TW200911443A - Solid soldering wire for carbon dioxide gas protection arc welding - Google Patents

Solid soldering wire for carbon dioxide gas protection arc welding Download PDF

Info

Publication number
TW200911443A
TW200911443A TW097102505A TW97102505A TW200911443A TW 200911443 A TW200911443 A TW 200911443A TW 097102505 A TW097102505 A TW 097102505A TW 97102505 A TW97102505 A TW 97102505A TW 200911443 A TW200911443 A TW 200911443A
Authority
TW
Taiwan
Prior art keywords
mass
slag
amount
electrode
welding
Prior art date
Application number
TW097102505A
Other languages
Chinese (zh)
Other versions
TWI339603B (en
Inventor
Reiichi Suzuki
Toshihiko Nakano
Shuji Sasakura
Yuya Kubo
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of TW200911443A publication Critical patent/TW200911443A/en
Application granted granted Critical
Publication of TWI339603B publication Critical patent/TWI339603B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

The invention provides a solid core welding wire used for CO2 gas shielded arc welding which contains: C: 0.020-0.100 wt. %, Si: 0.65-1.10 wt. %, Mn: 1.40-1.74 wt. %, P: 0.005-0.018 wt. %, S: 0.007-0.020 wt. %, Ti: 0.11-0.18 wt. %, B: 0.0015-0.0073 wt. %, C+15*B: 0.0600-0.1990 wt. %, Mo: less than 0.08 wt. %, O: less than 0.0100 wt. %, Cu: less than 0.45 wt. %, allowance is Fe and unavoidable impurity. The solid core welding wire with 540N/mm<2> mechanical property is used as welding metal with excellent slag peeling property, lower slag amount, better intensity and tenacity whatever plate thick in robot constructing, in addition, splash amount is reduced.

Description

200911443 九、發明說明 【發明所屬之技術領域】 本發明係關於一種二氧化碳氣體遮蔽電弧熔接用實心 焊條’使用其對軟鋼或490至520N/mm2級高張力鋼進行 一氧化碳氣體遮蔽電弧熔接時’不但效率高,而且能夠得 到機械性能良好的熔接金屬。 【先前技術】 近年來’在建築鋼筋領域’以C〇2爲遮蔽氣體的遮蔽 電弧熔接法’由於其高效率的優點而被作爲主力使用。迄 今爲止大部分是採用人工的半自動熔接法,但是,基於節 省人力資源以降低成本、利用夜間和假日的無人運轉以進 一步提高效率等的目的’利用機器人的自動熔接也開始普 及。 另一方面’在熔接品質方面’主要是爲了提高耐震性 而要求提高熔接接頭部的性能,在1 997年的JASS6修訂 、:1 9 9 9年的建築基準法修訂中,對熔接時的供熱、層間溫 度進行上限管理。受到此動向,關於熔接焊條,也開發出 對應高供熱、高層間溫度的焊條,對於490N/mm2級碳鋼 板,能夠容許其最高供熱達40kJ/cm、層間溫度達3 5〇°c ’對於 5 2 ON/mm2級碳鋼板’能夠容許其最高供熱達 30kJ/cm、層間溫度達 25〇。(:,在 1 999 年 540N/mm2 級 = YGW18獲得JIS化。以後,此即使高供熱、高層間溫度 下也能夠得到優異的機械性能的5 4 ON/mm2級焊條,以很 200911443 快的速度獲得普及。該540N/mm2級焊條,迄今爲止,在 供熱及層間溫度難以管理的半自動熔接之普及雖然較早, 而最近在機器人熔接中應用540N/mm2級焊條的情況也變 得多起來。 迄今開發的公知的二氧化碳氣體熔接用大電流、高層 間溫度所對應的焊條,整體來說含有的S i、Μ η、T i等的 去氧成分比習知焊條多,且視需要還添加Mo、B、Cr、A1 、N b、V、N i等。藉此提高鋼的淬火性,並合倂晶粒微細 化帶來的韌性提高、析出硬化及固溶硬化的作用,也提高 了強度。這種焊條,開槽寬度越大、層間溫度越高且板厚 越大的鋼板,其效果越顯著。 然而,這些習知的焊條的實際情況是,其設計均沒有 考慮到機器人裝載的情形。在習知的大電流、高層間溫度 對應的焊條,存在熔渣發生量過多且剝離性差的缺點。因 爲熔渣是絕緣性的,所以堆積的熔渣妨礙電弧穩定性,成 爲熔接滲透不足及熔渣污染等缺陷發生的直接原因。此外 ’只要熔渣稍微有不自然剝離,機器人即使偏移起弧位置 而嘗試再起弧,仍會繼續發生起弧錯誤,機器人會判定錯 誤而停止作業。熔接機器人雖然在無人化上發揮最大的長 處,但是因短時間內的熔渣堆積會引起電弧的不穩定化, 需要頻繁地靠人工除去熔渣,爲了修復起弧錯誤,必須進 行起弧部的熔渣去除作業等,因此不能發揮其長處。於是 ,爲了解決該問題’期望能提出一種熔接焊條,在最大供 熱40kJ/cm '最高層間溫度3 5 0。(:的條件下,具有 200911443 49ΟΝ/mm2級鋼所需要的機械性能,且熔渣發生量少,剝 離性也良好,連續積層高度大且效率高。針對該期望,可 改善熔渣剝離性的焊條,包括日本特開2 0 0 6 - 8 8 1 8 7號、 日本特開2006-305605號、日本特開2006-150437號所揭 示的焊條。另外’不但熔渣剝離性改善,而且熔渣生成量 也降低的焊條,在日本特開2004-122170號、日本特開 2006-26643號中也已揭示。 但是如上述’高供熱高層間溫度對應的焊條,板厚越 大的鋼板效果越顯著。因此,以前,在供熱和層間溫度都 不太高的2 0 m m以下的比較薄的板厚,基於成本的觀點, 以往使用的490N/mm2級=YGW11被認爲已能充分滿足需 要,而在板厚較厚的情形才使用540N/mm2級=YGW1 8, 最近基於:更換麻煩、在540N/mm2級焊條的普及下焊條 成本與490N/mm2級的差距縮小、以及以提高耐震性的觀 點建築結構設備者有高強度化的傾向等等的理由,即使是 薄板鋼板的情形也開始採用540N/mm2級焊條。但是,如 此會引發3個問題。 第一個問題是,因爲開槽面積小,所以存在供熱僅能 提高至2 5 k J / c m左右的情況,並且因爲層數也少,所以層 間溫度還沒上升到200 °C左右之前熔接就已完成。就是說 ,因低供熱、低層間溫度而造成冷卻速度過快的條件,習 知的540N/mm2級焊條,無法維持肥粒鐵組織的狀態而微 細化,而是朝向變韌鐵組織或麻散田鐵組織的發生組織變 態,反而造成韌性變低。 -7- 200911443 第二個問題是’由於開槽面積變小,墊板的母材稀釋 率相對地上升,易受到組成的影響。現在,墊板爲了低價 格而大量使用氮含量多的低品質的鋼板,熔接金屬中氮含 量的增加會導致韌性降低。 第三個問題是’因爲板厚薄時層間溫度不太高,所以 在熔渣開始剝離前熔接已完成,但只是熔渣剝離性良好沒 有意義,更重要的是要減少熔渣量。 然而’針對該動向,在上述日本特開2006-88187號 及日本特開2006-150437號’強度過高而用於薄板時,熔 接部反而變得低韌性化’且熔渣量並沒有減少,所以沒有 作業的改善效果。另外,在日本特開2006-26643號中, 儘管熔渣剝離性提高,並且熔渣生成量減少,但是並沒有 考慮到機械性能,無法避免過剩強度和隨之而來的低韌性 化。在日本特開2004- 1 22 1 7〇號,沒有考慮在機器人的適 用性’熔渣量的降低和剝離性的提昇不充分。另外,在用 於薄板時,熔接部的韌性不足。 【發明內容】 本發明是有鑒於相關問題點而構成者,其目的在於提 供一種適於連續熔接的二氧化碳氣體遮蔽電弧熔接用實心 焊條,其具有 5 40N/mm2級=YGW1 8的基本機械性質,在 使用機器人的施工中,無論板厚是薄是厚、亦即不拘板厚 ,都能夠得到優異的熔渣剝離性和熔渣量降低,且能得到 強度和韌性均良好的熔接金屬,此外熔濺物發生量也少。 * 8 - 200911443 本發明的二氧化碳氣體遮蔽電弧熔接用實心焊條’曰 有 C : 0.020 〜0.100 質量%、si : 〇.65〜uo 質量%、Mn :質量。/。、Ρ: 〇〇〇5 〜〇·018 質量 %、S: 〇·007 〜0.020質量%、Ti : 〜OB質量%、B 1.0015〜 0.0073 質量。/。、C+15XB: 0.0600 〜〇」99〇 質量。/。、 0.08質量。/。以下、〇: 〇.〇1〇0質量%以下、Cu: 〇_45質量% 以下,剩餘是F e及不可避免的雜質。在此,削述C11曰里 ,在對焊條表面實施鍍C υ時,係包含該鍍C U的n卩分。 該情況下,Μ 〇的含量宜爲0.0 1質量%以下。另外 在本發明中,還能夠含有〇·〇8質量%以下的Nb、〇.08質 量%以下的V、0.0 8質量%以下的A1、0.5 0質量%以下的 C r及0.5 0質量%以下的N i之中的至少1種以上。此外較 佳爲,在焊條表面以每l〇kg焊條含量爲〇.〇 1〜丨.00^的比 例存在Μ 〇 S 2。 根據本發明,能夠得到一種適於連續焊的二氧化碳氣 體遮蔽電弧熔接用實心焊條,其作爲5 40N/mm2級的焊條 具有充分的基本機械性質,並且在採用機器人的施工中, 不拘板厚都能夠得到優異的熔渣剝離性和熔渣量降低。另 外’根據本發明,能夠得到強度及韌性良好的熔接金屬, 此外熔濺物發生量也減少到與半自動熔接所採用的 YGW11、YGW18等的習知焊條爲同等程度。 【實施方式】 本發明者等反覆進行熔接熔渣的相關硏究,而解明出 -9- 200911443 其影響要因。熔接熔渣的生成量,與強去氧成分,亦即 Μη量及Ti量的關係最強’隨著它們的含量增大,熔渣生 成量增加。熔渣的剝離性,與熔融狀態下的熔渣/熔接金 屬間的界面能、凝固後的熔渣自身的強度、熔接金屬表面 的凹凸(亦即物理性的高低差與其高低部位生成頻度)有很 強的關係,由於Μ η的增加、S及P的減少,致使剝離性 降低。另一方面’若基於這些認知,過度地追求熔渣生成 量降低和剝離性提昇技術,則容易產生強度及韌性等的機 械性能降低以及高溫裂痕發生這樣的缺點。200911443 IX. INSTRUCTIONS OF THE INVENTION [Technical Field] The present invention relates to a solid electrode for carbon dioxide gas shielded arc welding, which is used for the purpose of carbon steel gas shielding arc welding of mild steel or 490 to 520 N/mm2 high tensile steel. It is high and can obtain a welded metal with good mechanical properties. [Prior Art] In recent years, the "shielding arc welding method" in which the C 〇 2 is used as a shielding gas in the field of building reinforcement has been used as a main force due to its high efficiency. Most of the manual semi-automatic welding methods have been used so far, but the use of automatic welding of robots has begun to take effect based on saving human resources to reduce costs and utilizing no-night operation at night and holidays to further improve efficiency. On the other hand, 'in terms of welding quality' is mainly to improve the performance of the welded joint in order to improve the shock resistance. In the JASS6 revision of 1997, the revision of the Building Standard Law of 1999, the supply for welding Upper limit management of heat and interlayer temperature. In response to this trend, welding rods for high-heat and high-rise temperatures have been developed for welded electrodes. For 490N/mm2 carbon steel sheets, the maximum heating capacity is 40kJ/cm and the interlayer temperature is 3 5〇°c. For the 5 2 ON/mm2 grade carbon steel plate, it can tolerate a maximum heat supply of 30 kJ/cm and an interlayer temperature of 25 〇. (:, 540N/mm2 grade in 999 = YGW18 obtained JIS. After that, this 5 4 ON/mm2 grade electrode with excellent mechanical properties even at high heating and high-rise temperatures is very fast at 200911443. The speed has been popularized. The 540N/mm2 class electrode has been popularized for the semi-automatic welding which is difficult to manage in heating and interlayer temperature. Recently, the application of 540N/mm2 electrode in robot welding has become more common. The electrode corresponding to the high current and the inter-high temperature for the known carbon dioxide gas welding developed so far has more deoxidizing components such as S i, η η, and T i than the conventional electrode, and is added as needed. Mo, B, Cr, A1, Nb, V, Ni, etc., thereby improving the hardenability of the steel, and improving the toughness, precipitation hardening, and solid solution hardening due to grain refinement, and also improved Strength. This type of welding rod, the larger the groove width, the higher the inter-layer temperature and the greater the plate thickness, the more significant the effect. However, the actual situation of these conventional electrodes is that the design does not take into account the robot loading. situation In the electrode corresponding to the conventional high current and high temperature, there is a disadvantage that the amount of slag generated is too large and the peelability is poor. Since the slag is insulative, the deposited slag hinders arc stability and becomes insufficient for fusion penetration and melting. The direct cause of defects such as slag pollution. In addition, as long as the slag is slightly unnaturally peeled off, the robot will continue to start the arcing even if it is offset from the arcing position, and the arcing error will continue to occur, and the robot will judge the error and stop the operation. Although it exerts its greatest strength in unmannedness, it is unstable due to slag accumulation in a short period of time, and it is necessary to manually remove slag frequently. In order to repair the arcing error, it is necessary to perform slag in the arcing portion. Therefore, in order to solve the problem, it is expected that a fusion welding electrode can be proposed with a maximum heating temperature of 40 kJ/cm 'maximum interlayer temperature of 3 5 0. (: with a condition of 200911443 49ΟΝ/mm2 The mechanical properties required for the grade steel, the amount of slag generated is small, the peelability is also good, the continuous laminate height is high, and the efficiency is high. In response to this expectation, the electrode which can improve the slag removability includes the electrode disclosed in Japanese Patent Laid-Open No. Hei. No. 2006-305605, and No. 2006-150437. It is also disclosed in Japanese Laid-Open Patent Publication No. 2004-122170 and Japanese Patent Application Laid-Open No. Hei No. No. 2006-26643, the slag-removability of the slag is improved. The welding rod has a more pronounced effect on the steel plate with a larger plate thickness. Therefore, in the past, a relatively thin plate thickness of less than 20 mm, which is not too high in heat supply and interlayer temperature, is 490 N/mm 2 used in view of cost. Level = YGW11 is considered to be sufficient to meet the needs, and 540N/mm2 grade = YGW1 is used in the case of thicker plate thickness. Recently, based on: replacement trouble, welding rod cost and 490N/ in the popularity of 540N/mm2 electrode. The reason why the gap of the mm2 grade is reduced, and the tendency of the building structure equipment to increase the strength of the earthquake resistance is high, and the 540N/mm2 grade electrode is used even in the case of a thin steel plate. However, this will cause 3 questions. The first problem is that because the grooved area is small, there is a case where the heating can only be increased to about 2 5 kJ / cm, and since the number of layers is also small, the interlayer temperature has not risen to about 200 °C before welding. It is already done. That is to say, due to the low heating rate and the low interlayer temperature, the cooling rate is too fast. The conventional 540N/mm2 electrode can not maintain the state of the ferrite iron structure and is refined, but is oriented toward the toughened iron structure or hemp. The occurrence of tissue abnormalities in the iron field of the field has caused the toughness to become lower. -7- 200911443 The second problem is that the maturity of the base metal of the backing plate is relatively increased due to the smaller the grooved area, which is susceptible to the composition. Nowadays, in order to use a low-quality steel sheet having a large nitrogen content for a low price, the increase in the nitrogen content in the welded metal causes a decrease in toughness. The third problem is that because the interlayer temperature is not too high, the fusion is completed before the slag starts to peel off, but it is not meaningful that the slag removability is good, and it is more important to reduce the amount of slag. However, in the case of the above-mentioned Japanese Patent Laid-Open No. 2006-88187 and Japanese Patent Application Laid-Open No. 2006-150437, when the strength is too high and the sheet is used for a thin plate, the welded portion is reduced in toughness and the amount of slag is not reduced. Therefore, there is no improvement in the work. Further, in Japanese Laid-Open Patent Publication No. 2006-26643, although the slag removability is improved and the amount of slag formation is reduced, mechanical properties are not considered, and excessive strength and consequent low toughness cannot be avoided. In the Japanese Patent Laid-Open No. 2004- 1 22 1 〇, the applicability of the robot is not considered, and the decrease in the amount of slag and the improvement in the peelability are insufficient. Further, when used for a thin plate, the toughness of the welded portion is insufficient. SUMMARY OF THE INVENTION The present invention has been made in view of the related problems, and an object thereof is to provide a solid electrode for carbon dioxide gas shielding arc welding suitable for continuous welding, which has a basic mechanical property of 5 40 N/mm 2 = YGW 18 . In the construction using the robot, regardless of whether the thickness of the sheet is thin or thick, that is, the thickness of the slag is excellent, the slag peeling property and the slag amount can be improved, and the welded metal having good strength and toughness can be obtained, and the melting can be obtained. Splashes are also generated in small quantities. * 8 - 200911443 The solid electrode for carbon dioxide gas shielded arc welding of the present invention has a C: 0.020 to 0.100% by mass, si: 〇.65 uo mass%, Mn: mass. /. Ρ: 〇〇〇5 ~〇·018 mass %, S: 〇·007 ~0.020% by mass, Ti: OB mass%, B 1.0015~ 0.0073 mass. /. , C+15XB: 0.0600 ~ 〇" 99 〇 mass. /. , 0.08 quality. /. Hereinafter, 〇: 〇.〇1〇0% by mass or less, Cu: 〇_45% by mass or less, and the remainder is F e and unavoidable impurities. Here, in the C11 crucible, when the surface of the electrode is plated with C ,, the n 卩 portion of the C U plating is included. In this case, the content of ruthenium is preferably 0.01% by mass or less. Further, in the present invention, it is also possible to contain Nb of 8% by mass or less, V of 〇0.88% by mass or less, A1 of not less than 0.08% by mass, Cr of 0.50% by mass or less, and 0.50% by mass or less. At least one of N i is included. Further preferably, the ratio of 焊.〇 1 to 丨.00^ per l〇kg of the electrode surface is Μ 〇 S 2 . According to the present invention, it is possible to obtain a solid electrode for carbon dioxide gas shielding arc welding suitable for continuous welding, which has sufficient basic mechanical properties as a welding rod of 5 40 N/mm 2 grade, and can be used without any thickness in the construction using a robot. Excellent slag releasability and reduced slag amount are obtained. Further, according to the present invention, it is possible to obtain a welded metal having good strength and toughness, and the amount of occurrence of the spatter is also reduced to the same level as a conventional electrode such as YGW11 or YGW18 used for semi-automatic welding. [Embodiment] The inventors of the present invention repeatedly conducted related research on fusion slag, and explained the influence factors of -9-200911443. The amount of fusion slag generated is most strongly correlated with the strong deoxidation component, i.e., the amount of Μη and the amount of Ti. As the content thereof increases, the amount of slag production increases. The peeling property of the slag, the interface energy between the molten slag/fused metal in the molten state, the strength of the slag itself after solidification, and the unevenness of the surface of the welded metal (that is, the difference in physical height and the frequency of generation of the high and low portions) A strong relationship results in a decrease in the peelability due to an increase in Μη and a decrease in S and P. On the other hand, based on these findings, excessive reduction in slag formation and peeling improvement techniques are likely to cause disadvantages such as deterioration in mechanical properties such as strength and toughness, and occurrence of high-temperature cracks.

