TW200929309A - Manufacturability of SMD and through-hole fuses using laser process - Google Patents

Manufacturability of SMD and through-hole fuses using laser process Download PDF

Info

Publication number
TW200929309A
TW200929309A TW096151477A TW96151477A TW200929309A TW 200929309 A TW200929309 A TW 200929309A TW 096151477 A TW096151477 A TW 096151477A TW 96151477 A TW96151477 A TW 96151477A TW 200929309 A TW200929309 A TW 200929309A
Authority
TW
Taiwan
Prior art keywords
substrate
layer
top surface
termination
component layer
Prior art date
Application number
TW096151477A
Other languages
Chinese (zh)
Other versions
TWI446390B (en
Inventor
Sidharta Wiryana
tian-yu Zhu
Original Assignee
Cooper Technologies Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cooper Technologies Co filed Critical Cooper Technologies Co
Publication of TW200929309A publication Critical patent/TW200929309A/en
Application granted granted Critical
Publication of TWI446390B publication Critical patent/TWI446390B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H69/00Apparatus or processes for the manufacture of emergency protective devices
    • H01H69/02Manufacture of fuses
    • H01H69/022Manufacture of fuses of printed circuit fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/0411Miniature fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H69/00Apparatus or processes for the manufacture of emergency protective devices
    • H01H69/02Manufacture of fuses
    • H01H2069/025Manufacture of fuses using lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/0411Miniature fuses
    • H01H2085/0414Surface mounted fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/046Fuses formed as printed circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49107Fuse making

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuses (AREA)
  • Breakers (AREA)

Abstract

The invention relates to a method of manufacturing a circuit protector and to a circuit protector. The method comprises the steps of providing a substrate having opposing end portions, coupling an element layer to the top surface of the substrate, and laser machining the element layer to shape the element layer into a predetermined geometry. The circuit protector comprises a substrate having opposing end portions, termination pads coupled to the top surface at opposing end portions of the substrate, a fuse element disposed across a space between the termination pads and electrically connecting the termination pads, the fuse element having a predetermined geometry; the predetermined geometry having the narrowest width of about 0. 025 to about 0. 050 millimeters, a cover coupling the top surface and suffusing the substrate, the fuse element and the termination pads, and end terminations in electrical contact with the termination pads at the opposing end portions.

