JP7221812B2 - Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel - Google Patents

Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel Download PDF

Info

Publication number
JP7221812B2
JP7221812B2 JP2019112320A JP2019112320A JP7221812B2 JP 7221812 B2 JP7221812 B2 JP 7221812B2 JP 2019112320 A JP2019112320 A JP 2019112320A JP 2019112320 A JP2019112320 A JP 2019112320A JP 7221812 B2 JP7221812 B2 JP 7221812B2
Authority
JP
Japan
Prior art keywords
flux
wire
steel
weld metal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019112320A
Other languages
Japanese (ja)
Other versions
JP2020203302A (en
Inventor
友勝 岩上
紀文 中尾
Original Assignee
日鉄溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄溶接工業株式会社 filed Critical 日鉄溶接工業株式会社
Priority to JP2019112320A priority Critical patent/JP7221812B2/en
Publication of JP2020203302A publication Critical patent/JP2020203302A/en
Application granted granted Critical
Publication of JP7221812B2 publication Critical patent/JP7221812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

本発明は、590~690MPa級高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤに関し、特に溶接作業性が良好で、溶接金属の低温領域での靭性が優れる高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤに関する。 The present invention relates to a flux-cored wire for Ar—CO 2 mixed gas shielded arc welding of 590-690 MPa class high-strength steel. - flux cored wire for CO2 mixed gas shielded arc welding.

近年、ビル、橋梁、海洋構造物などの鋼構造物の大型化や軽量化及び自動車、建産機の軽量化に伴って、使用される鋼板の高張力化が進み、引張強さが590~690MPa級の高張力鋼が広く使用されている。 In recent years, steel structures such as buildings, bridges, and offshore structures have become larger and lighter, and automobiles and construction machinery have become lighter. 690 MPa class high-strength steel is widely used.

引張強さが590~690MPa級高張力鋼を用いた溶接構造物では、溶接金属中の拡散性水素量が少なく耐割れ性及び低温靭性などの機械的性質に優れ、また、スラグ生成量が少なく高能率溶接が可能なメタル系フラックス入りワイヤを用いたスパッタ発生量が少ないAr-CO2混合ガスシールドアーク溶接が要望されている。 Welded structures using high-tensile steel with a tensile strength of 590 to 690 MPa have a small amount of diffusible hydrogen in the weld metal, excellent mechanical properties such as crack resistance and low temperature toughness, and a small amount of slag generation. There is a demand for Ar-CO 2 mixed gas shielded arc welding that uses a metallic flux-cored wire capable of high-efficiency welding and generates less spatter.

従来、高張力鋼のAr-CO2混合ガスシールドアーク溶接には、例えば、特許文献1や特許文献2に開示されているNi、Cr、Moなどの合金成分を含有したAr-CO2混合ガスシールドアーク溶接用ソリッドワイヤが使用される。しかし、特許文献1や特許文献2に記載のAr-CO2混合ガスシールドアーク溶接用ソリッドワイヤは、合金成分を多く含みワイヤ自体が硬く剛性が高いので、溶接時のワイヤ送給抵抗が大きく、ワイヤ送給が安定せずアークが不安定になってスパッタ発生量が多くなる。 Conventionally, for Ar-CO 2 mixed gas shielded arc welding of high-strength steel, for example, Ar-CO 2 mixed gas containing alloy components such as Ni, Cr, and Mo disclosed in Patent Document 1 and Patent Document 2 Solid wire for shielded arc welding is used. However, the solid wires for Ar—CO 2 mixed gas shielded arc welding described in Patent Documents 1 and 2 contain many alloy components and the wires themselves are hard and have high rigidity. Wire feeding becomes unstable and the arc becomes unstable, resulting in a large amount of spatter.

一方、高張力鋼のAr-CO2混合ガスシールドアーク溶接用のフラックス入りワイヤとして、特許文献3に、溶接作業性が良好で、かつ耐割れ性も優れた高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤが開示されている。特許文献3に記載されたフラックス入りワイヤによれば、高強度な溶接金属が得られ、かつ、アークが安定してスパッタ発生量を少ないなど良好な溶接作業性が得られる。しかし、特許文献3に記載のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤは、スラグ形成剤の含有量が多いので、溶接金属中の酸素量が多くなり、溶接金属の低温靭性を安定して得ることが難しい。 On the other hand, as a flux-cored wire for Ar-CO 2 mixed gas shielded arc welding of high-strength steel, Patent Document 3 describes an Ar-CO 2 mixed high-strength steel with good welding workability and excellent crack resistance. A flux cored wire for gas shielded arc welding is disclosed. According to the flux-cored wire described in Patent Document 3, a high-strength weld metal can be obtained, and good welding workability such as a stable arc and a small amount of spatter generated can be obtained. However, the flux-cored wire for Ar—CO 2 mixed gas shielded arc welding described in Patent Document 3 contains a large amount of slag-forming agent, so the amount of oxygen in the weld metal increases, and the low-temperature toughness of the weld metal is stabilized. hard to get.

溶接金属中の酸素量を低減して優れた低温靭性を得る技術として、特許文献4には、ワイヤ中の金属弗化物の含有量を増加させることで溶接金属の酸素量を低減することを目的としたAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤが開示されている。しかし、特許文献4に記載のAr-CO2混合ガスシールドアーク溶接用ワイヤによれば、低温靭性に優れた溶接金属を得ることができるものの、フラックスワイヤ中に金属弗化物を多く含むので、アークが不安定になってスパッタ発生量が多いなど溶接作業性が悪い。 As a technique for obtaining excellent low-temperature toughness by reducing the oxygen content in the weld metal, Patent Document 4 discloses that the content of metal fluoride in the wire is increased to reduce the oxygen content in the weld metal. A flux-cored wire for Ar--CO 2 mixed gas shielded arc welding is disclosed. However, according to the Ar—CO 2 mixed gas shielded arc welding wire described in Patent Document 4, although a weld metal having excellent low-temperature toughness can be obtained, since the flux wire contains a large amount of metal fluoride, arc becomes unstable and the amount of spatter generated is large, resulting in poor welding workability.

さらに、特許文献5や特許文献6には、合金粉を多く含むメタル系フラックス入りワイヤに関する技術の開示があるが、高強度で低温靭性に優れた溶接金属を確保しつつ、かつ、ビード外観及びビード形状が良好で、アークが安定してスパッタ発生量が少ないなど十分な良好な溶接作業性の両立は難しいという問題があった。 Furthermore, Patent Documents 5 and 6 disclose techniques related to metal-based flux-cored wires containing a large amount of alloy powder. There was a problem that it was difficult to achieve both satisfactory welding workability, such as a good bead shape, a stable arc, and a small amount of spatter.

特開昭57-124594号公報JP-A-57-124594 特開2000-301379号公報Japanese Patent Application Laid-Open No. 2000-301379 特開2006-281223号公報Japanese Patent Application Laid-Open No. 2006-281223 特開2011-20154号公報Japanese Unexamined Patent Application Publication No. 2011-20154 特開2007-144516号公報JP 2007-144516 A 特開2008-93715号公報JP 2008-93715 A

本発明は、上記問題点を解決するためになされたものであり、590~690MPa級高張力鋼の溶接において、適正な強度と低温領域での良好で安定した靭性を有する溶接金属が得られるとともに、アークの安定性、ビード外観及びビード形状に優れ、スパッタ発生量が少ないなど溶接作業性に優れた高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。 The present invention has been made to solve the above problems, and in welding 590 to 690 MPa class high-strength steel, a weld metal having appropriate strength and good and stable toughness in a low temperature region can be obtained. The purpose is to provide a flux-cored wire for Ar-CO 2 mixed gas shielded arc welding of high-strength steel which is excellent in arc stability, bead appearance and bead shape, and has excellent welding workability such as less spatter generation. do.

