JP6437378B2 - Flux-cored wire for gas shielded arc welding - Google Patents

Flux-cored wire for gas shielded arc welding Download PDF

Info

Publication number
JP6437378B2
JP6437378B2 JP2015091121A JP2015091121A JP6437378B2 JP 6437378 B2 JP6437378 B2 JP 6437378B2 JP 2015091121 A JP2015091121 A JP 2015091121A JP 2015091121 A JP2015091121 A JP 2015091121A JP 6437378 B2 JP6437378 B2 JP 6437378B2
Authority
JP
Japan
Prior art keywords
flux
wire
welding
weld metal
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015091121A
Other languages
Japanese (ja)
Other versions
JP2016203234A5 (en
JP2016203234A (en
Inventor
直樹 坂林
直樹 坂林
雅哉 齋藤
雅哉 齋藤
木本 勇
勇 木本
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP2015091121A priority Critical patent/JP6437378B2/en
Publication of JP2016203234A publication Critical patent/JP2016203234A/en
Publication of JP2016203234A5 publication Critical patent/JP2016203234A5/ja
Application granted granted Critical
Publication of JP6437378B2 publication Critical patent/JP6437378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

本発明は、490〜550MPa級鋼のガスシールドアーク溶接用フラックス入りワイヤに関し、特に大電流溶接を行うときの溶接作業性に優れ、さらに大入熱・高パス間温度の溶接施工条件下においても機械的性能に優れた溶接金属を得ることができるガスシールドアーク溶接用フラックス入りワイヤに関する。   The present invention relates to a flux-cored wire for gas shielded arc welding of 490 to 550 MPa class steel, and is particularly excellent in welding workability when performing high current welding, and also under welding conditions of high heat input and high pass temperature. The present invention relates to a flux-cored wire for gas shielded arc welding capable of obtaining a weld metal having excellent mechanical performance.

建築鉄骨分野において、溶接施工の能率向上を図るため、溶接用ソリッドワイヤを用いた高電流域でのガスシールドアーク溶接が従来より行われている。溶接用ソリッドワイヤを用いた高電流溶接では、1層毎の溶着量を多くすることができるため溶接の高能率化が可能であるが、アークが不安定でスパッタ発生量が多く、ビード外観・形状が不良であるなど溶接作業性が悪いという問題がある。また溶接用ソリッドワイヤを用いた高電流溶接では、スパッタが大粒になるため、鋼板表面に付着したスパッタの除去作業も困難となり作業効率も不良になるという問題があった。   In the field of building steel frames, gas shielded arc welding in a high current region using a solid wire for welding has been conventionally performed in order to improve the efficiency of welding construction. High current welding using solid wire for welding can increase the amount of welding per layer, so it is possible to increase the efficiency of welding, but the arc is unstable and the amount of spatter generated is large. There is a problem that welding workability is poor such as a poor shape. In addition, high current welding using a solid wire for welding has a problem in that spatter becomes large and removal of the spatter adhering to the surface of the steel sheet becomes difficult, resulting in poor work efficiency.

これらの問題を解決する手段として、スパッタ発生量が少ないガスシールドアーク溶接用ソリッドワイヤの開発が既に行われている。例えば特許文献1には、二硫化モリブデン、リン脂質及び常温で液体の潤滑剤からなる送給潤滑剤をワイヤ表面に適量付着させることでワイヤ送給性を良好にし、溶接時のスパッタ発生量を低減する技術が開示されている。また特許文献2には、2種類以上のアルカリ金属を含浸させたアルカリ金属含浸部をワイヤ表層下に形成させることでスパッタ発生量を低減できる溶接用ソリッドワイヤが開示されている。しかし、溶接用ソリッドワイヤを用いた高電流溶接では、発生するスパッタ自体が多いため、たとえワイヤ送給性が良好になってもスパッタ発生量を十分に低減できず、またビード外観・形状も改善することができないという問題があった。   As means for solving these problems, development of a solid wire for gas shielded arc welding with a small amount of spatter has already been made. For example, Patent Document 1 discloses that a suitable amount of a supply lubricant composed of molybdenum disulfide, phospholipid, and a lubricant that is liquid at room temperature is attached to the surface of the wire to improve wire feedability, and the amount of spatter generated during welding is reduced. Techniques for reducing are disclosed. Patent Document 2 discloses a welding solid wire that can reduce the amount of spatter generated by forming an alkali metal impregnated portion impregnated with two or more kinds of alkali metals under the surface of the wire. However, high current welding using solid wire for welding generates a lot of spatter itself, so even if the wire feedability is improved, the spatter generation amount cannot be reduced sufficiently, and the bead appearance and shape are also improved. There was a problem that could not be done.

また近年では、更なる溶接施工の高能率化を目的として、大入熱・高パス間温度の溶接施工条件に対応するガスシールドアーク溶接用ソリッドワイヤが開発されており、その具体的な仕様がJIS Z3312 YGW18に規定されている。このようなガスシールドアーク溶接用ソリッドワイヤは、溶接金属の強度及び靭性の低下を招くことなく溶接施工が可能な条件として、引張強さが490MPa級の高張力鋼に対して、最大入熱40kJ/cm、最高パス間温度350℃の溶接施工条件が許容される。また、引張強さが520MPa級の高張力鋼に対しては、最大入熱30kJ/cm、最高パス間温度250℃の溶接施工条件が許容される。   In recent years, solid wire for gas shielded arc welding has been developed to meet the welding conditions of high heat input and high-pass temperature for the purpose of further improving the efficiency of welding. It is defined in JIS Z3312 YGW18. Such a solid wire for gas shielded arc welding has a maximum heat input of 40 kJ with respect to a high-strength steel having a tensile strength of 490 MPa class as a condition capable of welding without causing a decrease in the strength and toughness of the weld metal. / Cm and a welding condition of a maximum pass temperature of 350 ° C. are allowed. For high-tensile steel with a tensile strength of 520 MPa, welding conditions with a maximum heat input of 30 kJ / cm and a maximum interpass temperature of 250 ° C. are allowed.

大入熱・高パス間温度の溶接施工条件に対応したガスシールドアーク溶接用ソリッドワイヤは、例えば、特許文献3〜5等にあるように、ワイヤ中にMo、Cr等を多く含有したものが提案されている。これらソリッドワイヤによれば、大入熱・高パス間温度の溶接施工条件においても、溶接金属の強度及び靭性を確保することが可能であるが、やはりアークが不安定でスパッタ発生量が多く、ビード外観・形状が不良であるなど溶接作業性が悪いという問題があった。   The solid wire for gas shielded arc welding corresponding to the welding conditions of large heat input and high-pass temperature includes, for example, those containing a lot of Mo, Cr, etc. in the wire, as described in Patent Documents 3-5. Proposed. According to these solid wires, it is possible to ensure the strength and toughness of the weld metal even under welding conditions of high heat input and high pass temperature, but the arc is unstable and the amount of spatter is large. There was a problem that welding workability was poor, such as the bead appearance and shape being bad.

