TW200912047A - Stain-resistant electrogalvanized steel sheet - Google Patents

Stain-resistant electrogalvanized steel sheet Download PDF

Info

Publication number
TW200912047A
TW200912047A TW097105795A TW97105795A TW200912047A TW 200912047 A TW200912047 A TW 200912047A TW 097105795 A TW097105795 A TW 097105795A TW 97105795 A TW97105795 A TW 97105795A TW 200912047 A TW200912047 A TW 200912047A
Authority
TW
Taiwan
Prior art keywords
ppm
steel sheet
resin
less
resin film
Prior art date
Application number
TW097105795A
Other languages
Chinese (zh)
Other versions
TWI369419B (en
Inventor
Masatoshi Iwai
Kazuo Okumura
Shoji Hisano
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of TW200912047A publication Critical patent/TW200912047A/en
Application granted granted Critical
Publication of TWI369419B publication Critical patent/TWI369419B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

The invention provides a non-chromate electrogalvanizing steel plate with excellent blemish resisting performance and production method thereof. The invention provides an electrogalvanizing steel plate setting the resin cover film containing 0.05-5quality percent Na instead of Cr on the electrogalvanizing layer. The electrogalvanizing layer is converted by atom to restrain Pb and TI into Pb: below 5ppm (ppm represents quality ppm, the same as follows) and TI: below 10ppm.

Description

200912047 九、發明說明 【發明所屬之技術領域】 本發明係關於一種耐污性優異的電鍍鋅鋼板及其製造 方法,具體來說,爲一種具有實質上不含有Cr的樹脂皮 膜的電鍍鋅鋼板,關於能夠有效地控制由該樹脂皮膜中的 Na引起的斑污的外觀不均(使之不會醒目)的耐污性的改 善技術。本發明的電鍍鋅鋼板例如可以適合地使用於像家 電與辦公用機器等的底盤或機殻零件、鋼製傢倶等那樣主 要使用於屋內的用途中。 【先前技術】 由限制有害物質的使用之觀點考慮,廣泛使用具備不 含有六價鉻的無鉻化學轉化處理皮膜的電鍍鋅鋼板(非鉻 酸鹽電鍍鋅鋼板)。由於伴隨著來自使用者的省略塗裝的 需求,經常是不進行塗裝地使用此種非鉻酸鹽電鍍鋅鋼板 ,因此例如在製造後的線圈保管時、在家電生產商或辦公 用機器生產商中的加工時、在使用者的使用中,有時會長 時間暴露在高溫多濕的環境下。 但是,根據本發明者們的實驗已經明確,如果將非鉻 酸鹽電鍍鋅鋼板在高溫多濕環境下放置半個月以上的較長 時間[例如約5 04小時(2 1天)],則會以斑痕之類的形式於上 述鋼板之表面上產生外觀不均(色調的差別)(成斑點狀變 色的現象)。 此種現象(以下有時稱作「斑污」。)在進行了鉻酸鹽 -5- 200912047 光澤處理的電鍍鋅鋼板中是無法看到的。另外,已經明確 以下事實:斑污與以在存在氯離子的濕潤環境下產生的白 鏽[通常在ns Z23 7 1中規定的鹽水噴霧試驗後第96小時(4 天)評價]、在白鏽產生前(初期)所看到的在比較溫和的腐 飩環境下產生的黑變[通常在5(TC且相對濕度在95 %以上的 恆溫恆濕下72小時(3天)後評價]爲代表的到迄今爲止所報 告過的腐蝕現象不同,尤其是經由將在皮膜中含有Na的 非鉻酸鹽電鍍鋅鋼板在高溫多濕環境下暴露大約半個月以 上的極長時間,則可以開始看到斑污。 但是,迄今爲止所提出的電鍍鋅鋼板的外觀不均改善 技術關於防止白鏽或白鏽產生前的黑變現象的方法(例如 專利第3 043 3 6號、專利第3499544號、專利第3499543號、 特開 2004 — 263252號、特開 2000 - 355790號、特開 2003-5 5 790號),而尙未提供過以防止斑污爲目的的外觀不均改 善技術。 【發明內容】 [發明所欲解決之課題] 本發明是鑒於上述情況而完成的,其目的在於,提供 一種不僅耐白鏽性優異且耐污性也優異的非鉻酸鹽電鍍鋅 鋼板及其製造方法;以及適合使用於此種非鉻酸鹽電鍍鋅 鋼板的製造的鋅電鍍浴。 [用以解決課題之手段] -6- 200912047 可以解決上述問題的本發明的電鑛辞鋼板,是在電鍍 鋅層之上設置了實質上不含有Cr而含有Na 〇.〇5〜5 % (% 係指質量%。以下相同)的樹脂皮膜的電鏟辞鋼板,上述電 鍍鋅層中的Pb及T1以原子換算被控制爲Pb : 5ppm(ppm 係指質量ppm。以下相同)以下及Tl : 1 Oppm以下。 在最佳的實施方式中,上述電鍍鋅層含有選自Ni、 Fe、Cr、Mo、Sn、Cu、Cd、Ag、Si、Co、In、lr 及 w 所 成群中至少一種,以原子換算,Ni: 60〜6000ppm、Fe: 60 〜600ppm、Cr : 0_5 〜5ppm、Mo : 30 〜5 00ppm、Sn : 0.6 〜20ppm、Cu : 8 〜3000ppm、Cd : 0 · 0 0 0 1 〜〇 · 〇 2 p p m、 Ag : 1.0 〜400ppm、Si : 30 〜2000ppm、Co : 0.0003 〜 0.3 ppm ' In: 0.1 〜30ppm、Ir: 0.01 〜l〇ppm、W : 0.1 〜. 50ppm的範圍內。 在最佳的實施方式中,上述樹脂皮膜含有含羧基樹脂 及S i系無機化合物。作爲S i系無機化合物的代表例,例 如可以舉出二氧化矽溶膠Colloidal Silica)。 在最佳的實施方式中’上述樹脂皮膜還含有矽烷偶聯 劑。 可以解決上述問題的本發明的電鍍鋅鋼板的製造方法 包括:(1)使用將電鍍液中的Pb及T1控制爲Pb : 〇.〇8ppm 以下及Tl : 0.2ppm以下的使用酸性鍍液電鍍鋅的步驟、 (2)形成含有0.05〜5質量%的Na的樹脂皮膜的步驟。 在最佳的實施方式中’上述酸性鍍液含有選自 Ni: 20 〜2000ppm ' Fe2 + : 50〜5000ppm、Fe3 + : 50〜5〇〇〇ppm 200912047 、(:r : 5 〜2000ppm、Mo : 50 〜2000ppm、Sn : 0.05 〜 20ppm、Cu : 0.05 〜50ppm、Cd : 0.05 〜5ppm、Ag : 0·05 〜5ppm、Si : 20 〜2000ppm、Co : 0.05 〜5〇ppm、In : 0.5 〜50ppm、lr: 0.05〜5ppm及W: 0.5〜5 0ppm所成群中至 少一種元素。 另外,本發明中,將鍍浴中的Pb及T1控制爲Pb : 0.08ppm以下及Tl: 0.2ppm以下的鋅電鍍浴也包含於本 發明的範圍內。 在最佳的實施方式中,上述鋅電鍍浴含有選自Ni: 2 0 〜2 0 0 0 p p m、F e 2 + : 5 0 〜5 0 0 0 p p m、F e3 + : 5 0 〜5 0 0 0 p p m 、Cr : 5 〜2000ppm、Mo : 50 〜200〇ppm、Sn : 0.05 〜 20ppm、Cu : 0.05 〜50ppm、Cd : 0.05 〜5ppm、Ag : 0.05 〜5ppm、Si : 20 〜2000ppm、Co : 0.0 5 〜5 0 pp m、I n : 0.5 〜50ppm、Ir: 0.05〜5ppm及W: 0_5〜50ppm所成群中至 少一種元素。 本發明的電鍍鋅鋼板由於如上所述地構成,因此可以 大幅度改善非鉻酸鹽光澤處理鋼板的耐白鏽性及耐污性。 [用以實施本發明之最佳形態] 「斑污現象」[成斑點狀產生外觀不均(色調的差別) 的現象]爲於迄今爲止的鉻酸鹽光澤處理鋼板中尙未被認 識的現象。根據本發明者們的實驗明確,尤其是經由將在 無鉻酸鹽樹脂皮膜中含有N a的電鍍鋅鋼板在高溫多濕環 境下暴露長時間(大致約爲5 04小時左右)則可以觀察到。 200912047200912047 IX. Description of the Invention The present invention relates to an electrogalvanized steel sheet excellent in stain resistance and a method for producing the same, and more particularly to an electrogalvanized steel sheet having a resin film substantially free of Cr. A technique for improving the stain resistance of the appearance unevenness (which makes it not conspicuous) which can effectively control the stain caused by Na in the resin film. The electrogalvanized steel sheet of the present invention can be suitably used, for example, in a chassis or a casing part such as a household electric appliance or an office machine, or a steel furniture such as a steel furniture. [Prior Art] An electrogalvanized steel sheet (non-chromate electrogalvanized steel sheet) having a chromium-free chemical conversion treatment film containing no hexavalent chromium is widely used from the viewpoint of restricting the use of harmful substances. Since such a non-chromate electrogalvanized steel sheet is often used without coating, it is often produced in a coil after storage, in a home appliance manufacturer or an office machine. During processing in the business, during use by the user, it may be exposed to high temperature and humidity for a long time. However, according to experiments by the present inventors, it has been clarified that if a non-chromate electrogalvanized steel sheet is left in a high temperature and humidity environment for a