Description

200929309 九、發明說明: 【發明所屬之技術領域】 本發明大體而言係關於一種電路保護器,且更特定言之 係關於SMD及通孔保險絲以及製造smD及通孔保險絲的方 法。詳言之’本發明可結合所有標準尺寸之表面貼著元件 及通孔保險絲(包括(但不限於)1206、0805、0603及0402保 險絲)以及所有非標準保險絲尺寸來使用。題目為 Chip Fuse Assembly Having Wire Leads And Fabrication Method"之美國申請案第11/091,665號(於2〇〇6年9月28作為 美國公告第20060214259號而公開)係關於通孔保險絲且以 引用之方式併入本文中。 【先前技術】 超小型電路保護器可用於尺寸及空間限制在(例如)電子 設備之電路板上對於電子電路之較密集包裝及小型化係重 要的應用中。 通常藉由以下步驟來製造陶瓷晶片型保險絲:將一元件 層沈積於一陶瓷或玻璃基板上、絲網印刷該元件層、將該 元件層印刷至一預定厚度及寬度以獲得某一電阻、將一絕 緣覆蓋物附著於該元件層上及自成品結構切削或切割個別 保險絲。當執行絲網印刷操作時,元件層失去清晰度。絲 網印刷操作並非非常精確且所得之㈣層的邊緣銳度並非 非常好。可將光微影蝕刻用作絲網印刷操作之一替代例, 但此過程歸因於額外所需之處理步驟及較長之前置時間而 相對昂貴。 128173.doc 200929309 . 需要一種簡單且相對便宜之製造超小型電路保護器的方 法。另外,亦需要一種製造超小型電路保護器之方法,其 中元件層可經§史§十為某種幾何形狀且亦具有一優良之邊緣 銳度》 【實施方式】 圖1說明根據一例示性實施例之電路保護器1〇〇的透視 -圖。應理解,並未按比例繪製諸圖,且已為清晰之目的而 放大了各種組件之厚度。 ® 電路保護器100包含:一基板110,其為電絕緣材料;一 搞接至基板110之頂表面112的元件層12〇,其為導電材 料;一覆蓋物130,其耦接至元件層12〇之至少_部分;及 導電終止末端140、142,其耦接至基板11〇之相對末端部 分116、117。該等終止末端14〇、142電耦接至元件層 120,以便形成一穿過電路保護器1〇〇之電路路徑。另外, 一標記150可耦接至覆蓋物13〇之表面。標記15〇可包括用 ❹ 於識別保險絲之某些特徵的符號或顏色。此等特徵可包括 (但不限於)用於製造保險絲之技術、保險絲之佔據面積、 保險絲之電特徵及保險絲之安培額定值。在一替代實施例 中,覆蓋物130可耦接至元件層12〇之至少一部分及基板 Π 〇之至少一部分。 圖2說明根據一例示性實施例圖丨之電路保護器1〇〇沿線 2-2所截取的侧面截面圖。可見,電路保護器ι〇〇進一步包 含耦接至元件層120(例如,在其頂表面上)之電終止墊 160、162。、終止末端14〇、142覆蓋基板11〇之相對末端部 128173.doc 200929309 . 分116、117且電耦接至終止墊160、162。終止末端140、 142因此形成用於在一電路(未圖示)中連接電路保護器丄⑼ 之外部電端子。 在某些實施例中’元件層12〇可包含終止墊16〇、162及 一安置於終止墊160、162之間並電連接該等終止墊16〇、 • 162的保險絲元件122。終止墊1 60、162及保險絲元件122 . 可為一由元件層12〇形成之整體結構。另外,保險絲元件 ❹ I22及終止墊160、162可各自具有一預定厚度。舉例而 s,終止墊160、162之厚度可至少為保險絲元件122之厚 度。 在其他實施例中,終止墊160、162可由元件層12〇獨立 形成並電耦接至元件層12〇。 在簡單地描述了根據某些例示性實施例之電路保護器 100的結構之後,現將關於圖3及圖4冬圖〇來描述用於製 造根據本發明之電路保護器的例示性方法。圓3為描繪製 〇 造電路保護器1〇〇之例示性方法3〇〇的流程圖。圖4八_圖〇 說明在各個製造階段(諸如根據關於圖3所描述之例示性方 法300)期間之單一例示性電路保護器丨〇〇。 例示性方法300在步驟301處開始且前進至步驟31〇,其 中提供一具有相對末端部分116、117之基板11〇。在某些 實施例中,所提供之基板丨J 〇可約略為一個電路保護器之 尺寸。圖4Α及圖4Β中分別說明了形成單一電路保護器 之基礎的基板110之俯視圖及側視圖。基板u〇可由任何合 適之電絕緣材料形成,該電絕緣材料包括(但不限於)陶 128173.doc 200929309 曼、玻璃、聚合物材料(諸如聚醯亞胺)、FR4、氧化鋁、 塊β石、鐫橄揽石或其混合物。在所說明之實施例中,基 板經形成為一大體上矩形截面形狀。然而,在替代實施例 中’基板110可在不背離本發明之範疇及精神的情況下形 成為其他尺寸及形狀。基板ηο具有一頂表面112、一底表 面114、相對末端部分116、117及相對橫向邊緣118、 119。在一些實施例中,基板11〇之頂表面ι12大體上為平 坦的。 接著在步驟320處’藉由如此項技術中已知之合適之構 件將一元件層120耦接至基板110之頂表面112。圖4(:及圖 4D中分別說明基板!丨〇與元件層12〇之俯視圖及側視圖。元 件層120可由任何合適之導電材料製成,該導電材料可包 括(但不限於)銀 '金、鈀銀、銅、鎳或其之任何合金。 在某些實施例中,玻璃粉通常包括於元件層12〇中且用 作一用以將元件層120耦接至基板11〇之黏接劑。在此等實 φ 施例中’可以液體形式將元件層120塗覆至基板11〇之頂表 面112上’此將導致玻璃粉沈澱至元件層ι2〇之底部。如上 文所描述,終止墊160、162可形成為元件層120之部分。 或者,終止墊160、162可由元件層120獨立形成》可不背 離本發明之範疇及精神的情況下在步驟32〇處使用其他已 知之用於將元件層120塗覆至基板110的方法,包括(但不 限於)厚膜方法、薄膜方法、濺鍍方法及層壓膜方法。 元件層120之所選厚度可視電路保護器ι〇〇之所要特徵 (例如,電阻)而極大地變化,該等所要特徵通常由應用要 128173.doc 200929309 求來指示。舉例而言,當將元件層12〇當做一薄膜來塗覆 時’厚度可為約0.2微米。然而,當將元件層12〇當做一厚 膜來塗覆時,厚度可為約12微米至約15微米。 在步驟330處,將元件層12〇雷射切削至一預定幾何形 -狀。此預定幾何形狀界定所得之保險絲元件122的時間電 流特徵。圖4E及圖4F中分別說明經雷射切削至預定幾何形 狀之基板11 〇與元件層12〇的俯視圖及側視圖。圖4E展示元 件層120之幾何形狀大體上為蜿蜒蛇形。終止墊160、162 亦可以雷射切削之方式而由元件層12 〇形成。 雷射切削允許將元件層120形成為各種複雜幾何形狀, 同時保持精細之邊緣銳度並允許沿該幾何形狀之側壁的明 顯之直角或曲線。因此,當雷射切削元件層12〇時,側壁 具有90。之斷面。因此,當與先前技術之SMD保險絲相比 較時,雷射切削允許保險絲元件122擁有更厚之深度及更 窄之寬度。當與當前製造過程相比較時,經由雷射切削製 φ 造而成之保險絲元件可具有數目減少之針孔。針孔係直徑 大約為0.05 mm至0.2 mm之孔,其係在印刷及燒製過程期 間由墨中之氣泡產生。此減少之數目的針孔導致減少無故 燒斷(nuisance blow)。另外,雷射切削可因對保險絲元件 122較好之局部加熱而提高電路保護器效能,此降低了至 基板110中之熱耗散。 以實例之方式說明(且並非作為限制),可使用雷射切削 技術來產生一保險絲元件幾何形狀,其中保險絲元件122 之最窄部分的寬度可小至約0.025 mm,同時仍保持一精細 128173.doc -10- 200929309 之邊緣銳度。另外,圍繞保險絲元件i 22之最窄部分的最 窄蒸發寬度可小至約0.019 mm且仍保持一優良之邊緣銳 度。熟習此項技術者將瞭解’在不背離本發明之範疇及精 神的情況下,亦可使用雷射切削來產生具有更大或更小寬 度之保險絲元件幾何形狀,對更大或更小寬度之選擇將通 常視電路保護器1 00之應用要求而定。 在本發明之某些實施例中’使用由IPG photonics Corporation製造之YLP系列雷射器來執行雷射切削。YLp 系列中之一個合適之模型係YLP_〇5/8〇/2〇模型。波長、功 率、射束品質及光點尺寸為判定雷射切削動態的一些參 數。此模型為使用一脈衝操作模式且每脈衝傳遞〇5毫焦 耳之镱纖維雷射器。脈衝寬度為約8〇毫微秒。此等雷射器 經由一可撓性包裹有金屬之纖維電纜而將一高功率1〇6〇至 1070奈米波長雷射束(其不在可見光譜内)直接傳遞至工作 場地。該雷射器提供低熱使得可雷射切削元件層120而不 會在雷射切削過程期間損害基板110。另外’雷射束經準 直且通常經聚焦至一為若干微米或更小之光點尺寸。此 外,輸出纖維傳遞長度為約3_8米。此雷射器之脈衝重複 率介於20 kHz至1〇〇 kHz之間。另外,此雷射器之標稱平 均輸出功率為約10 W,而最大功率消耗為約16〇 w。 纖維雷射器具有寬動態操作功率範圍且射束焦點及其位 置保持恆定(即使當雷射功率被改變亦如此),從而總是允 許一致之處理結果。亦可藉由改變光學組態而達成寬廣範 圍之光點尺寸。此等特徵使得使用者能夠選擇一用於切割 128l73.doc -11 - 200929309 各種材料及壁厚度之適當的功率密度。 具有最佳化脈衝之纖維雷射器的高模式品質及小光點尺 寸有助於薄材料中之複雜特徵及幾何形狀的雷射切削。此 脈衝模式切割產生最少熔渣及HAZ,熔渣及HAZ對於許多 顯微切削應用而言非常重要。與纖維雷射器之小光點尺寸 .相關聯的高功率密度亦轉化為具有優越邊緣品質之較快速 • 切割。 ❹ 此等纖維雷射器允許蒸發元件層120之不良金屬化且仍 保持所需之用於保險絲元件122之最佳效能的優良幾何形 狀。當在金上使用此纖維雷射器時,焦點為約15微米。然 而,當在銀上使用該雷射器時,焦點為約2〇至25微米。由 於金之反射性不如銀之反射性,所以其更易切割。視元件 層之特性而定,纖維雷射器可具有為約1〇微米之焦點。可 藉由限制光發射面積來達成較小之焦點。在替代實施例 中,可在不背離本發明之範疇及精神的情況下使用另一類 φ 型之纖維雷射器或另一類型之雷射器,只要該雷射器在元 件層120上產生優良之解析度而不損害基板11〇。 在於步驟330中雷射切削元件層12〇之後,在步驟34〇中 將一覆蓋物130耦接至元件層12〇之至少一部分。圖4(}及圖 4Η中分別說明基板110、元件層12〇與覆蓋物13〇之俯視圖 及側視圖。覆蓋物130可由玻璃或陶瓷或其他電絕緣合適 材料形成。覆蓋物130遍布基板110之頂表面112之至少一 部分、保險絲122及終止墊160、ι62之至少一部分,且填 充其周圍及之間的任何空隙。在一替代實施例中,覆蓋物 128173.doc -12- 200929309 130耦接至元件層120之至少一部分及基板110之至少一部 分。 ❹ ❹ 在某些實施例中,覆蓋物130可為印刷玻璃或一直接塗 覆於基板110之頂表面112及元件層120之表面(包括保險絲 元件122及終止墊160、162)上的高溫穩定聚合物材料。在 一個實施例中’玻璃不具有金屬且可作為一厚膜來塗覆。 乾燥玻璃膜、接著燒製且接著冷卻。或者,覆蓋物13〇可 包含一陶瓷材料層,其被機械按壓於基板110之頂表面112 上以遍布下伏之組件(亦即,保險絲元件122及終止墊 160、162),且接著燒製該總成以固化覆蓋物13〇。在其他 實施例中,覆蓋物130可包含電絕緣材料之板,其藉由一 結合材料層而結合至位於經組裝組件上方的頂表面丨12。 可將該結合材料塗覆至頂表面112以遍布頂表面112及經組 裝之組件(如上文所描述)以及置放於結合材料上之覆蓋物 13〇。覆蓋物130可充當一具有滅孤特徵之鈍化層。 接著,在步驟350處,終止電路保護器1〇〇。圖“及圖 中分別說明被終止之電路保護器⑽的俯視圖及側視圖。 終止末請、142可包含在覆蓋物13〇已耦接至電路保護 器子總成之後塗佈於電路保護器子總成之末端部分上的導 電材料。可以此項技術中已知之任何合適之方式將終止末 端140、142塗佈於電路保護器子 ,v奋,, 卞、絕戚上。以實例說明(但 並非作為限制),可藉由在煻劁 仕恩製之則將子總成之末端部分 浸潰於一合適之塗佈浴中炎、冷爱t丄 呷冷甲來塗覆終止末端14〇、142。終止 末端―在基板110之末端部分U6、m處接觸終止 128173.doc •13· 200929309 墊160、i62。終止末端丨扣、142較佳沿基板11〇之橫向邊 緣118、119延伸遠到由工業標準所允許,使得終止墊 160、162之橫向邊緣至少部分地封閉於終止末端i4〇、142 中。終止末端140、142亦相應地在覆蓋物13〇之-部分及 • 基板U0之底表面U4上延伸。在某些實施例中,終止末端 140、142可由銀墨製成,該銀墨接著鍍有銀錫。可在不背 . 離本發明之範疇及精神的情況下將其他導電材料用於終止 末端14〇、I42。在終止電路保護層100之後,方法300在步 ^ 驟360處結束。 關於圖5及圖6來描述一種用於製造複數個電路保護器 100之替代方法。圖5為描繪製造複數個電路保護器1〇〇之 另一例示性方法500的流程圖。圖6為耦接至一基板1〇〇之 元件層120之複數個間隔、大體上平行之行的俯視圖,可 由該複數個行形成複數個電路保護器丨〇〇(諸如根據例示性 方法500)。 0 圖5之例示性方法500在開始步驟501處開始且進行至步 驟510,其中將一元件層12〇之複數個間隔、大體上平行之 行耦接至一基板11〇之頂表面112。圖7說明搞接至基板11〇 之頂表面112之元件層120的該複數個間隔、大體上平行之 行。所說明之基板11〇具有一大體上為矩形之截面。以實 例說明’基板110可為約2% ”至約3”平方,其可適合用於 形成複數個電路保護器1〇〇。視電路保護器1〇〇之尺寸而 定’為約2½ "至約3"平方之單一基板可容納大約798個電 路保護器。可在不背離本發明之範疇及精神的情況下替代 128173.doc • 14- 200929309 使用基板11 0之其他尺寸及形狀。 已在上文描述了用於將元件層120塗覆至基板110之例示 性方法。在某些實施例t ’可藉由在基板11〇上形成被區 域172間隔開之金屬化線路170而將元件層12〇耦接至基板 110之頂表面112。在塗覆元件層120之後,在步驟520處雷 射切削元件層120以使其成形為預定幾何形狀。如先前所 描述’雷射切削允許將元件層120形成為各種複雜幾何形 狀同時保持邊緣銳度。複雜幾何形狀之侧壁可具有9〇。斷 〇 面 接著在步驟530處’將覆蓋物130耦接至基板11〇之頂表 面112’其中覆蓋物130覆蓋元件層12〇之至少一部分。亦 即’覆蓋物130遍布基板11〇之頂表面Π2的至少一部分、 保險絲元件122及每一電路保護器1〇〇之終止墊16〇、162的 至少一部分’且填充其周圍及其間的任何空隙。在一替代 實施例中’覆蓋物13〇遍布保險絲元件122之至少一部分。 φ 已在上文描述了用於塗覆覆蓋物130之例示性方法。 在步驟540處,單數化基板11〇以形成複數個個別電路保 護器100,其中每一電路保護器1〇〇包含一具有相對末端部 分116、117之基板11 〇。舉例而言,可藉由沿區域172水平 跨越基板110及垂直跨越金屬化線路17〇進行切割而自基板 110來單數化該複數個電路保護器1〇〇。根據某些實施例, 可經由鑽石切割鋸來執行此切割。在替代實施例中,可在 不背離本發明之範疇及精神的情況下使用其他已知方法以 用於自基板110單數化該複數個電路保護器1〇〇。 128173.doc •15- 200929309 在自基板110單數化該複數個電路保護器1〇〇之後,在步 驟550處終止每一電路保護器1〇〇之相對末端部分116、 117。已在上文描述了用於終止電路保護器1〇〇之例示性方 法◊在終止電路保護器100之後,例示性方法5〇〇在步驟 560處結束。 圖7 A -圖7 C說明根據本發明之某些例示性實施例具有各 種4何形狀之保險絲元件丨22之例示性電路保護器丨〇〇的俯 φ 視圖。如圖7A中所示,已對例示性電路保護器100之元件 層120進行雷射切削,以形成具有自第一終止墊i延伸至 第二終止墊162之狹窄直線幾何形狀的保險絲元件122。如 圖7B中所示,已對例示性電路保護器100之元件層12〇進行 雷射切削,以形成具有自第一終止墊16〇延伸至第二終止 墊162之狹窄蜿蜒蛇形幾何形狀的保險絲元件122。如圖% 中所示,已對例示性電路保護器1〇〇之元件層12〇進行雷射 切削,以形成具有自第一終止墊16〇延伸至第二終止墊Μ] ❿ 之相對狹窄之直線幾何形狀的保險絲元件122,其中該相 對狹窄之直線幾何形狀進一纟包含較大的矩形自。因此, 可見雷射切削允許將一保險絲元件122形成為各種複雜幾 何形狀同時保持優良之邊緣銳度。 儘管已關於特定實施例而描述了本發明,但此等描述並 不意謂以一限制意義來加以解釋。對於熟習此項技術者而 言,所揭示之實施例以及本發明之替代實施例的各種修改 將在參考本發明之描述之後變得顯而易見。B習此項技術 者應瞭解,可不難將該概念及所揭示之特定實施例用作用 128173.doc -16- 200929309 於修改或設計其他結構以用於實施本發明之相同目的的基 礎。熟習此項技術者亦應認識到’此等等效構造並不背離 如在附加之申請專利範圍中陳述之本發明之精神及範_。 因此’預期申請專利範圍將涵蓋在本發明之範疇内的任何 此等修改或實施例。 