大入熱・高パス間温度の溶接施工条件で溶接金属の強度及び靭性を確保しつつ、溶接作業性が良好なガスシールドアーク溶接用ワイヤとして、例えば特許文献6、7には、大入熱・高パス間温度の溶接施工条件の下で、良好な溶接作業性が得られるとともに、機械的性能に優れた溶接金属が得られるフラックス入りワイヤが開示されている。しかし、これらのフラックス入りワイヤでは、溶接用ソリッドワイヤでの高電流溶接よりもスパッタ発生量は相対的には低減できるものの、やはりスパッタ発生量は総じて多く、またスラグ発生量が多くなるので、スラグ巻込み等の溶接欠陥が発生しやすくなるという問題があった。   For example, Patent Documents 6 and 7 disclose a large heat input as a gas shielded arc welding wire that has good welding workability while ensuring the strength and toughness of the weld metal under the welding conditions of large heat input and high pass temperature. A flux-cored wire is disclosed in which good welding workability can be obtained and welding metal excellent in mechanical performance can be obtained under welding conditions with a high interpass temperature. However, with these flux-cored wires, although the spatter generation amount can be relatively reduced as compared with the high current welding with the welding solid wire, the spatter generation amount is generally large and the slag generation amount increases. There has been a problem that welding defects such as entrainment are likely to occur.

特開2006−95551号公報JP 2006-95551 A 特開2009−255142号公報JP 2009-255142 A 特開平10−230387号公報JP-A-10-230387 特開平11−90678号公報Japanese Patent Laid-Open No. 11-90678 特開2001−287086号公報JP 2001-287086 A 特開2005−279683号公報JP 2005-279683 A 特開2011−25298号公報JP 2011-25298 A

そこで本発明は、上述した問題点を解決するために案出されたものであり、490〜550MPa級鋼の大電流溶接でスパッタ発生量が少なく、アークの安定性及びビード外観・形状が良好で、スラグ巻き込み等の溶接欠陥が少ないなど溶接作業性に優れ、さらに、大入熱及び高パス間温度の溶接施工条件で適正な強度と靭性を有する溶接金属が得られるガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。   Therefore, the present invention has been devised to solve the above-described problems, and the amount of spatter generated by high current welding of 490 to 550 MPa class steel is small, and the stability of the arc and the bead appearance and shape are good. Excellent in welding workability with few welding defects such as slag entrainment, and with flux for gas shielded arc welding that provides weld metal with appropriate strength and toughness under welding conditions of high heat input and high pass temperature The object is to provide a wire.

本発明者らは、上記課題を解決するために、490〜550MPa級鋼の大電流溶接、さらに大入熱・高パス間温度でのガスシールドアーク溶接において、適正な強度及び靭性を有する溶接金属が得られるとともに、アークが安定し、スパッタ発生量が少なく、ビード外観・形状が良好で、溶接欠陥が防止できるなど良好な溶接作業性が得られるガスシールドアーク溶接用フラックス入りワイヤの成分組成について詳細に検討した。   In order to solve the above-mentioned problems, the present inventors have developed a weld metal having appropriate strength and toughness in high-current welding of 490 to 550 MPa class steel, and further in gas shielded arc welding at a high heat input / high pass temperature. About the component composition of flux-cored wire for gas shielded arc welding that provides good welding workability such as stable arc, low spatter generation, good bead appearance and shape, and prevention of welding defects We examined in detail.

その結果、大電流溶接での溶接施工条件において、アークの安定性及びスパッタ発生量の低減は、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計量及び弗素化合物のF換算値の合計量を適正にするとともに、SiO2を適量含有させることでビード外観・形状を良好にすることを見出した。 As a result, under the welding conditions for high current welding, the stability of the arc and the reduction in the amount of spatter are reduced by the Na 2 O equivalent value of the Na compound and K compound and the total amount of the K 2 O equivalent value and F of the fluorine compound. It has been found that the bead appearance and shape are improved by making the total amount of the converted values appropriate and by containing an appropriate amount of SiO 2 .

また、大電流での溶接施工条件における溶接金属の適正な強度と同時に安定した靭性の向上をも同時に達成させるためには、ワイヤ中のスラグ生成剤である酸化物を極力減らし、合金成分のC、Si、Mn、Cu、Ti、Alの含有量をそれぞれ適正化することが有効であることを知見した。   In addition, in order to achieve the improvement of stable toughness at the same time as the appropriate strength of the weld metal under the welding conditions under a large current, the oxide as the slag forming agent in the wire is reduced as much as possible, and the alloy component C It has been found that it is effective to optimize the contents of Si, Mn, Cu, Ti, and Al.

さらに、ワイヤ中のMo、B量を適正にすることにより、大入熱・高パス間温度の溶接施工条件においても、溶接金属の更なる靭性の改善及び高強度化が可能であることも知見した。   Furthermore, it is also found that by optimizing the amount of Mo and B in the wire, it is possible to further improve the toughness and increase the strength of the weld metal even under welding conditions of high heat input and high pass temperature. did.

すなわち、本発明の要旨は、鋼製外皮にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、C:0.05〜0.18%、Si:0.4〜1.60%、Mn:1.5〜2.5%、Cu:0.05〜0.5%、Ti:0.1〜0.3%を含有し、Al:0.01%以下であり、さらに、ワイヤ全質量に対する質量%で、フラックス中に、弗素化合物:F換算値の合計で0.01〜0.1%、SiO2:0.01〜0.2%、Na化合物及びK化合物:Na2O換算値とK2O換算値の合計で0.02〜0.15%を含有し、残部が鋼製外皮のFe、成分調整のために添加する鉄粉、鉄合金粉のFe分及び不可避不純物からなることを特徴とする。 That is, the gist of the present invention is that, in a flux-cored wire for gas shielded arc welding in which a steel outer shell is filled with a flux, the mass% with respect to the total mass of the wire, and the total of the steel outer shell and the flux, C: 0.05 -0.18%, Si: 0.4-1.60%, Mn: 1.5-2.5%, Cu: 0.05-0.5%, Ti: 0.1-0.3% Al: 0.01% or less, and further in a mass% with respect to the total mass of the wire, in the flux, 0.01 to 0.1% in total of fluorine compound: F conversion value, SiO 2 : 0. 01-0.2%, Na compound and K compound: Containing 0.02-0.15% in total of Na 2 O converted value and K 2 O converted value, the balance being steel outer shell Fe, component adjustment iron powder to be added for, characterized by comprising the Fe content and unavoidable impurities iron alloy powder

また本発明の要旨は、上述した構成に加えて更にワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、Mo:0.15〜0.5%、B:0.0015〜0.010%を含有することも特徴とするガスシールドアーク溶接用フラックス入りワイヤにある。   Further, the gist of the present invention is, in addition to the above-described configuration, mass% with respect to the total mass of the wire, and the total of the steel outer sheath and the flux, Mo: 0.15-0.5%, B: 0.0015-0. The flux-cored wire for gas shielded arc welding is also characterized by containing 010%.