long period of time of more than half a month [for example, about 5 04 hours (2 1 day)], then In the form of a stain or the like, unevenness in appearance (a difference in hue) (a phenomenon in which speckle is discolored) is generated on the surface of the above-mentioned steel sheet. This phenomenon (hereinafter sometimes referred to as "staining") is not visible in the electrogalvanized steel sheet subjected to the chromate-5-200912047 gloss treatment. In addition, the following facts have been clarified: staining and white rust generated in a humid environment in the presence of chloride ions [usually evaluated at 96 hours (4 days) after the salt spray test specified in ns Z23 71], in white rust The blackening produced in the relatively mild rot environment seen before (initial) is usually represented by 5 (TC and 72 hours (3 days) under constant temperature and humidity with relative humidity above 95%). The corrosion phenomenon reported so far is different, especially by exposing a non-chromate electrogalvanized steel sheet containing Na in the film to a high temperature and humidity for a long time of about half a month or more. However, the uneven appearance of the electrogalvanized steel sheet proposed so far improves the technique for preventing blackening before white rust or white rust is generated (for example, Patent No. 3,043,6, Patent No. 3,495,454, Patent No. 3,495,543, JP-A-2004-263252, JP-A-2000-355790, JP-A-2003-5 5 790), and has not provided a technique for improving the appearance unevenness for the purpose of preventing staining. [Invention Institute] [Problem to be Solved] The present invention has been made in view of the above circumstances, and an object of the invention is to provide a non-chromate electrogalvanized steel sheet which is excellent not only in white rust resistance but also excellent in stain resistance, and a method for producing the same, and a method suitable for use in A zinc plating bath for the production of such a non-chromate electrogalvanized steel sheet. [Means for Solving the Problem] -6- 200912047 The electric ore plate of the present invention which solves the above problems is provided on the electrogalvanized layer. An electrosurgical steel sheet containing a resin film of Na 〇.〇5 to 5% (% by mass), the same as the above), and Pb and T1 in the electrogalvanized layer are controlled to Pb in atomic conversion. 5 ppm (ppm means mass ppm. The same applies hereinafter) and Tl: 1 Oppm or less. In a preferred embodiment, the electrogalvanized layer contains a material selected from the group consisting of Ni, Fe, Cr, Mo, Sn, Cu, Cd, Ag. At least one of Si, Co, In, lr and w, in atomic conversion, Ni: 60 to 6000 ppm, Fe: 60 to 600 ppm, Cr: 0 to 5 to 5 ppm, Mo: 30 to 5 to 00 ppm, Sn: 0.6 to 20ppm, Cu: 8 to 3000ppm, Cd: 0 · 0 0 0 1 ~〇· 〇2 ppm , Ag : 1.0 to 400 ppm, Si: 30 to 2000 ppm, Co: 0.0003 to 0.3 ppm 'In: 0.1 to 30 ppm, Ir: 0.01 to 1 〇 ppm, W: 0.1 to 50 ppm. In the preferred embodiment The resin film contains a carboxyl group-containing resin and a Si-based inorganic compound. As a representative example of the S i -based inorganic compound, for example, cerium oxide sol Colloidal Silica) can be mentioned. In a preferred embodiment, the above resin film further contains a decane coupling agent. The method for producing an electrogalvanized steel sheet according to the present invention which can solve the above problems includes: (1) using an electroless plating solution for controlling Pb and T1 in a plating solution to Pb: 〇.〇8 ppm or less and Tl: 0.2 ppm or less And (2) a step of forming a resin film containing 0.05 to 5% by mass of Na. In a preferred embodiment, the above acidic plating solution contains a material selected from the group consisting of Ni: 20 to 2000 ppm 'Fe2 + : 50 to 5000 ppm, Fe 3 + : 50 to 5 ppm ppm 200912047, (: r: 5 to 2000 ppm, Mo: 50 to 2000 ppm, Sn: 0.05 to 20 ppm, Cu: 0.05 to 50 ppm, Cd: 0.05 to 5 ppm, Ag: 0·05 to 5 ppm, Si: 20 to 2000 ppm, Co: 0.05 to 5 ppm, In: 0.5 to 50 ppm, Lr: 0.05 to 5 ppm and W: 0.5 to 5 ppm of at least one element in the group. In the present invention, Pb and T1 in the plating bath are controlled to be zinc plating of Pb: 0.08 ppm or less and Tl: 0.2 ppm or less. The bath is also included in the scope of the present invention. In a preferred embodiment, the zinc plating bath contains a material selected from the group consisting of Ni: 2 0 to 2 0 0 ppm, F e 2 + : 5 0 to 5 0 0 ppm, F e3 + : 5 0 to 5 0 0 0 ppm , Cr : 5 to 2000 ppm , Mo : 50 to 200 〇 ppm , Sn : 0.05 to 20 ppm , Cu : 0.05 to 50 ppm , Cd : 0.05 to 5 ppm , Ag : 0.05 to 5 ppm , Si: 20 to 2000 ppm, Co: 0.0 5 to 5 0 pp m, I n : 0.5 to 50 ppm, Ir: 0.05 to 5 ppm, and W: 0 to 5 to 50 ppm of at least one element in the group. The electrogalvanized steel of the present invention Since the plate is configured as described above, it is possible to greatly improve the white rust resistance and the stain resistance of the non-chromate gloss treated steel sheet. [Best form for carrying out the invention] "Staining phenomenon" [spotted The phenomenon of uneven appearance (difference in hue) is a phenomenon that has not been recognized in the chromate-treated steel sheet to date. According to experiments by the present inventors, especially through the chromate-free resin The electrogalvanized steel sheet containing Na in the film is exposed to high temperature and humidity for a long time (about 504 hours or so).