本発明の要旨は、鋼製外皮にフラックスを充填してなる高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、C:0.05~0.15%、Si:0.5~2.0%、Mn:1.5~3.0%、Ti:0.01~0.20%、Cu:0.05~0.50%、S:0.005~0.020%を含有し、さらに、ワイヤ全質量に対する質量%で、フラックス中に、SiO2:0.05~0.20%、酸素含有量が0.30%以下の鉄粉:3~8%、弗素化合物:F換算値の合計で0.005~0.080%、Na化合物及びK化合物:Na2O換算値及びK2O換算値の合計で0.02~0.15%を含有し、残部が鋼製外皮のFe分、鉄合金粉のFe分及び不可避不純物からなることを特徴とする。 The gist of the present invention is a flux-cored wire for Ar-CO 2 mixed gas shielded arc welding of high-tensile steel in which the steel sheath is filled with flux. C: 0.05-0.15%, Si: 0.5-2.0%, Mn: 1.5-3.0%, Ti: 0.01-0.20%, Cu: 0.01-0.20%. 05 to 0.50%, S: 0.005 to 0.020%, and further, SiO 2 : 0.05 to 0.20%, oxygen content in the flux in terms of mass% with respect to the total mass of the wire 0.30% or less iron powder: 3 to 8%, fluorine compounds: 0.005 to 0.080% in total of F conversion values, Na compounds and K compounds: Na 2 O conversion values and K 2 O conversion values 0.02 to 0.15% in total, and the balance is composed of the Fe content of the steel outer shell, the Fe content of the iron alloy powder, and unavoidable impurities.

また、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、Mo:0.1~0.5%を含有することも特徴とする。 It is also characterized by containing Mo: 0.1 to 0.5% in terms of mass % relative to the total mass of the wire, in terms of the total of the steel sheath and flux.

さらに、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、B:0.0015~0.0150%も含有することを特徴とする。 Furthermore, it is characterized by containing B: 0.0015 to 0.0150% in mass % with respect to the total mass of the wire as the total of the steel sheath and flux.

また、成形された前記鋼製外皮の合わせ目が溶接されていることで鋼製外皮に継目を無くしたことも特徴とする高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤにある。 A flux-cored wire for Ar- CO mixed gas shielded arc welding of high-strength steel, characterized in that the joints of the formed steel skin are welded to eliminate seams in the steel skin. be.

本発明を適用した高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤによれば、溶接時のアークの安定性、ビード外観及びビード形状が優れ、スパッタ発生量が少ないなど溶接作業性が良好で、590~690MPa級の強度が得られ、低温靭性が良好で、欠陥のない高品質な溶接金属が得られる高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤを提供することができる。 According to the flux-cored wire for Ar-CO 2 mixed gas shielded arc welding of high-strength steel to which the present invention is applied, the stability of the arc during welding, the bead appearance and bead shape are excellent, and the amount of spatter generation is small. A flux-cored wire for Ar-CO 2 mixed gas shielded arc welding of high-strength steel that has good toughness, strength of 590 to 690 MPa class, good low-temperature toughness, and high quality weld metal without defects. can provide.

本発明者らは、上述した課題を解決するために、590~690MPa級の高張力鋼のAr-CO2混合ガスシールドアーク溶接において、適正な強度及び低温靭性を有する溶接金属が得られるとともに、アークが安定し、スパッタ発生量が少なく、良好なビード外観及びビード形状が得られるなど良好な溶接作業性が得られる高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤの成分組成について詳細に検討した。 In order to solve the above-mentioned problems, the present inventors obtained a weld metal having appropriate strength and low-temperature toughness in Ar—CO 2 mixed gas shielded arc welding of 590-690 MPa class high-strength steel, Component composition of flux-cored wire for Ar-CO 2 mixed gas shielded arc welding of high-strength steel with stable arc, less spatter, good bead appearance and good bead shape. was examined in detail.

その結果、アークの安定性及びスパッタ発生量の低減は、ワイヤ中のC、フラックス中の鉄粉の含有量、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計量及び弗素化合物のF換算値の合計量を適正にすることが有効であることを知見した。また、ビード外観及びビード形状は、ワイヤ中のSi、フラック中のSiO2及び鉄粉の含有量を適量とすることで、スラグ剥離性はSの含有量を適量とすることで良好にできることを知見した。さらに、ワイヤ中のC、Cu、S及びBの含有量の上限を規定することで高温割れを防止し、ワイヤ外皮の継ぎ目を無くすことで低温割れを防止するとともに、ワイヤ中のSi、Mn、SiO2及びNa化合物とK化合物のNa2O換算値とK2O換算値の合計量の上限を規定することでスラグ巻込みなどの溶接欠陥を防止できることも知見した。 As a result, the stability of the arc and the reduction in the amount of spatter generated depend on the total amount of C in the wire, the content of iron powder in the flux, the Na compound and the K compound converted to Na 2 O and K 2 O converted values, and It has been found that it is effective to optimize the total amount of F-equivalent values of fluorine compounds. In addition, the bead appearance and bead shape can be improved by adjusting the content of Si in the wire, SiO 2 in the flack and iron powder in appropriate amounts, and the slag removability can be improved by adjusting the content of S in an appropriate amount. I found out. Furthermore, high temperature cracking is prevented by specifying the upper limits of the contents of C, Cu, S and B in the wire, and cold cracking is prevented by eliminating the seam of the wire skin, and Si, Mn, It has also been found that welding defects such as slag entrainment can be prevented by specifying the upper limit of the total amount of SiO 2 and Na compounds and K compounds in terms of Na 2 O and K 2 O.

また、溶接金属の適正な強度と同時に安定した低温靭性の向上をも同時に達成させるためには、ワイヤ中のスラグ生成剤である酸化物を極力減らし、合金成分のC、Si、Mn、Ti及びCuの含有量それぞれの適正化が有効であることを知見した。また、ワイヤ中の鉄粉の酸素量を低減することで溶接金属の低温靭性をさらに向上できることも知見した。 In addition, in order to achieve an appropriate strength of the weld metal and a stable improvement in low-temperature toughness at the same time, it is necessary to reduce oxides, which are slag-forming agents, in the wire as much as possible, and It has been found that optimization of each Cu content is effective. They also found that the low temperature toughness of the weld metal can be further improved by reducing the oxygen content of the iron powder in the wire.

さらに、ワイヤ中にMoを適量添加することで更なる高強度化が可能となり、Bを適量添加することで、溶接金属の更なる低温靭性の改善が可能であることも知見した。 Furthermore, the inventors have found that adding an appropriate amount of Mo to the wire makes it possible to further increase the strength, and adding an appropriate amount of B makes it possible to further improve the low-temperature toughness of the weld metal.

本発明を適用した高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤは、各成分組成それぞれの単独及び共存による相乗効果によりなし得たものであるが、以下にそれぞれの各成分組成の添加理由及び限定理由を述べる。なお、以下においては、フラックス入りワイヤの化学成分をワイヤの全質量に対する割合である質量%で表すものとし、その質量%に関する記載を単に%と記載して説明する。 The flux-cored wire for Ar—CO 2 mixed gas shielded arc welding of high-strength steel to which the present invention is applied is made possible by the synergistic effect of each component composition alone and coexistence. The reason for adding the composition and the reason for limitation will be described. In the following description, the chemical composition of the flux-cored wire is represented by % by mass, which is the ratio to the total mass of the wire, and the description of % by mass is simply described as %.

[鋼製外皮とフラックスの合計でC:0.05~0.15%]
Cは、固溶強化により溶接金属の強度を向上するために必要な元素である。またCは、アークを安定させる効果がある。Cが0.05%未満であると、その効果が十分に得られず、溶接金属の強度が得られない。またCが0.05%未満であると、アークが不安定となり、スパッタ発生量が多くなる。一方、Cが0.15%を超えると、溶接金属の強度が過剰に高くなり靭性が低下する。またCが0.15%を超えると、高温割れが発生しやすくなる。従って、鋼製外皮とフラックスの合計でCは0.05~0.15%とする。なお、Cは、鋼製外皮に含まれる成分の他、フラックスから金属粉及び合金粉等から添加できる。
[Total C of steel skin and flux: 0.05 to 0.15%]
C is an element necessary for improving the strength of the weld metal by solid solution strengthening. Also, C has the effect of stabilizing the arc. If C is less than 0.05%, the effect cannot be sufficiently obtained, and the strength of the weld metal cannot be obtained. If the C content is less than 0.05%, the arc becomes unstable and the amount of spatter generated increases. On the other hand, if C exceeds 0.15%, the strength of the weld metal becomes excessively high and the toughness decreases. Moreover, when C exceeds 0.15%, hot cracking is likely to occur. Therefore, the total content of C in the steel skin and flux should be 0.05 to 0.15%. C can be added from metal powder, alloy powder, etc. from the flux, in addition to the components contained in the steel outer sheath.