上述した構成からなる本発明に係るガスシールドアーク溶接用フラックス入りワイヤによれば、大電流溶接において、アークの安定性及びビード外観・形状が優れ、スパッタ発生量が少なく、スラグ量が少なく溶接欠陥が防止できるなど溶接作業性が良好で、さらに、大入熱・高パス間温度の溶接施工条件においても溶接金属の強度及び靭性を十分に確保し、高品質な溶接金属を得ることができる。   According to the flux-cored wire for gas shielded arc welding according to the present invention having the above-described configuration, in high-current welding, the arc stability and bead appearance / shape are excellent, the spatter generation amount is small, the slag amount is small, and the welding defect The welding workability is good, for example, and the strength and toughness of the weld metal can be sufficiently ensured even under the welding conditions of high heat input and high pass temperature, and a high quality weld metal can be obtained.

本発明のガスシールドアーク溶接用フラックス入りワイヤは、各成分組成それぞれの単独及び共存による相乗効果によりなし得たもので、以下にそれぞれの各成分組成の限定理由を述べる。なお、各成分組成の含有率は、フラックス入りワイヤ全質量に対する質量%で表すものとし、その質量%に関する記載を単に%と記載して表すこととする。   The flux-cored wire for gas shielded arc welding according to the present invention can be achieved by a synergistic effect of each component composition individually and coexisting. The reasons for limitation of each component composition will be described below. In addition, the content rate of each component composition shall be represented by the mass% with respect to the total mass of a flux-cored wire, and the description regarding the mass% will be represented as simply%.

[鋼製外皮とフラックスの合計でC:0.05〜0.18%]
Cは、固溶強化により溶接金属の強度を向上させるために必要な元素である。Cが0.05%未満であると、大電流での溶接施工条件下で溶接金属の所望の強度が得られない。一方、Cが0.18%を超えると、溶接金属の強度が過剰に高くなり、靭性が低下し、また高温割れ感受性が高くなる。従って、鋼製外皮とフラックスの合計でCは0.05〜0.18%とする。なお、Cは、鋼製外皮に含まれる成分の他、フラックスから金属粉及び合金粉等から添加できる。
[C: 0.05 to 0.18% in total of steel outer shell and flux]
C is an element necessary for improving the strength of the weld metal by solid solution strengthening. If C is less than 0.05%, the desired strength of the weld metal cannot be obtained under welding conditions with a large current. On the other hand, if C exceeds 0.18%, the strength of the weld metal becomes excessively high, the toughness is lowered, and the hot cracking sensitivity is increased. Therefore, C is 0.05 to 0.18% in total of the steel outer shell and the flux. C can be added from a flux, a metal powder, an alloy powder, or the like, in addition to the components contained in the steel outer shell.

[鋼製外皮とフラックスの合計でSi:0.4〜1.60%]
Siは、溶接金属の脱酸及び溶接金属の強度確保のために添加する。大電流での溶接施工条件ではSiの消耗が多いが、Siが適量溶接金属に歩留まって強度を確保する必要がある。Siが0.4%未満であると、溶接金属が脱酸不足となり、大電流での溶接施工条件で溶接金属の強度及び靭性が低下する。一方、Siが1.60%を超えると、溶接金属の強度が過剰に高くなり、靭性が安定して得られない。また、溶接時に生成するスラグ量が増加してスラグ巻込み等の溶接欠陥が発生しやすくなる。従って、鋼製外皮とフラックスの合計でSiは0.4〜1.60%とする。なお、Siは、鋼製外皮に含まれる成分の他、フラックスから金属Si、Fe−Si、Fe−Si−Mn等の合金粉から添加できる。
[The total amount of steel shell and flux is Si: 0.4 to 1.60 %]
Si is added to deoxidize the weld metal and ensure the strength of the weld metal. Under the welding conditions with a large current, the consumption of Si is large, but it is necessary to secure the strength by yielding an appropriate amount of Si to the weld metal. When Si is less than 0.4%, the weld metal is insufficiently deoxidized, and the strength and toughness of the weld metal are reduced under welding conditions with a large current. On the other hand, when Si exceeds 1.60 %, the strength of the weld metal becomes excessively high and toughness cannot be stably obtained. In addition, the amount of slag generated during welding increases, and welding defects such as slag entrainment tend to occur. Therefore, Si is 0.4 to 1.60 % in total of the steel outer shell and the flux. Si can be added from an alloy powder such as metal Si, Fe-Si, Fe-Si-Mn, etc. from a flux in addition to the components contained in the steel outer shell.

[鋼製外皮とフラックスの合計でMn:1.5〜2.5%]
Mnは、溶接金属の靭性確保と強度向上のために添加する。Mnが1.5%未満であると、大電流での溶接施工条件でMnの消耗が多くなり溶接金属の強度が低く、靭性が十分に確保できなくなる。一方、Mnが2.5%を超えると、溶接金属の靭性が安定して得られない。また、生成スラグ量が増加してスラグ巻込み等の溶接欠陥が発生しやすくなる。従って、鋼製外皮とフラックスの合計でMnは1.5〜2.5%とする。なお、Mnは、鋼製外皮に含まれる成分の他、フラックスからの金属Mn、Fe−Mn、Fe−Si−Mn等の合金粉末から添加できる。
[Mn: 1.5 to 2.5% in total of steel outer shell and flux]
Mn is added to ensure the toughness and improve the strength of the weld metal. If Mn is less than 1.5%, the consumption of Mn increases under welding conditions with a large current, the strength of the weld metal is low, and sufficient toughness cannot be ensured. On the other hand, if Mn exceeds 2.5%, the toughness of the weld metal cannot be obtained stably. In addition, the amount of generated slag increases and welding defects such as slag entrainment tend to occur. Therefore, Mn is 1.5 to 2.5 % in total of the steel outer shell and the flux. In addition, Mn can be added from alloy powders such as metal Mn, Fe—Mn, and Fe—Si—Mn from the flux in addition to the components contained in the steel outer sheath.