Na主要是以提高無鉻酸鹽樹脂皮膜的強度而實現耐磨損 性(耐損傷性)的提高爲目的添加的(詳情後述),從而可以 將含有Na的非鉻酸鹽樹脂皮膜廣泛用於非鉻酸鹽光澤處 理鋼板的領域中。 因此,本發明者們爲了提供可以防止將非鉻酸鹽電鍍 鋅鋼板在高溫多濕環境下保存極長時間時產生的「斑污」 的外觀不均(使之不醒目)的技術,特別著眼於在成爲原料 的Zn中不可避免地存在的雜質元素、電鍍鋅之時由陽極 材料等的溶解析出而不可避免地被導入電鍍鋅層中的雜質 元素,反覆進行了硏究。 結果發現,如果將鍍層中所含的雜質元素中的特別是 (A)Pb及T1控制在規定水平以下,則可以改善耐污性, 另外,如果將(B)選自由 Ni、Fe、Cr、Mo、Sn、Cu、Cd 、Ag、Si、Co、In、Ir及W所成群中至少一種元素(以下 有時總稱爲「耐污性改善元素」。)的含量控制在規定範 圍內,則可以進一步改善耐污性,從而完成了本發明。上 述(A)中的T1是在本發明者們所作爲硏究物件的非鉻酸鹽 用電鍍鋅鋼板的領域中迄今爲止完全沒有關注過的元素, 本發明者們在超出通常的檢測極限水平地細緻地硏究了鍍 鋅原料中所含的各種不可避免的雜質後,首次發現,對於 耐污性改善來說’與P b相同,T1是應當進行控制(控制) 的元素。 如下詳述所示’上述(A)中規定的Pb及T1是對耐污 性的提高造成不良影響的元素(如果以與耐污性的關係而 200912047 言則是有害元素,可以相對於上述(B)的耐污性改善元素 而稱作耐污性惡化元素。),如果不將此等元素雙方都控 制在規定範圍以下,則無法獲得所需的特性。此等元素越 少越好,最徹底的情況是,最佳設爲Oppm。與之不同, 作爲本發明中的選擇成份的上述(B)的耐污性改善元素都 是經由以規定量以上添加而可以有助於耐污性的進一步提 高的元素(如果以與耐污性的關係而言則爲有用元素),添 加效果與上述的(A)的Pb及T1不同。 又,雖然不爲本發明那般的耐污性改善技術,然而在 上述的各先行專利文獻中,提出過經由控制電鍍鋅層中的 規定的元素的含有量來實現耐白鏽性的改善的方法。但是 ,即使仔細考察這些專利文獻,也沒有任何有關T1的記 載。如後述的實施例中所述,如果不將T1控制在本發明 的水平以下則無法獲得所需的耐污性。另外,上述專利文 獻之中,雖然也有控制電鍍鋅層中的Pb的例子,但是僅 將Pb控制在本發明的範圍內是不充分的,如後述的實施 例中所述’如果不將Pb和T1雙方控制在本發明的範圍內 則無法獲得所需的耐污性。 另外,關於本發明中所規定的耐污性改善元素(選擇 成份),例如在專利第304336號、專利第3499544號、專利 第3499543號、特開2004 — 263252號中,公佈了本發明中 所使用的耐污性改善元素的若干個含有量的一部份相重複 的元素。具體來說,爲了防止白鏽等外觀不均,在專利第 3 043 3 6號、專利第34 995 44號、專利第3 4 9 9543號中,公佈 -10- 200912047 了向鍍浴中添加比Zn更爲貴的元素(Ni、In、Cu、Ag、 Co)的方法,在特開2004 - 263252號中,公佈了於鍍浴中 添加在Zn所溶解的鹼性區域中形成難溶性的氫氧化物的 元素(Fe、Co、Ni、Mn、Mg、Al、Ce、In)、在中性區域 中穩定且在腐蝕環境中也可以穩定地存在的元素(Si、Ti 、V、Mo、Zr)的方法。 但是,兩者所作爲硏究對象的外觀不均如下所述,推 測它們的產生原因不同,產生機制(機理)也不同。 即,本發明中作爲硏究物件的「斑污」的外觀不均是 因將非鉻酸鹽電鍍鋅鋼板極度長時間暴露在高溫高濕下而 開始產生的現象,可以認爲產生機理與在鹽水霧氣氛下產 生的白鏽、因短時間暴露在高溫高濕下而產生的黑變的外 觀不均不同。另外可以認爲,上述的「斑污」是在非鉻酸 鹽化學轉化處理皮膜中含有Na的情況下開始看到的現象 ,在這一點上產生機理也與白鏽或黑變的外觀不均不同。 即使仔細考察這些專利文獻,也完全沒有記載使用了含 Na非鉻酸鹽皮膜的內容。 另外’如後述的實施例中所示,本申請發明中所用的 耐污性改善元素的種類及含有量中,包括與上述的專利文 獻中記載的事實已確認到其效果的耐白鏽性提高元素的種 類及含量不同的情況’可知很難將上述專利文獻中記載的 方法直接應用於耐污性改善技術中。 雖然對在非鉻酸鹽皮膜中所含的N a而生成斑污的機 理的詳情並不清楚’但是可以如下所表示的推測。當將在 -11 - 200912047 非鉻酸鹽皮膜中含有Na的電鍍鋅鋼板放置於高溫多濕環 境的濕潤氣氛下時,則首先水會在皮膜表面結露。皮膜中 的可溶性N a於該結露部份中溶解析出,當含有N a的水 分乾燥時,則在皮膜中就會有Na所凝聚的Na凝聚部份 和Na不凝聚的Na非凝聚部份混合存在。在Na凝聚部份 中,由於鋅的腐蝕反應被Na離子促進,因此在處於皮膜 下面的鏟鋅表面上就會生成偏離ΖηχΟ^χ的化學理論組成 的不定形氧化物,鍍層表面變成發黑的顏色(茶褐色)。另 一方面,在Na非凝聚部份,不產生上述的變色。如此就 可以認爲,斑污現像係僅Na凝聚部份變色,因此作爲皮 膜整體就會看起來是斑痕樣的班駁花紋。 以下,將對本發明的電鍍鋅鋼板進行詳細說明。 本發明的電鍍鋅鋼板是在電鍍鋅層之上設置了實質上 不含有Cr而含有0.05〜5 %的Na的樹脂皮膜的電鍍鋅鋼 板,上述電鍍鋅層中所含的Pb及T1以原子換算被控制爲 Pb : 5ppm以下及Tl : 1 Oppm以下。如後述的實施例中所 示,僅將P b或T1的任意一方控制在上述範圍內,則無法 發揮所需的特性,在將Pb及T1雙方控制在上述範圍內時 才開始發揮所需的特性。Pb及T1的含量越少越好,大致 上控制爲Pb: l.Oppm以下、Tl: Ι.Ορρπι以下爲佳,較佳 控制爲Pb: 0.3ppm以下、Tl: 0.5ppm以下。 上述的電鍍鋅層含有選自Ni、Fe、Cr、Mo、Sn、Cu 、Cd、Ag、Si、Co、In、lr及w所成群中至少一種元素( 耐污性改善元素)以原子換算,Fe: 60〜600 ppm、Cr: 0.5 -12- 200912047 〜5ppm、Mo : 30 〜5 00ppm、Sn : 0 · 6 〜2 Oppm ' C u : 8 〜 3000ppm、Cd : 0.000 1 - 〇.〇2ppm ' Ag : 1.0 〜400ppm、Si :3〇 〜2000ppm、Co: 0 · 0 0 0 3 〜0 · 3 p p m、In: 0.1-3 Oppm 、Ir: 0.01 〜lOppm、W: 0.1 〜50ppni 的車bH 內爲佳。 雖然對於可以藉由上述耐污性改善元素的添加來有效 地防止斑污的機理並不清楚’但是可以認爲’由於經由設 置含有規定量的上述元素的電鍍鋅層’就會對鋅鍍層的結 晶形態與表面的氧化物(例如在鋅鍍層表面不可避免地生 成的包括上述的添加元素的鋅的氣氧化物層等)產生影響 ,因此能夠基本上消除Na凝聚部份與Na非凝聚部份的 色調的差別。其結果是’可以消除由斑污造成的外觀不均 〇 雖然上述元素都具有耐污性改善作用,然而大致上可 以分爲(1)比Zn更爲貴的元素(Ni、Fe、Sn、Cd、Ir、In、 Cu、Ag、Co)和(2)雖然不是比Zn更爲貴的元素然而是形 成氧化物的元素(Cr、Mo、Si、W)。此等元素可以單獨使 用或是也可以合倂使用兩種以上。 爲了有效地發揮上述元素的耐污性改善作用,以原子 換算,將電鍍鋅層中所含的各元素的含有量分別設爲,Ni 在60ppm以上(較佳600ppm以上),Fe在60ppm以上(較佳 80ppm以上),Cr在〇.5ppm以上(較佳〇.8ppm以上),Mo 在30ppm以上(較佳l〇〇ppm以上)’ Sn在0.6ppm以上(較佳 l_5ppm以上)’ Cu在8.0ppm以上(較佳l〇〇ppm以上),Cd 在O.OOOlppm以上(較佳o.oippm以上),Ag在l.Oppm以上 -13- 200912047 (較佳3 0ppm以上),Si在30ppm以上(較佳80ppm以上), Co 在 0.0003ppm 以上(較佳 〇.0〇lppm 以上),In 在 〇 丨 ppm 以上(較佳l.Oppm以上),ΐΓ在0.01ppm以上(較佳〇 lppm 以上)’ W在O.lppm以上(較佳i.0ppm以上)(參照後述的 實施例)。 其中’當過多地添加時,則會產生以下的不佳情況。 首先’當過多地添加F e或S i時,則耐污性改善作用降低 ’耐腐蝕性(特別是耐白鏽性)也會降低。另一方面,當過 多地添加F e或S i以外的耐污性改善元素時,則雖然耐污 性良好’但是耐白鏽性降低。爲了滿足耐污性和耐白鏽性 雙方的特性’獲得優異的表面外觀,將電鍍鋅層中所含的 各兀素的含有量分別設爲,Ni在6000ppm以下,Fe在 600ppm 以下 ’ Cr 在 5.0ppm 以下,Mo 在 50〇ppm 以下,Sn 在20ppm以下’ Cu在3000ppm以下’ Cd在〇.〇2ppm以下 ’ Ag 在 400ppm 以下 ’ Si 在 200〇ppm 以下,c〇 在 0.3ppm 以下’ In在3〇ppm以下,Ir在l〇ppm以下,冒在“叩爪以 下。 上述元素當中’作爲耐污性提高作用優異的元素較佳 爲 Ni、Fe、Cr、Mo、Si、Cu、Co、W、In、Cu、Ag,更 佳的是 Ni、Fe、Mo、Cr、W。 電鍍鋅層中所含的耐污性改善元素的量例如可以使用 原子吸光分析法或感應耦合電槳放射光譜分析法(ICP)或 感應耦合電漿質譜分析法(ICP — MS)等方法來分析。詳,钿 的分析方法記載於後述的實施例的部份中。而且,在分析: -14- 200912047 時’爲了消除鑛液中所含的Zn、Na、S等基質(matrix)元 素所致的測定誤差,使用鹽酸等將鍍層稀釋後實施爲佳。 稀釋倍率只要根據基質元素的濃度與作爲測定物件的耐污 性改善元素的添加量等適當地控制爲合適的範圍g卩可·。後 述的實施例中’在藉由稀釋了 2倍的鹽酸將鍍層稀釋後, 分析鑛層中的元素的含量。 對於電鍍鋅的附著量,如果考慮向鍍層表面析出的鋅 單晶的結晶尺寸,則大致上40g/m2以下爲佳,較佳爲 3 0 g/m2以下。而且,雖然基於上述的觀點,對其下限沒有 特別限定,但是如果考慮鋅的犧牲防腐作用,則大致上 3g/m2爲佳,較佳爲10g/m2。 電鍍鋅層只要至少設於作爲基材的鋼板的規定面上即 可,既可以僅設於鋼板的一面,也可以設於兩面。 樹脂皮膜(非鉻酸鹽樹脂皮膜)含有約0.05〜5%(0.1 % 以上3%以下爲佳,較佳爲1%以下)的Na。Na通常以提高 非鉻酸鹽樹脂皮膜(含有含羧基樹脂及二氧化矽溶膠等Si 系無機化合物)的強度爲目的,而添加於上述的含羧基樹 脂或二氧化矽溶膠中的。在Na的含量未達〇·〇5%的情況 下,例如在含羧基樹脂中的羧基與Na之間不會充分地生 成Na交聯,皮膜的強度降低,另一方面’當Na的含量 超過5 %時,則皮膜中所含的可溶性N a的量增加’耐磨損 性降低。樹脂皮膜中所含的Na量可以使用在構成樹脂皮 膜的各成份(樹脂成份、Si系無機化合物、根據需要含有 的矽烷偶聯劑等)的固體部份中所佔的Na量的總和來表示 -15- 200912047 樹脂皮膜實質上不含有Cr。於此「實質上不含有」 係指可以容許在樹脂皮膜的製作過程中不可避免地混入的 程度的Cr量。例如,本發明中,作爲耐污性改善元素將 微量的Cr添加到鍍層中,然而有鍍層中的Cr混入樹脂皮 膜中的情況。此外,例如在非鉻酸鹽樹脂皮膜中所用的處 理液的調製及塗佈的過程中,從製造容器、塗佈裝置等中 溶解析出微量的C r化合物之類的情況下,C r有可能混入 樹脂皮膜中。此種情況下,樹脂皮膜中所含的C r的量也 大致上在0.01 %以下的範圍內爲佳。 樹脂皮膜含有含羧基樹脂的樹脂成份及Si系無機化 合物(代表性的是二氧化矽溶膠)爲佳。經由設爲含有此等 的樹脂皮膜’皮膜的耐腐蝕性、耐鹼脫脂性、塗裝性等就 會提高。 含羧基樹脂僅具有羧基,則沒有特別限定,例如可以 舉出將不飽和羧酸等具有羧基的單體作爲原料的一部份或 全部並藉由聚合合成的聚合物或利用官能基反應進行了羧 酸改性的樹脂等。 含羧基樹脂也可以使用市售品,例如可以舉出 HITECS 3141(東邦化學製作)等。 樹脂成份也可以含有上述的含羧基樹脂以外的有機樹 脂。 作爲Si系無機化合物,例如可以舉出矽酸鹽及/或二 氧化矽。此等可單獨使用或可合倂使用兩種以上。 -16- 200912047 其中,作爲矽酸鹽,例如可以舉出矽酸鉀、矽酸鋰等 〇 作爲二氧化矽,可以代表性地舉出二氧化矽溶膠、鱗 片狀二氧化矽等。此外,也可以使用粉碎二氧化矽、氣相 法二氧化矽、二氧化矽溶膠(silica s〇l)與熱解法二氧化矽 (fumed silica)等乾式二氧化矽等。 其中,特別使用二氧化矽溶膠爲佳。藉由此,可以提 高樹脂皮膜的強度,此外,在腐蝕環境下二氧化矽濃縮在 皮膜的傷痕部,控制Zn的腐蝕,從而可進一步提高耐腐 蝕性。 二氧化矽溶膠也可以使用市售品,例如可以舉出日產 化學工業(股份有限公司)製作的SNOWTEX系列「ST— 40 j 、「ST-XS」、「ST-N」、「ST—20L」、「ST— UP 」、「ST-ZL」、「ST—SS」、「ST-O」、「ST-AK 」等。此等通常含有Na。 構成樹脂皮膜的樹脂成份與Si系無機化合物(代表性 的爲二氧化矽溶膠)的質量比例大致上在樹脂成份:Si系 無機化合物=5份〜4 5份:5 5份〜9 5份的範圍內爲佳。當樹 脂成份的含量少時,則會有耐腐鈾性、耐驗脫脂性、塗裝 性等降低的傾向,另一方面,當樹脂成份的含量多時,則 耐磨損性、導電性等就會降低。另外,當S i系無機化合 物的含量少時,則會有耐磨損性 '導電性等降低的傾向, 當S i系無機化合物的含有量多時,則由於樹脂成份變少 ’因此樹脂皮膜的成膜性降低,耐腐蝕性降低。 -17- 200912047 樹脂皮膜也可以還含有矽烷偶聯劑。由於藉由矽烷偶 聯劑的添加,上述的含羧基樹脂與s i系無機化合物的結 合會變得牢固,因此Na離子的溶解析出變少,從而進一 步提高耐污性。 