[鋼製外皮とフラックスの合計でSi:0.5~2.0%]
Siは、溶接金属の脱酸のために添加する。またSiは、溶接金属の強度を向上させるとともに、溶融金属の粘度を調整してビード外観及びビード形状を改善する効果がある。Siが0.5%未満であると、溶接金属が脱酸不足となり靭性が低下するとともに、溶接金属の強度が得られない。またSiが0.5%未満であると、溶接ビード外観及びビード形状が不良となる。一方、Siが2.0%を超えると、溶接金属の強度が過剰に高くなり、溶接金属の靭性が安定して得られない。またSiが2.0%を超えると、溶接時に発生するスラグ量が増加してスラグ巻込みなどの溶接欠陥が発生しやすくなる。従って、鋼製外皮とフラックスの合計でSiは0.5~2.0%とする。なお、Siは、鋼製外皮に含まれる成分の他、フラックスから金属Si、Fe-Si、Fe-Si-Mn等の合金粉から添加できる。
[Si: 0.5 to 2.0% in total of steel skin and flux]
Si is added for deoxidizing the weld metal. Si also has the effect of improving the strength of the weld metal and adjusting the viscosity of the molten metal to improve the bead appearance and bead shape. If the Si content is less than 0.5%, the weld metal is deoxidized insufficiently, and the toughness of the weld metal is lowered, and the strength of the weld metal cannot be obtained. On the other hand, if the Si content is less than 0.5%, the weld bead appearance and bead shape become poor. On the other hand, if Si exceeds 2.0%, the strength of the weld metal becomes excessively high, and the toughness of the weld metal cannot be stably obtained. On the other hand, if the Si content exceeds 2.0%, the amount of slag generated during welding increases, and welding defects such as slag entrainment tend to occur. Therefore, the total Si content of the steel sheath and flux should be 0.5 to 2.0%. Si can be added from metal Si, Fe--Si, Fe--Si--Mn or other alloy powder from the flux, in addition to the components contained in the steel outer sheath.

[鋼製外皮とフラックスの合計でMn:1.5~3.0%]
Mnは、溶接金属の低温靭性の確保と強度向上のために添加する。Mnが1.5%未満であると、溶接金属の強度が低くなるとともに、低温靭性が十分に確保できなくなる。一方、Mnが3.0%を超えると、溶接金属中にMnが多く歩留まり、強度が過剰に高くなるとともに、溶接金属の低温靭性が安定して得られない。またMnが3.0%を超えると、溶接時に発生するスラグ量が増加してスラグ巻込みなどの溶接欠陥が発生しやすくなる。従って、鋼製外皮とフラックスの合計でMnは1.5~3.0%とする。なお、Mnは、鋼製外皮に含まれる成分の他、フラックスからの金属Mn、Fe-Mn、Fe-Si-Mn等の合金粉末から添加できる。
[Total Mn of steel skin and flux: 1.5 to 3.0%]
Mn is added to ensure the low temperature toughness of the weld metal and to improve the strength. If the Mn content is less than 1.5%, the strength of the weld metal will be low and sufficient low temperature toughness cannot be ensured. On the other hand, if the Mn content exceeds 3.0%, the yield of Mn in the weld metal increases, the strength becomes excessively high, and the low-temperature toughness of the weld metal cannot be stably obtained. On the other hand, if Mn exceeds 3.0%, the amount of slag generated during welding increases, and welding defects such as slag entrainment tend to occur. Therefore, Mn is set to 1.5 to 3.0% in total of the steel sheath and flux. Mn can be added from metal Mn, Fe--Mn, Fe--Si--Mn, and other alloy powders from the flux, in addition to components contained in the steel outer sheath.

[鋼製外皮とフラックスの合計でTi:0.01~0.20%]
Tiは、脱酸剤として作用するとともに、溶接金属中にTiの微細酸化物を生成して溶接金属の低温靭性を向上させる効果がある。Tiが0.01%未満であると、その効果が十分に得られず、溶接金属の低温靭性が得られない。一方、Tiが0.20%を超えると、溶接金属中の固溶Tiが多くなって低温靭性が低下する。従って、鋼製外皮とフラックスの合計でTiは0.01~0.20%とする。なお、Tiは、鋼製外皮に含まれる成分の他、フラックスからの金属Ti、Fe-Ti等の合金粉から添加する。
[Ti: 0.01 to 0.20% in total of steel skin and flux]
Ti acts as a deoxidizing agent and also has the effect of producing fine oxides of Ti in the weld metal and improving the low-temperature toughness of the weld metal. If Ti is less than 0.01%, the effect cannot be sufficiently obtained, and the low temperature toughness of the weld metal cannot be obtained. On the other hand, when Ti exceeds 0.20%, solid solution Ti in the weld metal increases and the low temperature toughness decreases. Therefore, the total amount of Ti in the steel skin and flux should be 0.01 to 0.20%. Note that Ti is added from metal Ti from the flux, alloy powder such as Fe—Ti, etc., in addition to components contained in the steel outer sheath.

[鋼製外皮とフラックスの合計でCu:0.05~0.50%]
Cuは、析出強化作用を有し、変態温度を低下させて溶接金属の組織を微細化して靭性を安定させる効果がある。Cuが0.05%未満であると、安定した溶接金属の靭性が得られない。一方、Cuが0.50%を超えると、析出脆化が生じて溶接金属の靭性が低下し、また高温割れが発生しやすくなる。従って、鋼製外皮とフラックスの合計でCuは0.05~0.50%とする。なお、Cuは、鋼製外皮に含まれる成分及び鋼製外皮表面に施したCuめっき分の他、フラックスからの金属Cu、Fe-Si-Cu等の合金粉から添加できる。
[Cu: 0.05 to 0.50% in total of steel skin and flux]
Cu has a precipitation-strengthening effect, and has the effect of lowering the transformation temperature, refining the structure of the weld metal, and stabilizing the toughness. If Cu is less than 0.05%, stable toughness of the weld metal cannot be obtained. On the other hand, when Cu exceeds 0.50%, precipitation embrittlement occurs, the toughness of the weld metal is lowered, and hot cracking is likely to occur. Therefore, the total content of Cu in the steel sheath and flux should be 0.05 to 0.50%. Cu can be added from metal Cu from flux, alloy powder such as Fe--Si--Cu, in addition to components contained in the steel skin and Cu plating applied to the surface of the steel skin.

[鋼製外皮とフラックスの合計でS:0.005~0.020%]
Sは、スラグの結晶化度を低下させてスラグ剥離性を向上させる効果がある。Sが0.005%未満であると、その効果が十分に得られず、スラグ剥離性が悪くなる。一方、Sが0.020%を超えると、溶接金属の靭性が低下し、また高温割れが発生しやすくなる。従って、鋼製外皮とフラックスの合計でSは0.005~0.020%とする。なお、Sは、鋼製外皮に含まれる成分の他、フラックスからのFeS等の合金粉末から添加できる。
[Total S of steel skin and flux: 0.005 to 0.020%]
S has the effect of reducing the crystallinity of slag and improving the slag releasability. If the S content is less than 0.005%, the effect is not sufficiently obtained, and the slag removability deteriorates. On the other hand, if the S content exceeds 0.020%, the toughness of the weld metal is lowered, and hot cracks are likely to occur. Therefore, S is set to 0.005 to 0.020% in total of the steel skin and the flux. In addition, S can be added from alloy powder such as FeS from flux in addition to components contained in the steel outer sheath.