Mo已知爲能夠謀求熔接金屬的高強度化的元素,在 JI S Z 3 3 1 2 Y G W 1 8規格,是以0.4 0質量%以下的上限規定 來容許Μ 〇的添加,但是在薄板的低供熱、低層間溫度條 件下,由於Μ 〇的添加而導致過度淬火,會造成顯著的低 韌性化。因此,在能夠完全控制供熱、層間溫度的機器人 熔接中,作爲能夠適用於板厚12mm左右的薄板至板厚 8 0 m m左右的厚板之焊條’其Μ 〇量越小越好,理想上是 不添加Μ 〇。 作爲焊條成分以外之其他影響熔接性的要因,已發現 到’若發生焊條供給的不穩定,則會破壞熔池的形成,使 生成的熔渣厚度不均勻,使熔渣剝離性劣化。 以下對於本發明進行詳細地說明。首先,針對本發明 的焊條組成,就其成分添加理由及組成限定理由進行說明 “ C : 0 · 0 2 0 〜0 . 1 0 0 質量 % ” -10- 200911443 C是用於確保熔接金屬強度的重要添加元素,但是在 C低於0.02 0質量%時,不能確保在高供熱、高層間溫度 熔接時所需要的強度。C宜爲0.05 0質量%以上。另一方 面,若添加c超過0.100質量%,則高溫裂痕將容易發生 。另外,若添加c超過0.100質量%,則在電弧氣氛中由 於CO爆發現象導致熔濺物發生量增加,電弧穩定性劣化 。此外,強度過剩,韌性反而降低。因此,C含量定爲 0.1 0 0質量%以下。 “ S i : 0.0 6 5 〜1 . 1 0 質量 % ”Mo is known as an element which can increase the strength of the weld metal. In the JI SZ 3 3 1 2 YGW 1 8 specification, the addition of the upper limit is allowed to be 0.40 mass% or less, but the supply of the sheet is low. Under the conditions of heat and low interlayer temperature, excessive quenching due to the addition of niobium will result in significant low toughness. Therefore, in the robot welding which can completely control the heating and the interlayer temperature, it is preferable that the electrode can be applied to a thick plate having a thickness of about 12 mm to a thick plate having a thickness of about 80 mm. It is not added Μ 〇. As a factor affecting the weldability other than the electrode component, it has been found that if the supply of the electrode is unstable, the formation of the molten pool is broken, and the thickness of the generated slag is not uniform, and the slag releasability is deteriorated. The invention will be described in detail below. First, the composition of the electrode of the present invention will be described with respect to the reason for its component addition and the reason for the composition limitation. "C: 0 · 0 2 0 - 0. 1 0 0% by mass" -10- 200911443 C is used to ensure the strength of the welded metal. It is important to add an element, but when C is less than 0.02% by mass, the strength required for high-heat and high-temperature temperature fusion cannot be ensured. C is preferably 0.05% by mass or more. On the other hand, if c is added in excess of 0.100% by mass, high temperature cracks will easily occur. Further, when c is added in excess of 0.100% by mass, the amount of occurrence of the spatter is increased due to the CO explosion phenomenon in the arc atmosphere, and the arc stability is deteriorated. In addition, the strength is excessive and the toughness is reduced. Therefore, the C content is set to be 0.10% by mass or less. “ S i : 0.0 6 5 〜1 . 1 0 mass % ”

Si是爲了確保強度和防止因去氧造成的氣孔缺陷而添 加的。另外,若添加Si,儘管熔渣量增加,但會使熔渣剝 離性提昇。這些效果,藉由使Si含量爲0.65質量%以上 可得到。若Si含量低於0.65質量%,則熔渣剝離性變差 ,使電弧不穩定化。此外,較佳爲,Si含量的下限値爲 0.75質量%。另一方面,若Si含量超過1.10質量%而過剩 添加,則熔渣量過剩,使電弧穩定性劣化,並且熔接金屬 的韌性降低。因此,Si含量定爲1 . 1 0質量%以下。 “ Μ η : 1.4 0 〜1 · 7 4 質量 % ” Μη之添加,具有去氧、強度提升及高韌性的效果。 Μη含量低於1 .40質量%時,高供熱熔接時的熔接金屬的 強度及韌性不足。另一方面,一般的高供熱用焊條雖然含 有多量Μη,但是Μη具有使熔渣的生成量增大、並且還使 剝離性劣化的問題。另外,在利用機器人等進行自動熔接 時,由於焊條在突出長度短的狀態下穩定,因此遮蔽性良 -11 - 200911443 好’即使在高供熱熔接條件下仍具有去氧元素的氧化消耗 量少的優點。因此在利用機器人等進行自動熔接時,藉由 將Μη含量設成較少’能改善熔接金屬的機械性質與熔渣 發生量及熔渣剝離性的平衡。若Μ η含量超過1 · 7 4質量% ’則熔渣量增大,並且剝離性降低。結果電弧穩定性也劣 化。因此,Μη含量定爲1.40〜1_74質量%。 “S : 〇·〇〇7 〜0.020 質量 % ,Ρ: 0.005 〜0.018 質量 % »» 藉由S及Ρ的添加,熔池的表面張力降低,凝固時的 物理性凹凸減少,具有使熔接金屬的表面平滑的效果。如 此使熔渣剝離性提昇。當S低於0.0 0 7質量%、Ρ低於 0_005質量%時,得不到該效果。因此,熔渣剝離性降低 ,而造成電弧穩定性劣化。較佳爲S : 0.010質量%以上, Ρ : 0.007質量%以上。另一方面,若添加S超過0.020質 量%,Ρ超過0.0 1 8質量%,則熔接金屬的表面形狀的改善 效果達飽和,並且高溫裂痕容易發生。另外,造成熔渣的 形狀粒狀化,妨礙電弧產生的熔融,局部性的造成電弧不 穩定。此外,若S及Ρ過剩,則熔接金屬的韌性也降低。 因此,S的上限値定爲0.0 2 0質量%,Ρ的上限値定爲 0 · 0 1 8 質量 %。 “ T i : 0.1 1 〜0 · 1 8 質量 % ”Si is added to ensure strength and prevent stomata defects caused by deoxidation. Further, if Si is added, the slag peeling property is improved although the amount of slag is increased. These effects are obtained by setting the Si content to 0.65 mass% or more. When the Si content is less than 0.65% by mass, the slag removability is deteriorated, and the arc is destabilized. Further, it is preferable that the lower limit Si of the Si content is 0.75% by mass. On the other hand, when the Si content exceeds 1.10% by mass and is excessively added, the amount of slag is excessive, the arc stability is deteriorated, and the toughness of the weld metal is lowered. Therefore, the Si content is set to 1.0% by mass or less. “ Μ η : 1.4 0 〜 1 · 7 4 mass % ” The addition of Μη has the effects of deoxidation, strength enhancement and high toughness. When the Μη content is less than 1.40% by mass, the strength and toughness of the welded metal at the time of high heat welding are insufficient. On the other hand, the general high-heat-welding electrode contains a large amount of Μη, but Μη has a problem of increasing the amount of slag generated and deteriorating the peeling property. In addition, when the welding is performed by a robot or the like, since the welding rod is stabilized in a state in which the protruding length is short, the shielding property is good. -11 - 200911443 Goodly, the oxidation consumption of the deoxidizing element is small even under the condition of high heat welding. The advantages. Therefore, when automatic welding is performed by a robot or the like, the balance between the mechanical properties of the weld metal and the amount of slag generated and the slag peelability can be improved by setting the Μη content to be small. If the Μ η content exceeds 4.7 mass%, the amount of slag increases and the peelability decreases. As a result, the arc stability is also deteriorated. Therefore, the Μη content is set to 1.40 to 1_74% by mass. "S: 〇·〇〇7 ~ 0.020% by mass, Ρ: 0.005 to 0.018% by mass »» By the addition of S and yttrium, the surface tension of the molten pool is lowered, and the physical unevenness at the time of solidification is reduced, and the metal is welded. The surface smoothing effect is such that the slag releasability is improved. When S is less than 0.07% by mass and Ρ is less than 0_005% by mass, this effect is not obtained. Therefore, the slag releasability is lowered, and arc stability is caused. Deterioration: S: 0.010% by mass or more, Ρ: 0.007 mass% or more. On the other hand, when S is added in excess of 0.020% by mass and Ρ is more than 0.018% by mass, the surface shape of the welded metal is improved. In addition, the shape of the slag is likely to occur, and the shape of the slag is granulated, which hinders the melting of the arc and locally causes arc instability. Further, if S and bismuth are excessive, the toughness of the weld metal is also lowered. The upper limit of S is set to 0.020% by mass, and the upper limit of Ρ is set to 0 · 0 1 8% by mass. "T i : 0.1 1 〜 0 · 1 8 mass % ”