【圖式簡單說明】 圖1說明根據本發明之某些例示性實施例之電路保護器 的透視圖; ❹BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a circuit protector and, more particularly, to SMD and through-hole fuses and methods of fabricating smD and via fuses. DETAILED DESCRIPTION OF THE INVENTION The present invention can be used in conjunction with all standard size surface mount components and through-hole fuses (including but not limited to, 1206, 0805, 0603, and 0402 fuses) and all non-standard fuse sizes. U.S. Patent Application Serial No. 11/091,665, issued toK. The manner is incorporated herein. [Prior Art] The ultra-small circuit protector can be used in applications where size and space are limited, for example, on the circuit board of an electronic device for dense packaging and miniaturization of electronic circuits. A ceramic wafer type fuse is usually fabricated by depositing a component layer on a ceramic or glass substrate, screen printing the component layer, printing the component layer to a predetermined thickness and width to obtain a certain resistance, An insulating cover is attached to the component layer and individual fuses are cut or cut from the finished structure. When the screen printing operation is performed, the component layer loses sharpness. The screen printing operation is not very precise and the edge sharpness of the resulting layer is not very good. Photolithographic etching can be used as an alternative to screen printing operations, but this process is relatively expensive due to additional processing steps and longer lead times. 128173.doc 200929309 . There is a need for a simple and relatively inexpensive method of fabricating ultra-small circuit protectors. In addition, there is also a need for a method of fabricating an ultra-small circuit protector in which the component layer can be subjected to a certain geometry and also has an excellent edge sharpness. [Embodiment] FIG. 1 illustrates an exemplary implementation according to an exemplary embodiment. For example, the perspective view of the circuit protector 1〇〇. It should be understood that the drawings are not drawn to scale, and the thickness of the various components have been exaggerated for clarity. The circuit protector 100 includes a substrate 110 that is electrically insulating material, a component layer 12 that is bonded to the top surface 112 of the substrate 110, which is a conductive material, and a cover 130 that is coupled to the component layer 12. At least a portion of the crucible; and conductive termination ends 140, 142 coupled to opposite end portions 116, 117 of the substrate 11''. The termination ends 14A, 142 are electrically coupled to the component layer 120 to form a circuit path through the circuit protector. Additionally, a marker 150 can be coupled to the surface of the cover 13A. The indicia 15 can include a symbol or color for identifying certain features of the fuse. Such features may include, but are not limited to, the techniques used to make the fuse, the footprint of the fuse, the electrical characteristics of the fuse, and the ampere rating of the fuse. In an alternate embodiment, the cover 130 can be coupled to at least a portion of the component layer 12 and at least a portion of the substrate. 2 illustrates a side cross-sectional view of the circuit protector 1 丨 taken along line 2-2, in accordance with an exemplary embodiment. As can be seen, the circuit protector ι further includes electrical termination pads 160, 162 coupled to the component layer 120 (e.g., on its top surface). The terminating ends 14〇, 142 cover the opposite end portions of the substrate 11〇 128173.doc 200929309. The segments 116, 117 are electrically coupled to the termination pads 160, 162. The terminating ends 140, 142 thus form an external electrical terminal for connecting the circuit protector 丄 (9) in a circuit (not shown). In some embodiments, the 'element layer 12' can include termination pads 16A, 162 and a fuse element 122 disposed between the termination pads 160, 162 and electrically connecting the termination pads 16A, 162. The termination pads 1 60, 162 and the fuse element 122 can be an integral structure formed by the component layer 12A. Further, the fuse element ❹ I22 and the termination pads 160, 162 may each have a predetermined thickness. For example, the thickness of the termination pads 160, 162 can be at least the thickness of the fuse element 122. In other embodiments, the termination pads 160, 162 may be formed separately from the component layer 12A and electrically coupled to the component layer 12A. Having briefly described the structure of circuit protector 100 in accordance with certain exemplary embodiments, an illustrative method for fabricating a circuit protector in accordance with the present invention will now be described with respect to Figures 3 and 4. Circle 3 is a flow chart depicting an exemplary method 3 of manufacturing a circuit protector. Figure 4 - Figure 8 illustrates a single exemplary circuit protector 各个 during various stages of fabrication, such as the exemplary method 300 described in relation to Figure 3. The exemplary method 300 begins at step 301 and proceeds to step 31, where a substrate 11 having opposite end portions 116, 117 is provided. In some embodiments, the substrate 丨J 提供 provided may be approximately one size of a circuit protector. The top and side views of the substrate 110 forming the basis of a single circuit protector are illustrated in Figures 4A and 4B, respectively. The substrate u can be formed of any suitable electrically insulating material including, but not limited to, ceramics 128173.doc 200929309 Mann, glass, polymeric materials (such as polyimine), FR4, alumina, beta beta , 镌 镌 stone or a mixture thereof. In the illustrated embodiment, the substrate is formed into a generally rectangular cross-sectional shape. However, in alternative embodiments, the substrate 110 can be formed into other sizes and shapes without departing from the scope and spirit of the invention. The substrate η has a top surface 112, a bottom surface 114, opposite end portions 116, 117, and opposite lateral edges 118, 119. In some embodiments, the top surface ι 12 of the substrate 11 is substantially flat. Next, at step 320, a component layer 120 is coupled to the top surface 112 of the substrate 110 by suitable components known in the art. 4(: and 4D illustrate top and side views, respectively, of the substrate! and the device layer 12A. The device layer 120 may be made of any suitable electrically conductive material, which may include, but is not limited to, silver 'gold , palladium silver, copper, nickel or any alloy thereof. In some embodiments, the glass frit is typically included in the component layer 12 且 and serves as an adhesive for coupling the component layer 120 to the substrate 11 . In this embodiment, the element layer 120 can be applied to the top surface 112 of the substrate 11 in liquid form. This will cause the glass frit to settle to the bottom of the element layer ι2. As described above, the termination pad 160, 162 may be formed as part of the component layer 120. Alternatively, the termination pads 160, 162 may be formed separately from the component layer 120. Other known components for use in the step 32" may be used without departing from the scope and spirit of the invention. The method of applying the layer 120 to the substrate 110 includes, but is not limited to, a thick film method, a thin film method, a