[フラックス中に含有するSiO2:0.05~0.20%]
SiO2は、ビード止端部のなじみを良好にしてビード外観及びビード形状を良好にする効果がある。SiO2が0.05%未満であると、溶接ビードのビード止端部のなじみが悪くなり、ビード外観及びビード形状が悪くなる。一方、SiO2が0.20%を超えると、溶接金属中の酸素量が増加して靭性が低下する。またSiO2が0.20%を超えると、ビード表面のスラグ量が多くなってスラグ巻込みなどの溶接欠陥が発生しやすくなる。従って、フラックス中に含有するSiO2は0.05~0.20%とする。なお、SiO2は、フラックスからの珪砂、珪酸ソーダ及び珪酸カリからなる水ガラスの固質成分等から添加できる。
[SiO 2 content in flux: 0.05 to 0.20%]
SiO 2 has the effect of improving conformability of the bead toe and improving bead appearance and bead shape. If the SiO 2 content is less than 0.05%, the conformability of the bead toe of the weld bead is poor, and the bead appearance and bead shape are poor. On the other hand, if SiO 2 exceeds 0.20%, the amount of oxygen in the weld metal increases and the toughness decreases. On the other hand, if the SiO 2 content exceeds 0.20%, the amount of slag on the bead surface increases and welding defects such as slag entrainment tend to occur. Therefore, the SiO 2 content in the flux should be 0.05 to 0.20%. SiO 2 can be added from silica sand from the flux, solid components of water glass comprising sodium silicate and potassium silicate, and the like.

[フラックス中に含有する酸素含有量が0.30%以下の鉄粉:3~8%]
鉄粉は、アーク状態をソフトにし、アークを安定させる効果がある。また、メタル系フラックス入りワイヤの特徴である高溶着性を確保すると共に、成分調整のためにフラックスから添加する。鉄粉が3%未満では、アークが不安定になり、スパッタ発生量が多くなり、また、溶着量が不足してビード外観及びビード形状が不良となる。一方、鉄粉が8%を超えると、製造での伸線工程でフラックス充填率がワイヤ長手方向にフラックス充填率が変動し、アークが不安定になってスパッタ発生量が多くなる。従って、フラックス中に含有する鉄粉は3~8%とする。
[Iron powder with an oxygen content of 0.30% or less in the flux: 3 to 8%]
Iron powder has the effect of softening the arc state and stabilizing the arc. In addition to securing the high weldability that is a feature of metal-based flux-cored wires, it is added from the flux to adjust the composition. If the iron powder content is less than 3%, the arc becomes unstable, the amount of spatter is increased, and the welding amount is insufficient, resulting in poor bead appearance and bead shape. On the other hand, if the iron powder content exceeds 8%, the flux filling rate fluctuates in the longitudinal direction of the wire during the wire drawing process in manufacturing, resulting in an unstable arc and an increased amount of spatter. Therefore, the content of iron powder in the flux should be 3-8%.

また、本発明のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤでは、酸素含有量が0.30%以下の水素還元鉄粉やアトマイズ鉄粉等を使用する。これら低酸素量の鉄粉を使用することで、Al、Mg及びZr等のようなスラグ生成量を増加させる強脱酸剤を添加することなく溶接金属の酸素量を0.05%以下まで抑えることができるので、溶接金属の低温靭性の更なる向上が可能となる。 In the flux-cored wire for Ar--CO 2 mixed gas shielded arc welding of the present invention, hydrogen-reduced iron powder or atomized iron powder having an oxygen content of 0.30% or less is used. By using these low-oxygen iron powders, the amount of oxygen in the weld metal can be suppressed to 0.05% or less without adding strong deoxidizers such as Al, Mg, and Zr, which increase the amount of slag generated. Therefore, it is possible to further improve the low temperature toughness of the weld metal.

[フラックス中に含有する弗素化合物:F換算値の合計で0.005~0.080%]
弗素化合物は、アークを集中させて安定にする効果がある。弗素化合物のF換算値の合計が0.005%未満では、その効果が十分に得られず、アークが不安定になってスパッタ発生量が多くなる。一方、弗素化合物のF換算値の合計が0.080%を超えると、アークが不安定になりスパッタ発生量が多くなる。従って、フラックス中に含有する弗素化合物は、F換算値の合計で0.005~0.080%とする。なお、弗素化合物は、フラックスからのCaF2、NaF、LiF、MgF2、K2SiF6、Na3AlF6、AlF3等から添加でき、F換算値はそれらに含有するF量の合計である。
[Fluorine compound contained in flux: 0.005 to 0.080% in total of F conversion value]
The fluorine compound has the effect of concentrating and stabilizing the arc. If the total F conversion value of the fluorine compound is less than 0.005%, the effect is not sufficiently obtained, the arc becomes unstable, and the amount of spatter generation increases. On the other hand, if the total F conversion value of the fluorine compound exceeds 0.080%, the arc becomes unstable and the amount of spatter generation increases. Therefore, the fluorine compound contained in the flux should be 0.005 to 0.080% in terms of total F conversion value. The fluorine compound can be added from CaF 2 , NaF, LiF, MgF 2 , K 2 SiF 6 , Na 3 AlF 6 , AlF 3 etc. from the flux, and the F conversion value is the total amount of F contained in them. .

[フラックス中に含有するNa化合物及びK化合物:Na2O換算値及びK2O換算値の合計で0.02~0.15%]
Na化合物及びK化合物は、アーク状態をソフトにして安定させる効果がある。Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が0.02%未満であると、アークが不安定になりスパッタ発生量が多くなる。一方、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が0.15%を超えると、アークが過剰に強くなってスパッタ発生量が多くなり、また、ビード止端部のなじみが悪くなってビード外観及びビード形状が不良となる。さらに、これらのNa2O換算値とK2O換算値の合計が0.15%を超えると、ビード表面のスラグ量が多くなり、スラグ巻込みなどの溶接欠陥が発生しやすくなる。従って、フラックス中に含有するNa化合物及びK化合物のNa2O換算値及びK2O換算値の合計は0.02~0.15%とする。なお、Na化合物及びK化合物は、フラックスからの珪酸ソーダ及び珪酸カリからなる水ガラスの固質成分、NaF、K2SiF6、Na3AlF6等の粉末から添加できる。
[Na compound and K compound contained in flux: 0.02 to 0.15% in total of Na 2 O converted value and K 2 O converted value]
The Na compound and K compound have the effect of softening and stabilizing the arc state. If the sum of the Na compound and K compound converted to Na 2 O and converted to K 2 O is less than 0.02%, the arc becomes unstable and the amount of spatter generated increases. On the other hand, when the sum of the Na compound and the K compound converted to Na 2 O and converted to K 2 O exceeds 0.15%, the arc becomes excessively strong, the amount of spatter generated increases, and the bead toe portion The familiarity of the bead deteriorates, resulting in poor bead appearance and bead shape. Furthermore, if the sum of these Na 2 O converted values and K 2 O converted values exceeds 0.15%, the amount of slag on the bead surface increases, and welding defects such as slag entrainment tend to occur. Therefore, the sum of the Na compound and K compound contained in the flux in terms of Na 2 O and K 2 O should be 0.02 to 0.15%. The Na compound and K compound can be added from the solid component of water glass consisting of sodium silicate and potassium silicate from the flux, and powders such as NaF, K 2 SiF 6 and Na 3 AlF 6 .

[鋼製外皮とフラックスの合計でMo:0.1~0.5%]
Moは、溶接金属の強度を向上させる効果がある。Moが0.1%未満であると、溶接金属の強度の向上効果が十分に得られない。一方、Moが0.5%を超えると、溶接金属の強度が過剰に高くなり、低温靭性が安定して得られない。従って、鋼製外皮とフラックスの合計でMoは0.1~0.5%とする。なお、Moは、鋼製外皮に含まれる成分の他、フラックスからの金属Mo粉から添加できる。
[Total Mo of steel skin and flux: 0.1 to 0.5%]
Mo has the effect of improving the strength of the weld metal. If Mo is less than 0.1%, the effect of improving the strength of the weld metal cannot be sufficiently obtained. On the other hand, if Mo exceeds 0.5%, the strength of the weld metal becomes excessively high, and low temperature toughness cannot be stably obtained. Therefore, Mo is set to 0.1 to 0.5% in total in the steel outer sheath and flux. In addition, Mo can be added from the metal Mo powder from flux other than the component contained in steel outer coverings.