Ti會使高電流區的電弧穩定性提高。當Ti低於0 · 1 1 質量%時,電弧穩定性劣化,熔濺物發生量增加。因此, Ti需要添加0.11質量%以上。另一方面,若添加Ti超過 -12- 200911443 0.1 8質量%,則熔渣量變得過多’剝離性也劣化’難以用 電弧產生熔融,電弧穩定性劣化。在半自動熔接’大多使 用線徑1.4〜1.6 m m的焊條’基於電弧穩疋性的觀點’較 佳爲添加Ti爲0_20質量%以上’但是在機器人溶接中一 般使用線徑1 .2 mm的細徑焊條,因此沒有必要添加這麼多 Ti,0 . 1 8質量%以下也能獲得充分的電弧穩定性,基於熔 渣量降低的觀點,必須使T i含量爲〇 · 1 8質量%以下。更 佳T i的上限値爲〇 . 1 6質量%以下。 “ B : 0.0 0 1 5 〜0 · 0 0 7 3 質量 %,’ B之少量添加,可使熔接金屬的晶粒微細化,而具有 使強度韌性提高的效果。雖然也有不添加B的YGW 1 8焊 條,但是在厚度比較薄的薄板中,若考慮到來自高氮墊板 的氮成分混入,爲了提高韌性,就必須添加B而使熔接金 屬的韌性提高。B低於0.0015質量%時,因爲得不到強度 和韌性的提高效果,韌性不足,所以 B的下限値定爲 0.0015質量%。另一方面,若過剩地添加B而超過0.0073 質量%,則高溫裂痕容易發生。因此,B的含量以0.0073 質量%爲上限値。更佳B含量爲0.0054質量%以下,特佳 爲0.0040質量%以下。 ** C + 1 5 X B : 0.0600 〜0.1990 質量0/〇” 若根據C及B的含量,將C + 1 5xB定爲參數PCB時 ,Pcb必須爲〇_〇600〜0.1990質量%。如上述,C及B其 各自的含量必須分別規定,並且以參數PCB= C + 1 5χΒ的 方式,必須將該參數PCB的値限制在規定的範圍內。 -13- 200911443 在本發明中,一般來說不添加強度提高效果大的Mo ,或使之接近最低値,又爲了降低熔渣的發生量,也要使 Μη相對於一般YGW 1 8而處於比較低的値,這種情況下會 發生強度不足。因此,若使Pcb= C+15XB爲0.0600以上 ,則C和B帶來的強度提昇效果提高,能夠得到充分的強 度。另一方面,C和B都是使耐高溫裂痕性劣化的元素, 若兩元素含量都高,則容易發生裂痕。但是,如果Pc C + 15xB爲0.1 9 90質量%以下,則在實用上沒有高溫裂痕 的問題,因此將Pcb= C+ 15xB定爲0.1 9 90質量%以下。 第1圖,是用影線(hatching)表示本發明中規定的C 及B的含量的範圍,橫軸爲C含量,縱軸爲B含量。其 中,Mo爲〇.〇8質量%以下,Μη爲1.74質量%以下。如該 第1圖所示,C及Β含量高時,高溫裂痕成爲問題。另外 ,若C及Β含量低,則熔接金屬的強度或韌性降低。 “ Μ 〇 : 〇 . 〇 8質量%以下” Μ 〇,一般會使熔接金屬的淬火性(被電弧熔融的焊條 冷卻後,凝固過程中的淬火性)提高,使熔接金屬的強度 上升,但是,在薄板的情況下,過剩的強度反而會造成低 韌性化。在厚板的情況下且爲機器人熔接時,由於根據熔 接程式,能夠完全掌握並控制熔接供熱及層間溫度,所以 過剩地添加Μο ’使強度過剩是沒有必要的。因此在本發 明中,較佳爲不添加Μο。但是作爲雜質而含有Mo在 0.08質量%以下,是容許的。若Mo的含量超過0.08質量 %,則韌性將顯著降低。更佳爲M 0含量低於〇 _ 〇〗質量% ,14 - 200911443 “ 0 : 0 · 0 1 0 0質量%以下” 熔接熔渣是氧化物。因此,若ο量增加,則經 反應而生成的熔渣生成量也增加。結果電弧穩定性 且因夾雜物增加導致高溫裂痕也容易發生。但是, 含量爲0.0100質量%以下,則沒有上述問題,因此 定在0.0100質量%以下。還有,〇的作用效果,與 狀態無關。就是說,0的作用效果與線材的體積及 的位置沒有關係,而必須由0的總量進行規定。 “ C U : 0.4 5質量%以下” C u的過剩添加會導致熔接金屬的高溫裂痕容 ,並且使熔渣的性質發生變化而使剝離性劣化。結 電弧穩定性劣化。因此,將Cu當作線材的添加成 行積極添加,並沒有技術上的意義,大部分的C u 爲了改善通電性、耐鏽性、伸線性及外觀形狀,而 於焊條表面之鍍銅成分的形式存在。若Cu量超過 量% ’則產生高溫裂痕和熔渣剝離性的問題,因此 量的上限値爲〇 · 4 5質量%。還有,在焊條表面沒有 ,Cu是指線材中所含的Cu的量;在線材表面有鍍 ’ C u是指線材中含量和線材表面的鍍銅成分的總量 ‘‘ Nb、V、A1 :分別爲0.08質量%以下,Cr、 別爲〇 . 5 0質量。以下” N b、V、A1、C r、N i之少量添加可使晶粒微細 使韌性提高。但是,若Nb、V、A1添加超過〇·〇8 由化學 劣化, 如果〇 將〇限 其分佈 表面等 易發生 果造成 分而進 量,是 以施加 0.45 質 Cu含 鍍銅時 Cu時 〇 Ni :分 化,而 質量% -15- 200911443 ,Cr、Ni添力日超過0.50質量%,則發生熔渣量的增加和 剝離性降低,引起電弧不穩定化,並且強度過剩,韌性也 降低。因此,N b、V、A1以0.0 8質量%爲上限値’ C r、N 以〇. 5 0質量%爲上限値。還有,關於Nb、V,更佳的範圍 是以0.0 0 3質量%爲上限値。關於C r、N i,更佳的範圍是 以0 . 1 0質量%爲上限値。 “焊條表面的 M〇S2 :每 10kg焊條含量爲 0.01〜 l.OOg” 焊條供給性對熔渣剝離性也會產生很大的影響。藉由 使焊條供給性穩定,會使熔池的形成穩定,所生成的熔渣 的厚度均勻,熱收縮的應力能均勻地作用,使全面剝離容 易進行。焊條表面的Mo S2會降低供電頭與焊條之間的供 電點的熔接,使焊條供給性提昇。以往在沿著焊條表面的 粒界產生過氧化以提昇焊條供給性的方法,存在〇量過多 而使熔渣量增大的缺點。相對於此,藉由塗布M〇S2而使 焊條供給性提昇的方法,因爲沒有熔渣量增大等的虞慮, 適於作爲本發明的熔接焊條的焊條供給性的提昇方法。其 效果在焊條表面以每1 〇 k g焊條0.01 g以上的比例來附著 MoS2時有效。另一方面,若在焊條表面以每10kg焊條超 過l.OOg的比例附著MoS2時,則在導管(conduit liner)等 的焊條供給系統內Mo S2開始堆積,由於Mo S2堵塞導管, 反而發生焊條供給不良,對熔渣性狀造成影響,使剝離性 降低。結果造成電弧穩定性劣化。因此,Mo S2對焊條表 面的附著量以l.OOg/10kg焊條爲上限値。 -16- 200911443 〔實施例〕 接下來’與比較例進行比較來說明本發明的實施例的 特性’並對於本發明的效果進行說明。採用將具有第2(a) 圖所示的開槽形狀的隔板(diaphragm)與圓型鋼管組合成的 熔接試驗體’以表1所示的熔接條件,採用市售的鋼筋建 築用機器人熔接系統進行熔接。如第2(b)、(c)圖所示,水 平配置鋼管2 ’在其前端垂直配置隔板1。在鋼管2的隔 板1側的端面形成V開槽,將環狀的墊板3配置在隔板1 與鋼管2之間的熔接部的開槽下。用焊炬4熔接該開槽。 表2顯示隔板1、鋼管2及墊板3的形狀的組合(條件 1及條件2)。表3顯示這些隔板1、鋼管2及墊板3的組 成。隔板1和鋼管2是高爐業者製造的,相對於此,墊板 3是市售的電爐業者製造的,氮含量高很多,熔接性差。 還有,在表2和表3中,SN490C等的標號表示】IS所規 定材質。 然後,藉由數位影像處理計算出熔接結束後的熔渣的 剝離性(處理1)。另外,測量熔渣量(處理2)。此外,作爲 熔接金屬的強度和韌性的指標,實施拉伸試驗和夏比衝擊 試驗(處理3 )。另外,還記錄熔接中的電弧穩定性(處理4) 和熔濺物發生量(處理5 )。此外,藉由超音波探傷試驗調 查高溫裂痕的發生(處理6)。表4-1〜表4-4顯示本發明的 實施例焊條與比較例焊條的組成。另外,表5- 1及表5-2 顯示實施例及比較例的熔接試驗結果。還有,在表4的化 學成分,含量以上限値記載的,表示是一般的分析下限以 -17- 200911443 下的値,在工業上視爲未含有。另外,表4中的焊條成分 的剩餘部是F e。 其次,對於熔澄的剝離性評價方法(處理1 )進行說明 。剝離性與熔渣量的評價只在鋼管的板厚薄的條件下測量 。還有,在條件1下表現良好的熔接焊條,經確認其在條 件2下也同樣良好。在熔接開始點進入到最終層的熔接時 ’以從焊條返回9 0°的地點爲中心,對其前後1 〇 〇 m m、合 計2 0 0 m m拍攝照片。第3圖是表示熔接縫外觀的照片, 第3圖中(a)表示熔澄自然剝離的部分,(b)表示熔渣附著 狀態的部分。然後’根據該焊球外觀的照片,藉由影像分 析軟體計算各個像素(pixel)的合計値,由[(a)的部分的像 素數]/{ [(a)的部分的像素數]+ [(b)的部分的像素數]}χι〇〇 求得熔渣剝離率(質量%)。然後,熔渣剝離率爲1 5質量% 以上者判定爲良好。其次,關於處理2的熔渣量,是在熔 接縫外觀照片拍攝後回收全部的熔渣(包括自然剝離的), 進行重量測定。該熔渣量以1 2g以下爲良好。另外,處理 3的熔接金屬的拉伸試驗和夏比衝擊試驗,分別在條件! 、2下’採取JIS Z31 1 1的A2號(平行部直徑6mm)及標準 試驗片(1邊長爲10mm的正方形截面)。第4圖表示從熔 接金屬採取拉伸試驗片的採取位置,第5圖表示從熔接金 屬採取夏比衝擊試驗片的採取位置。還有,拉伸試驗在室 溫下(20 °C )實施,夏比衝擊試驗在ye下實施,將各3個 試驗結果的平均値當作評價値。然後,抗拉強度爲 490N/mm2以上、夏比衝擊試驗爲平均7〇j以上爲合格。 -18- 200911443 處理4的電弧穩定性是進行熔接中的評價’特別是熔渣不 致妨礙破壞電弧的發生時判斷爲良好。還有’因焊條供給 不良而產生電弧破壞時也判定爲不合格。處理6的熔濺物 發生量,是在條件1下的熔接結束後回收附著在遮蔽氣體 噴嘴(shield nozzle)上的熔濺物,測定其重量’ 6g以下爲 良好。Ti increases the arc stability in the high current region. When Ti is less than 0 · 1 1 mass%, the arc stability is deteriorated, and the amount of occurrence of spatter is increased. Therefore, Ti needs to be added in an amount of 0.11% by mass or more. On the other hand, when Ti is added in excess of -12-200911443 0.18 mass%, the amount of slag becomes too large, and the peeling property is also deteriorated. It is difficult to melt by arc and the arc stability is deteriorated. In the semi-automatic welding, most of the welding rods having a wire diameter of 1.4 to 1.6 mm are used. Based on the viewpoint of arc stability, it is preferable to add Ti to 0 to 20% by mass or more. However, in the robot welding, a diameter of 1.2 mm is generally used. Since the electrode is not necessary, it is not necessary to add so much Ti, 0.18% by mass or less, and sufficient arc stability can be obtained. From the viewpoint of the reduction in the amount of slag, it is necessary to make the Ti content 〇·18% by mass or less. The upper limit of the preferred T i is 〇 16.6% by mass or less. "B : 0.0 0 1 5 ~ 0 · 0 0 7 3 % by mass, 'B is added in a small amount to make the grain of the weld metal fine, and has an effect of improving the strength and toughness. Although there is also YGW 1 which does not add B. 8 electrode, but in the thinner thin plate, considering the nitrogen component from the high nitrogen pad, in order to improve the toughness, it is necessary to add B to improve the toughness of the weld metal. When B is less than 0.0015 mass%, because The effect of improving the strength and the toughness is not obtained, and the toughness is insufficient. Therefore, the lower limit of B is determined to be 0.0015% by mass. On the other hand, when B is excessively added and more than 0.0073% by mass, high-temperature cracks are likely to occur. The upper limit is 0.0073 mass%, and the B content is more preferably 0.0054 mass% or less, particularly preferably 0.0040 mass% or less. ** C + 1 5 XB : 0.0600 to 0.1990 mass 0 / 〇" According to the contents of C and B, When C + 1 5xB is set as the parameter PCB, Pcb must be 〇_〇600~0.1990% by mass. As described above, the respective contents of C and B must be specified separately, and in the manner of the parameter PCB = C + 1 5 ,, the PCB of the parameter PCB must be limited to the prescribed range. -13- 200911443 In the present invention, generally, it is not necessary to add Mo having a large effect of increasing the strength, or to make it close to the lowest enthalpy, and in order to reduce the amount of slag generated, Μη is also compared with the general YGW 18 Low sputum, in which case there will be insufficient strength. Therefore, when Pcb = C + 15XB is 0.0600 or more, the strength improvement effect by C and B is improved, and sufficient strength can be obtained. On the other hand, both C and B are elements which deteriorate the high temperature crack resistance, and if both elements are high in content, cracks are likely to occur. However, when Pc C + 15xB is 0.1 9 90% by mass or less, there is no problem of high temperature cracking in practical use, so Pcb = C + 15xB is set to 0.1 9 90% by mass or less. In the first drawing, the range of the contents of C and B specified in the present invention is indicated by hatching, and the horizontal axis represents the C content and the vertical axis represents the B content. Among them, Mo is 〇.〇8 mass% or less, and Μη is 1.74 mass% or less. As shown in Fig. 1, when C and strontium are high, high temperature cracks become a problem. Further, if the content of C and bismuth is low, the strength or toughness of the welded metal is lowered. Μ 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 熔 熔In the case of a thin plate, the excessive strength causes a low toughness. In the case of a thick plate and when the robot is welded, since the welding heat supply and the interlayer temperature can be completely grasped and controlled according to the welding procedure, it is not necessary to excessively add Μο ' to make the strength excessive. Therefore, in the present invention, it is preferable not to add Μο. However, it is acceptable to contain Mo in an amount of 0.08% by mass or less as an impurity. If the content of Mo exceeds 0.08 mass%, the toughness will be remarkably lowered. More preferably, the M 0 content is lower than 〇 _ 〇 〖 mass %, 14 - 200911443 "0 : 0 · 0 1 0 0 mass % or less" The fusion slag is an oxide. Therefore, if the amount of ο increases, the amount of slag produced by the reaction also increases. As a result, arc stability and high temperature cracks are also likely to occur due to an increase in inclusions. However, when the content is 0.0100% by mass or less, the above problem is not caused, and therefore it is set to be 0.0100% by mass or less. Also, the effect of 〇 is independent of the state. That is to say, the effect of 0 has nothing to do with the volume and position of the wire, but must be specified by the total amount of zero. "C U : 0.4 5 mass% or less" Excessive addition of C u causes high temperature cracking of the weld metal, and changes the properties of the slag to deteriorate the peelability. The arc stability is degraded. Therefore, the addition of Cu as a wire is actively added, and there is no technical significance. Most of the Cu is in the form of a copper plating component on the surface of the electrode in order to improve the electrical conductivity, rust resistance, linearity and appearance. presence. If the amount of Cu exceeds the amount % ', there is a problem of high temperature cracking and slag peeling property, so the upper limit 量 of the amount is 〇 · 5 5 % by mass. Also, not on the surface of the electrode, Cu means the amount of Cu contained in the wire; plating on the surface of the wire is 'C u means the total amount of copper in the wire and the surface of the wire.' Nb, V, A1 : respectively, 0.08 mass% or less, Cr, not 〇. 50 mass. The addition of a small amount of N b, V, A1, C r, and N i can increase the toughness of the crystal grains by fineness. However, if Nb, V, and A1 are added in excess of 〇·〇8, they are chemically degraded. Distribution surface and other prone to fruit production and division, is the application of 0.45 Cu copper plating copper when Cu 〇Ni: differentiation, and mass % -15- 200911443, Cr, Ni addition force more than 0.50% by mass, then occurs The increase in the amount of slag and the decrease in the peeling property cause the arc to be unstable, and the strength is excessive, and the toughness is also lowered. Therefore, N b, V, and A1 are 0.08 mass% as the upper limit 値' C r, N is 〇. 5 0 The mass % is the upper limit 値. Further, the range of Nb and V is preferably 0.02 mass% as the upper limit 値. For C r and N i , the more preferable range is 0.10 mass%. 〇 “M〇S2 on the surface of the electrode: 0.01~l.OOg per 10kg electrode” The supply of the electrode also has a great influence on the slag stripping property. By making the electrode supply stable, the molten pool will be The formation is stable, the thickness of the generated slag is uniform, and the heat shrinkage stress can uniformly act to make the whole The peeling is easy. The Mo S2 on the surface of the electrode strip reduces the welding of the power supply point between the power supply head and the electrode, and improves the supply of the electrode. In the past, a method of generating peroxidation at the grain boundary along the surface of the electrode to improve the supply of the electrode exists. The method of increasing the amount of slag by increasing the amount of slag. On the other hand, the method of improving the supply property of the electrode by applying M 〇 S2 is suitable as the present invention because there is no concern such as an increase in the amount of slag. A method for improving the supply of the welding rod of the welding rod. The effect is effective when the surface of the electrode is attached to the MoS2 at a ratio of 0.01 g or more per 1 kg of the welding rod. On the other hand, if the surface of the electrode is more than 1.0 g per 10 kg of the electrode. When MoS2 is attached, Mo S2 starts to accumulate in the electrode supply system such as a conduit liner, and the plug is blocked by Mo S2, which causes a poor supply of the electrode, which affects the properties of the slag and reduces the peelability. Therefore, the adhesion amount of Mo S2 to the surface of the electrode is limited to 1.00 g/10 kg of the electrode. -16- 200911443 [Examples] Next 'with the comparative example The characteristics of the embodiment of the present invention will be described in more detail and the effects of the present invention will be described. A welding test using a diaphragm having a slotted shape as shown in Fig. 2(a) and a round steel tube is used. The body 'welding conditions shown in Table 1 are welded using a commercially available robotic welding system for steel bars. As shown in the second (b) and (c), the horizontally disposed steel pipe 2' is vertically disposed at the front end thereof. 1. A V-groove is formed on the end surface of the steel pipe 2 on the separator 1 side, and the annular gasket 3 is placed under the groove of the welded portion between the separator 1 and the steel pipe 2. The slot is welded by the torch 4. Table 2 shows the combination of the shapes of the separator 1, the steel pipe 2, and the backing plate 3 (Condition 1 and Condition 2). Table 3 shows the composition of these separators 1, the steel pipe 2, and the backing plate 3. The separator 1 and the steel pipe 2 are manufactured by a blast furnace manufacturer. On the other hand, the backing plate 3 is manufactured by a commercially available electric furnace manufacturer, and has a high nitrogen content and poor weldability. Further, in Tables 2 and 3, the reference numerals of SN490C and the like indicate the materials specified by IS. Then, the peeling property of the slag after the completion of the welding was calculated by the digital image processing (Process 1). In addition, the amount of slag was measured (Process 2). Further, as an index of the strength and toughness of the welded metal, a tensile test and a Charpy impact test (Process 3) were carried out. In addition, the arc stability (Process 4) and the amount of spatter generated (Process 5) in the welding were also recorded. In addition, the occurrence of high temperature cracks was investigated by ultrasonic flaw detection test (Process 6). Table 4-1 to Table 4-4 show the composition of the electrode of the embodiment of the present invention and the electrode of the comparative example. Further, Tables 5-1 and 5-2 show the results of the fusion test of the examples and the comparative examples. In addition, in the chemical composition of Table 4, the content is expressed by the upper limit, indicating that the general lower limit of analysis is 値 from -17 to 200911443, and is considered to be not contained in the industry. Further, the remaining portion of the electrode component in Table 4 is F e . Next, the method of evaluating the peelability of the melt (Process 1) will be described. The evaluation of the peelability and the amount of slag was measured only under the condition that the thickness of the steel pipe was thin. Further, the welded electrode which performed well under Condition 1 was confirmed to be equally good under Condition 2. At the point where the welding start point is welded to the final layer, 'photographed at a position returning from the welding rod to 90°, 1 〇 〇 m m before and after, and a total of 200 mm. Fig. 3 is a photograph showing the appearance of the welded joint, and Fig. 3(a) shows a portion where the melting is naturally peeled off, and Fig. 3(b) shows a portion where the slag adheres. Then 'according to the photo of the appearance of the solder ball, the total image of each pixel (pixel) is calculated by the image analysis software, the number of pixels of the portion of [(a)] / { the number of pixels of the portion of [[a)] + [ The number of pixels in the portion (b)]}χι〇〇 obtained the slag peeling rate (% by mass). Then, the slag peeling rate was 15% by mass or more, and it was judged to be good. Next, regarding the amount of slag of the treatment 2, all the slag (including natural peeling) was recovered after the photograph of the appearance of the weld joint, and the weight was measured. The amount of the slag is preferably 1 2 g or less. In addition, the tensile test of the welded metal of the treatment 3 and the Charpy impact test are respectively in the condition! 2, 'A2 of JIS Z31 1 1 (parallel diameter 6 mm) and a standard test piece (a square cross section with a side length of 10 mm) were taken. Fig. 4 shows the position at which the tensile test piece was taken from the weld metal, and Fig. 5 shows the position at which the Charpy impact test piece was taken from the welded metal. Further, the tensile test was carried out at room temperature (20 °C), the Charpy impact test was carried out under ye, and the average enthalpy of each of the three test results was evaluated as 値. Then, the tensile strength was 490 N/mm2 or more, and the Charpy impact test was an average of 7 〇j or more. -18- 200911443 The arc stability of the treatment 4 is evaluated in the welding. In particular, it is judged to be good when the slag does not hinder the occurrence of the destruction arc. Also, it was judged to be unacceptable when an arc is broken due to poor supply of the electrode. The amount of spatter generated in the treatment 6 is such that after the welding at the condition 1 is completed, the spatter attached to the shield nozzle is recovered, and the weight is measured to be 6 g or less.