矽烷偶聯劑例如具有碳數爲1〜5的烷基、烯丙基、芳 基等的低級烷氧基的材料爲佳。具體來說,例如可以舉出 r 一環氧丙氧基丙基三甲氧基矽烷、r 一環氧丙氧基丙基 甲基二甲氧基矽烷、r 一環氧丙氧基丙基三乙氧基矽烷、 7 —環氧丙氧基甲基二甲氧基矽烷等含環氧丙氧基矽烷偶 聯劑;r -氨基丙基三甲氧基矽烷、r 一氨基丙基三乙氧 基矽烷、n -(点一氨基乙基)一 r —氨基丙基三甲氧基矽 烷、n -(A —氨基乙基)一 r 一氨基丙基甲基二甲氧基矽 烷等含氨基矽烷偶聯劑;乙烯基三甲氧基矽烷、乙烯基三 乙氧基矽烷、乙烯基三(/5 —甲氧基乙氧基)矽烷等含乙烯 基矽烷偶聯劑;r -甲基丙烯醯氧基丙基三甲氧基矽烷等 含甲基丙烯醯氧基矽烷偶聯劑;r-锍丙基三甲氧基矽烷 、r -巯丙基甲基二甲氧基矽烷等含巯基矽烷偶聯劑;τ 一氯丙基甲氧基矽烷、7 —氯丙基三甲氧基矽烷等含鹵素 基矽烷偶聯劑等。此等矽烷偶聯劑可以單獨使用或也可合 併使用兩種以上。 上述中的含環氧丙氧基矽烷偶聯劑由於反應性高、耐 腐蝕性及耐鹼性優異,因此特別使用爲佳。 矽烷偶聯劑也可以使用市售品,例如可以舉出r -環 氧丙氧基丙基三甲氧基矽烷「KBM403」(信越化學公司製 -18- 200912047 作)等。 矽烷偶聯劑的含量相對於樹脂成份與Si系無機化合 物的合計100質量份,大致上5質量份以上25質量份以下的 範圍爲佳。當矽烷偶聯劑的含有量少時,則除了無法有效 地發揮耐污性改善作用以外,上述的含羧基樹脂與Si系 無機化合物的反應性降低,從而使耐磨損性、塗裝性、耐 腐触性等降低。另一方面,當矽烷偶聯劑的含量多時,則 在樹脂皮膜的製作中所使用的皮膜調製液的安定性降低, 有凝膠化之虞。另外’由於不參與反應的矽烷偶聯劑的量 變多,因此鍍鋅層與樹脂皮膜的密著性有可能降低。 以下,作爲本發明中所使用的代表性的非鉻酸鹽樹脂 皮膜,對使用了以下的樹脂皮膜的情況進行說明。以下對 上述樹脂皮膜的構成及調製方法進行簡單的說明,然而本 發明中所使用的樹脂皮膜並不是限定於此。 而且,該樹脂皮膜是由本發明者們的申請所公佈的聚 氨酯樹脂改良皮膜,詳細情況如特開2 0 0 6 - 4 3 9 1 3號公報 中記載的所表示(例如參照[0 0 2 0 ]段〜[〇 〇 7 1 ]段)。 樹脂皮膜可以由以下的樹脂水性液得到。在樹脂水性 液中’作爲不揮發性樹脂成份含有5〜4 5質量份含羧基聚 氨酯樹脂水性液與乙烯-不飽和羧酸共聚物水性分散液, 並且該樹脂水性液中含有平均粒徑爲4〜20nm的二氧化矽 粒子5 5〜9 5質量份,合計i 〇 〇質量份,相對於上述合計1 0 〇 質量份’在樹脂水性液中還以5〜2 5質量份的比例含有矽 院偶聯劑’並且上述聚氨酯樹脂水性液的不揮發性樹脂成 -19- 200912047 份(PU)與上述乙烯-不飽和羧酸共聚物水性分散液的不揮 發性成份(EC)的配合比例以質量比計爲PU : EC = 9 : 1〜2 • 1 ° 首先,對含羧基聚氨酯水性液進行說明。 作爲含羧基聚氨酯水性液’可以使用在水性介質中分 散了含羧基聚氨酯樹脂的水性分散液或在水性介質中溶解 了上述含羧基聚氨酯樹脂的水溶液的任意一種。在上述水 性介質中,除了水以外,還可以含有微量醇、N -甲基吡 咯烷酮、丙酮等親水性的溶劑。 上述含羧基聚氨酯樹脂將氨基甲酸酯預聚物用鏈增長 劑進行鏈增長反應而得的樹脂爲佳,上述氨基甲酸酯預聚 物例如可以經由使後述的聚異氰酸酯成份與多元醇成份反 應而得到。 作爲構成上述氨基甲酸酯預聚物的聚異氰酸酯成份, 使用選自甲苯二異氰酸酯(TDI)、二苯基甲烷二異氰酸酯 (MDI)及二環己基甲烷二異氰酸酯(氫化MDI)所成群中至 少1種聚異氰酸酯。於此,作爲構成氨基甲酸酯預聚物的 多元醇成份,使用1,4一環己烷二甲醇、聚醚多元醇及具 有羧基的多元醇的全部3種多元醇,將全部3種設爲二醇。 另外,聚醚多元醇只要是在分子鏈中具有至少兩個以上羥 基,主骨架由烯化氧單位構成,則沒有特別限定,例如可 以舉出聚氧化乙二醇、聚氧化丙二醇、聚氧化丁二醇 (polyoxytetramethylene glycol)等= 另外,作爲將上述的氨基甲酸酯預聚物進行鏈增長反 -20- 200912047 應的鏈增長劑,沒有特別限定,例如可以舉出聚胺、低分 子量多元醇、鏈烷醇胺等。 含羧基聚氨酯樹脂的水性液的製作可以採用公知的方 法’例如將含羧基氨基甲酸酯預聚物的羧基用鹼基中和, 在水性介質中乳化分散而進行鏈增長反應的方法,在乳化 劑的存在下將含羧基聚氨酯樹脂以高剪切力乳化分散而進 行鏈增長反應的方法等。 以下,對乙烯-不飽和羧酸共聚物水性分散液進行說 明。 乙烯-不飽和羧酸共聚物水性分散液只要是在水性介 質中分散了乙烯-不飽和羧酸共聚物的液體,就沒有特別 限定,上述乙烯-不飽和羧酸共聚物係乙烯與乙烯性不飽 和羧酸的共聚物。作爲不飽和羧酸,可以舉出(甲基)丙烯 酸、巴豆酸、異巴豆酸、馬來酸、富馬酸、衣康酸等,可 以經由將此等中的1種以上與乙烯藉由公知的高溫高壓聚 合法等聚合來獲得共聚物。 上述的乙烯一不飽和羧酸共聚物具有羧基,經由將該 羧基使用有機鹼(例如沸點在1 00 °C以下的胺)、Na等1價 的金屬離子中和,就可以形成水性分散液。 於此,1價的金屬離子雖然如上所述是爲了中和而使 用的,然而在耐溶劑性或皮膜硬度提高方面也是有效的。 作爲1價金屬的化合物,含有選自鈉、鉀、鋰中的1種或2 種以上的金屬爲佳,此等金屬的氫氧化物、碳氧化物或氧 化物爲佳。其中,NaOH、KOH、LiOH等爲佳,NaOH性 -21 - 200912047 能最佳。本發明爲改善由該NaOH引起的斑污現象的發明 〇 1價金屬的化合物的量相對於乙烯一不飽和羧酸共聚 物中的羧基1莫耳,設爲0.02〜0.4莫耳(2〜40莫耳%)的範 圍爲佳。由於當上述金屬化合物量少於0.0 2莫耳時,則乳 化安定性變得不充分,而當超過〇 . 4莫耳時,則所得的樹 脂皮膜的吸濕性(特別是對鹼性溶液)增大,脫脂步驟後的 耐腐蝕性惡化,因此不夠理想。較佳的金屬化合物量的下 限爲〇.〇3莫耳,更佳的下限爲0.1莫耳,最佳的金屬化合 物量的上限爲0.5莫耳,特別佳的上限爲0.2莫耳。 當上述的有機鹼(沸點在100 °C以下的胺爲佳)與1價的 金屬化合物的合計量(中和量)過多時,則會有水性分散液 的黏度急劇地上升而固化的情況,此外過多的鹼部份會成 爲耐腐蝕性惡化的原因,因此爲了將其揮發就需要很大的 能量,所以不夠理想。但是,由於當中和量過少時,則乳 化性差,因此也不夠理想。所以,有機鹼與1價的金屬化 合物的合計使用量相對於乙烯-不飽和羧酸共聚物中的羧 基1莫耳,設爲0.3〜1.0莫耳的範圍爲佳。 上述的乙烯-不飽和羧酸共聚物水性分散液經由將有 機鹼和1價的金屬離子並用而乳化,就可以獲得以平均粒 徑爲5〜50nm這樣極小的微粒(油滴)狀態分散於水性介質 中的液體。由此可以推定,可以達成所製得的樹脂皮膜的 成膜性、與金屬板的密著性、皮膜的緻密化’提高耐腐蝕 性。在上述水性介質中,除了水以外’也可以含有醇或醚 -22- 200912047 等親水性溶劑。而且’上述水性分散液的樹脂粒子的粒徑 例如可以藉由使用了光散射光度計(大塚電子公司製作等) 的雷射繞射法來測定。 作爲乙烯-不飽和羧酸共聚物水性分散液的配製方法 ,將乙烯-不飽和羧酸共聚物與水性介質一起投入例如均 質機(Homogenizer)裝置等中,根據需要在70〜25〇t的加 熱下’適當地以水溶液等形態添加沸點在i 0(TC以下的胺 等有機鹼和1價的金屬的化合物(先添加沸點在1 〇 〇它以下 的胺’或將沸點在1 00 °C以下的胺與1價的金屬的化合物幾 乎同時地添加),以高剪切力進行攪拌。 然後’將藉由上述的方法得到的含羧基聚氨酯樹脂水 性液及乙烯一不飽和羧酸共聚物水性分散液與二氧化矽粒 子及矽烷偶聯劑以規定量配合,根據需要添加蠟、交聯劑 等而得到所需的樹脂水性液。二氧化矽粒子、矽烷偶聯劑 、蠟及交聯劑等在任意的階段添加都可以,但是爲了使得 在交聯劑及矽烷偶聯劑添加後不進行交聯反應、凝膠化, 最好不進行加熱。 以上對本發明中所使用的代表性的樹脂皮膜進行了說 明。 在樹脂皮膜中,除了上述成份以外,在不損害本發明 的作用的範圍內,也可含有通常所含的成份(例如防脫皮 劑、平整劑、消泡劑、滲透劑、乳化劑、成膜輔助劑、著 色顏料、潤滑劑、界面活性劑、用於賦予導電性的導電性 添加劑、增黏劑、分散劑、乾燥劑、安定劑、防黴劑、防 -23- 200912047 腐劑、阻凍劑等)。 樹脂皮膜的厚度大致上0.1〜2μπι的範圍內爲佳,〇.2 〜Ι.Ομπι的範圍內爲較佳。當樹脂皮膜的厚度小於〇.ιμιη 時,則耐腐蝕性降低,然而當超過2 μιη時,則導電性降低 〇 在樹脂皮膜之上,以提高耐腐蝕性(特別是耐白鏽性) 或塗裝性等爲目的,也可以設置有機系樹脂皮膜、有機. 無機複合皮膜、無機系皮膜、電沈積塗覆膜等皮膜。 於此,作爲有機樹脂皮膜,例如可以舉出在聚氨酯系 樹脂、環氧樹脂、丙烯酸系樹脂、聚乙烯、聚丙烯、乙烯 一丙烯酸共聚物等烯烴系樹脂、聚苯乙烯等苯乙烯系樹脂 、聚酯或它們的共聚物或改性物等作爲塗料用途而公知的 樹脂中’根據需要組合二氧化矽溶膠或固體潤滑劑、交聯 劑等而形成的皮膜等。 另外’作爲有機·無機複合皮膜,代表性地可以舉出 將上述有機樹脂、矽酸鈉等水玻璃形成成份組合而形成的 皮膜。 作爲上述的無機系皮膜,代表性地可以舉出水玻璃皮 膜、由矽酸鋰形成的皮膜。 以下’對本發明的非鉻酸鹽電鏟鋅鋼板的製造方法進 行說明。 首先’準備成爲母材的基底鋼板(電鍍原板)。作爲基 IS _板’只要是在電鍍鋅鋼板中通常所使用的鋼板,就沒 有特別限定’例如可以使用普通鋼板、鋁脫氧鋼板(A1 — -24- 200912047 killed steel sheet)、高強度鋼板等各種鋼板。電鍍原板最 好在電鍍鋅之則’進行脫脂或酸洗等前處理。 然後,藉由電鍍鋅法,在基底鋼板之上形成電鍍鋅層 ,製造電鑛鋅鋼板。 在電鍍鋅中所用的酸性浴中,爲了形成所需的鍍層, 將硫酸或鹽酸等酸性液中的Pb及T1控制在Pb : 0.08ppm 以下及Tl: 0.2ppm以下的範圍。如後述的實施例中所表 示’當Pb及T1的添加量超過上述的上限時,則無法發揮 所需要的耐污性。Pb及T1的添加量越少越好,大致上控 制在Pb: 0.05ppm以下及Tl: O.lppm以下的範圍爲佳, 控制在Pb: 〇.〇3ppm以下及Tl: 0.05ppm以下的範圍爲更 佳。 另外,爲了將電鍍鋅層中的Pb及T1控制在本發明中 規定的範圍內,除了將如上所述地控制酸性液中的Pb及 T1的添加量以外,還留意成爲原料的Zn或電鍍鋅中所使 用的陽極材料等爲佳。具體來說,將成爲原料的Zn中的 Pb及T1分別控制在約15ppm以下及約lOppm以下爲佳。 另外’當將Pb—In— Ag系合金或Pb— Sn系合金等pb合 金作爲陽極材料使用時,則由於電鑛鋅層中的Pb量有可 能因該陽極材料的溶解析出而增加,因此使用實質上不含 有P b的陽極材料(例如氧化銥電極)爲佳。 另外,在電鍍鋅中所用的酸性浴中,在硫酸或鹽酸等 酸性液中’也可以添加選自Ni : 20〜20 00Ppm、ρε2+ : 50 〜5 000ppm、Fe3+ : 50 〜5000ppm、Cr : 5 〜20〇〇ppm、M〇 -25- 200912047 :50 〜2000ppm、Sn: 0.05 〜20ppm、Cu: 0.05 〜5〇ppm、 Cd : 0.05 〜5ppm、Ag '· 0.05 〜5ppm、Si : 20 〜2000ppm、 Co : 0.05 〜50ppm、In : 0.5 〜50ppm、lr : 〇.〇5 〜5ppm 及 W: 0·5〜50ppm所成群中至少一種元素,藉由此,耐污性 就會進一步提高。當各元素的添加量小於上述的下限時, 則無法有效地發揮耐污性,然而當各元素的添加量超過上 述的上限時,則耐污性或耐白鏽性等特性就會·卩牵彳氏。 各元素的佳的添加量分別爲Ni : 200ppm以上 2000ppm 以下、Fe2+ ·_ 200ppm 以上 20〇〇ppm 以下、Fe3+ : 500PPm 以上2000PPm 以下、Cr: 50Ppm 以上2〇〇〇ppm 以 下、Mo: 200ppm 以上 2000ppm 以下、Sn: 〇·5ρρπ1 以上 5ppm 以下、Cu : 2ppm 以上 50ppm 以下、cd : 0.5ppm 以 上 5ppm 以下、Ag: 〇.5ppm 以上 5ppm 以下、Si: 5〇ppm 以上800ppm以下、c〇: 0.5ppm以上5ppm以下、in: 2ppm以上20ppm以下、ir: 〇.5ppm以上5ppm以下及w: 2ppm以上50ppm以下。 上述元素(Pb及τι以及耐污性改善元素)對於鍍浴中 的添加形態沒有特別限定,只要各元素的原子換算的添加 量滿足上述範圍’則可以採用任意的形態。例如,可以以 金屬粉末或金屬箱等金屬狀態添加到鍍液中或可以硫酸鹽 、氯化物鹽、隣酸鹽' 碳酸鹽、氧化物鹽等金屬鹽的形態 添加。在以金屬鹽的形態添加的情況下,元素的價數沒有 特別限定’可以採用通常所能夠採用的値。例如,以可 以3價或可以6價。M〇或w等係可爲*價或6價。如後述的 -26- 200912047 實施例中所表示,上述的元素也可以水合物的形態添加。 在鍍液中,除了上述元素以外,也可以添加一般所添 加的其他的成份。例如以提高導電性而實現耗電量的降低 的爲目的,也可以添加Na2S04、(NH4)2S04、KC1、NaCl 等導電性輔助劑。 本發明中所使用的上述的鋅電鍍浴爲新型的,包含於 本發明的範圍內。