sputtering method, and a laminated film method. The selected thickness of the element layer 120 can be characterized by the desired characteristics of the circuit protector ( For example, resistance) Earth's changes, these desired features are usually indicated by the application 128173.doc 200929309. For example, when the component layer 12 is coated as a film, the thickness can be about 0.2 microns. However, when the component layer is 12) When applied as a thick film, the thickness may range from about 12 microns to about 15 microns. At step 330, the element layer 12 is laser cut to a predetermined geometry-like shape. This predetermined geometry defines the resulting Time current characteristics of fuse element 122. A top view and a side view of substrate 11 〇 and element layer 12 经 laser-cut to a predetermined geometry are illustrated in Figures 4E and 4F, respectively. Figure 4E shows the geometry of element layer 120 substantially The serpentine shape. The termination pads 160, 162 can also be formed by elemental layering 12 by laser cutting. Laser cutting allows the component layer 120 to be formed into a variety of complex geometries while maintaining fine edge sharpness and allowing A distinct right angle or curve along the sidewall of the geometry. Thus, when the laser cutting element layer 12 is turned, the sidewall has a cross section of 90. Therefore, when compared to prior art SMD fuses At a later time, laser cutting allows the fuse element 122 to have a thicker depth and a narrower width. The fuse element made by laser cutting can have a reduced number of pinholes when compared to current manufacturing processes. The pinhole is a hole having a diameter of approximately 0.05 mm to 0.2 mm, which is generated by bubbles in the ink during the printing and firing process. This reduced number of pinholes results in a reduction of nuisance blow. Shot cutting can improve circuit protector performance due to better localized heating of fuse element 122, which reduces heat dissipation into substrate 110. By way of example (and not by way of limitation), laser cutting techniques can be used. To create a fuse element geometry, wherein the narrowest portion of the fuse element 122 can be as small as about 0.025 mm while still maintaining a sharp edge sharpness of 128173.doc -10-200929309. In addition, the narrowest evaporation width around the narrowest portion of the fuse element i 22 can be as small as about 0.019 mm and still maintain a good edge sharpness. Those skilled in the art will appreciate that laser cutting can also be used to produce fuse element geometries having larger or smaller widths, for larger or smaller widths, without departing from the scope and spirit of the present invention. The choice will usually depend on the application requirements of Circuit Protector 100. In some embodiments of the invention, laser cutting is performed using a YLP series laser manufactured by IPG photonics Corporation. One of the suitable models in the YLp series is the YLP_〇5/8〇/2〇 model. Wavelength, power, beam quality, and spot size are some of the parameters that determine the dynamics of laser cutting. This model is a fiber laser that uses a pulse mode of operation and delivers 5 millijoules per pulse per pulse. The pulse width is about 8 〇 nanoseconds. The lasers deliver a high power 1〇6〇 to 1070 nm wavelength laser beam (which is not in the visible spectrum) directly to the work site via a flexible, metal-wrapped fiber cable. The laser provides low heat such that the laser cutting element layer 120 can be damaged without damaging the substrate 110 during the laser cutting process. In addition, the laser beam is collimated and is typically focused to a spot size of a few microns or less. In addition, the output fiber transfer length is about 3-8 meters. The laser has a pulse repetition rate between 20 kHz and 1 〇〇 kHz. In addition, the laser has a nominal average output power of approximately 10 W and a maximum power consumption of approximately 16 〇 w. Fiber lasers have a wide dynamic operating power range and the beam focus and its position remain constant (even when the laser power is changed), thus always allowing consistent processing results. A wide range of spot sizes can also be achieved by changing the optical configuration. These features allow the user to select an appropriate power density for cutting the various materials and wall thicknesses of 128l73.doc -11 - 200929309. The high mode quality and small spot size of fiber lasers with optimized pulses contribute to the laser cutting of complex features and geometries in thin materials. This pulse mode cut produces minimal slag and HAZ, and slag and HAZ are important for many micromachining applications. The high power density associated with the small spot size of the fiber laser is also translated into a faster • cut with superior edge quality. ❹ These fiber lasers allow for poor metallization of the evaporation element layer 120 while still maintaining the desired superior geometry for the optimum performance of the fuse element 122. When using this fiber laser on gold, the focus is about 15 microns. However, when the laser is used on silver, the focus is about 2 〇 to 25 μm. Because gold is less reflective than silver, it is easier to cut. Depending on the nature of the component layer, the fiber laser can have a focus of about 1 micron. A smaller focus can be achieved by limiting the area of light emission. In an alternative embodiment, another type of φ type fiber laser or another type of laser can be used without departing from the scope and spirit of the invention, as long as the laser produces excellent on element layer 120. The resolution is not damaged by the substrate 11〇. After the laser cutting element layer 12 is turned on in step 330, a cover 130 is coupled to at least a portion of the element layer 12A in step 34. 4(} and FIG. 4A respectively illustrate a top view and a side view of the substrate 110, the element layer 12A and the cover 13A. The cover 130 may be formed of a glass or ceramic or other electrically insulating suitable material. The cover 130 is spread over the substrate 110. At least a portion of the top surface 112, at least a portion of the fuse 122 and the termination pads 160, ι 62, and filling any voids therearound and between them. In an alternate embodiment, the cover 128173.doc -12-200929309 130 is coupled to At least a portion of the component layer 120 and at least a portion of the substrate 110. ❹ ❹ In some embodiments, the cover 130 can be a printed glass or a surface directly applied to the top surface 112 of the substrate 110 and the component layer 120 (including fuses) The high temperature stable polymeric material on element 122 and termination pads 160, 162). In one embodiment 'the glass does not have a metal and can be applied as a thick film. The glass film is dried, then fired and then cooled. The cover 13A can include a layer of ceramic material that is mechanically pressed against the top surface 112 of the substrate 110 to spread over the underlying components (ie, the fuse element 122 and the termination pad 160). 