熔接機種 鋼筋熔接機器人 熔接電源、極性 直流機、逆極性 遮蔽氣體 C〇2流量25升/min 焊條直徑 1 · 2 m m φ 供熱 最大 40kJ/cm 層間溫度 最大3 5 0 °C 姿勢 向下 焊條突出長度 2 2 〜2 5 mm 熔渣除去 條件1 :無 條件2 :有 供電頭附着熔濺物除 去、清掃 條件1 :無 條件2 :有 -19- 200911443 〔表2〕 隔板 鋼管 墊板 條件1 (薄板) SN490C 板厚 25mm&gt;&lt;450mm 見方 STKN490B 板厚1 6 m m χ外徑3 5 0 m m SN490A 板厚9mm χ外徑3 3 4 m m 條件2 (厚板) SN490C 板厚 75mmx800mm 見方 STKN490B 板厚6 0 m m x外徑7 0 0 m m SN490A 板厚9 m m χ外徑6 4 0 m m 〔表3〕 用途/鋼種 成分組成(質量%)/剩餘爲Fe及7 F可避免的雜質 C Si Μη Ρ s N 隔板 /SN490C 0.15 0.3 5 1.45 0.0 10 0.003 0.0029 鋼管 /STKN490B 0.09 0.12 1.02 0.0 10 0.003 0.0035 墊板 /SN490A 0.11 0.13 0.46 0.017 0.022 0.0125 -20- 200911443 〔表 4 -1〕 成分組成(質量%) 鍍 No. C Si Ti Μη Mo s 0 P Cu 銅 1 0.060 0.90 0.15 1.65 &lt;0.005 0.011 0.0040 0.011 0.20 有 2 0.090 0.90 0.15 1.60 &lt;0.005 0.013 0.0025 0.012 0.23 有 3 0.040 0.95 0.16 1.55 0.02 0.008 0.0030 0.010 0.27 有 4 0.040 0.75 0.17 1.74 &lt;0.005 0.015 0.0035 0.009 0.25 有 5 0.090 1.00 0.12 1.45 &lt;0.005 0.010 0.0072 0.015 0.17 有 6 0.020 1.10 0.16 1.52 &lt;0.005 0.013 0.0010 0.007 0.30 有 實 7 0.100 0.85 0.15 1.50 0.007 0.018 0.0025 0.015 0.21 有 施 8 0.050 0.65 0.18 1.49 &lt;0.005 0.010 0.0043 0.008 0.10 有 例 9 0.050 0.90 0.11 1.73 0.010 0.007 0.0078 0.005 0.21 有 10 0.070 0.90 0.15 1.65 0.080 0.012 0.0020 0.010 0.20 有 11 0.060 0.75 0.14 1.58 0.030 0.020 0.0060 0.010 0.28 有 12 0.065 0.70 0.15 1.62 &lt;0.005 0.015 0.0066 0.012 0.44 有 13 0.060 0.90 0.17 1.70 &lt;0.005 0.011 0.0030 0.011 0.20 有 14 0.030 0.80 0.13 1.65 0.010 0.009 0.0098 0.008 0.15 有 15 0.060 0.90 0.15 1.65 &lt;0.005 0.011 0.0040 0.011 &lt;0.001 te j \ w 16 0.050 0.77 0.16 1.41 &lt;0.005 0.013 0.0077 0.012 &lt;0.001 Μ j\w 17 0.090 0.90 0.17 1.57 &lt;0.005 0.010 0.0085 0.007 &lt;0.001 4πτ III 1 y * \\ 18 0.060 0.80 0.15 1.57 0.050 0.018 0.0020 0.018 &lt;0.001 姐 j \\\ -21 - 200911443 〔表 4-2〕 成分組成(質量%)/M〇S2爲每10kg焊條的含量(g) No. B C+15B Nb V A1 Cr Ni MoS2 1 0.0030 0.1050 &lt;0.005 &lt;0.005 &lt;0.005 0,010 &lt;0.005 &lt;0.01 2 0.0020 0.1200 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.20 3 0.0054 0.1210 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 4 0.0045 0.1075 &lt;0.005 &lt;0.005 &lt;0.005 0.010 &lt;0.005 &lt;0.01 5 0.0018 0.1170 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 6 0.0027 0.0605 &lt;0.005 &lt;0.005 &lt;0.005 0.060 &lt;0.005 0.18 7 0.0066 0.1990 &lt;0.005 &lt;0.005 &lt;0.005 0.020 &lt;0.005 0.54 施 8 0.0073 0.1595 0.080 &lt;0.005 &lt;0.005 0.020 &lt;0.005 &lt;0.01 例 9 0.0030 0.0950 &lt;0.005 &lt;0.005 &lt;0.005 0.500 &lt;0.005 &lt;0.01 10 0.0054 0.1510 0.002 0.080 0.011 &lt;0.005 0.100 0.29 11 0.0025 0.0975 0.050 0.003 0.003 0.200 0.050 &lt;0.01 12 0.0020 0.0950 &lt;0.005 0.050 &lt;0.005 &lt;0.005 0.020 0.77 13 0.0015 0.0825 0.009 &lt;0.005 0.080 0.030 0.500 0.98 14 0.0026 0.0690 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.010 &lt;0.01 15 0.0030 0.1050 &lt;0.005 &lt;0.005 &lt;0.005 0.010 &lt;0.005 &lt;0.01 16 0.0020 0.0800 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.03 17 0.0035 0.1425 0.052 &lt;0.005 &lt;0.005 0.030 &lt;0.005 &lt;0.01 18 0.0038 0.1170 &lt;0.005 0.010 0.050 &lt;0.005 0.05 &lt;0.01 -22- 200911443 〔表 4-3〕 成分組成(質量%) 鍍 No. C Si Ti Μη Mo S o P Cu 銅 19 0.010 0.75 0.13 1.55 &lt;0.005 0.015 0.0055 0.006 0.25 有 20 0.110 0.92 0.15 1.60 &lt;0.005 0.008 0.0026 0.010 0.19 有 21 0.050 0.61 0.16 1.74 &lt;0.005 0.009 0.0010 0.015 0.25 有 22 0.090 1.12 0.15 1.54 &lt;0.005 0.016 0.0034 0.011 0.28 有 23 0.100 0.80 0.10 1.45 &lt;0.005 0.014 0.0060 0.008 0.15 有 24 0.060 0.85 0.19 1.49 &lt;0.005 0.007 0.0095 0.007 0.01 有 25 0.090 0.74 0.12 1.38 &lt;0.005 0.015 0.0015 0.016 0.18 有 26 0.080 1.00 0.15 1.76 &lt;0.005 0.018 0.0045 0.010 0.20 有 27 0.070 0.98 0.16 1.52 0.09 0.013 0.0010 0.012 0.21 有 28 0.060 0.70 0.14 1.50 0.25 0.016 0.0070 0.009 0.20 有 29 0.080 0.81 0.12 1.66 &lt;0.005 0.006 0.0029 0.007 0.22 有 30 0.030 0.90 0.18 1.70 &lt;0.005 0.021 0.0015 0.016 0.23 有 比 31 0.020 0.86 0.11 1.44 &lt;0.005 0.012 0.0110 0.013 0.38 有 較 32 0.050 0.83 0.15 1.65 &lt;0.005 0.008 0.0025 0.004 0.20 有 例 33 0.070 0.94 0.16 1.60 &lt;0.005 0.009 0.0041 0.020 0.25 有 34 0.050 0.77 0.18 1.74 0.005 0.010 0.0028 0.009 0.48 有 35 0.060 0.88 0.16 1.70 &lt;0.005 0.009 0.0023 0.015 0.21 有 36 0.030 0.69 0.17 1.52 &lt;0.005 0.012 0.0037 0.011 0.20 有 37 0.025 0.80 0.14 1.66 &lt;0.005 0.010 0.0050 0.008 0.26 有 38 0.095 0.90 0.13 1.70 &lt;0.005 0.015 0.0023 0.008 0.19 有 39 0.040 0.70 0.12 1.41 &lt;0.005 0.015 0.0078 0.012 0.19 有 40 0.080 0.72 0.15 1.70 0.060 0.018 0.0030 0.010 0.01 Μ 41 0.070 0.88 0.18 1.65 &lt;0.005 0.013 0.0058 0.006 0.05 Μ &gt; \ w 42 0.070 0.86 0.16 1.61 0.010 0.014 0.0015 0.013 0.17 有 43 0.080 0.77 0.12 1.55 &lt;0.005 0.009 0.0022 0.010 0.20 有 44 0.060 0.89 0.13 1.68 &lt;0.005 0.012 0.0019 0.010 0.18 有 45 0.065 0.90 0.23 1.95 &lt;0.005 0.004 0.0150 0.012 0.25 有 46 0.080 0.55 0.17 1.70 0.15 0.015 0.0025 0.025 &lt;0.001 Μ j \ \\ 47 0.050 0.95 0.20 1.80 &lt;0.005 0.008 0.0035 0.012 0.25 有 48 0.040 1.00 0.22 2.00 0.50 0.007 0.0035 0.012 0.20 有 -23- 200911443 〔表 4-4〕Welding machine type welding rod welding machine welding power supply, polar DC machine, reverse polarity shielding gas C〇2 flow rate 25 liters / min welding rod diameter 1 · 2 mm φ heating maximum 40kJ / cm interlayer temperature maximum 3 5 0 ° C posture downward welding rod protruding Length 2 2 〜2 5 mm Slag removal condition 1: Unconditional 2: There is a power supply head attached to the splatter removal, cleaning condition 1: Unconditional 2: Yes -19- 200911443 [Table 2] Partition steel pipe backing condition 1 (thin plate SN490C plate thickness 25mm&gt;&lt;450mm square STKN490B plate thickness 1 6 mm χ outer diameter 3 5 0 mm SN490A plate thickness 9mm χ outer diameter 3 3 4 mm condition 2 (thick plate) SN490C plate thickness 75mmx800mm square STKN490B plate thickness 6 0 Mmx outer diameter 70 0 0 mm SN490A plate thickness 9 mm χ outer diameter 6 4 0 mm [Table 3] Application / steel composition (% by mass) / residual Fe and 7 F avoidable impurities C Si Μ Ρ s N Plate / SN490C 0.15 0.3 5 1.45 0.0 10 0.003 0.0029 Steel pipe / STKN490B 0.09 0.12 1.02 0.0 10 0.003 0.0035 Plate / SN490A 0.11 0.13 0.46 0.017 0.022 0.0125 -20- 200911443 [Table 4 -1] Composition (% by mass) Plated No. C Si Ti Μη Mo s 0 P Cu Copper 1 0.060 0.90 0.15 1.65 &lt;0.005 0.011 0.0040 0.011 0.20 There are 2 0.090 0.90 0.15 1.60 &lt;0.005 0.013 0.0025 0.012 0.23 There are 3 0.040 0.95 0.16 1.55 0.02 0.008 0.0030 0.010 0.27 There are 4 0.040 0.75 0.17 1.74 &lt; 0.005 0.015 0.0035 0.009 0.25 There are 5 0.090 1.00 0.12 1.45 &lt;0.005 0.010 0.0072 0.015 0.17 There are 6 0.020 1.10 0.16 1.52 &lt;0.005 0.013 0.0010 0.007 0.30 There is real 7 0.100 0.85 0.15 1.50 0.007 0.018 0.0025 0.015 0.21 有施8 0.050 0.65 0.18 1.49 &lt;0.005 0.010 0.0043 0.008 0.10 Example 9 0.050 0.90 0.11 1.73 0.010 0.007 0.0078 0.005 0.21 There are 10 0.070 0.90 0.15 1.65 0.080 0.012 0.0020 0.010 0.20 There are 11 0.060 0.75 0.14 1.58 0.030 0.020 0.0060 0.010 0.28 There are 12 0.065 0.70 0.15 1.62 &lt;0.005 0.015 0.0066 0.012 0.44 There are 13 0.060 0.90 0.17 1.70 &lt;0.005 0.011 0.0030 0.011 0.20 There are 14 0.030 0.80 0.13 1.65 0.010 0.009 0.0098 0.008 0.15 There are 15 0.060 0.90 0.15 1.65 &lt;0.005 0.011 0.0040 0.011 &lt;0.001 te j \ w 16 0.050 0.77 0.16 1.41 &lt;0.005 0.0 13 0.0077 0.012 &lt;0.001 Μ j\w 17 0.090 0.90 0.17 1.57 &lt;0.005 0.010 0.0085 0.007 &lt;0.001 4πτ III 1 y * \\ 18 0.060 0.80 0.15 1.57 0.050 0.018 0.0020 0.018 &lt;0.001 sister j \\\ -21 - 200911443 [Table 4-2] Composition (% by mass) / M〇S2 is the content per 10 kg of electrode (g) No. B C+15B Nb V A1 Cr Ni MoS2 1 0.0030 0.1050 &lt; 0.005 &lt; 0.005 &lt; 0.005 0,010 &lt;0.005 &lt;0.01 2 0.0020 0.1200 &lt;0.005 &lt;0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.20 3 0.0054 0.1210 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.01 4 0.0045 0.1075 &lt;0.005 &lt; 0.005 &lt; 0.005 0.010 &lt; 0.005 &lt; 0.01 5 0.0018 0.1170 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.01 6 0.0027 0.0605 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.060 &lt;0.005 0.18 7 0.0066 0.1990 &lt;0.005 &lt;0.005 &lt;0.005 0.020 &lt;0.005 0.54 Application 8 0.0073 0.1595 0.080 &lt;0.005 &lt;0.005 0.020 &lt;0.005 &lt;0.01 Example 9 0.0030 0.0950 &lt;0.005 &lt;0.005 &lt;0.005 0.500 &lt;0.005 &lt;0.01 10 0.0054 0.1510 0.002 0.080 0 .011 &lt;0.005 0.100 0.29 11 0.0025 0.0975 0.050 0.003 0.003 0.200 0.050 &lt;0.01 12 0.0020 0.0950 &lt;0.005 0.050 &lt;0.005 &lt;0.005 0.020 0.77 13 0.0015 0.0825 0.009 &lt;0.005 0.080 0.030 0.500 0.98 14 0.0026 0.0690 &lt;0.005 &lt;0.005 &lt; 0.005 &lt; 0.005 0.010 &lt; 0.01 15 0.0030 0.1050 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.010 &lt; 0.005 &lt; 0.01 16 0.0020 0.0800 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.03 17 0.0035 0.1425 0.052 &lt;0.005 &lt;0.005 0.030 &lt;0.005 &lt;0.01 18 0.0038 0.1170 &lt;0.005 0.010 0.050 &lt;0.005 0.05 &lt;0.01 -22- 200911443 [Table 4-3] Composition (% by mass) Plating No. C Si Ti Μη Mo S o P Cu Copper 19 0.010 0.75 0.13 1.55 &lt;0.005 0.015 0.0055 0.006 0.25 There are 20 0.110 0.92 0.15 1.60 &lt;0.005 0.008 0.0026 0.010 0.19 There are 21 0.050 0.61 0.16 1.74 &lt;0.005 0.009 0.0010 0.015 0.25 There are 22 0.090 1.12 0.15 1.54 &lt;0.005 0.016 0.0034 0.011 0.28 There are 23 0.100 0.80 0.10 1.45 &lt;0.005 0.014 0.0060 0.008 0.15 There are 24 0.060 0.85 0.19 1.4 9 &lt;0.005 0.007 0.0095 0.007 0.01 There are 25 0.090 0.74 0.12 1.38 &lt;0.005 0.015 0.0015 0.016 0.18 There are 26 0.080 1.00 0.15 1.76 &lt;0.005 0.018 0.0045 0.010 0.20 There are 27 0.070 0.98 0.16 1.52 0.09 0.013 0.0010 0.012 0.21 There are 28 0.060 0.70 0.14 1.50 0.25 0.016 0.0070 0.009 0.20 There are 29 0.080 0.81 0.12 1.66 &lt;0.005 0.006 0.0029 0.007 0.22 There are 30 0.030 0.90 0.18 1.70 &lt;0.005 0.021 0.0015 0.016 0.23 There is a ratio of 31 0.020 0.86 0.11 1.44 &lt;0.005 0.012 0.0110 0.013 0.38 There are 32 0.050 0.83 0.15 1.65 &lt;0.005 0.008 0.0025 0.004 0.20 There are cases 33 0.070 0.94 0.16 1.60 &lt;0.005 0.009 0.0041 0.020 0.25 There are 34 0.050 0.77 0.18 1.74 0.005 0.010 0.0028 0.009 0.48 There are 35 0.060 0.88 0.16 1.70 &lt;0.005 0.009 0.0023 0.015 0.21 There are 36 0.030 0.69 0.17 1.52 &lt;0.005 0.012 0.0037 0.011 0.20 There are 37 0.025 0.80 0.14 1.66 &lt;0.005 0.010 0.0050 0.008 0.26 There are 38 0.095 0.90 0.13 1.70 &lt;0.005 0.015 0.0023 0.008 0.19 There are 39 0.040 0.70 0.12 1.41 &lt;0.005 0.015 0.0078 0.012 0.19 There are 40 0.080 0.72 0.15 1.70 0.060 0.018 0.0030 0.010 0.01 Μ 41 0.070 0.88 0.18 1.65 &lt;0.005 0.013 0.0058 0.006 0.05 Μ &gt; \ w 42 0.070 0.86 0.16 1.61 0.010 0.014 0.0015 0.013 0.17 There are 43 0.080 0.77 0.12 1.55 &lt;0.005 0.009 0.0022 0.010 0.20 There are 44 0.060 0.89 0.13 1.68 &lt;0.005 0.012 0.0019 0.010 0.18 There are 45 0.065 0.90 0.23 1.95 &lt;0.005 0.004 0.0150 0.012 0.25 There are 46 0.080 0.55 0.17 1.70 0.15 0.015 0.0025 0.025 &lt;0.001 Μ j \ \\ 47 0.050 0.95 0.20 1.80 &lt;;0.005 0.008 0.0035 0.012 0.25 There are 48 0.040 1.00 0.22 2.00 0.50 0.007 0.0035 0.012 0.20 Yes -23- 200911443 [Table 4-4]