即,(A)被控制爲Pb : 0.08ppm以下及 Tl: 0.2ppm以下的鋅電鍍浴、(B)上述(A)中,控制爲Pb :0.08ppm以下及Tl : 0.2ppm以下,並且含有選自Ni : 20〜2000ppm、F e 2 + : 5 0 〜 5 0 0 Opp m 、 Fe3+ : 50〜5000ppm 、Cr : 5 〜2000pp m、 Mo :50〜 2 0 0 Oppm、S n · 0.05 〜 20ppm ' Cu : 0.05- 、5 Oppm 、Cd : 0,05 〜5ppm、Ag · 0.05 〜5ppm、Si: 20 〜 2000ppr n、Co: 0.05 〜50ppm、In : 0.5 〜50ppm' Ir : 0.05 〜5 p p m及 W : 0.5〜50ppm所成群中至 少一種元素的鋅電鍍浴也包含於本發明的範圍內。 本發明的鋅電鍍浴是在電鍍鋅等中通常所使用的鋅電 鍍浴中具有如下特徵’即,將Pb及T1的添加量控制爲上 述的水平,或者還將耐污性改善元素的添加量控制在上述 的範圍內’對於其他的鍍浴中成份沒有特別限定。本發明 中’可以在通常所使用的鋅電鍍浴,例如硫酸鋅浴(含有 硫酸鋅與硫酸的硫酸鋅浴、含有硫酸鋅與硫酸鈉和硫酸銨 的硫酸鋅浴等)等酸性鋅鍍浴中,添加上述的元素。本發 明的鋅鍍浴中,除了上述元素以外,也可以含有在鋅電鍍 浴中通常添加的添加成份(例如上述的導電性輔助劑等)。 -27- 200912047 具體來說’除了後述的實施例中記載的鋅電鍍浴以外 ’還可以使用以下的鋅電鍍浴。 (硫酸鋅浴…其一)Na is mainly added for the purpose of improving the strength of the chromate-free resin film and improving the abrasion resistance (damage resistance) (described later), so that a non-chromate resin film containing Na can be widely used. Non-chromate gloss treated steel sheet. Therefore, the inventors of the present invention have made it possible to provide a technique for preventing uneven appearance (not conspicuous) of "staining" which is generated when a non-chromate electrogalvanized steel sheet is stored in a high-temperature and high-humidity environment for a long time. In the case of an impurity element which is inevitably present in Zn which is a raw material, and an impurity element which is inevitably deposited in the electrogalvanized layer by dissolution of an anode material or the like at the time of electroplating, it is repeatedly examined. As a result, it has been found that if (A) Pb and T1, among the impurity elements contained in the plating layer, are controlled to a predetermined level or less, the stain resistance can be improved, and if (B) is selected from Ni, Fe, Cr, When the content of at least one of the groups of Mo, Sn, Cu, Cd, Ag, Si, Co, In, Ir, and W (hereinafter collectively referred to as "stain resistance improving element") is controlled within a predetermined range, The stain resistance can be further improved, thereby completing the present invention. The T1 in the above (A) is an element which has not been paid attention to so far in the field of the electrogalvanized steel sheet for non-chromate which the present inventors have as an investigation object, and the present inventors exceeded the usual detection limit. After carefully examining the various unavoidable impurities contained in the galvanized raw material, it was found for the first time that 'the same as P b for the improvement of the stain resistance, T1 is an element that should be controlled (controlled). As shown in the following detailed description, Pb and T1 specified in the above (A) are elements which adversely affect the improvement of the stain resistance (if the relationship with the stain resistance is 200912047, it is a harmful element, and it can be relative to the above ( The stain resistance improving element of B) is called a stain resistance deterioration element.) If both of these elements are not controlled within a predetermined range, the desired characteristics cannot be obtained. The fewer these elements, the better. The most thorough case is that the best setting is Oppm. In contrast, the antifouling improving element of the above (B), which is a component selected in the present invention, is an element which can contribute to further improvement of the stain resistance by being added in a predetermined amount or more (if it is resistant to staining). The relationship is a useful element), and the addition effect is different from Pb and T1 of (A) above. Moreover, although it is not the technique for improving the stain resistance of the present invention, it has been proposed in the above-mentioned prior patent documents to improve the white rust resistance by controlling the content of a predetermined element in the electrogalvanized layer. method. However, even if these patent documents are examined in detail, there is no record of T1. As described in the examples to be described later, if T1 is not controlled below the level of the present invention, the desired stain resistance cannot be obtained. Further, in the above-mentioned patent documents, although there is an example of controlling Pb in the electroplated zinc layer, it is not sufficient to control Pb only within the scope of the present invention, as described in the following examples, if Pb and The control of both sides of T1 within the scope of the present invention does not provide the desired stain resistance. Further, in the present invention, for example, in the present invention, for example, in the present invention, the present invention is disclosed in the patent application No. 304,336, the patent No. 3,494,344, the patent No. 3,495,543, the Japanese Patent Application No. 2004-263252. The stain resistance used improves a number of partially repeating elements of the element. Specifically, in order to prevent uneven appearance such as white rust, in the patent No. 3 043 3 6 , the patent No. 34 995 44 , and the patent No . 3 49 9543 , the addition of the ratio to the plating bath is disclosed in October 2009. A more expensive element of Zn (Ni, In, Cu, Ag, Co) is disclosed in JP-A-2004-263252, which discloses the addition of a poorly soluble hydrogen in an alkaline region dissolved in Zn in a plating bath. Oxide elements (Fe, Co, Ni, Mn, Mg, Al, Ce, In), elements that are stable in the neutral region and can be stably present in a corrosive environment (Si, Ti, V, Mo, Zr) )Methods. However, the appearance unevenness of the two as the object of study is as follows, and the causes of their occurrence are different, and the mechanism (mechanism) is also different. In other words, in the present invention, the uneven appearance of the "stain" of the object to be investigated is caused by the exposure of the non-chromate electrogalvanized steel sheet to a high temperature and high humidity for a long time, and it is