162), and then firing the assembly to cure the cover 13. In other embodiments, the cover 130 can comprise a sheet of electrically insulating material bonded to the upper of the assembled assembly by a layer of bonding material Top surface 丨 12. The bonding material can be applied to the top surface 112 to spread over the top surface 112 and the assembled components (as described above) and the cover 13 置 placed on the bonding material. The covering 130 can serve A passivation layer having an annihilation feature. Next, at step 350, the circuit protector 1 is terminated. The figure and the side view of the terminated circuit protector (10) are respectively illustrated in the figure and the side view. A conductive material applied to an end portion of the circuit protector subassembly after the cover 13 is coupled to the circuit protector subassembly. The termination end 140 can be terminated in any suitable manner known in the art. 142 is applied to the circuit protector, v,, 卞, 戚 。. By way of example (but not as a limitation), the end portion of the sub-assembly can be immersed by the 煻劁 恩 恩a suitable In the coating bath, the cold end is applied to terminate the end 14 〇, 142. The end is terminated at the end portion U6, m of the substrate 110. 128173.doc • 13· 200929309 Pad 160, i62. The terminating end snaps, 142 preferably extend along the lateral edges 118, 119 of the base plate 11 as far as is permitted by industry standards such that the lateral edges of the end pads 160, 162 are at least partially enclosed in the terminating ends i4, 142. The ends 140, 142 also extend correspondingly over the portion of the cover 13 and the bottom surface U4 of the substrate U0. In some embodiments, the terminating ends 140, 142 can be made of silver ink, which is then plated with silver tin. Other conductive materials may be used to terminate the ends 14〇, I42 without departing from the scope and spirit of the invention. After terminating the circuit protection layer 100, the method 300 ends at step 360. An alternative method for fabricating a plurality of circuit protectors 100 is described with respect to Figures 5 and 6. FIG. 5 is a flow chart depicting another exemplary method 500 of fabricating a plurality of circuit protectors. 6 is a top plan view of a plurality of spaced, substantially parallel rows of component layers 120 coupled to a substrate, from which a plurality of circuit protectors may be formed (such as in accordance with exemplary method 500). . The exemplary method 500 of FIG. 5 begins at a start step 501 and proceeds to step 510 where a plurality of spaced, substantially parallel rows of a component layer 12 are coupled to a top surface 112 of a substrate 11A. Figure 7 illustrates the plurality of spaced, substantially parallel rows of component layers 120 that are bonded to the top surface 112 of the substrate 11A. The illustrated substrate 11A has a generally rectangular cross section. By way of example, the substrate 110 can be from about 2%" to about 3" square, which can be suitably used to form a plurality of circuit protectors. Depending on the size of the circuit protector, a single substrate of approximately 21⁄2 " to approximately 3" square can accommodate approximately 798 circuit protectors. Other dimensions and shapes of the substrate 11 0 may be substituted without departing from the scope and spirit of the invention. An exemplary method for applying the element layer 120 to the substrate 110 has been described above. In some embodiments t', the element layer 12 can be coupled to the top surface 112 of the substrate 110 by forming metallization lines 170 spaced apart by regions 172 on the substrate 11'. After coating the component layer 120, the cutting element layer 120 is laser-cut at step 520 to shape it into a predetermined geometry. As previously described, 'laser cutting allows the element layer 120 to be formed into a variety of complex geometries while maintaining edge sharpness. The side walls of the complex geometry can have 9 turns. The ruthenium surface is then coupled at step 530 to the top surface 112' of the substrate 11 其中 where the cover 130 covers at least a portion of the element layer 12A. That is, the cover 130 is spread over at least a portion of the top surface Π 2 of the substrate 11 , the fuse element 122 and at least a portion of the termination pads 16 〇 162 of each of the circuit protectors 1 ′ and fills the space and any gap therebetween . In an alternate embodiment, the cover 13 is spread over at least a portion of the fuse element 122. φ An exemplary method for coating the cover 130 has been described above. At step 540, the substrate 11 is singulated to form a plurality of individual circuit protectors 100, wherein each circuit protector 1 includes a substrate 11 having opposite end portions 116, 117. For example, the plurality of circuit protectors 1 can be singulated from the substrate 110 by horizontally spanning the substrate 110 along the region 172 and vertically traversing the metallization line 17A. According to certain embodiments, this cutting can be performed via a diamond cutting saw. In alternative embodiments, other known methods can be used for singulating the plurality of circuit protectors 1 from the substrate 110 without departing from the scope and spirit of the invention. 128173.doc • 15- 200929309 After singulating the plurality of circuit protectors 1 from the substrate 110, the opposite end portions 116, 117 of each of the circuit protectors 1 are terminated at step 550. An exemplary method for terminating the circuit protector 1A has been described above. After terminating the circuit protector 100, the exemplary method 5 ends at step 560. 7A-7C illustrate a top view of an exemplary circuit protector 具有 having various four shaped fuse elements 22 in accordance with certain exemplary embodiments of the present invention. As shown in Figure 7A, the component layer 120 of the exemplary circuit protector 100 has been laser cut to form a fuse element 122 having a narrow linear geometry extending from the first termination pad i to the second termination pad 162. As shown in FIG. 7B, the component layer 12A of the exemplary circuit protector 100 has been laser cut to form a narrow serpentine geometry having a first end pad 16A extending from the first termination pad 16 to the second termination pad 162. Fuse element 122. As shown in Figure %, the component layer 12A of the exemplary circuit protector 1A has been laser cut to form a relatively narrow range extending from the first termination pad 16A to the second termination pad Μ] A linear geometry of the fuse element 122, wherein the relatively narrow linear geometry further comprises a larger rectangular self. Thus, it can be seen that laser cutting allows a fuse element 122 to be formed into a variety of complex geometric shapes while maintaining excellent edge sharpness. Although the present invention has been described in terms of specific embodiments, the description is not intended to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the invention, will be apparent from the description of the invention. It will be appreciated by those skilled in the art that the concept and the particular embodiments disclosed may be employed in the teachings of the invention. Those skilled in the art should also appreciate that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. Therefore, any such modifications or embodiments within the scope of the invention are intended to be embraced. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a perspective view of a circuit protector in accordance with some exemplary embodiments of the present invention;