No. 成分組成(質量%)/1^〇82爲每10kg焊條的含量(g) B C+15B Nb V A1 Cr Ni MoS2 19 0.0040 0.0700 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.05 20 0.0030 0.1550 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 21 0.0022 0.0830 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.15 22 0.0050 0.1650 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.25 23 0.0020 0.1300 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.35 24 0.0035 0.1125 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.010 0.45 25 0.0035 0.1425 &lt;0.005 &lt;0.005 &lt;0.005 0.050 &lt;0.005 0.50 26 0.0044 0.1460 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.78 27 0.0018 0.0970 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.90 28 0.0048 0.1320 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.020 0.04 29 0.0025 0.1175 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.010 0.10 30 0.0030 0.0750 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 比 31 0.0040 0.0800 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 較 32 0.0026 0.0890 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 例 33 0.0015 0.0925 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 34 0.0070 0.1550 0.080 &lt;0.005 0.080 &lt;0.005 &lt;0.005 &lt;0.01 35 0.0013 0.0795 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 36 0.0075 0.1425 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.88 37 0.0022 0.0580 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.65 38 0.0070 0.2000 &lt;0.005 0.050 &lt;0.005 &lt;0.005 0.150 0.15 39 0.0030 0.0850 0.100 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.26 40 0.0041 0.1415 0.010 0.100 &lt;0.005 &lt;0.005 &lt;0.005 0.15 41 0.0019 0.0985 &lt;0.005 &lt;0.005 0.100 0.150 &lt;0.005 0.11 42 0.0039 0.1285 &lt;0.005 &lt;0.005 &lt;0.005 0.600 &lt;0.005 &lt;0.01 43 0.0017 0.1055 0.070 0.050 0.100 0.020 0.600 0.05 44 0.0066 0.1590 &lt;0.005 0.006 &lt;0.005 &lt;0.005 &lt;0.005 1.11 45 &lt;0.0001 0.0650 &lt;0.005 &lt;0.005 &lt;0.005 0.150 0.010 &lt;0.01 46 0.0060 0.1700 &lt;0.005 &lt;0.005 0.01 0.010 0.010 &lt;0.01 47 0.0050 0.1250 &lt;0.005 &lt;0.005 &lt;0.005 0.020 0.010 &lt;0.01 48 0.0100 0.1900 0.010 0.010 0.010 0.050 0.020 0.12 -24- 200911443 〔表 5-1〕No. Component composition (% by mass) / 1 ^ 〇 82 is the content per 10 kg of electrode (g) B C + 15 B Nb V A1 Cr Ni MoS2 19 0.0040 0.0700 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.05 20 0.0030 0.1550 &lt;0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.01 21 0.0022 0.0830 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.15 22 0.0050 0.1650 &lt; 0.005 &lt; 0.005 &lt;0.005 &lt; 0.005 &lt; 0.005 0.25 23 0.0020 0.1300 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.35 24 0.0035 0.1125 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.010 0.45 25 0.0035 0.1425 &lt;;0.005&lt;0.005&lt;0.005 0.050 &lt; 0.005 0.50 26 0.0044 0.1460 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.78 27 0.0018 0.0970 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.90 28 0.0048 0.1320 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.020 0.04 29 0.0025 0.1175 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.010 0.10 30 0.0030 0.0750 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt;0.005 &lt;0.01 to 31 0.0040 0.0800 &lt;0 .005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 compared to 32 0.0026 0.0890 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.01 Example 33 0.0015 0.0925 &lt;0.005 &lt;0.005 &lt;; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.01 34 0.0070 0.1550 0.080 &lt; 0.005 0.080 &lt; 0.005 &lt; 0.005 &lt; 0.01 35 0.0013 0.0795 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.01 36 0.0075 0.1425 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.88 37 0.0022 0.0580 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.65 38 0.0070 0.2000 &lt; 0.005 0.050 &lt; 0.005 &lt; 0.005 0.150 0.15 39 0.0030 0.0850 0.100 &lt;0.005 &lt;0.005 &lt;0.005 &lt;0.005 0.26 40 0.0041 0.1415 0.010 0.100 &lt;0.005 &lt;0.005 &lt;0.005 0.15 41 0.0019 0.0985 &lt;0.005 &lt;0.005 0.100 0.150 &lt;0.005 0.11 42 0.0039 0.1285 &lt;0.005 &lt;0.005 &lt;0.005 0.600 &lt;0.005 &lt;0.01 43 0.0017 0.1055 0.070 0.050 0.100 0.020 0.600 0.05 44 0.0066 0.1590 &lt;0.005 0.006 &lt;0.005 &lt;0.005 &lt;0.005 1.11 45 &lt;0.0001 0.0650 &lt;0.005 &lt;0.005 &lt;0.005 0.150 0.010 &lt;0.01 46 0.0060 0.1700 &lt; 0.005 &lt; 0.005 0.01 0.010 0.010 &lt; 0.01 47 0.0050 0.1250 &lt; 0.005 &lt; 0.005 &lt; 0.005 0.020 0.010 &lt; 0.01 48 0.0100 0.1900 0.010 0.010 0.010 0.050 0.020 0.12 -24- 200911443 [Table 5-1]