considered that the mechanism and mechanism are The white rust generated in a salt water mist atmosphere differs in appearance unevenness due to short-term exposure to high temperature and high humidity. In addition, it is considered that the above-mentioned "stain" is a phenomenon which is observed when Na is contained in the non-chromate chemical conversion treatment film, and the mechanism of occurrence is also uneven with the appearance of white rust or blackening. different. Even if these patent documents are examined in detail, there is no description of the use of a Na-containing non-chromate film. In addition, as shown in the examples to be described later, the type and content of the stain resistance improving element used in the invention of the present invention include the improvement of white rust resistance confirmed by the facts described in the above-mentioned patent documents. When the types and contents of the elements are different, it is difficult to directly apply the method described in the above patent documents to the technique for improving the stain resistance. Although the details of the mechanism for generating stain on the Na contained in the non-chromate film are not clear', it can be estimated as shown below. When an electrogalvanized steel sheet containing Na in a non-chromate film of -11 - 200912047 is placed in a humid atmosphere of a high temperature and humidity environment, water first dews on the surface of the film. The soluble Na in the film dissolves and precipitates in the condensation portion. When the water containing Na is dried, the Na agglomerated portion where Na is agglomerated and the Na non-agglomerated portion where Na is not agglomerated are mixed in the film. presence. In the Na condensed part, since the corrosion reaction of zinc is promoted by Na ions, an amorphous oxide deviating from the chemical theoretical composition of ΖηχΟ^χ is formed on the surface of the shovel zinc under the film, and the surface of the plating layer becomes black. Color (tea brown). On the other hand, in the non-agglomerated portion of Na, the above discoloration is not produced. In this way, it can be considered that the stained image is only partially discolored by the agglomerated portion of Na, and therefore, as a whole of the film, it appears to be a patch-like pattern. Hereinafter, the electrogalvanized steel sheet of the present invention will be described in detail. The electrogalvanized steel sheet according to the present invention is an electrogalvanized steel sheet in which a resin film containing 0.05 to 5% of Na is substantially contained without containing Cr, and Pb and T1 contained in the electrogalvanized layer are converted by atomic conversion. It is controlled to Pb: 5 ppm or less and Tl: 1 Oppm or less. As shown in the later-described embodiment, if only one of Pb or T1 is controlled within the above range, the desired characteristics cannot be exhibited, and when both of Pb and T1 are controlled within the above range, the desired function is started. characteristic. The content of Pb and T1 is preferably as small as possible, and is preferably controlled to be Pb: l.Oppm or less, and Tl: Ι.Ορρπι or less, preferably controlled to be Pb: 0.3 ppm or less and Tl: 0.5 ppm or less. The electrogalvanized layer described above contains at least one element (soil resistance improving element) selected from the group consisting of Ni, Fe, Cr, Mo, Sn, Cu, Cd, Ag, Si, Co, In, lr, and w. , Fe: 60 to 600 ppm, Cr: 0.5 -12-200912047 to 5 ppm, Mo: 30 to 5 00 ppm, Sn: 0 · 6 to 2 Oppm ' C u : 8 to 3000 ppm, Cd: 0.000 1 - 〇.〇2 ppm 'Ag : 1.0 to 400 ppm, Si: 3 〇 to 2000 ppm, Co: 0 · 0 0 0 3 〜 0 · 3 ppm, In: 0.1-3 Oppm, Ir: 0.01 to lOppm, W: 0.1 to 50 ppni in the vehicle bH It is better. Although the mechanism for effectively preventing staining by the addition of the above-described stain resistance improving element is not clear 'but it can be considered that the zinc plating layer is formed by the provision of an electrogalvanized layer containing a predetermined amount of the above elements. The crystal form and the surface oxide (for example, a gas oxide layer of zinc including the above-mentioned additive element which is inevitably formed on the surface of the zinc plating layer) are affected, and thus the Na agglomerated portion and the Na non-agglomerated portion can be substantially eliminated. The difference in hue. As a result, it is possible to eliminate the uneven appearance caused by the stain. Although the above elements have the effect of improving the stain resistance, they can be roughly classified into (1) elements more expensive than Zn (Ni, Fe, Sn, Cd). Ir, In, Cu, Ag, Co) and (2) are not more expensive elements than Zn but are oxide-forming elements (Cr, Mo, Si, W). These elements may be used alone or in combination of two or more. In order to effectively exhibit the effect of improving the stain resistance of the above-mentioned elements, the content of each element contained in the electrogalvanized layer is set to be 60 ppm or more (preferably 600 ppm or more) of Ni and 60 ppm or more of Fe (in terms of atomic conversion). Preferably, it is 80 ppm or more), Cr is 〇.5 ppm or more (preferably 〇.8 ppm or more), Mo is 30 ppm or more (preferably 〇〇ppm or more), and Sn is 0.6 ppm or more (preferably 1-5 ppm or more). Above ppm (preferably l〇〇ppm or more), Cd is above O.OOOlppm (more preferably o. oippm or more), Ag is above 1.0 ppm, and then from -13 to 200912047 (more preferably, more than 30 ppm), and Si is above 30 ppm ( Preferably, it is 80 ppm or more), Co is 0.0003 ppm or more (preferably 〇.0 〇lppm or more), In is 〇丨ppm or more (preferably 1.0 ppm or more), and ΐΓ is 0.01 ppm or more (preferably 〇lppm or more). W is at 0.1 ppm or more (preferably i.0 ppm or more) (refer to Examples described later). Where 'when added too much, the following bad situation will occur. First, when Fe or S i is excessively added, the effect of improving the stain resistance is lowered, and the corrosion resistance (especially the white rust resistance) is also lowered. On the other hand, when the stain resistance improving element other than F e or S i is excessively added, the stain resistance is good, but the white rust resistance is lowered. In order to satisfy the characteristics of both the stain resistance and the white rust resistance, an excellent surface appearance is obtained, and the content of each element contained in the electrogalvanized layer is set to be 6000 ppm or less and Fe to 600 ppm or less. 5.0 ppm or less, Mo is 50 〇ppm or less, Sn is 20 ppm or less, 'Cu is 3,000 ppm or less' Cd is 〇.