[鋼製外皮とフラックスの合計でCu:0.05〜0.5%]
Cuは、析出強化作用を有し、変態温度を低下させ溶接金属の組織を微細化して靭性を安定させる。Cuが0.05%未満であると、大電流での溶接施工条件で安定した溶接金属の靭性が得られない。一方、Cuが0.5%を超えると、析出脆化が生じて溶接金属の靭性が低下し、また高温割れが発生しやすくなる。従って、鋼製外皮とフラックスの合計でCuは0.05〜0.5%とする。なお、Cuは、鋼製外皮に含まれる成分及び鋼製外皮表面に施したCuめっき分の他、フラックスからの金属Cu、Fe−Si−Cu等の合金粉から添加できる。
[Cu total of steel outer shell and flux: 0.05 to 0.5%]
Cu has a precipitation strengthening action, lowers the transformation temperature, refines the structure of the weld metal, and stabilizes toughness. When Cu is less than 0.05%, stable weld metal toughness cannot be obtained under welding conditions with a large current. On the other hand, if Cu exceeds 0.5%, precipitation embrittlement occurs, the toughness of the weld metal decreases, and high-temperature cracking tends to occur. Therefore, Cu is made 0.05 to 0.5% in total of the steel outer shell and the flux. Cu can be added from alloy powder such as metal Cu, Fe-Si-Cu, etc. from the flux, in addition to the components contained in the steel outer shell and the Cu plating applied to the surface of the steel outer shell.

[鋼製外皮とフラックスの合計でTi:0.1〜0.3%]
Tiは、脱酸剤として作用するとともに、溶接金属中にTiの微細酸化物を生成し溶接金属の靭性をより向上させる。Tiが0.1%未満であると、大電流での溶接施工条件で溶接金属の靭性が低下する。一方、Tiが0.3%を超えると、溶接金属中の固溶Tiが多くなり、靭性が低下する。従って、鋼製外皮とフラックスの合計でTiは0.1〜0.3%とする。なお、Tiは、鋼製外皮に含まれる成分の他、フラックスからの金属Ti、Fe−Ti等の合金粉から添加できる。
[Ti: 0.1 to 0.3% in total of steel shell and flux]
Ti acts as a deoxidizer and generates a fine oxide of Ti in the weld metal to further improve the toughness of the weld metal. When Ti is less than 0.1%, the toughness of the weld metal decreases under welding conditions with a large current. On the other hand, if Ti exceeds 0.3%, the solid solution Ti in the weld metal increases and the toughness decreases. Therefore, Ti is 0.1 to 0.3% in total of the steel outer shell and the flux. Ti can be added from alloy powder such as metal Ti, Fe-Ti, etc. from the flux in addition to the components contained in the steel outer shell.

[鋼製外皮とフラックスの合計でAl:0.01%以下]
Alは、0.01%を超えると、溶接金属中に酸化物となって残留し、溶接金属の靭性を低下させる。またAlが0.01%を超えると、アークが不安定となり、スパッタ発生量が増加する。従って、鋼製外皮とフラックスの合計でAlの含有量は0.01%以下とする。なお、Alは必須の成分ではなく、含有率が0%でもよい。
[The total of steel outer shell and flux is Al: 0.01% or less]
If Al exceeds 0.01%, it remains as an oxide in the weld metal, and the toughness of the weld metal is reduced. If Al exceeds 0.01%, the arc becomes unstable and the amount of spatter generated increases. Therefore, the Al content is 0.01% or less in total of the steel outer shell and the flux. Al is not an essential component, and the content may be 0%.

[フラックス中に含有する弗素化合物:F換算値の合計:0.01〜0.1%]
弗素化合物は、アークを集中させて安定させる効果がある。弗素化合物のF換算値の合計が0.01%未満では、この効果が得られず、アークが不安定でスパッタ発生量が多くなる。一方、弗素化合物のF換算値の合計が0.1%を超えると、アークが荒く不安定になり、スパッタ発生量が多くなる。従って、フラックス中に含有する弗素化合物のF換算値の合計は0.01〜0.1%とする。なお、弗素化合物は、フラックスからのCaF2、NaF、LiF、MgF2、K2SiF6、Na3AlF6、AlF3等から添加でき、F換算値はそれらに含有されるF量の合計である。
[Fluorine compounds contained in flux: Total of F conversion values: 0.01 to 0.1%]
Fluorine compounds have the effect of concentrating and stabilizing the arc. If the total F converted value of the fluorine compound is less than 0.01%, this effect cannot be obtained, the arc is unstable, and the amount of spatter generated increases. On the other hand, if the total F converted value of the fluorine compound exceeds 0.1%, the arc becomes rough and unstable, and the amount of spatter generated increases. Therefore, the total F converted value of the fluorine compound contained in the flux is set to 0.01 to 0.1%. The fluorine compound can be added from CaF 2 , NaF, LiF, MgF 2 , K 2 SiF 6 , Na 3 AlF 6 , AlF 3, etc. from the flux, and the F conversion value is the total amount of F contained in them. is there.

[フラックス中に含有するSiO2:0.01〜0.2%]
フラックス中のSiO 2 は、大電流での溶接施工条件において、溶融スラグの粘性を高めてスラグ被包性を向上させてビード止端部のなじみを良好にし、ビード外観・形状を良好にする。SiO2が0.01%未満であると、溶接ビードのビード止端部のなじみが悪くなり、ビード外観・形状が悪くなる。一方、SiO2が0.2%を超えると、溶接金属中の酸素量が増加して靭性が低下する。また、スラグ量が多くなり、スラグ巻込み等の溶接欠陥が発生しやすくなる。従って、フラックス中に含有するSiO2は0.01〜0.2%とする。なお、SiO2は、フラックスからの珪砂、珪酸ソーダ及び珪酸カリウムからなる水ガラスの固質成分等から添加できる。
[SiO 2 contained in flux: 0.01 to 0.2%]
The SiO 2 in the flux increases the viscosity of the molten slag and improves the slag encapsulation property under the welding conditions with a large current to improve the conformity of the bead toe and the bead appearance and shape. When the SiO 2 content is less than 0.01%, the familiarity of the bead toe portion of the weld bead is deteriorated, and the bead appearance and shape are deteriorated. On the other hand, if SiO 2 exceeds 0.2%, the amount of oxygen in the weld metal increases and the toughness decreases. In addition, the amount of slag increases and welding defects such as slag entrainment tend to occur. Thus, SiO 2 contained in the flux is 0.01 to 0.2%. Incidentally, SiO 2 may be added silica sand, from the solid matter component, such as water glass consisting of sodium silicate and potassium silicate from the flux.