圖2說明根據本發明之某些例示性實施例圖丨之電路保護 器沿線2-2所截取的側面截面圖; 圖3為描緣製造電路保護器之例示性方法的流程圖; 圖4八-圖似明根據本發明之某些㈣性實施例在各種 製造階段期間的電路保護器; 一例示性方法的 圖5為描繪製造複數個電路保護器之另 流程圖; 圖6說明耦接至一基板之元件層之複數個間隔、大體上 平打之行的俯視圖,可由該複數個行根據本發明之例示性 實施例形成複數個電路保護器; 7、吐 眺圖7C說明根據本發明之某些例示性 各種幾何形狀之保險絲元件 具有為 圖。 _之例-性電路保護器的俯視 【主要元件符號說明】 線 2-2 100 電路保護器 128173.doc 2009293092 illustrates a side cross-sectional view of the circuit protector of FIG. 2 taken along line 2-2, in accordance with some exemplary embodiments of the present invention; FIG. 3 is a flow chart depicting an exemplary method of fabricating a circuit protector; FIG. - Figure illustrates a circuit protector during various stages of fabrication in accordance with certain (four) embodiments of the present invention; Figure 5 of an exemplary method depicts another flow diagram for fabricating a plurality of circuit protectors; Figure 6 illustrates coupling to a plurality of spaced, substantially flattened top views of a component layer of a substrate, the plurality of circuit protectors being formed from the plurality of rows in accordance with an exemplary embodiment of the present invention; 7. spitting FIG. 7C illustrates a certain one of the present invention Some exemplary fuse elements of various geometries are shown. _ Example - View of the circuit protector [Main component symbol description] Line 2-2 100 circuit protector 128173.doc 200929309