〇2 ppm or less 'Ag is 400 ppm or less 'Si is 200 〇ppm or less, c 〇 is 0.3 ppm or less 'In 3 〇ppm or less, Ir is less than 10 〇 ppm, and it is under the “claw. Among the above elements, the elements excellent in the improvement of the stain resistance are preferably Ni, Fe, Cr, Mo, Si, Cu, Co, W. , In, Cu, Ag, more preferably Ni, Fe, Mo, Cr, W. The amount of the anti-fouling improving element contained in the electro-galvanized layer can be, for example, atomic absorption spectrometry or inductively coupled electric paddle emission spectrometry Analytical method (ICP) or inductively coupled plasma mass spectrometry (ICP-MS), etc. The detailed analysis method is described in the section of the examples described later. Moreover, in the analysis: -14- 200912047 In order to eliminate the matrix of Zn, Na, S, etc. contained in the ore solution (mat The measurement error due to the element of rix) is preferably carried out by diluting the plating layer with hydrochloric acid or the like. The dilution ratio is appropriately controlled to a suitable range according to the concentration of the matrix element and the amount of the stain resistance improving element to be measured. In the example described later, 'the content of the element in the ore layer is analyzed after diluting the plating layer by diluting twice the hydrochloric acid. For the adhesion amount of the electrogalvanized zinc, consider the zinc single crystal deposited on the surface of the plating layer. The crystal size is preferably 40 g/m 2 or less, preferably 30 g/m 2 or less. Further, although the lower limit is not particularly limited based on the above viewpoint, if the sacrificial corrosion prevention effect of zinc is considered, The upper part is preferably 3 g/m 2 , and more preferably 10 g/m 2 . The electrogalvanized layer may be provided on at least one surface of the steel sheet as the base material, and may be provided only on one side of the steel sheet or on both sides. (non-chromate resin film) contains about 0.05 to 5% (more preferably 0.1% or more and 3% or less, preferably 1% or less) of Na. Na is usually used to improve a non-chromate resin film (containing a carboxyl group-containing resin and Dioxane The strength of the Si-based inorganic compound such as cerium sol is added to the above-mentioned carboxyl group-containing resin or cerium oxide sol. When the content of Na is less than 5%, for example, in a carboxyl group-containing resin Na is not sufficiently formed between the carboxyl group and Na, and the strength of the film is lowered. On the other hand, when the content of Na exceeds 5%, the amount of soluble Na contained in the film is increased. The amount of Na contained in the resin film may be the sum of the amounts of Na in the solid portion of each component (resin component, Si-based inorganic compound, decane coupling agent or the like which is required to be contained, etc.) constituting the resin film. To indicate that -15-200912047 resin film does not contain Cr in nature. Here, "substantially not contained" means the amount of Cr which can be allowed to be inevitably mixed in the production process of the resin film. For example, in the present invention, a trace amount of Cr is added to the plating layer as a stain resistance improving element, but Cr in the plating layer is mixed into the resin film. Further, for example, in the process of preparing and coating a treatment liquid used in a non-chromate resin film, when a small amount of a CR compound is dissolved and precipitated from a production container, a coating device, or the like, C r may be It is mixed into the resin film. In this case, the amount of Cr contained in the resin film is also preferably in the range of substantially 0.01% or less. The resin film preferably contains a resin component containing a carboxyl group-containing resin and a Si-based inorganic compound (typically a cerium oxide sol). Corrosion resistance, alkali degreasing property, coating property, and the like are improved by the film of the resin film containing such a film. The carboxyl group-containing resin is not particularly limited, and examples thereof include a monomer having a carboxyl group such as an unsaturated carboxylic acid as a part or all of a raw material, and a polymer synthesized by polymerization or a reaction using a functional group. A carboxylic acid-modified resin or the like. A commercially available product can also be used as the carboxyl group-containing resin, and examples thereof include HITECS 3141 (manufactured by Toho Chemical Co., Ltd.). The resin component may contain an organic resin other than the above-mentioned carboxyl group-containing resin. Examples of the Si-based inorganic compound include citrate and/or ruthenium dioxide. These may be used alone or in combination of two or more. In the case of the bismuth hydride, for example, potassium ruthenate or lithium niobate is used as the cerium oxide, and examples thereof include cerium oxide sol and scaly cerium oxide. Further, dry cerium oxide such as pulverized cerium oxide, vapor