[フラックス中に含有するNa化合物及びK化合物のNa2O換算値とK2O換算値の合計で0.02〜0.15%]
Na化合物及びK化合物は、アークをソフトにして安定にする。Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が0.02%未満であると、アークが不安定になり、スパッタ発生量が多くなる。一方、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が0.15%を超えると、アークが強くなりすぎ、スパッタ発生量が多くなる。またNa2O換算値とK2O換算値の合計が0.15%を超えると、ビード止端部のなじみが悪くなり、ビード外観・形状が不良となる。さらに、生成スラグ量が多くなり、スラグ巻込み等の溶接欠陥が発生しやすくなる。従って、フラックス中に含有するNa化合物及びK化合物のNa2O換算値とK2O換算値の合計は0.02〜0.15%とする。なお、Na化合物やK化合物は、珪酸ソーダ及び珪酸カリウムからなる水ガラスの固質成分、K2SiO3、Na2SiO3、NaF、K2SiF6等の粉末から添加できる。
[0.02 to 0.15% in total of Na 2 O converted value and K 2 O converted value of Na compound and K compound contained in flux]
Na and K compounds soften and stabilize the arc. When the total of Na 2 O converted values and K 2 O converted values of the Na compound and K compound is less than 0.02%, the arc becomes unstable and the amount of spatter generated increases. On the other hand, when the total of Na 2 O converted value and K 2 O converted value of Na compound and K compound exceeds 0.15%, the arc becomes too strong and the amount of spatter generated increases. On the other hand, if the total of the Na 2 O converted value and the K 2 O converted value exceeds 0.15%, the familiarity of the bead toe portion becomes worse and the bead appearance and shape become poor. Furthermore, the amount of generated slag increases, and welding defects such as slag entrainment tend to occur. Therefore, the total of Na 2 O equivalent value and K 2 O equivalent value of Na compound and K compound contained in the flux is 0.02 to 0.15%. Incidentally, Na compounds and K compounds may be added from sodium silicate and solid matter components of water glass consisting of potassium silicate, K 2 SiO 3, Na 2 SiO 3, NaF, powders such K 2 SiF 6.

[鋼製外皮とフラックスの合計でMo:0.15〜0.5%]
Moは、大入熱・高パス間温度の溶接施工条件で、溶接金属の強度を確保するうえで重要な元素である。Moが0.15%未満であると、これらの効果が十分に得られず、大入熱・高パス間温度での溶接施工条件で溶接金属の必要な強度が得られない。一方、Moが0.5%を超えると、溶接金属の強度が過剰に高くなり、靭性が安定して得られない。従って、鋼製外皮とフラックスの合計でMoは0.15〜0.5%とする。なお、Moは、鋼製外皮に含まれる成分の他、フラックスからの金属Mo粉から添加できる。
[Mo is 0.15 to 0.5% in total of steel outer shell and flux]
Mo is an important element for securing the strength of the weld metal under welding conditions of high heat input and high pass temperature. If Mo is less than 0.15%, these effects cannot be sufficiently obtained, and the required strength of the weld metal cannot be obtained under the welding conditions at high heat input and high pass temperature. On the other hand, if Mo exceeds 0.5%, the strength of the weld metal becomes excessively high and toughness cannot be stably obtained. Therefore, Mo is 0.15 to 0.5% in total of the steel outer shell and the flux. In addition, Mo can be added from the metal Mo powder from a flux other than the component contained in steel outer skin.

[鋼製外皮とフラックスの合計でB:0.0015〜0.010%]
Bは、大入熱・高パス間温度での溶接施工条件での溶接金属の組織を微細化して靭性を向上させる。Bが0.0015%未満であると、その効果が得られず、大入熱・高パス間温度での溶接施工条件で溶接金属の靭性が低下する。一方、Bが0.010%を超えると、溶接金属の強度が過剰に高くなると共に、粒界が脆化して靭性が低下する。従って、鋼製外皮とフラックスの合計でBは0.0015〜0.010%とする。なお、Bは、鋼製外皮に含まれる成分の他、Fe−Si−B、Fe−Mn−B等の合金粉から添加できる。
[B: 0.0015 to 0.010% in total of steel outer shell and flux]
B refines the structure of the weld metal under the welding conditions under high heat input and high pass temperature to improve toughness. If B is less than 0.0015%, the effect cannot be obtained, and the toughness of the weld metal is lowered under welding conditions at a high heat input and a high pass temperature. On the other hand, if B exceeds 0.010%, the strength of the weld metal becomes excessively high, and the grain boundaries become brittle, resulting in a decrease in toughness. Therefore, B is 0.0015 to 0.010% in total of the steel outer shell and the flux. B can be added from alloy powders such as Fe-Si-B and Fe-Mn-B in addition to the components contained in the steel outer sheath.

本発明のガスシールドアーク溶接用フラックス入りワイヤは、鋼製外皮をパイプ状に成型し、その内部にフラックスを充填した構造である。ワイヤの種類としては、成形した鋼製外皮の合わせ目を溶接して得られる鋼製外皮に継目の無いワイヤと、鋼製外皮に合わせ目の溶接を行わないままとした鋼製外皮に継目を有するワイヤとに大別できる。本発明においては、何れの断面構造のワイヤを採用することができるが、鋼製外皮に継目を有するワイヤは、溶接金属の強度が高くなると低温割れが生じやすくなるので水分含有量の少ない原材料を用いる必要がある。一方、鋼製外皮に継目が無いワイヤは、ワイヤ中の全水素量を低減することを目的とした熱処理が可能であり、また製造後のフラックスの吸湿が無いため、溶接金属の拡散性水素量を低減し、耐低温割れ性の向上を図ることができるので、より好ましい。   The flux-cored wire for gas shielded arc welding according to the present invention has a structure in which a steel outer shell is formed into a pipe shape and the inside thereof is filled with flux. There are two types of wire: a seamless wire in the steel skin obtained by welding the seam of the molded steel skin, and a seam in the steel skin that is left unwelded to the steel skin. It can be roughly divided into wires. In the present invention, a wire having any cross-sectional structure can be used. However, a wire having a seam in a steel outer shell tends to cause cold cracking when the strength of the weld metal is increased. It is necessary to use it. On the other hand, a wire with a seamless steel outer sheath can be heat-treated for the purpose of reducing the total amount of hydrogen in the wire, and since there is no moisture absorption of the flux after production, the amount of diffusible hydrogen in the weld metal This is more preferable because it is possible to improve the cold cracking resistance.

本発明のガスシールドアーク溶接用フラックス入りワイヤの残部は、鋼製外皮のFe、成分調整のために添加する鉄粉、Fe−Si、Fe−Mn、Fe−Ti合金などの鉄合金粉のFe分及び不可避不純物である。   The balance of the flux-cored wire for gas shielded arc welding of the present invention is Fe of steel outer sheath, Fe of iron alloy powder such as Fe powder, Fe-Si, Fe-Mn, Fe-Ti alloy added for component adjustment. Minute and inevitable impurities.

また、フラックス充填率は特に限定しないが、生産性の観点からワイヤ全質量に対して8〜20%とするのが好ましい。   Moreover, although a flux filling rate is not specifically limited, It is preferable to set it as 8 to 20% with respect to the total wire mass from a viewpoint of productivity.

なお、シールドガスは、炭酸ガスとし、シールドガスの流量は耐欠陥性及び大気からの窒素の混入を防ぐために20〜35リットル/分であることが好ましい。   The shield gas is carbon dioxide gas, and the flow rate of the shield gas is preferably 20 to 35 liters / minute in order to prevent defect resistance and nitrogen contamination from the atmosphere.

以下、本発明の効果を実施例により具体的に説明する。   Hereinafter, the effect of the present invention will be described in detail with reference to examples.