110 112 114 116 117 118 119 120 122 130 140 142 150 160 162 170 172 基板 頂表面 底表面 末端部分 末端部分 橫向邊緣 橫向邊緣 元件層 保險絲元件 覆蓋物 終止末端 終止末端 標記 電終止墊 電終止墊 金屬化線路 區域 128173.doc -18-110 112 114 116 117 118 119 120 122 130 140 142 150 160 162 170 172 Substrate top surface Bottom surface End section End section Lateral edge Lateral edge Element layer Fuse element Cover Termination End Termination End mark Electrical termination pad Electrical termination pad Metallized line Area 128173.doc -18-

Claims (1)

200929309 十、申請專利範圍: 1· 一種用於製造一電路伴螬n4 ^ 电峪保”隻器之方法,其包含以下步驟: 提供一基板; 將-元件層轉接至該基板之一頂表面;及 雷射切削該元件層以使該元件屉 文茨70件層成形為一預定幾何形 狀0 2.如請求項1之方法,其進一步包含將―# & _ 匕含將覆盍物耦接至該 Ο π件層之至少一部分的步驟。 3·如請求項2之方法,盆谁一丰— — 八進步包含將一標記塗覆至該覆 蓋物之表面的步驟。 4. 如請求項1之方法,其進-步包含藉由將導電終止末端 塗覆至該基板之相對末端部分來終止該電路保護器以使 得該等終止末端電耗接至該元件層的步驟。 5. 如凊求項1之方法,其中雷射切削該元件層以使該元件 層成形為-預定幾何形狀之該步驟係使用一纖維雷射器 來執行的。 6. 如明求項1之方法,其中雷射切削該元件層以使該元件 層成形為-預定幾何形狀之該步驟產生一保險絲元件及 位=該基板之相對末端部分處的終止概塾。 7·如3"求項1之方法’其中該預定幾何形狀大體上為碗蜒 蛇形。 8.如口青求項1之方法,其中該基板包含一選自一由以下組 成之群的電絕緣材料:衫、玻璃、聚合物、剛、氧 化鋁、塊滑石及鎂撖欖石。 128173.doc 200929309 9·如請求们之方法,其中將該元件層轉接至該基板之該 頂表面的該步驟係包含以下步驟而執行: 將該元件層金屬化至該基板之該頂表面。 10. :請求項i之方法,其中該元件層包含選自一由以下組 成之群的至少—個導電材料:銀、金、鈀銀、銅、鎳、 銀合金、金合金、鈀銀合金,合金及鎳合金。 11. 驟種用於製造複數個電路保護器之方法,其包含以下步 ❹ 提供一基板; 將一元件層耦接至該基板之一頂表 包含導電材料之複數個間隔、大體上表平:之其^ 定=:該元件層以使導電材料之每-行成形為-預 12.如請求項11之方法,其進-步包含以下步驟: 將一覆蓋物耦接至該基板之續 該元件層之至少-部分頂表面,該覆蓋物覆蓋 劃分該基板以形成複數個個別電路 保護器具有相對末端部分;及 母個別 終止該等相對末端部分中之每一者。 13.如請求項12之方法,其進一步包含 一 至該覆蓋物之表面的步驟。 夕一固標記塗覆 M·如請求項12之方法,其中劃分該基板 電路保護器之該步驟包含單數化該基板。 個別 15·如請求項"之方法,其中 月J忑疋件層之該步驟係 128173.doc 200929309 使用一纖維雷射器來執行的。 16. 如研求項11之方法,其中雷射切削該元件層之該步驟在 每一行内產生複數個保險絲元件,每一保險絲元件在其 相對末端部分處具有終止墊。 17·如凊求項12之方法,其中每一保險絲元件之幾何形狀大 體上為婉蛇形。200929309 X. Patent application scope: 1. A method for manufacturing a circuit with a device, comprising the steps of: providing a substrate; transferring the component layer to a top surface of the substrate And laser cutting the component layer such that the component of the component is formed into a predetermined geometric shape. 2. The method of claim 1, further comprising: coupling the "# & _ 匕The step of connecting to at least a portion of the π π layer. 3. The method of claim 2, wherein the method comprises the step of applying a mark to the surface of the cover. The method of 1, the step comprising the step of terminating the circuit protector by applying a conductive termination end to the opposite end portion of the substrate such that the termination terminals are electrically depleted to the element layer. The method of claim 1, wherein the step of laser cutting the element layer to shape the element layer into a predetermined geometry is performed using a fiber laser. 6. The method of claim 1, wherein the laser Cutting the component layer to make the The step of forming the component layer into a predetermined geometry produces a fuse element and a bit = the termination profile at the opposite end portion of the substrate. 7. The method of claim 1 wherein the predetermined geometry is substantially a bowl 8. The method of claim 1, wherein the substrate comprises an electrically insulating material selected from the group consisting of: a shirt, a glass, a polymer, a diamond, an alumina, a talc, and a magnesium strontium. The method of claimant, wherein the step of transferring the component layer to the top surface of the substrate is performed by the step of: metallizing the component layer to the substrate 10. The method of claim i, wherein the element layer comprises at least one electrically conductive material selected from the group consisting of silver, gold, palladium silver, copper, nickel, silver alloy, gold alloy, palladium. Silver alloy, alloy and nickel alloy 11. A method for fabricating a plurality of circuit protectors, comprising the steps of: providing a substrate; coupling a component layer to a top surface of the substrate comprising a plurality of conductive materials The spacing, substantially flat: the == the element layer to shape each row of the conductive material to - pre 12. The method of claim 11, the further step comprising the steps of: Coupling to the substrate, at least a portion of the top surface of the component layer, the cover covers the substrate to form a plurality of individual circuit protectors having opposite end portions; and the parent individually terminates each of the opposite end portions 13. The method of claim 12, further comprising the step of coating the surface of the cover. The method of claim 12, wherein the step of dividing the substrate circuit protector comprises a singular The substrate is turned on. Individual 15. The method of claim ", wherein the step of the month J layer is performed using a fiber laser. 16. The method of claim 11, wherein the step of laser cutting the component layer produces a plurality of fuse elements in each row, each fuse element having a termination pad at its opposite end portions. 17. The method of claim 12, wherein the geometry of each of the fuse elements is substantially a serpentine shape. 18·如請求項11之方法,其中該基板包含-選自一由以下組 成之群的電絕緣材料:陶兗、玻璃、聚合物、fr4、氧 化鋁、塊滑石及鎂撖欖石。 19.如凊求項11之方法,其中將該元件層㈣至該基板之該 頂表面上包含以下步驟: 將該元件層金屬化至該基板之該頂表面。 20·如請求項11之方 成之群的至少一 銀合金、金合金 21. —種電路保護器 法’其中該元件層包含選自一由以下組 個導電材料:銀、金、把銀、鋼、鎳、 、雀巴銀合金、銅合金及鎳合金。 ’其包含: 電絕緣基板’其具有一頂表面 底表面及具有末 端邊緣及相對橫向邊緣之相對末端部分; 導電材料之終止熱,盆 墊其在該基板之相對末端部分處耦 接至該頂表面上,每一 ia ^ . 襯墊延伸至—個末端邊緣及兩個 相對橫向邊緣; 空元件’其經安置而跨越該等終止塾之間的- 、接該等終止墊,該保險絲元件具有一且有一 側壁之預定幾何形狀,其中該幾…H、有 茨戍何形狀之至少一部分具 I28173.doc 200929309 有-約G.G25毫米至約o.oso毫米之寬度,其中該侧壁具 有一 90°斷面; 一電絕緣材料之覆蓋物,其耦接至該頂表面,該覆蓋 物遍布該基板、該保險絲元件及該等終止墊丨及 導電末端終止件,其位於該等相對末端部分處,其與 位於該末^邊緣及該等橫向邊緣之該等終止墊電接觸, Ο 該等末端终止件在該底表面之—部分及封閉該等終止塾 之該覆蓋物上延伸。 ,其中該保險絲元件及該等終 ,該等終止墊线厚度至少為 ’其中該保險絲元件及該等終 22.如請求項21之電路保護器 止墊各自具有一預定厚度 該保險絲元件之該厚度。 23·如請求項21之電路保護器 止墊係一整體結構。 ,其 24·如請求項21之電路保護器 璃。 中該覆蓋物包含 一印刷玻 ❹ 128173.doc18. The method of claim 11, wherein the substrate comprises - an electrically insulating material selected from the group consisting of: earthenware, glass, polymer, fr4, alumina, talc, and magnesite. 19. The method of claim 11, wherein the element layer (4) to the top surface of the substrate comprises the step of: metallizing the element layer to the top surface of the substrate. 20. The at least one silver alloy, gold alloy 21. The circuit protector method of claim 11, wherein the component layer comprises a conductive material selected from the group consisting of silver, gold, silver, Steel, nickel, nibble silver alloy, copper alloy and nickel alloy. 'It comprises: an electrically insulating substrate' having a top surface bottom surface and opposite end portions having end edges and opposite lateral edges; termination heat of the conductive material coupled to the top at opposite end portions of the substrate On the surface, each ia ^ . pad extends to the end edge and two opposite lateral edges; the empty element 'which is placed across the end of the terminal -, the terminal pad, the fuse element has And a predetermined geometric shape of the side wall, wherein the at least a portion of the shape of the H... has a width of from about G.G25 mm to about o.oso mm, wherein the side wall has a width a 90° section; a covering of electrically insulating material coupled to the top surface, the covering being distributed throughout the substrate, the fuse element and the termination pads and the conductive end terminations at the opposite end portions And contacting the termination pads at the edge of the edge and the lateral edges, the end terminations at the bottom surface and the closure of the terminations The cover extends over. Wherein the fuse element and the terminal, the termination pad thickness is at least 'where the fuse element and the terminal 22. The circuit protector stop of claim 21 each has a predetermined thickness of the thickness of the fuse element . 23. The circuit protector of claim 21 is a unitary structure. 24) The circuit protector of claim 21. The cover contains a printed glass ❹ 128173.doc
TW096151477A 2007-12-29 2007-12-31 Circuit protector and method for making the same TWI446390B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/967,161 US9190235B2 (en) 2007-12-29 2007-12-29 Manufacturability of SMD and through-hole fuses using laser process

Publications (2)

Publication Number Publication Date
TW200929309A true TW200929309A (en) 2009-07-01
TWI446390B TWI446390B (en) 2014-07-21

Family

ID=40347782

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096151477A TWI446390B (en) 2007-12-29 2007-12-31 Circuit protector and method for making the same

Country Status (6)

Country Link
US (1) US9190235B2 (en)
JP (2) JP2011508407A (en)
KR (2) KR20150087429A (en)
CN (1) CN101911238A (en)
TW (1) TWI446390B (en)
WO (1) WO2009086496A2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237343B (en) * 2010-05-05 2014-04-16 万国半导体有限公司 Semiconductor package realizing connection by connecting sheets and manufacturing method for semiconductor package
US9847203B2 (en) 2010-10-14 2017-12-19 Avx Corporation Low current fuse
JP2012164756A (en) * 2011-02-04 2012-08-30 Denso Corp Electronic control device
US9202656B2 (en) 2011-10-27 2015-12-01 Littelfuse, Inc. Fuse with cavity block
US9558905B2 (en) 2011-10-27 2017-01-31 Littelfuse, Inc. Fuse with insulated plugs
JP5782196B2 (en) * 2011-10-27 2015-09-24 リテルヒューズ・インク Fuse with insulation plug
CN102646558B (en) * 2012-05-10 2014-07-09 苏州晶讯科技股份有限公司 High pressure resistant surface mounted fuse
CN102664127B (en) * 2012-05-10 2014-11-26 苏州晶讯科技股份有限公司 Surface-mounted fuser
WO2016075793A1 (en) 2014-11-13 2016-05-19 エス・オー・シー株式会社 Chip fuse manufacturing method and chip fuse
TWI574292B (en) * 2015-08-21 2017-03-11 Ching Ho Li Surface adhesion type fuse and manufacturing method thereof
US10806026B2 (en) 2018-07-12 2020-10-13 International Business Machines Corporation Modified PCB vias to prevent burn events
US11404372B2 (en) * 2019-05-02 2022-08-02 KYOCERA AVX Components Corporation Surface-mount thin-film fuse having compliant terminals
JP7368144B2 (en) * 2019-08-27 2023-10-24 Koa株式会社 Chip type current fuse
US11636993B2 (en) 2019-09-06 2023-04-25 Eaton Intelligent Power Limited Fabrication of printed fuse
US12002643B2 (en) 2021-11-30 2024-06-04 Eaton Intelligent Power Limited Ceramic printed fuse fabrication
CN117524810B (en) * 2024-01-03 2024-04-05 芯体素(杭州)科技发展有限公司 Overcurrent protector for integrated circuit