[鋼製外皮とフラックスの合計でB:0.0015~0.0150%]
Bは、溶接金属の組織を微細化して低温靭性を向上させる効果がある。Bが0.0015%未満であると、溶接金属の低温靭性の向上効果が十分に得られない。一方、Bが0.0150%を超えると、溶接金属の粒界が脆化して低温靭性が低下する。またBが0.0150%を超えると、高温割れが発生しやすくなる。従って、鋼製外皮とフラックスの合計でBは0.0015~0.0150%とする。なお、Bは、鋼製外皮に含まれる成分の他、Fe-Si-B、Fe-Mn-B等の合金粉から添加できる。
[Total B of steel skin and flux: 0.0015 to 0.0150%]
B has the effect of refining the structure of the weld metal and improving the low temperature toughness. If B is less than 0.0015%, the effect of improving the low temperature toughness of the weld metal cannot be sufficiently obtained. On the other hand, when B exceeds 0.0150%, the grain boundaries of the weld metal become brittle and the low temperature toughness decreases. Moreover, when B exceeds 0.0150%, hot cracking tends to occur. Therefore, B is set to 0.0015 to 0.0150% in total of the steel skin and the flux. B can be added from alloy powders such as Fe--Si--B and Fe--Mn--B in addition to components contained in the steel outer shell.

[成形した鋼製外皮の合わせ目を溶接することで鋼製外皮に継目を無くす]
本発明の高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤは、鋼製外皮をパイプ状に成型し、その内部にフラックスを充填した構造である。ワイヤの種類としては、成形した鋼製外皮の合わせ目を溶接して得られる鋼製外皮に継目の無いワイヤと、鋼製外皮に合わせ目の溶接を行わないままとした鋼製外皮に継目を有するワイヤとに大別できる。本発明においては、何れの断面構造のワイヤを採用することができるが、鋼製外皮に継目を有するワイヤは、溶接金属の強度が高くなると低温割れが生じやすくなるので水分含有量の少ない原材料を用いる必要がある。一方、鋼製外皮に継目が無いワイヤは、ワイヤ中の全水素量を低減することを目的とした熱処理が可能であり、また製造後のフラックスの吸湿が無いため、溶接金属の拡散性水素量を低減し、耐低温割れ性の向上を図ることができる。このため、鋼製外皮の合わせ目を溶接することで継ぎ目の無い断面構造を使用することがより好ましい。
[Elimination of seams in the steel skin by welding the joints of the molded steel skin]
The flux-cored wire for Ar--CO 2 mixed gas shielded arc welding of high-strength steel according to the present invention has a structure in which a steel outer sheath is formed into a pipe and the interior of which is filled with flux. As for the types of wire, there are two types of wire: a wire with no seams in the steel skin obtained by welding the seams of the formed steel skin, and a wire with no seams in the steel skin without welding the seams on the steel skin. It can be broadly divided into wires with In the present invention, a wire having any cross-sectional structure can be used. However, a wire having a seam on a steel skin is susceptible to cold cracking when the strength of the weld metal increases. need to use. On the other hand, a wire with a seamless steel sheath can be heat-treated to reduce the total amount of hydrogen in the wire. can be reduced and the cold cracking resistance can be improved. For this reason, it is more preferable to use a seamless cross-sectional structure by welding seams of the steel skin.

本発明の高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤの残部は、鋼製外皮のFe分、Fe-Si、Fe-Mn、Fe-Ti合金などの鉄合金粉のFe分及び不可避不純物である。不可避不純物については特に限定しないが、高温割れの防止の観点からPは0.010%以下が好ましい。 The remainder of the flux-cored wire for Ar—CO 2 mixed gas shielded arc welding of high-strength steel of the present invention is composed of the Fe content of the steel sheath and the Fe content of iron alloy powder such as Fe—Si, Fe—Mn, and Fe—Ti alloys. and unavoidable impurities. Inevitable impurities are not particularly limited, but from the viewpoint of prevention of hot cracking, P is preferably 0.010% or less.

また、フラックス充填率は特に限定しないが、生産性の観点からワイヤ全質量に対して8~20%とするのが好ましい。 Although the flux filling rate is not particularly limited, it is preferably 8 to 20% with respect to the total mass of the wire from the viewpoint of productivity.

なお、シールドガスは、ArとCO2との混合ガスとし、CO2の混合量は5~25体積%の範囲として溶接金属の酸素量を低減する。また、シールドガス流量は、耐欠陥性及び大気からの窒素の混入を防ぐために20~35リットル/分であることが好ましい。 The shielding gas is a mixed gas of Ar and CO.sub.2 , and the mixed amount of CO.sub.2 is in the range of 5 to 25% by volume to reduce the amount of oxygen in the weld metal. Also, the flow rate of the shielding gas is preferably 20 to 35 liters/minute for the purpose of defect resistance and prevention of contamination of nitrogen from the atmosphere.

以下、本発明の効果を実施例により具体的に説明する。 EXAMPLES Hereinafter, the effects of the present invention will be specifically described with reference to examples.

JIS G 3141に規定される鋼板を鋼製外皮として使用し、鋼製外皮を成形する工程でU字型に成形し、フラックスを充填率8~20%で充填しC字型に成形した後、鋼製外皮の合わせ目を溶接した継目が無いワイヤと、溶接しない隙間のあるワイヤとを造管して伸線し、表1に示す各種成分のフラックス入りワイヤを試作した。ワイヤ径は1.2mmとした。なお、鋼製外皮の合わせ目を溶接した継目が無いワイヤは、伸線途中で焼鈍を実施したが、鋼製外皮の合わせ目のあるワイヤは、フラックスを充填前に乾燥し、ワイヤ製造後はフラックスの吸湿を防ぐために、ビニール製の袋に封入して、溶接直前までその状態で保管した。 A steel plate specified in JIS G 3141 is used as the steel skin, and in the process of forming the steel skin, it is formed into a U shape, filled with flux at a filling rate of 8 to 20%, and formed into a C shape, A seamless wire with welded joints of steel skins and a wire with gaps that were not welded were formed into pipes and drawn, and flux-cored wires with various compositions shown in Table 1 were experimentally produced. The wire diameter was 1.2 mm. In addition, the wire without a seam welded at the seam of the steel skin was annealed during wire drawing, but the wire with the seam of the steel skin was dried before filling the flux, and after the wire was manufactured, it was annealed. In order to prevent the flux from absorbing moisture, it was sealed in a vinyl bag and stored in that state until just before welding.

Figure 0007221812000001
Figure 0007221812000001

試作したフラックス入りワイヤを用いて、溶接作業性、溶着金属性能及び耐割れ性の調査を行った。 Welding workability, weld metal performance and crack resistance were investigated using the prototype flux-cored wire.

溶接作業性及び溶着金属性能は、JIS G 3106 SM570に規定される板厚20mmの鋼板を用い、JIS Z 3111に準じて表2に示す溶接条件で溶着金属試験を実施した。 Welding workability and deposited metal performance were evaluated by performing a deposited metal test under the welding conditions shown in Table 2 according to JIS Z 3111 using a steel plate having a thickness of 20 mm specified in JIS G 3106 SM570.

溶接作業性の調査は、溶着金属試験時のアークの安定性、スパッタ発生量、スラグ剥離性、ビード外観及びビード形状の良否を目視確認して調査した。 Welding workability was investigated by visually confirming the quality of arc stability, amount of spatter, slag peelability, bead appearance and bead shape during the deposited metal test.

溶着金属試験は、溶接した溶着金属部の板厚中心部からA0号引張試験片及び衝撃試験片を採取して機械的性能を調査した。 In the weld metal test, A0 tensile test pieces and impact test pieces were taken from the plate thickness center of the welded weld metal portion to investigate the mechanical performance.

強度の評価は、引張強さが590~680MPaを良好とした。また、靭性の評価は、-40℃におけるシャルピー衝撃試験を各3回実施し、吸収エネルギーの平均値は47J以上、最低値は30J以上を良好とした。 In strength evaluation, a tensile strength of 590 to 680 MPa was considered good. For evaluation of toughness, a Charpy impact test at −40° C. was performed three times each, and an average value of absorbed energy of 47 J or more and a minimum value of 30 J or more were considered good.