JIS G3141に規定されるSPCCを鋼製外皮(C:0.01〜0.05%)として使用し、鋼製外皮を成形する工程でU字型に成形した後、鋼製外皮の合わせ目を溶接した継目が無いワイヤを造管して伸線し、表1に示す各種成分のフラックス入りワイヤを試作した。ワイヤ径は1.4mmとした。   After using SPCC defined in JIS G3141 as a steel outer shell (C: 0.01 to 0.05%) and forming the steel outer shell into a U-shape, the joint of the steel outer shell is formed. A welded seamless wire was piped and drawn, and flux-cored wires having various components shown in Table 1 were made as trial products. The wire diameter was 1.4 mm.

Figure 0006437378
Figure 0006437378

表1に示す試作したフラックス入りワイヤを用いて、溶接作業性、スパッタ発生量の測定、溶接欠陥の有無及び溶接金属性能の調査を行った。   Using the prototyped flux-cored wires shown in Table 1, the welding workability, the amount of spatter generation, the presence or absence of welding defects, and the weld metal performance were investigated.

溶接作業性及び溶接金属性能は、表2に示す条件No.T1の施工条件で、35°レ開先、ルートギャップ8mmの裏当金付きの開先を多層盛の溶接金属試験を実施した。調査項目は溶接時のアークの安定性及びビード外観・形状を調査した。なお、溶接時のワイヤ送給は6m長さのコンジットケーブルを用いた。溶接終了後裏当金を削除してX線透過試験を実施した。また、溶着金属部からA0号引張試験片及び衝撃試験を採取して機械的性能を調査した。   The welding workability and the weld metal performance are shown in Condition No. Under the T1 construction conditions, a multi-layer weld metal test was conducted on a groove with a 35 ° gap and a root gap of 8 mm. The survey items were the arc stability during welding and the bead appearance and shape. In addition, the wire supply at the time of welding used the conduit cable of 6m length. After the welding was completed, the backing metal was deleted and an X-ray transmission test was performed. Moreover, the A0 tensile test piece and the impact test were sampled from the weld metal part to investigate the mechanical performance.

引張強さは490MPa以上、靭性の評価は、0℃におけるシャルピー衝撃試験を各5本実施し、吸収エネルギーの平均値は80J以上、最低値は60J以上を良好とした。   Tensile strength was 490 MPa or more, and toughness was evaluated by conducting five Charpy impact tests at 0 ° C., and the average absorbed energy was 80 J or more, and the minimum value was 60 J or more.

スパッタの発生量は、銅製の捕集箱を用いて、表2に示す条件No.T2の溶接条件でビードオンプレート溶接を30秒×5回繰り返し行い、1分間当たりのスパッタ発生量を算出した。1分間当たりのスパッタ発生量が1.5g以下を良好とした。それらの結果を表3にまとめて示す。   The amount of spatter generated was determined using the copper collection box under the conditions No. 1 shown in Table 2. Bead-on-plate welding was repeated 30 seconds × 5 times under T2 welding conditions, and the amount of spatter generated per minute was calculated. The amount of spatter generated per minute was set to 1.5 g or less. The results are summarized in Table 3.

Figure 0006437378
Figure 0006437378

Figure 0006437378
Figure 0006437378

表1及び表3中のワイヤ記号1〜10が本発明例、ワイヤ記号11〜22は比較例である。本発明例であるワイヤ記号1〜10は、フラックス入りワイヤ中のC、Si、Mn、Cu、Ti及びAlの含有量が適正で、フラックス中の弗素化合物のF換算値の合計、SiO2、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が適量であるので、大電流の溶接施工条件においてもアークが安定してビード外観・形状が良好で、スパッタ発生量が少なく、溶接欠陥がなく、溶接金属の引張強さ及び吸収エネルギーの平均値及び最低値ともに良好で、極めて満足な結果であった。 The wire symbols 1 to 10 in Tables 1 and 3 are examples of the present invention, and the wire symbols 11 to 22 are comparative examples. Wire symbols 1 to 10 which are examples of the present invention have an appropriate content of C, Si, Mn, Cu, Ti and Al in the flux-cored wire, and a total of F converted values of fluorine compounds in the flux, SiO 2 , Since the total of Na 2 O converted value and K 2 O converted value of Na compound and K compound is an appropriate amount, the arc is stable and the bead appearance and shape are good even under large current welding conditions. There were few weld defects, and the average value and minimum value of the tensile strength and absorbed energy of the weld metal were both good and very satisfactory.

比較例中ワイヤ記号11は、Cが少ないので、溶接金属の引張強さが低かった。また、弗素化合物のF換算値の合計が少ないので、アークが不安定で、スパッタ発生量が多かった。   In the comparative example, since the wire symbol 11 has a small amount of C, the tensile strength of the weld metal was low. Further, since the total of F converted values of the fluorine compound is small, the arc is unstable and the amount of spatter generated is large.

ワイヤ記号12は、Cが多いので、溶接金属の引張強さが高く吸収エネルギーが低値であった。また、クレータ部に割れが生じた。さらに、弗素化合物のF換算値の合計が多いので、アークが荒く不安定でスパッタ発生量が多かった。 Since the wire symbol 12 has a lot of C, the tensile strength of the weld metal was high and the absorbed energy was low. Moreover, the crater part cracked. Further, since the total F converted value of the fluorine compound is large, the arc is rough and unstable, and the amount of spatter generated is large.

ワイヤ記号13は、Siが少ないので、溶接金属の引張強さが低く吸収エネルギーも低値であった。また、SiO2が少ないので、ビード外観・形状が不良であった。 Since the wire symbol 13 has little Si, the tensile strength of the weld metal was low and the absorbed energy was also low. In addition, since the SiO 2 is small, bead appearance and shape was poor.

ワイヤ記号14は、Siが多いので、溶接金属の引張強さが高く吸収エネルギーの最低値が低かった。また、スラグ生成量が多くなったのでスラグ巻き込み欠陥が生じた。さらに、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が多いので、アークが強くスパッタ発生量が多く、ビード外観・形状も不良であった。 Since the wire symbol 14 has a large amount of Si, the tensile strength of the weld metal was high and the minimum value of absorbed energy was low. Moreover, since the amount of slag generation increased, a slag entrainment defect occurred. Further, since the total of Na 2 O converted value and K 2 O converted value of Na compound and K compound was large, the arc was strong, the amount of spatter was large, and the bead appearance and shape were also poor.

ワイヤ記号15は、Mnが少ないので、溶接金属の引張強さが低く吸収エネルギーも低値であった。   Since the wire symbol 15 has a small amount of Mn, the tensile strength of the weld metal was low and the absorbed energy was also low.