No. 剝離率 質量% 熔渣量 (g) 抗拉強度 MPa 條件1 吸收能J 條件1 抗拉強度 MPa 條件2 吸收能J 條件2 電弧 穩定性 熔濺 物量 (g) 裂 痕 1 22〇 8.4〇 5650 132〇 532〇 166〇 〇 4.00 無 2 24〇 7.2〇 570〇 135〇 530〇 167〇 ◎ 3.7〇 無 3 25〇 6.0〇 542〇 142〇 516〇 175〇 〇 4.2〇 無 4 15〇 11.8〇 576〇 80〇 548〇 94〇 〇 4.6〇 Μ 5 28〇 5.4〇 556〇 85〇 520〇 98〇 〇 4.3〇 Μ 6 29〇 9.0〇 525〇 74〇 496〇 82〇 ◎ 3.5〇 無 實 7 22〇 8.3〇 600〇 80〇 575〇 1000 ◎ 5.8〇 無 施 8 16〇 11.2〇 551〇 152〇 536〇 1770 〇 3.3〇 Μ 例 9 17〇 6.0〇 594〇 153〇 568〇 1800 〇 5.8〇 無 10 20〇 9.0〇 594〇 91〇 569〇 1060 ◎ 3.7〇 無 11 18〇 7.5〇 586〇 77〇 565〇 900 〇 3.9〇 無 12 16〇 11.00 551〇 120〇 522〇 145〇 ◎ 3.5〇 無 13 18〇 10.50 582〇 71〇 555〇 99〇 ◎ 5.00 無 14 21〇 11.4〇 532〇 73〇 5010 1〇4〇 〇 4.8〇 無 15 22〇 8.4〇 566〇 134〇 532〇 1500 〇 4.4〇 無 16 32〇 5.2〇 531〇 73〇 494〇 93〇 ◎ 5.1〇 Μ Π 23〇 8.00 549〇 1190 525〇 136〇 〇 4.6〇 11* 18 29〇 9.9〇 563〇 74〇 546〇 1〇1〇 〇 5.5〇 -25- 200911443 〔表 5-2〕No. Peeling rate mass % Slag amount (g) Tensile strength MPa Condition 1 Absorption energy J Condition 1 Tensile strength MPa Condition 2 Absorption energy J Condition 2 Arc stability Spillage amount (g) Crack 1 22〇8.4〇5650 132〇532〇166〇〇4.00 No 2 24〇7.2〇570〇135〇530〇167〇◎ 3.7〇无3 25〇6.0〇542〇142〇516〇175〇〇4.2〇无4 15〇11.8〇576〇 80〇548〇94〇〇4.6〇Μ 5 28〇5.4〇556〇85〇520〇98〇〇4.3〇Μ 6 29〇9.0〇525〇74〇496〇82〇◎ 3.5〇无实7 22〇8.3〇 600〇80〇575〇1000 ◎ 5.8〇无施8 16〇11.2〇551〇152〇536〇1770 〇3.3〇Μ Example 9 17〇6.0〇594〇153〇568〇1800 〇5.8〇No 10 20〇9.0〇 594〇91〇569〇1060 ◎ 3.7〇无11 18〇7.5〇586〇77〇565〇900 〇3.9〇无12 16〇11.00 551〇120〇522〇145〇◎ 3.5〇无13 18〇10.50 582〇71 〇555〇99〇◎ 5.00 No 14 21〇11.4〇532〇73〇5010 1〇4〇〇4.8〇无15 22 8.4〇566〇134〇532〇1500 〇4.4〇无16 32〇5.2〇531〇73〇494〇93〇◎ 5.1〇Μ Π 23〇8.00 549〇1190 525〇136〇〇4.6〇11* 18 29〇9.9 〇563〇74〇546〇1〇1〇〇5.5〇-25- 200911443 [Table 5-2]