溶接欠陥の評価は、溶接後の試験体に対し、JIS Z 3106に準拠してX線透過試験を実施し、溶接金属中のスラグ巻込みなどの有無を調査した。 For the evaluation of weld defects, the welded specimens were subjected to an X-ray transmission test in accordance with JIS Z 3106 to investigate the presence or absence of slag entrainment in the weld metal.

耐割れ性の試験は、JIS G 3106 SM570に規定される板厚40mmの鋼板を用い、JIS Z 3157に準拠して表2に示す溶接条件でU形溶接割れ試験を実施した。溶接直後の試験体で高温割れ発生の有無を目視確認した後、溶接後48時間経過した試験体について、表面割れ及び断面割れ(5断面)の低温割れ発生の有無をJIS Z 2343に準拠した浸透探傷試験により調査した。これらの結果を表3にまとめて示す。 For the cracking resistance test, a U-shaped weld cracking test was carried out under the welding conditions shown in Table 2 in accordance with JIS Z 3157 using a steel plate having a thickness of 40 mm specified in JIS G 3106 SM570. After visually confirming the presence or absence of hot cracking in the test piece immediately after welding, the presence or absence of cold cracking in surface cracks and cross-section cracks (5 cross sections) of the test piece 48 hours after welding was checked in accordance with JIS Z 2343. It was investigated by a flaw detection test. These results are summarized in Table 3.

Figure 0007221812000002
Figure 0007221812000002

Figure 0007221812000003
Figure 0007221812000003

表1及び表3中のワイヤ記号W1~W17が本発明例、ワイヤ記号W18~W31は比較例である。本発明例であるワイヤ記号W1~W17は、フラックス入りワイヤ中のC、Si、Mn、Ti、Cu、Sが適正で、フラックス中のSiO2、鉄粉、弗素化合物のF換算値の合計、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が適正で、鉄粉中の酸素含有量が適正なので、アークが安定してスパッタ発生量が少なく、スラグ剥離性、ビード外観及びビード形状が良好で、高温割れ及び低温割れが発生せず、溶接欠陥が無く、溶着金属の引張強さ及び吸収エネルギーの平均値及び最低値ともに良好であった。 Wire symbols W1 to W17 in Tables 1 and 3 are examples of the present invention, and wire symbols W18 to W31 are comparative examples. The wire symbols W1 to W17, which are examples of the present invention, are suitable for C, Si, Mn, Ti, Cu, and S in the flux-cored wire, and the sum of the F conversion values of SiO 2 , iron powder, and fluorine compounds in the flux, The sum of the Na compound and K compound converted to Na 2 O and K 2 O converted values is appropriate, and the oxygen content in the iron powder is appropriate. The appearance and bead shape were good, no hot cracks or cold cracks occurred, no welding defects, and the tensile strength of the deposited metal and the average and minimum values of absorbed energy were all good.

また、ワイヤ記号W1、W4、W7、W8、W11及びW14、W17はBが適量添加されているので、溶着金属の吸収エネルギーの平均値がさらに良好であり、極めて満足な結果であった。 In addition, wire symbols W1, W4, W7, W8, W11 and W14, W17 have a proper amount of B added, so that the average value of the absorbed energy of the weld metal is even better, and the results are extremely satisfactory.

なお、ワイヤ記号W4、W6、W10、W11、W15は、鋼製外皮に継ぎ目を有するが、溶着金属の引張強さが適正であったので低温割れは発生しなかった。 Wire symbols W4, W6, W10, W11, and W15 had seams in the steel skin, but the tensile strength of the weld metal was appropriate, so cold cracks did not occur.

比較例中ワイヤ記号W18は、Cが少ないので、溶着金属の引張強さが低かった。またCが少ないので、アークが不安定で、スパッタ発生量が多かった。さらに、Cuが少ないので、溶着金属の吸収エネルギーの最低値が低かった。 Wire symbol W18 among the comparative examples had a low tensile strength of the weld metal due to a small amount of C. In addition, since the amount of C was small, the arc was unstable and a large amount of spatter was generated. Furthermore, since the amount of Cu was small, the minimum value of absorbed energy of the deposited metal was low.

ワイヤ記号W19は、Cが多いので、溶着金属の引張強さが高く、吸収エネルギーの平均値及び最低値が低く、また、クレータ割れが発生した。さらに、SiO2が少ないので、ビード外観及びビード形状が不良であった。 Wire symbol W19 had a large amount of C, so the weld metal had a high tensile strength, a low average value and a minimum value of absorbed energy, and crater cracking occurred. Furthermore, since the amount of SiO 2 was small, the bead appearance and bead shape were poor.

ワイヤ記号W20は、Siが少ないので、溶着金属の引張強さが低く、吸収エネルギーの平均値及び最低値が低かった。またSiが少ないので、ビード外観及びビード形状が不良であった。さらに、鉄粉が多いので、アークが不安定で、スパッタ発生量が多かった。 Wire symbol W20 had a low Si content, so the weld metal had a low tensile strength, and the average and minimum values of absorbed energy were low. In addition, since the amount of Si was small, the bead appearance and bead shape were unsatisfactory. Furthermore, since the amount of iron powder was large, the arc was unstable and a large amount of spatter was generated.

ワイヤ記号W21は、Siが多いので、溶着金属の引張強さが高く、吸収エネルギーの最低値が低く、また、スラグ巻込みが発生した。さらに、鋼製外皮に継ぎ目を有するので、低温割れが発生した。また、弗素化合物のF換算値の合計が少ないので、アークが不安定で、スパッタ発生量が多かった。 Wire symbol W21 had a large amount of Si, so the weld metal had a high tensile strength, a low minimum value of absorbed energy, and slag entrainment occurred. Furthermore, since the steel skin had seams, cold cracks occurred. In addition, since the total F conversion value of the fluorine compound was small, the arc was unstable and a large amount of spatter was generated.

ワイヤ記号W22は、Mnが少ないので、溶着金属の引張強さが低く、吸収エネルギーの平均値及び最低値が低かった。また、弗素化合物のF換算値の合計が多いので、アークが不安定で、スパッタ発生量が多かった。 Wire symbol W22 had a low Mn content, so the tensile strength of the weld metal was low, and the average and minimum values of absorbed energy were low. In addition, since the total F conversion value of the fluorine compound was large, the arc was unstable and the amount of spatter generated was large.

ワイヤ記号W23は、Mnが多いので、溶着金属の引張強さが高く、吸収エネルギーの最低値が低かった。またMnが多いので、スラグ巻込みが発生した。さらに、鋼製外皮に継ぎ目を有するので、低温割れが発生した。また、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が少ないので、アークが不安定で、スパッタ発生量が多かった。 Wire symbol W23 had a large amount of Mn, so the weld metal had a high tensile strength and a low minimum value of absorbed energy. Moreover, since there was much Mn, slag entrainment occurred. Furthermore, since the steel skin had seams, cold cracks occurred. In addition, since the sum of Na compound and K compound converted to Na 2 O and converted to K 2 O was small, the arc was unstable and a large amount of spatter was generated.

ワイヤ記号W24は、Tiが少ないので、溶着金属の吸収エネルギーの平均値及び最低値が低かった。また、Sが少ないので、スラグ剥離性が不良であった。 Wire symbol W24 had a small amount of Ti, so the average value and minimum value of the absorbed energy of the weld metal were low. In addition, since the amount of S was small, the slag removability was poor.

ワイヤ記号W25は、Tiが多いので、溶着金属の吸収エネルギーの平均値及び最低値が低かった。また、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が多いので、アークが強く、スパッタ発生量が多く、ビード外観及びビード形状が不良であり、さらに、スラグ巻込みが発生した。 Wire symbol W25 had a large amount of Ti, so the average value and minimum value of absorbed energy of the weld metal were low. In addition, since the total amount of Na compound and K compound converted to Na 2 O and K 2 O is large, the arc is strong, the amount of spatter generated is large, the bead appearance and bead shape are poor, and slag is involved. There has occurred.