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE341746B (en) 1970-03-10 1972-09-18 Ericsson Telefon Ab L M
US4198744A (en) * 1978-08-16 1980-04-22 Harris Corporation Process for fabrication of fuse and interconnects
DE7826855U1 (en) * 1978-09-09 1978-12-14 Wickmann-Werke Ag, 5810 Witten Fuse for small nominal current levels with an elongated fusible conductor of very small dimensions
US4460888A (en) * 1981-11-27 1984-07-17 Dorman Smith Fuses Limited Fuse
FR2528617A1 (en) 1982-06-09 1983-12-16 Marchal Equip Auto Printed circuit resistor network with ultrasonically welded fuses - has resistance value trimmed by laser cutting for use in electric motor speed controls
US4582659A (en) * 1983-11-28 1986-04-15 Centralab, Inc. Method for manufacturing a fusible device for use in a programmable thick film network
JPH0831303B2 (en) 1986-12-01 1996-03-27 オムロン株式会社 Chip type fuse
JPH025326A (en) * 1988-06-23 1990-01-10 Rikiyuu Denki:Kk Fuse
DE8908139U1 (en) 1989-07-04 1989-10-12 Siegert GmbH, 8501 Cadolzburg Fuse element in thick-film technology components
US5166656A (en) 1992-02-28 1992-11-24 Avx Corporation Thin film surface mount fuses
DE4222278C1 (en) * 1992-07-07 1994-03-31 Roederstein Kondensatoren Process for the manufacture of electrical thick film fuses
US5552757A (en) 1994-05-27 1996-09-03 Littelfuse, Inc. Surface-mounted fuse device
US5760674A (en) * 1995-11-28 1998-06-02 International Business Machines Corporation Fusible links with improved interconnect structure
US6002322A (en) * 1998-05-05 1999-12-14 Littelfuse, Inc. Chip protector surface-mounted fuse device
JP4465759B2 (en) * 1999-12-14 2010-05-19 パナソニック株式会社 Fuse resistor
JP4668433B2 (en) * 2001-02-20 2011-04-13 コーア株式会社 Chip-type fuse resistor and manufacturing method thereof
JP2002279883A (en) 2001-03-19 2002-09-27 Koa Corp Chip type fuse resistor and manufacturing method of same
US6777645B2 (en) * 2001-03-29 2004-08-17 Gsi Lumonics Corporation High-speed, precision, laser-based method and system for processing material of one or more targets within a field
US20070173075A1 (en) * 2001-03-29 2007-07-26 Joohan Lee Laser-based method and system for processing a multi-material device having conductive link structures
EP1396003A1 (en) * 2001-06-11 2004-03-10 Wickmann-Werke GmbH Fuse component
TW525863U (en) * 2001-10-24 2003-03-21 Polytronics Technology Corp Electric current overflow protection device
US7570148B2 (en) * 2002-01-10 2009-08-04 Cooper Technologies Company Low resistance polymer matrix fuse apparatus and method
US7436284B2 (en) * 2002-01-10 2008-10-14 Cooper Technologies Company Low resistance polymer matrix fuse apparatus and method
US7385475B2 (en) * 2002-01-10 2008-06-10 Cooper Technologies Company Low resistance polymer matrix fuse apparatus and method
US7367114B2 (en) * 2002-08-26 2008-05-06 Littelfuse, Inc. Method for plasma etching to manufacture electrical devices having circuit protection
DE10304473A1 (en) * 2003-02-04 2004-08-12 Linde Ag Process for laser beam welding
EP1455375B1 (en) * 2003-03-04 2010-01-06 Wickmann-Werke GmbH Fuse element with a temporary quasi-hermetic sealing of the interior
DE10310159B4 (en) * 2003-03-07 2006-07-27 Siemens Ag Electrical protection device and method of manufacture
JP2003234057A (en) * 2003-03-10 2003-08-22 Koa Corp Fuse resistor and its manufacturing method
US7884698B2 (en) * 2003-05-08 2011-02-08 Panasonic Corporation Electronic component, and method for manufacturing the same
US20050087522A1 (en) * 2003-10-24 2005-04-28 Yunlong Sun Laser processing of a locally heated target material
CN1957434B (en) * 2004-03-05 2010-05-12 力特保险丝有限公司 Low profile automotive fuse
US7491909B2 (en) * 2004-03-31 2009-02-17 Imra America, Inc. Pulsed laser processing with controlled thermal and physical alterations
DE102004033251B3 (en) * 2004-07-08 2006-03-09 Vishay Bccomponents Beyschlag Gmbh Fuse for a chip
US7659804B2 (en) * 2004-09-15 2010-02-09 Littelfuse, Inc. High voltage/high current fuse
US7477130B2 (en) * 2005-01-28 2009-01-13 Littelfuse, Inc. Dual fuse link thin film fuse
US7569907B2 (en) 2005-03-28 2009-08-04 Cooper Technologies Company Hybrid chip fuse assembly having wire leads and fabrication method therefor
WO2006116722A2 (en) * 2005-04-28 2006-11-02 The Pennsylvania State Research Foundation Apparatus and method for conducting laser stir welding
JP2007243075A (en) * 2006-03-10 2007-09-20 Ricoh Co Ltd Semiconductor device

Also Published As

Publication number Publication date
US20090167480A1 (en) 2009-07-02
US9190235B2 (en) 2015-11-17
WO2009086496A2 (en) 2009-07-09
WO2009086496A3 (en) 2009-08-27
KR20100101560A (en) 2010-09-17
TWI446390B (en) 2014-07-21
KR20150087429A (en) 2015-07-29
CN101911238A (en) 2010-12-08
JP2011508407A (en) 2011-03-10
JP2013214527A (en) 2013-10-17

Similar Documents

Publication Publication Date Title
TW200929309A (en) Manufacturability of SMD and through-hole fuses using laser process
KR101127870B1 (en) Ceramic electronic component and method for manufacturing the same
EP0426706B1 (en) A wire bonded microfuse
US9076576B2 (en) Chip thermistor and thermistor assembly board
JP6386723B2 (en) Resistance element manufacturing method
JP5225598B2 (en) Electronic component and its manufacturing method
TW200945938A (en) Wiring board for mounting light emitting element thereon, and light emitting device
JP2006344477A (en) Chip type fuse
JP2008508737A (en) Multilayer component and manufacturing method thereof
US6771476B2 (en) Circuit protector
JP2001044001A (en) Structure of thin-film resistor and resistance value adjusting method
JP2006310277A (en) Chip type fuse
JP2008226956A (en) Resistor and manufacturing method therefor
JP2007227718A (en) Electronic component having resistive element and manufacturing method thereof
TWI282147B (en) Temperature measurement sensor and method for manufacturing the same
JP2009277834A (en) Method of manufacturing chip resistor, and chip resistor
KR101098549B1 (en) Method for manufacturing led substrate
KR20060098370A (en) Laser-based termination of passive electronic components
JP2019153712A (en) Chip resistor
TWI313875B (en)
JP2001044068A (en) Compact surface-mounting part and manufacture thereof
JP2023136531A (en) Wiring board and manufacturing method for the same
EP1619696A2 (en) Chip resistor for surface mounting and method of manufacturing a chip resistor for surface mounting
JP2006156851A (en) Chip parts and its manufacturing method
JP2003197486A (en) Chip solid electrolytic capacitor and manufacturing method therefor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees