計:0.2〜0.7%、
Zr酸化物のZrO2換算値の合計:0.1〜0.6%、
Mg:0.2〜0.8%、
弗素化合物のF換算値の合計:0.02〜0.15%、
Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計:0.03〜0.20%を含有し、
残部が鋼製外皮のFe、鉄粉のFe分、鉄合金粉のFe分及び不可避不純物からなることを特徴とするガスシールドアーク溶接用フラックス入りワイヤ。
In a flux-cored wire for gas shielded arc welding, in which a flux is filled in a steel shell,
C in the steel shell is 0.04 to 0.08% by mass based on the total mass of the steel shell,
% Of the total wire mass, the sum of the steel sheath and the flux,
C: 0.05 to 0.12%,
Si: 0.1 to 0.6%,
Mn: 1.5 to 3.5%,
B: 0.002 to 0.015%,
Total terms of Al 2 O 3 value of terms of Al 2 O 3 value and Al oxides Al: contains 0.3 to 1.5%,
Furthermore, in the flux, in% by mass relative to the total mass of the wire,
Total of TiO 2 converted value of Ti oxide: 5 to 10%,
Total of SiO 2 converted value of Si oxide: 0.2 to 0.7%,
Total of ZrO 2 converted value of Zr oxide: 0.1 to 0.6%,
Mg: 0.2 to 0.8%,
The total F conversion value of the fluorine compound: 0.02 to 0.15%,
The sum of the Na 2 O converted value and the K 2 O converted value of the Na compound and the K compound: 0.03 to 0.20% is contained,
A flux-cored wire for gas shielded arc welding, characterized in that the balance is composed of Fe of steel shell, Fe of iron powder, Fe of iron alloy powder and unavoidable impurities.
ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、Ni:0.1〜0.6%、Ti:0.05〜0.50%の1種または2種をさらに含有することを特徴とする請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。   Containing one or two kinds of Ni: 0.1 to 0.6%, Ti: 0.05 to 0.50% in total of steel sheath and flux in mass% with respect to the total mass of the wire A flux cored wire for gas shielded arc welding according to claim 1, characterized in that: ワイヤ全質量に対する質量%で、フラックス中に、Bi:0.005〜0.020%をさらに含有することを特徴とする請求項1または請求項2に記載のガスシールドアーク溶接用フラックス入りワイヤ。   The flux cored wire for gas shielded arc welding according to claim 1 or 2, further comprising Bi: 0.005 to 0.020% in the flux in mass% with respect to the total mass of the wire.
JP2018192082A 2018-01-16 2018-10-10 Flux-filled wire for gas shielded arc welding Active JP6951313B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/248,457 US20190217423A1 (en) 2018-01-16 2019-01-15 Flux-cored wire for gas shielded arc welding
NO20190052A NO20190052A1 (en) 2018-01-16 2019-01-15 Flux-cored wire for gas shielded arc welding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018005216 2018-01-16
JP2018005216 2018-01-16

Publications (2)

Publication Number Publication Date
JP2019123012A true JP2019123012A (en) 2019-07-25
JP6951313B2 JP6951313B2 (en) 2021-10-20

Family

ID=67397341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018192082A Active JP6951313B2 (en) 2018-01-16 2018-10-10 Flux-filled wire for gas shielded arc welding

Country Status (2)

Country Link
JP (1) JP6951313B2 (en)
NO (1) NO20190052A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021090979A (en) * 2019-12-09 2021-06-17 日鉄溶接工業株式会社 Flux-cored wire for gas shielded arc welding

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289404A (en) * 2005-04-07 2006-10-26 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for gas shielded arc welding
JP2013252551A (en) * 2012-06-08 2013-12-19 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas shielded arc welding
JP2015205303A (en) * 2014-04-18 2015-11-19 日鐵住金溶接工業株式会社 Flux-cored wire for gas shield arc welding
JP2015217393A (en) * 2014-05-14 2015-12-07 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide gas shielded arc welding
JP2016055311A (en) * 2014-09-09 2016-04-21 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
JP2016203234A (en) * 2015-04-28 2016-12-08 日鐵住金溶接工業株式会社 Flux-cored wire for gas-shielded arc welding
JP2017087265A (en) * 2015-11-11 2017-05-25 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide gas shielded arc welding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289404A (en) * 2005-04-07 2006-10-26 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for gas shielded arc welding
JP2013252551A (en) * 2012-06-08 2013-12-19 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas shielded arc welding
JP2015205303A (en) * 2014-04-18 2015-11-19 日鐵住金溶接工業株式会社 Flux-cored wire for gas shield arc welding
JP2015217393A (en) * 2014-05-14 2015-12-07 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide gas shielded arc welding
JP2016055311A (en) * 2014-09-09 2016-04-21 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
JP2016203234A (en) * 2015-04-28 2016-12-08 日鐵住金溶接工業株式会社 Flux-cored wire for gas-shielded arc welding
JP2017087265A (en) * 2015-11-11 2017-05-25 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide gas shielded arc welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021090979A (en) * 2019-12-09 2021-06-17 日鉄溶接工業株式会社 Flux-cored wire for gas shielded arc welding
JP7247079B2 (en) 2019-12-09 2023-03-28 日鉄溶接工業株式会社 Flux-cored wire for gas-shielded arc welding

Also Published As

Publication number Publication date
JP6951313B2 (en) 2021-10-20
NO20190052A1 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
JP6786427B2 (en) Flux-filled wire for gas shielded arc welding
JP6437327B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP6382117B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP6033755B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6188621B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5356142B2 (en) Gas shield arc welding method
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2009248137A (en) Flux cored wire for gas-shielded arc welding
JP6669613B2 (en) Flux-cored wire for gas shielded arc welding
JP4300153B2 (en) Flux-cored wire for gas shielded arc welding
JP2016203179A (en) Flux-cored wire for gas-shielded arc welding
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6951313B2 (en) Flux-filled wire for gas shielded arc welding
JP7257189B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of weathering steel
JP2015205304A (en) Flux-cored wire for gas shield arc welding
JP7221812B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel
JP2010194571A (en) Flux-cored wire for two-electrode horizontal fillet gas shield arc welding
JP7247079B2 (en) Flux-cored wire for gas-shielded arc welding
JP7175784B2 (en) Flux-cored wire for carbon dioxide shielded arc welding of high-strength steel
JP7221742B2 (en) Pulse MAG multi-layer welding method
JP6951304B2 (en) Flux-cored wire for carbon dioxide shield arc welding
JP6951285B2 (en) Pulse MAG multi-layer welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210924

R150 Certificate of patent or registration of utility model

Ref document number: 6951313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150