ワイヤ記号W26は、Cuが多いので、溶着金属の吸収エネルギーの平均値及び最低値が低く、また、クレータ割れが発生した。 Wire symbol W26 has a large amount of Cu, so the average value and minimum value of absorbed energy of the weld metal are low, and crater cracking occurs.

ワイヤ記号W27は、Sが多いので、溶着金属の吸収エネルギーの平均値及び最低値が低く、また、クレータ割れが発生した。 Wire symbol W27 has a large amount of S, so the average value and minimum value of the absorbed energy of the weld metal are low, and crater cracking occurs.

ワイヤ記号W28は、SiO2が多いので、溶着金属の吸収エネルギーの平均値及び最低値が低く、また、スラグ巻込みが発生した。 Wire symbol W28 has a large amount of SiO 2 , so the average value and minimum value of absorbed energy of the weld metal are low, and slag entrainment occurs.

ワイヤ記号W29は、鉄粉が少ないので、アークが不安定で、スパッタ発生量が多く、ビード外観及びビード形状が不良であった。 With wire symbol W29, the amount of iron powder was small, so the arc was unstable, the amount of spatter generated was large, and the bead appearance and bead shape were unsatisfactory.

ワイヤ記号W30は、鉄粉中の酸素含有量が多いので、溶着金属の吸収エネルギーの平均値及び最低値が低かった。 With the wire symbol W30, the oxygen content in the iron powder was high, so the average value and minimum value of absorbed energy of the weld metal were low.

ワイヤ記号W31は、Tiが少ないので、溶着金属の吸収エネルギーの平均値及び最低値が低かった。また、Bが少なかったので、溶着金属の低温靭性の向上効果が得られなかった。 Wire symbol W31 had a small amount of Ti, so the average value and minimum value of absorbed energy of the weld metal were low. Also, since the amount of B was small, the effect of improving the low temperature toughness of the weld metal could not be obtained.

ワイヤ記号W32は、SiO2が少ないので、ビード外観及びビード形状が不良であった。また、Bが多いので、溶着金属の吸収エネルギーの平均値及び最低値が低く、また、クレータ割れが発生した。 Wire symbol W32 was poor in bead appearance and bead shape due to low SiO 2 content. In addition, since the amount of B was large, the average value and minimum value of absorbed energy of the weld metal were low, and crater cracking occurred.

実施例1と同様に、JIS G 3141に規定される鋼板を鋼製外皮として使用し、鋼製外皮をU字型に成形、フラックスを8~20%で充填してC字型に成形した後、鋼製外皮の合わせ目を溶接して造管、伸線し、表4に示す各種成分のフラックス入りワイヤを試作した。ワイヤ径は1.2mmとした。 As in Example 1, a steel plate specified in JIS G 3141 was used as the steel outer skin, the steel outer skin was formed into a U shape, and the flux was filled at 8 to 20% to form a C shape. , welded joints of the steel outer skins, made pipes, and wire-drawn to fabricate flux-cored wires of various compositions shown in Table 4. The wire diameter was 1.2 mm.

Figure 0007221812000004
Figure 0007221812000004

表4に示すフラックス入りワイヤを用いて、溶接作業性、溶着金属性能及び耐割れ性の調査を行った。 Using the flux-cored wires shown in Table 4, welding workability, deposited metal performance and crack resistance were investigated.

溶接作業性及び溶着金属性能は、JIS G 3128 SHY685に規定される板厚20mmの鋼板を用い、JIS Z 3111に準じて表2に示す溶接条件で溶着金属試験を実施した。 Welding workability and weld metal performance were evaluated by using a steel plate having a thickness of 20 mm specified in JIS G 3128 SHY685 and carrying out a weld metal test under the welding conditions shown in Table 2 according to JIS Z 3111.

溶接作業性の調査は、溶着金属試験時のアークの安定性、スパッタ発生量の増減、スラグ剥離性、ビード外観及びビード形状の良否を目視確認して調査した。 Welding workability was investigated by visually confirming the stability of the arc during the deposited metal test, the increase or decrease in the amount of spatter generated, the slag peelability, the appearance of the bead, and the shape of the bead.

溶着金属試験は、溶接した溶着金属部の板厚中心部からA0号引張試験片及び衝撃試験を採取して機械的性能を調査した。 In the weld metal test, a No. 0 tensile test piece and an impact test were taken from the plate thickness center of the welded weld metal portion to investigate the mechanical performance.

強度の評価は、引張強さが690~830MPaを良好とした。また、靭性の評価は、-40℃におけるシャルピー衝撃試験を各3回実施し、吸収エネルギーの平均値は47J以上、最低値は30J以上を良好とした。 In strength evaluation, a tensile strength of 690 to 830 MPa was considered good. For evaluation of toughness, a Charpy impact test at −40° C. was performed three times each, and an average value of absorbed energy of 47 J or more and a minimum value of 30 J or more were considered good.

溶接欠陥の評価は、溶接後の試験体に対し、JIS Z 3106に準拠してX線透過試験を実施し、溶接金属中のスラグ巻込みなどの有無を調査した。 For the evaluation of weld defects, the welded specimens were subjected to an X-ray transmission test in accordance with JIS Z 3106 to investigate the presence or absence of slag entrainment in the weld metal.

耐割れ性の試験は、JIS G 3128 SHY685に規定される板厚40mmの鋼板を用い、JIS Z 3157に準拠して表2に示す溶接条件でU形溶接割れ試験を実施した。溶接直後の試験体で高温割れの有無を目視確認した後、溶接後48時間経過した試験体について、表面割れ及び断面割れ(5断面)の低温割れ発生有無をJIS Z 2343に準拠した浸透探傷試験により調査した。これらの結果を表5にまとめて示す。 For the cracking resistance test, a U-shaped weld cracking test was carried out under the welding conditions shown in Table 2 according to JIS Z 3157 using a steel plate having a thickness of 40 mm specified in JIS G 3128 SHY685. After visually confirming the presence or absence of hot cracks on the test piece immediately after welding, the test piece 48 hours after welding was subjected to a penetrant inspection test in accordance with JIS Z 2343 for the presence or absence of cold cracks in surface cracks and cross-sectional cracks (5 cross sections). Investigated by These results are summarized in Table 5.

Figure 0007221812000005
Figure 0007221812000005

表4及び表5中のワイヤ記号W33~W35が本発明例、ワイヤ記号W36及びW37は比較例である。本発明例であるワイヤ記号W33~W35は、フラックス入りワイヤ中のC、Si、Mn、Ti、Cu、Sが適正で、フラックス中のSiO2、鉄粉、弗素化合物のF換算値の合計、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が適正で、鉄粉中の酸素含有量が適正なので、アークが安定してスパッタ発生量が少なく、スラグ剥離性、ビード外観及びビード形状が良好で、割れが発生せず、溶接欠陥が無く、溶着金属の引張強さ及び吸収エネルギーの平均値及び最低値ともに良好であった。 Wire symbols W33 to W35 in Tables 4 and 5 are examples of the present invention, and wire symbols W36 and W37 are comparative examples. Wire symbols W33 to W35, which are examples of the present invention, are suitable for C, Si, Mn, Ti, Cu, and S in the flux-cored wire, and the sum of the F conversion values of SiO 2 , iron powder, and fluorine compounds in the flux, The sum of the Na compound and K compound converted to Na 2 O and the K 2 O converted value is appropriate, and the oxygen content in the iron powder is appropriate, so the arc is stable and the amount of spatter generated is small. The appearance and bead shape were good, no cracks occurred, no welding defects, and the tensile strength of the deposited metal and the average and minimum values of absorbed energy were both good.

また、Moが適量添加されているので、溶着金属の引張強さが700MPa以上と極めて良好であった。また、ワイヤ記号W33及びW35は、Bが適量添加されているので、溶着金属の吸収エネルギーの平均値がさらに良好であり、極めて満足な結果であった。 Also, since an appropriate amount of Mo was added, the tensile strength of the weld metal was extremely good at 700 MPa or more. In addition, the wire symbols W33 and W35 had an appropriate amount of B added, so that the average value of the absorbed energy of the weld metal was even better, and the results were extremely satisfactory.