ワイヤ記号16は、Mnが多いので、溶接金属の吸収エネルギーの最低値が低く、スラグ生成量が多くなったのでスラグ巻き込み欠陥が生じた。また、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が少ないので、アークが不安定でスパッタ発生量が多かった。 Since the wire symbol 16 has a large amount of Mn, the minimum value of the absorbed energy of the weld metal is low, and the amount of slag generated is large, so that a slag entrainment defect occurs. Further, since the total of Na 2 O converted value and K 2 O converted value of Na compound and K compound was small, the arc was unstable and the amount of spatter was large.

ワイヤ記号17は、Cuが少ないので、溶接金属の吸収エネルギーの最低値が低かった。   Since the wire symbol 17 has a small amount of Cu, the minimum value of the absorbed energy of the weld metal was low.

ワイヤ記号18は、Cuが多いので、溶接金属の吸収エネルギーが低値であった。また、クレータ部に割れが生じた。   Since the wire symbol 18 has a large amount of Cu, the absorbed energy of the weld metal was low. Moreover, the crater part cracked.

ワイヤ記号19は、Tiが少ないので、溶接金属の吸収エネルギーが低値であった。   Since the wire symbol 19 has a small amount of Ti, the absorbed energy of the weld metal was low.

ワイヤ記号20は、Tiが多いので、溶接金属の吸収エネルギーが低値であった。   Since the wire symbol 20 has a large amount of Ti, the absorbed energy of the weld metal was low.

ワイヤ記号21は、Alが多いので、アークが不安定でスパッタ発生量が多かった。また、溶接金属の吸収エネルギーが低値であった。   Since the wire symbol 21 has a large amount of Al, the arc was unstable and the amount of spatter generated was large. Moreover, the absorbed energy of the weld metal was low.

ワイヤ記号22は、SiO2が多いので、溶接金属の吸収エネルギーが低値であった。また、スラグ生成量が多くなったのでスラグ巻き込み欠陥が生じた。 Since the wire symbol 22 has a large amount of SiO 2 , the absorbed energy of the weld metal was low. Moreover, since the amount of slag generation increased, a slag entrainment defect occurred.

実施例1と同様にJIS G3141に規定されるSPCCを鋼製外皮(C:0.04%)として使用し、鋼製外皮を成形する工程でU字型に成形した後、鋼製外皮の合わせ目を溶接した継目が無いワイヤを造管して伸線し、表4に示す各種成分のフラックス入りワイヤを試作した。ワイヤ径は1.4mmとした。   As in Example 1, SPCC defined in JIS G3141 was used as a steel outer shell (C: 0.04%), and after forming into a U-shape in the process of forming the steel outer shell, the steel outer shell was assembled. A seamless wire with welded eyes was piped and drawn to produce flux-cored wires of various components shown in Table 4. The wire diameter was 1.4 mm.

表4に示す試作したフラックス入りワイヤを用いて、溶接作業性、スパッタ発生量の測定及び溶接金属性能の調査を行った。   Using the experimentally prepared flux-cored wires shown in Table 4, the welding workability, the amount of spatter generation, and the weld metal performance were investigated.

溶接作業性及び溶接金属性能は、表2に示す条件No.T3の大入熱・高パス間温度の施工条件で、35°レ開先、ルートギャップ8mmの裏当金付きの開先を多層盛の溶接金属試験を実施した。調査項目は実施例1と同様に溶接時のアークの安定性及びビード外観・形状を調査した。溶接終了後裏当金を削除してX線透過試験を実施した。また、溶接金属部からA0号引張試験片及び衝撃試験を採取して機械的性能を調査した。   The welding workability and the weld metal performance are shown in Condition No. A multi-layer weld metal test was conducted on a groove with a backing metal with a 35 ° groove and a root gap of 8 mm under the construction conditions of large heat input and high pass temperature of T3. The investigation items were the same as in Example 1, and the arc stability during welding and the bead appearance / shape were investigated. After the welding was completed, the backing metal was deleted and an X-ray transmission test was performed. Further, A0 tensile test pieces and impact tests were taken from the weld metal part to investigate the mechanical performance.

引張強さは520MPa以上、靭性の評価は、0℃におけるシャルピー衝撃試験を各5本実施し、吸収エネルギーの平均値は80J以上、最低値は60J以上を良好とした。   Tensile strength was 520 MPa or more, and toughness was evaluated by conducting five Charpy impact tests at 0 ° C., and the average value of absorbed energy was 80 J or more, and the minimum value was 60 J or more.

スパッタの発生量は、実施例1と同一の捕集方法で、1分間当たりのスパッタ発生量を算出した。1分間当たりのスパッタ発生量が1.5g以下を良好とした。それらの結果を表5にまとめて示す。   As the amount of spatter generated, the amount of spatter generated per minute was calculated using the same collection method as in Example 1. The amount of spatter generated per minute was set to 1.5 g or less. The results are summarized in Table 5.

Figure 0006437378
Figure 0006437378

Figure 0006437378
Figure 0006437378

表4及び表5中のワイヤ記号23〜26が本発明例、ワイヤ記号27〜30は比較例である。本発明例であるワイヤ記号23〜26は、フラックス入りワイヤ中のC、Si、Mn、Cu、Ti、Al、Mo及びBが適正で、フラックス中の弗素化合物のF換算値の合計、SiO2、Na及びK化合物のNa2O換算値とK2O換算値の合計が適量であるので、大入熱・高パス間温度の溶接施工条件においてもアークが安定してビード外観・形状が良好で、スパッタ発生量が少なく、溶接欠陥がなく、溶接金属の引張強さ及び吸収エネルギーの平均値及び最低値ともに良好で、極めて満足な結果であった。 The wire symbols 23 to 26 in Tables 4 and 5 are examples of the present invention, and the wire symbols 27 to 30 are comparative examples. In the wire symbols 23 to 26 of the present invention, C, Si, Mn, Cu, Ti, Al, Mo and B in the flux-cored wire are appropriate, and the total of F converted values of the fluorine compounds in the flux is SiO 2. Since the total of Na 2 K converted value and K 2 O converted value of Na and K compounds is appropriate, the arc is stable and the bead appearance and shape are good even under welding conditions with high heat input and high pass temperature Thus, the spatter generation amount was small, there were no welding defects, and the average value and the minimum value of the tensile strength and absorbed energy of the weld metal were both good and very satisfactory.

比較例中ワイヤ記号27は、Moが少ないので、溶接金属の引張強さが低値であった。   Since the wire symbol 27 in the comparative example has a small amount of Mo, the tensile strength of the weld metal was low.

ワイヤ記号28は、Moが多いので、溶接金属の引張強さが高く吸収エネルギーの最低値が低かった。   Since the wire symbol 28 has a large amount of Mo, the tensile strength of the weld metal was high and the minimum value of absorbed energy was low.

ワイヤ記号29は、Bが少ないので、溶接金属の吸収エネルギーが低値であった。   Since the wire symbol 29 has a small amount of B, the absorbed energy of the weld metal was low.