No. 剝離率 質量% 熔渣暈 (g) 抗拉強度 MPa 條件1 吸收能J 條件1 抗拉強度 MPa 條件2 吸收能J 條件2 電弧 穩定性 熔濺 物量 (g) 裂 痕 19 19〇 9.50 5100 980 475x 122〇 ◎ 4.9〇 Μ 20 22〇 8.2〇 608〇 60x 5850 75〇 X 6.5x 有 21 13x 7.5〇 505〇 86〇 482x 1020 X 5.1〇 ΤΓΓΓ •Μ 22 29〇 12.2x 6010 54x 5740 63x X 5.3〇 1 j' 23 300 5.10 590〇 77〇 5550 910 X 6.4x 並 J \\\ 24 13x 13.3x 562〇 110O 5370 138〇 X 3.9〇 | j' 25 25〇 6.2〇 504〇 61x 480x 66x 〇 5.6〇 M 26 llx 12.6x 5780 1000 559〇 119〇 X 3.80 M /1 \\ 比 27 18〇 9.4〇 602〇 65x 5720 79〇 ◎ 4.3〇 /nr τΐ 11. 較 28 16〇 10.20 6360 42x 5980 71〇 ◎ 4.5〇 無 例 29 12x 1〇.7〇 542〇 1150 5260 1300 X 3.6〇 無 30 20〇 9.1〇 550〇 58x 530〇 60x X 5.0〇 有 31 17〇 12.5x 538〇 66x 506〇 73〇 X 3.5〇 有 32 12x 10.00 545〇 126〇 5150 145〇 X 4.4〇 Μ 33 18〇 9.70 5530 63x 5240 59x X 5.2〇 有 34 14x n.OO 580〇 800 551〇 1〇1〇 X 5.4〇 有 35 22〇 8.5〇 503〇 55x 484x 750 〇 4.1〇 無 36 21〇 8.9〇 558〇 1420 530〇 150〇 ◎ 4.0〇 有 37 22〇 9.6〇 495〇 85〇 480x 116〇 ◎ 4.6〇 38 20〇 9.1〇 591〇 82〇 560〇 1〇7〇 ◎ 5.8〇 有 39 13x 13.2x 613〇 56x 582〇 80〇 X 5.4〇 並 40 13x 14.4x 624〇 42x 598〇 79〇 X 5.6〇 無 41 12x 14.9x 618〇 62x 580〇 85〇 X 5.5〇 無 42 13x 13.7x 616〇 60x 579〇 80〇 X 5.1〇 Μ / 1 43 12x 12.2x 622〇 69x 584〇 96〇 X 5.4〇 無 44 14x 8.5〇 557〇 1030 525〇 126〇 X 9.8x 無 45 5x 21.2x 645〇 32x 591〇 83〇 X 3.8〇 無 46 llx 9.2〇 608〇 55x 578〇 59x X 4.3〇 有 47 8x 18.4x 6470 40x 5870 88〇 X 4.5〇 無 48 3x 23.3x 675〇 20x 618〇 80〇 X 4.1〇 有 -26- 200911443 如表5 -1所示,實施例Ν ο · 1〜1 8是本發明例,因各 成分的含量位於本發明的規定範圍,所以熔渣的剝離性、 熔渣量、熔接金屬的強度、韌性、電弧的穩定性、低熔濺 物性、及耐裂痕性均良好,能夠得到優異的熔接作業性, 熔接金屬的機械性質優異。 如表5-2所示’ No. 19〜47脫離本發明的範圍。比較 例No.19其C過少,在厚板熔接時熔接金屬的強度不足。 比較例No. 20其C量過剩,熔接金屬發生高溫裂痕,在薄 板熔接時因過剩強度導致低韌性化,熔濺物也多,電弧穩 定性差,易發生遮蔽氣體噴嘴堵塞,因此連續熔接性劣化 。比較例No.2 1其Si過少,在厚板熔接時熔接金屬的強 度不足,熔渣剝離性也差,因熔渣阻礙導致電弧不穩定, 連續熔接性劣化。比較例No.22其Si量過剩,熔接金屬 的韌性不足,熔渣量過剩成爲阻礙而導致電弧不穩定,連 續熔接性劣化。比較例No.2 3其Ti過少’熔濺物發生量 多,電弧穩定性差,易發生遮蔽氣體噴嘴堵塞’因此連續 熔接性劣化。比較例No .24其Ti量過剩,熔渣量多’剝 離性也差。熔渣量過剩成爲阻礙而導致電弧不穩定’連續 熔接性劣化。比較例No. 2 5其Μη量過少’在厚板熔接時 的熔接金屬的抗拉強度及任何板厚下的韌性都低。比較例 Ν 〇 . 2 6其Μ η過剩,熔渣量多,剝離性也差。熔渣量過剩 成爲阻礙而導致電弧不穩定,連續熔接性劣化。比較例 No.27、28其Mo過剩,在薄板熔接時由於強度過剩導致 韌性劣化。比較例Ν 〇 · 2 9其S過少’熔澄的剝離性差’熔 -27- 200911443 渣成爲阻礙而導致電弧不穩定,連續熔接性劣化。比較例 No.30其S過剩,韌性低而且還發生了高溫裂痕。儘管熔 渣剝離性良好,但是附著物呈粒狀化,厚度增加而有損電 弧的穩定性。結果連續熔接性劣化。比較例No. 3 1其Ο過 剩,熔渣量增加。損害電弧的穩定性,連續熔接性劣化。 熔接金屬中的夾雜物過剩,高溫裂痕發生。比較例No . 3 2 其P過少,溶渣的剝離性差,熔渣成爲阻礙導致電弧不穩 定,連續熔接性劣化。比較例No · 3 3其P過剩,韌性低並 且還發生了高溫裂痕。儘管熔渣剝離性良好,但是附著物 呈粒狀化,厚度增加而有損電弧的穩定性。結果連續熔接 性劣化。比較例No.34其Cu過剩,高溫裂痕發生,並且 熔渣剝離性也差,熔渣成爲阻礙導致電弧不穩定,連續熔 接性劣化。比較例No. 3 5其B不足,厚板熔接時的強度和 薄板熔接時的韌性不足。比較例No. 3 6其B過剩,高溫裂 痕發生。比較例No. 3 7儘管其C、B分別單獨滿足規定範 圍,但是PCB = ( C+ 15xB)不足’厚板熔接時的強度不足。 比較例N 〇. 3 8儘管其C、B分別單獨滿足規定範圍’但是 卩^ = (€+15\:8)過剩,高溫裂痕發生。比較例&gt;^〇.39〜 N 〇 · 4 3分S!J N b、V、A1、C r、N i過剩’熔渣量增力[]’剝離 性降低。熔渣成爲阻礙導致電弧不穩定’連續熔接性劣化 。在薄板熔接時強度過剩,韌性也降低。比較例N 0.4 4其 MoS2附著量過剩,導管等的供給系有MoS2堆積而堵塞’ 焊條供給非常不穩定。結果電弧穩定性受損’熔渣分布不 均一化而造成不良影響,剝離性降低。熔濺物量也增加。 -28- 200911443 Ν ο · 4 5其T i、Μ η、0過剩,S過少。熔渣量增加和剝離性 降低顯著,熔渣成爲阻礙導致電弧不穩定’連續熔接性劣 化。在薄板熔接時因Μη過多造成的強度過剩導致韌性也 降低。比較例No.46其Si過少’ Mo、Ρ過剩。因爲Si不 足,所以熔渣剝離性差,熔渣成爲阻礙導致電弧不穩定’ 連續熔接性劣化。因爲P過剩,所以高溫裂痕發生。此外 ,因爲Μ 〇過剩,在薄板熔接發生強度過剩,因此薄板、 厚板的韌性均低。比較例Νο.47其Ti、Μη過剩。熔渣量 增加和剝離性降低顯著,熔渣成爲阻礙導致電弧不穩定, 連續熔接性劣化。在薄板熔接時因Μ η過多造成的強度過 剩導致韌性也降低。比較例No .48其Ti、Mn、Mo、Β過 剩。熔渣量增加和剝離性降低顯著,熔渣成爲阻礙導致電 弧不穩定,連續熔接性劣化。在薄板熔接時因Mn、Mo、 B過多造成強度過剩而導致韌性也降低。 【圖式簡單說明】 第1圖是表示本發明中的焊條的C及Β的範圍的圖表 〇 第2(a)〜(c)圖是表示溶接試驗體形狀與開槽形狀的圖 〇 第3圖是熔接縫外觀照片,(a)表示熔渣自然剝離的部 分,(b)表示附著熔渣的狀態的部分。 第4圖是表示熔接金屬拉伸試驗片的採取位置。 第5圖是表示熔接金屬夏比衝擊試驗片的採取位置。 -29- 200911443 【主要元件符號說明 1 :隔板 2 :鋼管 3 :墊板 4 :焊炬No. Peeling rate mass % Slag halo (g) Tensile strength MPa Condition 1 Absorption energy J Condition 1 Tensile strength MPa Condition 2 Absorption energy J Condition 2 Arc stability Spillage amount (g) Crack 19 19〇9.50 5100 980 475x 122〇◎ 4.9〇Μ 20 22〇8.2〇608〇60x 5850 75〇X 6.5x There are 21 13x 7.5〇505〇86〇482x 1020 X 5.1〇ΤΓΓΓ •Μ 22 29〇12.2x 6010 54x 5740 63x X 5.3〇 1 j' 23 300 5.10 590〇77〇5550 910 X 6.4x and J \\\ 24 13x 13.3x 562〇110O 5370 138〇X 3.9〇| j' 25 25〇6.2〇504〇61x 480x 66x 〇5.6〇M 26 llx 12.6x 5780 1000 559〇119〇X 3.80 M /1 \\ than 27 18〇9.4〇602〇65x 5720 79〇◎ 4.3〇/nr τΐ 11. Compared with 28 16〇10.20 6360 42x 5980 71〇◎ 4.5〇 No case 29 12x 1〇.7〇542〇1150 5260 1300 X 3.6〇No 30 20〇9.1〇550〇58x 530〇60x X 5.0〇31 17〇12.5x 538〇66x 506〇73〇X 3.5〇32 12x 10.00 545〇126〇5150 145〇X 4.4〇Μ 33 18〇9.70 5530 63x 5240 59x X 5.2〇34 14x n.OO 580〇 800 551〇1〇1〇X 5.4〇35 22〇8.5〇503〇55x 484x 750〇4.1〇无36 21〇8.9〇558〇1420 530〇150〇◎ 4.0〇37 22〇9.6〇495〇85〇 480x 116〇◎ 4.6〇38 20〇9.1〇591〇82〇560〇1〇7〇◎ 5.8〇39 13x 13.2x 613〇56x 582〇80〇X 5.4〇and 40 13x 14.4x 624〇42x 598〇79 〇X 5.6〇无41 12x 14.9x 618〇62x 580〇85〇X 5.5〇无42 13x 13.7x 616〇60x 579〇80〇X 5.1〇Μ / 1 43 12x 12.2x 622〇69x 584〇96〇X 5.4 〇无44 14x 8.5〇557〇1030 525〇126〇X 9.8x no 45 5x 21.2x 645〇32x 591〇83〇X 3.8〇46 llx 9.2〇608〇55x 578〇59x X 4.3〇47 8x 18.4x 6470 40x 5870 88〇X 4.5〇无48 3x 23.3x 675〇20x 618〇80〇X 4.1〇有-26- 200911443 As shown in Table 5-1, the embodiment ο ο · 1~1 8 is an example of the present invention, Since the content of each component is within the range specified by the present invention, the slag removability, the amount of slag, the strength of the weld metal, the toughness, and the stability of the arc are stabilized. , Low melting spatter resistance, crack resistance and resistance was good welding can be obtained having excellent workability, excellent in weld metal mechanical properties. As shown in Table 5-2, No. 19 to 47 depart from the scope of the present invention. In Comparative Example No. 19, C was too small, and the strength of the welded metal was insufficient when the thick plate was welded. In Comparative Example No. 20, the C amount was excessive, and the weld metal was cracked at a high temperature. When the thin plate was welded, the toughness was lowered due to the excessive strength, and there were many spatters, and the arc stability was poor, and the shielding gas nozzle was easily clogged, so that the continuous weldability was deteriorated. . In Comparative Example No. 2, Si was too small, and the strength of the welded metal was insufficient when the thick plate was welded, and the slag peeling property was also poor, and the arc was unstable due to the slag hindrance, and the continuous weldability was deteriorated. In Comparative Example No. 22, the amount of Si was excessive, and the toughness of the weld metal was insufficient, and the excessive amount of slag was hindered, and the arc was unstable, and the continuous weldability was deteriorated. In Comparative Example No. 2, the amount of Ti was too small, and the amount of occurrence of the spatter was large, the arc stability was poor, and the shielding gas nozzle was easily clogged. Therefore, the continuous weldability was deteriorated. In Comparative Example No. 24, the amount of Ti was excessive, and the amount of slag was large, and the peeling property was also inferior. Excessive amount of slag is an obstacle and causes arc instability, and continuous weldability is deteriorated. In Comparative Example No. 25, the amount of Μη was too small. The tensile strength of the welded metal at the time of welding the thick plate and the toughness at any thickness were low. Comparative Example Ν 〇 . 2 6 Μ η η excess, the amount of slag is large, and the peelability is also poor. Excessive amount of slag is an obstacle and the arc is unstable, and the continuous weldability is deteriorated. Comparative Examples No. 27 and 28 have excessive Mo, and the toughness is deteriorated due to excessive strength when the thin plate is welded. Comparative Example 〇 2 · 2 9 S is too small 'The peeling property of melting is poor' Melt -27- 200911443 The slag becomes an obstacle and the arc is unstable, and the continuous weldability is deteriorated. Comparative Example No. 30 had excessive S, low toughness, and high temperature cracking. Although the slag removability is good, the deposits are granulated, and the thickness is increased to impair the stability of the arc. As a result, the continuous weldability is deteriorated. In Comparative Example No. 3 1 , the amount of slag increased. The stability of the arc is impaired, and the continuous weldability is deteriorated. Excessive inclusions in the weld metal occur and high temperature cracks occur. Comparative Example No. 3 2 When P is too small, the slag has poor peelability, and the slag is inhibited from causing arc instability, and the continuous weldability is deteriorated. In Comparative Example No. 3 3, P was excessive, the toughness was low, and high temperature cracks also occurred. Although the slag removability is good, the deposits are granulated and the thickness is increased to impair the stability of the arc. As a result, the continuous weldability is deteriorated. In Comparative Example No. 34, Cu was excessive, high-temperature cracks occurred, and slag removability was also poor, and slag was inhibited from causing arc instability and continuous weldability was deteriorated. In Comparative Example No. 35, B was insufficient, and the strength at the time of welding the thick plate and the toughness at the time of welding the thin plate were insufficient. In Comparative Example No. 36, B was excessive and high temperature cracking occurred. Comparative Example No. 3 7 Although the C and B respectively satisfy the predetermined ranges, the PCB = (C + 15xB) is insufficient. The strength at the time of fusion of the thick plates is insufficient. Comparative Example N 〇. 3 8 Although C and B respectively satisfy the prescribed range ', but 卩^ = (€+15\:8) is excessive, high temperature cracks occur. Comparative Example &gt;^〇.39~ N 〇 · 4 3 minutes S!J N b, V, A1, C r, N i excess The slag amount increasing force []' peeling property is lowered. The slag becomes a hindrance to cause arc instability, and the continuous weldability is deteriorated. When the thin plate is welded, the strength is excessive and the toughness is also lowered. In Comparative Example N 0.4 4, the amount of adhesion of MoS2 was excessive, and the supply of the conduit or the like was caused by the accumulation of MoS2 and clogging. The supply of the electrode was extremely unstable. As a result, the arc stability is impaired, and the slag distribution is not uniformized to cause an adverse effect, and the peeling property is lowered. The amount of spatter is also increased. -28- 200911443 Ν ο · 4 5 Its T i, Μ η, 0 excess, S too little. The increase in the amount of slag and the decrease in the peeling property are remarkable, and the slag becomes a hindrance to cause arc instability, and the continuous weldability is deteriorated. When the thin plate is welded, the excessive strength due to excessive Μη causes the toughness to also decrease. In Comparative Example No. 46, Si was too small, and Mo was excessive. Since Si is insufficient, the slag removability is poor, and the slag becomes an obstacle to cause arc instability, and continuous weldability is deteriorated. Because of the excess of P, high temperature cracks occur. In addition, since the excess of Μ is excessive, the strength of the thin plate is excessively welded, so the toughness of the thin plate and the thick plate are low. In the comparative example Νο.47, Ti and Μη are excessive. The increase in the amount of slag and the decrease in the peeling property are remarkable, and the slag becomes an obstacle to cause the arc to be unstable, and the continuous weldability is deteriorated. When the thin plate is welded, the excessive strength due to excessive Μη causes the toughness to also decrease. In Comparative Example No. 48, Ti, Mn, Mo, and yttrium were excessive. The increase in the amount of slag and the decrease in the peeling property are remarkable, and the slag becomes an obstacle to cause arc instability and deterioration of continuous weldability. When the thin plate is welded, the toughness is also lowered due to excessive strength due to excessive Mn, Mo, and B. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing the range of C and Β of the electrode in the present invention. Figs. 2(a) to 2(c) are diagrams showing the shape of the welded test body and the shape of the groove. The figure is a photograph of the appearance of the welded joint, (a) shows a portion where the slag is naturally peeled off, and (b) shows a portion where the slag is attached. Fig. 4 is a view showing the position at which the welded metal tensile test piece is taken. Fig. 5 is a view showing the position at which the welded metal Charpy impact test piece is taken. -29- 200911443 [Main component symbol description 1 : Partition 2 : Steel pipe 3 : Backing plate 4 : Welding torch