ワイヤ記号W36は、Cが少ないので、アークが不安定でスパッタ発生量が多く、溶着金属の引張強さが低かった。また、Moが少ないので、溶着金属の強度向上の効果が得られなかった。 Wire symbol W36 had a small amount of C, so the arc was unstable, the amount of spatter generated was large, and the tensile strength of the deposited metal was low. Moreover, since the Mo content is small, the effect of improving the strength of the weld metal cannot be obtained.

ワイヤ記号W37は、弗素化合物のF換算値の合計が少ないので、アークが不安定で、スパッタ発生量が多かった。また、Moが多いので、溶着金属の引張強さが高く、吸収エネルギーの平均値及び最低値が低かった。 With wire symbol W37, the total F conversion value of the fluorine compound was small, so the arc was unstable and the amount of spatter generated was large. In addition, since the Mo content was large, the tensile strength of the weld metal was high, and the average and minimum values of absorbed energy were low.

Claims (4)

鋼製外皮にフラックスを充填してなる高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤにおいて、
ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、
C:0.05~0.15%、
Si:0.5~2.0%、
Mn:1.5~3.0%、
Ti:0.01~0.20%、
Cu:0.05~0.50%、
S:0.005~0.020%を含有し、
さらに、ワイヤ全質量に対する質量%で、フラックス中に、
SiO2:0.05~0.20%、
酸素含有量が0.30%以下の鉄粉:3~8%、
弗素化合物:F換算値の合計で0.005~0.080%、
Na化合物及びK化合物:Na2O換算値及びK2O換算値の合計で0.02~0.15%を含有し、
残部が鋼製外皮のFe分、鉄合金粉のFe分及び不可避不純物からなることを特徴とする高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤ。
A flux-cored wire for Ar-CO 2 mixed gas shielded arc welding of high-strength steel, in which the steel sheath is filled with flux,
% by mass of the total mass of the wire, the sum of the steel sheath and flux,
C: 0.05 to 0.15%,
Si: 0.5 to 2.0%,
Mn: 1.5-3.0%,
Ti: 0.01 to 0.20%,
Cu: 0.05-0.50%,
S: contains 0.005 to 0.020%,
In addition, in mass % with respect to the total mass of the wire, in the flux,
SiO 2 : 0.05-0.20%,
Iron powder with an oxygen content of 0.30% or less: 3 to 8%,
Fluorine compound: 0.005 to 0.080% in total F conversion value,
Na compound and K compound: 0.02 to 0.15% in total of Na 2 O conversion value and K 2 O conversion value,
A flux-cored wire for Ar-CO 2 mixed gas shielded arc welding of high-strength steel, wherein the balance is composed of the Fe content of the steel skin, the Fe content of the iron alloy powder and unavoidable impurities.
ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、
Mo:0.1~0.5%を更に含有することを特徴とする請求項1に記載の高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤ。
% by mass of the total mass of the wire, the sum of the steel sheath and flux,
The flux-cored wire for Ar—CO 2 mixed gas shielded arc welding of high-strength steel according to claim 1, further containing Mo: 0.1 to 0.5%.
ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、
B:0.0015~0.0150%を更に含有することを特徴とする請求項1又は2に記載の高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤ。
% by mass of the total mass of the wire, the sum of the steel sheath and flux,
3. The flux-cored wire for Ar--CO 2 mixed gas shielded arc welding of high-strength steel according to claim 1 or 2, further comprising B: 0.0015 to 0.0150%.
成形された鋼製外皮の合わせ目が溶接されていることで鋼製外皮に継ぎ目を無くしたことを特徴とする請求項1乃至3の何れか1項に記載の高張力鋼のAr-CO2混合ガスシールドアーク溶接用フラックス入りワイヤ。 4. The high-strength steel Ar--CO 2 according to any one of claims 1 to 3, characterized in that seams of the formed steel skin are welded to eliminate seams in the steel skin. Flux cored wire for mixed gas shielded arc welding.
JP2019112320A 2019-06-17 2019-06-17 Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel Active JP7221812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019112320A JP7221812B2 (en) 2019-06-17 2019-06-17 Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019112320A JP7221812B2 (en) 2019-06-17 2019-06-17 Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel

Publications (2)

Publication Number Publication Date
JP2020203302A JP2020203302A (en) 2020-12-24
JP7221812B2 true JP7221812B2 (en) 2023-02-14

Family

ID=73837735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019112320A Active JP7221812B2 (en) 2019-06-17 2019-06-17 Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel

Country Status (1)

Country Link
JP (1) JP7221812B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115890062A (en) * 2022-11-25 2023-04-04 武汉铁锚焊接材料股份有限公司 High-toughness flux-cored wire for welding large thick plate and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255164A (en) 2008-03-26 2009-11-05 Nippon Steel & Sumikin Welding Co Ltd METAL-BASED FLUX CORED WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING
JP2015080811A (en) 2013-10-24 2015-04-27 日鐵住金溶接工業株式会社 FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELD ARC WELDING
JP2016124023A (en) 2015-01-07 2016-07-11 日鐵住金溶接工業株式会社 HIGH-TENSION STEEL Ar-CO2 MIXTURE GAS SHIELD ARC-WELDING FLUX-CORED WIRE
JP2016131985A (en) 2015-01-16 2016-07-25 日鐵住金溶接工業株式会社 FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELD ARC WELDING
JP2017074599A (en) 2015-10-14 2017-04-20 日鐵住金溶接工業株式会社 METALLIC FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING
JP2017094360A (en) 2015-11-25 2017-06-01 日鐵住金溶接工業株式会社 Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255164A (en) 2008-03-26 2009-11-05 Nippon Steel & Sumikin Welding Co Ltd METAL-BASED FLUX CORED WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING
JP2015080811A (en) 2013-10-24 2015-04-27 日鐵住金溶接工業株式会社 FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELD ARC WELDING
JP2016124023A (en) 2015-01-07 2016-07-11 日鐵住金溶接工業株式会社 HIGH-TENSION STEEL Ar-CO2 MIXTURE GAS SHIELD ARC-WELDING FLUX-CORED WIRE
JP2016131985A (en) 2015-01-16 2016-07-25 日鐵住金溶接工業株式会社 FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELD ARC WELDING
JP2017074599A (en) 2015-10-14 2017-04-20 日鐵住金溶接工業株式会社 METALLIC FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING
JP2017094360A (en) 2015-11-25 2017-06-01 日鐵住金溶接工業株式会社 Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture

Also Published As

Publication number Publication date
JP2020203302A (en) 2020-12-24

Similar Documents

Publication Publication Date Title
JP6437327B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6786427B2 (en) Flux-filled wire for gas shielded arc welding
JP6033755B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP6382117B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP6437378B2 (en) Flux-cored wire for gas shielded arc welding
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6486844B2 (en) Flux-cored wire for gas shielded arc welding
JP6377591B2 (en) Metal flux cored wire for Ar-CO2 mixed gas shielded arc welding
JP6219259B2 (en) Flux-cored wire for gas shielded arc welding of high strength steel
JP6382114B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high strength steel
JP2008221231A (en) Flux cored wire for gas-shielded arc welding
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6669613B2 (en) Flux-cored wire for gas shielded arc welding
JP2017094360A (en) Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP7221812B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel
JP2017164772A (en) Flux-cored wire for carbon dioxide gas shield arc welding
JP7257189B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of weathering steel
JP6786431B2 (en) Carbon-based flux-cored wire for carbon dioxide shield arc welding
JP7247081B2 (en) Metallic flux-cored wire for gas-shielded arc welding
JP2020131234A (en) Stainless steel flux-cored wire for self-shielded arc-welding
JP7247079B2 (en) Flux-cored wire for gas-shielded arc welding
JP6863862B2 (en) Flux-filled wire for gas shielded arc welding
JP7244399B2 (en) Flux-cored wire for gas-shielded arc welding
JP7221742B2 (en) Pulse MAG multi-layer welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230202

R150 Certificate of patent or registration of utility model

Ref document number: 7221812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150