ワイヤ記号30は、Bが多いので、溶接金属の引張強さが高く吸収エネルギーが低値であった。   Since the wire symbol 30 has a large amount of B, the tensile strength of the weld metal was high and the absorbed energy was low.

なお、これら比較例としてのワイヤ記号27〜30は、確かにワイヤ記号23〜26の本発明例と比較して溶接金属の引張強さ、吸収エネルギーが若干劣るものの、何れも溶接作業性は良好であり、X線透過試験の結果も良好であった。このため、これら比較例としてのワイヤ記号27〜30も、本発明の範囲に含まれるものである。   In addition, although the wire symbols 27 to 30 as these comparative examples are certainly inferior in tensile strength and absorbed energy of the weld metal to the wire symbols 23 to 26, the welding workability is good. The result of the X-ray transmission test was also good. For this reason, the wire symbols 27-30 as these comparative examples are also included in the scope of the present invention.

Claims (2)

鋼製外皮にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、
ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、
C:0.05〜0.18%、
Si:0.4〜1.60%、
Mn:1.5〜2.5%、
Cu:0.05〜0.5%、
Ti:0.1〜0.3%を含有し、
Al:0.01%以下であり、
さらに、ワイヤ全質量に対する質量%で、フラックス中に、
弗素化合物:F換算値の合計で0.01〜0.1%、
SiO2:0.01〜0.2%、
Na化合物及びK化合物:Na2O換算値とK2O換算値の合計で0.02〜0.15%を含有し、
残部が鋼製外皮のFe、成分調整のために添加する鉄粉、鉄合金粉のFe分及び不可避不純物からなることを特徴とするガスシールドアーク溶接用フラックス入りワイヤ。
In the flux-cored wire for gas shield arc welding, which is formed by filling the steel outer shell with flux,
It is the mass% with respect to the total mass of the wire.
C: 0.05 to 0.18%,
Si: 0.4 to 1.60%,
Mn: 1.5 to 2.5%
Cu: 0.05 to 0.5%,
Ti: 0.1 to 0.3% is contained,
Al: 0.01% or less,
Furthermore, in the flux in mass% with respect to the total mass of the wire,
Fluorine compound: 0.01 to 0.1% in total in terms of F,
SiO 2 : 0.01 to 0.2%,
Na compound and K compound: 0.02 to 0.15% in total of Na 2 O converted value and K 2 O converted value,
A flux-cored wire for gas shielded arc welding, wherein the balance is made of Fe of steel outer sheath, iron powder added for component adjustment, Fe content of iron alloy powder, and inevitable impurities.
ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、
Mo:0.15〜0.5%、
B:0.0015〜0.010%をさらに含有することを特徴とする請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。
It is the mass% with respect to the total mass of the wire.
Mo: 0.15-0.5%,
B: The flux cored wire for gas shielded arc welding according to claim 1, further comprising 0.0015 to 0.010%.
JP2015091121A 2015-04-28 2015-04-28 Flux-cored wire for gas shielded arc welding Active JP6437378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015091121A JP6437378B2 (en) 2015-04-28 2015-04-28 Flux-cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015091121A JP6437378B2 (en) 2015-04-28 2015-04-28 Flux-cored wire for gas shielded arc welding

Publications (3)

Publication Number Publication Date
JP2016203234A JP2016203234A (en) 2016-12-08
JP2016203234A5 JP2016203234A5 (en) 2017-06-29
JP6437378B2 true JP6437378B2 (en) 2018-12-12

Family

ID=57488488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015091121A Active JP6437378B2 (en) 2015-04-28 2015-04-28 Flux-cored wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP6437378B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863862B2 (en) * 2017-08-30 2021-04-21 日鉄溶接工業株式会社 Flux-filled wire for gas shielded arc welding
JP6988323B2 (en) * 2017-09-27 2022-01-05 日本製鉄株式会社 Gas shield arc Welding flux-cored wire and welding joint manufacturing method
JP6939508B2 (en) * 2017-12-19 2021-09-22 日本製鉄株式会社 Corrosion-resistant steel gas shield arc welding flux-cored wire and welding joint manufacturing method
JP6951313B2 (en) * 2018-01-16 2021-10-20 日鉄溶接工業株式会社 Flux-filled wire for gas shielded arc welding
JP6951285B2 (en) * 2018-03-30 2021-10-20 日鉄溶接工業株式会社 Pulse MAG multi-layer welding method
JP7221742B2 (en) * 2019-03-07 2023-02-14 日鉄溶接工業株式会社 Pulse MAG multi-layer welding method
JP7244399B2 (en) * 2019-10-31 2023-03-22 日鉄溶接工業株式会社 Flux-cored wire for gas-shielded arc welding

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2795992B2 (en) * 1991-04-09 1998-09-10 日鐵溶接工業株式会社 Flux-cored wire for gas shielded arc welding
JP3718464B2 (en) * 2000-09-04 2005-11-24 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
JP2005279683A (en) * 2004-03-29 2005-10-13 Jfe Steel Kk Flux cored wire for gas shielded arc welding
JP2005305498A (en) * 2004-04-21 2005-11-04 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for electrogas arc welding
JP5207994B2 (en) * 2008-03-26 2013-06-12 日鐵住金溶接工業株式会社 Metal flux cored wire for Ar-CO2 mixed gas shielded arc welding
JP6188621B2 (en) * 2014-04-10 2017-08-30 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide shielded arc welding

Also Published As

Publication number Publication date
JP2016203234A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP6437378B2 (en) Flux-cored wire for gas shielded arc welding
JP6486844B2 (en) Flux-cored wire for gas shielded arc welding
JP6437327B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5242665B2 (en) Flux-cored wire for gas shielded arc welding
JP6377591B2 (en) Metal flux cored wire for Ar-CO2 mixed gas shielded arc welding
JP6786427B2 (en) Flux-filled wire for gas shielded arc welding
JP6188621B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6033755B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP5153421B2 (en) Flux-cored wire for gas shielded arc welding
JP6219259B2 (en) Flux-cored wire for gas shielded arc welding of high strength steel
JP6382114B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high strength steel
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6669613B2 (en) Flux-cored wire for gas shielded arc welding
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6786431B2 (en) Carbon-based flux-cored wire for carbon dioxide shield arc welding
JP6863862B2 (en) Flux-filled wire for gas shielded arc welding
JP6599808B2 (en) Flux-cored wire for electroslag welding of high strength steel
JP7221812B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel
JP7221742B2 (en) Pulse MAG multi-layer welding method
JP7244399B2 (en) Flux-cored wire for gas-shielded arc welding
JP7247081B2 (en) Metallic flux-cored wire for gas-shielded arc welding
JP6951285B2 (en) Pulse MAG multi-layer welding method
JP5457301B2 (en) Flux-cored wire for gas shielded arc welding

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181114

R150 Certificate of patent or registration of utility model

Ref document number: 6437378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250