Claims (1)

200911443 十、申請專利範圍 1. 一種二氧化碳氣體遮蔽電弧熔接用實心焊條’係0 有 θ 0/ , Μη c: 0.020 〜0.100 質量。/〇、Si: 0.65 〜1·1〇 質量%、 :1.40 〜1.74 質量 %、Ρ: 0·005 〜0.018 質量%、S: 〇. Ί 5 〜0.020 質量%、Ti: 0.11 〜0.18 質量 %、Β: 0·001 0.0073 質量。/。、c+15xB: 0.0600 〜0.1990 質量%、 · n 4 5皙貪% 0_08質量%以下、〇 : 0.0100質量%以下、Cu · 〇_45貝 以下, 剩餘是F e及不可避免的雜質。 _ 2 ·如申請專利範圍第1項記載之二氧化碳氣體遮蔽 曰以卞 弧熔接用實心焊條,其中,Mo的含量爲0.01質重°° 〇 3. 如申請專利範圍H 1項記載之二氧化碳氣體遮齡的 弧熔接用實心焊條,其中,含有選自〇·08質里%以下/ Nb、0.08質量%以下的V、〇·08質量%以下的A1 〇 广 量%以下的C r及〇 · 5 0質量。以下的N1 13斤構成群中的至^ 1種以上。 4. 如申請專利範圍第1至3項中任—項記載之二氧化 碳氣體遮蔽電弧熔接用實心焊條,其中,在焊條表面,以 每10kg焊條含量H 0.0 1〜Lg的比例存在M〇S2 ° -31 -200911443 X. Patent application scope 1. A solid electrode for carbon dioxide gas shielded arc welding 'system 0 has θ 0/ , Μη c: 0.020 ~ 0.100 mass. /〇, Si: 0.65 to 1·1% by mass, : 1.40 to 1.74% by mass, Ρ: 0·005 to 0.018% by mass, S: 〇. Ί 5 to 0.020% by mass, Ti: 0.11 to 0.18% by mass, Β: 0·001 0.0073 Quality. /. , c+15xB: 0.0600 to 0.1990% by mass, · n 4 5皙%%0_08% by mass, 〇: 0.0100% by mass or less, Cu · 〇_45 Å or less, and the remainder is F e and unavoidable impurities. _ 2 · As described in the scope of application of the patent scope, the carbon dioxide gas shield is a solid electrode for arc welding, wherein the content of Mo is 0.01 mass ° ° ° 〇 3. As described in the scope of claim H 1 carbon dioxide gas cover Cr and 〇·5 of A1 〇 〇 % 以下 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 quality. The following N1 13 kg constitutes one to more than one of the group. 4. For the solid electrode for carbon dioxide gas shielding arc welding according to any one of the items 1 to 3 of the patent application, wherein M〇S2 ° exists in the ratio of H 0.0 1 to Lg per 10 kg of electrode on the surface of the electrode - 31 -
TW097102505A 2007-03-08 2008-01-23 Solid soldering wire for carbon dioxide gas protection arc welding TW200911443A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059285A JP5137426B2 (en) 2007-03-08 2007-03-08 Solid wire for carbon dioxide shielded arc welding

Publications (2)

Publication Number Publication Date
TW200911443A true TW200911443A (en) 2009-03-16
TWI339603B TWI339603B (en) 2011-04-01

Family

ID=39840439

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097102505A TW200911443A (en) 2007-03-08 2008-01-23 Solid soldering wire for carbon dioxide gas protection arc welding

Country Status (4)

Country Link
JP (1) JP5137426B2 (en)
KR (1) KR20080082501A (en)
CN (1) CN101259571B (en)
TW (1) TW200911443A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554497B (en) * 2010-12-21 2014-06-04 中冶建筑研究总院有限公司 Flux-cored wire for fine-grain high-strength steel bar CO2 arc welding
CN103084754B (en) * 2013-01-23 2016-04-27 宝山钢铁股份有限公司 A kind of pipe line steel high-strength and high ductility welding wire for submerged-arc welding
CN103600178B (en) * 2013-11-27 2016-08-17 中车眉山车辆有限公司 A kind of high-strength weathering steel gas shield solid core welding wire
CN106181114A (en) * 2015-04-29 2016-12-07 海宁瑞奥金属科技有限公司 The low spatter gas shield welding wire that arc stability is excellent
JP6787171B2 (en) * 2017-02-20 2020-11-18 日本製鉄株式会社 Corrosion-resistant steel gas shield arc welding solid wire
CN110039219A (en) * 2019-05-20 2019-07-23 丹阳市华龙特钢有限公司 A kind of high-wearing feature welding material and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299583A (en) * 1994-05-10 1995-11-14 Kobe Steel Ltd Plated wire for gas shield arc welding
JPH09168889A (en) * 1995-12-21 1997-06-30 Kobe Steel Ltd Gas shielded arc welding wire
CN1058923C (en) * 1997-05-26 2000-11-29 武汉钢铁(集团)公司 Low-alloy high-strength and high-toughness submerged-arc welding electrode
JP3352920B2 (en) * 1997-09-30 2002-12-03 株式会社神戸製鋼所 Gas shielded arc welding method
JP3576393B2 (en) * 1998-08-19 2004-10-13 株式会社神戸製鋼所 High toughness weld metal
CN1152767C (en) * 2001-08-08 2004-06-09 武汉钢铁(集团)公司 Microtitanium-boron high-toughness gas protective welding stick
JP3933937B2 (en) * 2002-01-16 2007-06-20 株式会社神戸製鋼所 Solid wire without copper plating for carbon dioxide arc welding
KR100553380B1 (en) * 2002-01-31 2006-02-20 제이에프이 스틸 가부시키가이샤 Steel wire for carbon dioxide shielded arc welding and welding process using the same
US6784402B2 (en) * 2002-03-27 2004-08-31 Jfe Steel Corporation Steel wire for MAG welding and MAG welding method using the same
JP3842707B2 (en) * 2002-08-30 2006-11-08 株式会社神戸製鋼所 Weld metal for low alloy heat resistant steel
JP2004195543A (en) * 2002-12-20 2004-07-15 Jfe Steel Kk Steel wire for gas shielded arc welding
CN1290661C (en) * 2004-06-25 2006-12-20 武汉钢铁(集团)公司 High strength high tenacity high weather resistant gas protecting welding wire
CN1970214A (en) * 2006-12-05 2007-05-30 金秋生 Gas protection welding wire for high-tensile structural steel

Also Published As

Publication number Publication date
TWI339603B (en) 2011-04-01
CN101259571A (en) 2008-09-10
KR20080082501A (en) 2008-09-11
JP2008221241A (en) 2008-09-25
JP5137426B2 (en) 2013-02-06
CN101259571B (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP5652574B1 (en) Solid wire for gas shielded arc welding, gas shielded arc welding metal, welded joint, welded member, welding method, and method of manufacturing welded joint
CN101157164B (en) Gas coverage arc welding compound core solder wire for steel with high tension
TW200902211A (en) Solid-core welding wire for carbon dioxide gas protection arc welding
TWI357369B (en)
KR20060050038A (en) Solid wire for gas shielded arc welding
TW200911443A (en) Solid soldering wire for carbon dioxide gas protection arc welding
JPWO2018087812A1 (en) Flux-cored wire, welded joint manufacturing method, and welded joint
KR102208029B1 (en) Electroslag welding wire, electroslag welding flux and weld joints
WO2018051823A1 (en) Wire for electroslag welding, flux for electroslag welding and welded joint
KR102092059B1 (en) Manufacturing method of Ni-based alloy wire and welding joint for submerged arc welding
JP5038853B2 (en) Solid wire for carbon dioxide shielded arc welding
JPH10216934A (en) Gas shielded metal arc welding method for circumferential joint of steel tube, and wire for gas shielded metal arc welding
JP3860438B2 (en) Iron-based consumable welding materials and welded joints with excellent fatigue strength at welded joints
JP6776798B2 (en) Multi-layer submerged arc welding method
JP4768310B2 (en) Solid wire for gas shielded arc welding
JP7311473B2 (en) arc welding method
JP5361516B2 (en) Flux-cored wire for metal-based gas shielded arc welding for hardfacing
JP4549143B2 (en) Solid wire for gas shielded arc welding
KR20200133812A (en) Solid wire and weld joints for electroslag welding
JP3642178B2 (en) TIG welding wire for steel welding
JP4673048B2 (en) Gas shielded arc welding wire
TWI548479B (en) Self - shielded flux - cored wire for high toughness electrical welding
CN117916054A (en) Bonding flux for submerged arc welding and weld metal
CN117916055A (en) Bonding flux for submerged arc welding and weld metal