phase cerium oxide, cerium oxide sol (silica s?), and fumed silica such as fumed silica may also be used. Among them, it is preferred to use a cerium oxide sol in particular. Thereby, the strength of the resin film can be improved, and in addition, in the corrosive environment, cerium oxide is concentrated on the scar portion of the film to control the corrosion of Zn, thereby further improving the corrosion resistance. Commercially available products can also be used as the cerium oxide sol. For example, the SNOWTEX series "ST-40", "ST-XS", "ST-N", and "ST-20L" manufactured by Nissan Chemical Industries, Ltd. , "ST-UP", "ST-ZL", "ST-SS", "ST-O", "ST-AK", etc. These usually contain Na. The mass ratio of the resin component constituting the resin film to the Si-based inorganic compound (typically cerium oxide sol) is substantially in the resin component: Si-based inorganic compound = 5 parts to 4 5 parts: 5 5 parts to 9 parts The range is better. When the content of the resin component is small, the uranium resistance, the degreasing resistance, the coating property, and the like tend to be lowered. On the other hand, when the content of the resin component is large, abrasion resistance, electrical conductivity, and the like are obtained. It will decrease. In addition, when the content of the Si-based inorganic compound is small, the abrasion resistance 'conductivity and the like tend to be lowered. When the content of the Si-based inorganic compound is large, the resin component is reduced. The film forming property is lowered and the corrosion resistance is lowered. -17- 200912047 The resin film may also contain a decane coupling agent. Since the above-mentioned carboxyl group-containing resin and the s i-based inorganic compound are strongly bonded by the addition of the decane coupling agent, the dissolution and precipitation of Na ions are reduced, and the stain resistance is further improved. The decane coupling agent is preferably a material having a lower alkoxy group such as an alkyl group, an allyl group or an aryl group having 1 to 5 carbon atoms. Specific examples include, for example, r-glycidoxypropyltrimethoxydecane, r-glycidoxypropylmethyldimethoxydecane, and r-glycidoxypropyltriethyl. a glycidyloxydecane coupling agent such as oxydecane or 7-glycidoxymethyldimethoxydecane; r-aminopropyltrimethoxydecane, r-aminopropyltriethoxydecane An amino-containing decane coupling agent such as n-(spot-aminoethyl)-r-aminopropyltrimethoxydecane, n-(A-aminoethyl)-r-aminopropylmethyldimethoxydecane a vinyl-containing decane coupling agent such as vinyltrimethoxydecane, vinyltriethoxydecane, vinyltris(/5-methoxyethoxy)decane; r-methacryloxypropylpropyl a methacrylic decyloxydecane coupling agent such as trimethoxydecane; a mercapto-containing decane coupling agent such as r-mercaptopropyltrimethoxydecane or r-mercaptopropylmethyldimethoxydecane; A halogen-containing decane coupling agent such as propyl methoxy decane or 7-chloropropyltrimethoxy decane. These decane coupling agents may be used singly or in combination of two or more. The above-mentioned glycidyloxydecane coupling agent is preferably used because it is highly reactive, excellent in corrosion resistance and alkali resistance. A commercially available product may be used as the decane coupling agent, and examples thereof include r-cyclopropoxypropyltrimethoxydecane "KBM403" (manufactured by Shin-Etsu Chemical Co., Ltd., -18-200912047). The content of the decane coupling agent is preferably in the range of substantially 5 parts by mass to 25 parts by mass or less based on 100 parts by mass of the total of the resin component and the Si-based inorganic compound. When the content of the decane coupling agent is small, the reactivity of the carboxyl group-containing resin and the Si-based inorganic compound is lowered, and the abrasion resistance and the coating property are deteriorated. Corrosion resistance, etc. are reduced. On the other hand, when the content of the decane coupling agent is large, the stability of the coating liquid used in the production of the resin film is lowered, and gelation is caused. Further, since the amount of the decane coupling agent which does not participate in the reaction increases, the adhesion between the galvanized layer and the resin film may be lowered. Hereinafter, a case where the following resin film is used as a representative non-chromate resin film used in the present invention will be described. Hereinafter, the configuration and preparation method of the resin film will be briefly described. However, the resin film used in the present invention is not limited thereto. Further, the resin film is a modified film of a urethane resin disclosed in the application of the present inventors, and the details are as described in JP-A-2000-439.1, (for example, refer to [0 0 2 0]. ] Section ~ [〇〇7 1] paragraph). The resin film can be obtained from the following aqueous resin solution. In the aqueous resin solution, 'as a nonvolatile resin component, 5 to 45 parts by mass of an aqueous dispersion of a carboxyl group-containing polyurethane resin and an aqueous dispersion of an ethylene-unsaturated carboxylic acid, and the aqueous solution of the resin contains an average particle diameter of 4 5 to 9 parts by mass of cerium oxide particles of ~20 nm, and a total of 10 parts by mass of the cerium oxide particles in the total amount of 5 to 25 parts by mass in the aqueous resin solution The coupling agent' and the above-mentioned non-volatile resin of the aqueous polyurethane resin are formed into a ratio of the non-volatile component (EC) of the aqueous dispersion of the above-mentioned ethylene-unsaturated carboxylic acid copolymer to -19-200912047 parts (PU). The ratio is PU: EC = 9 : 1 to 2 • 1 ° First, the aqueous solution containing carboxyl group polyurethane is explained. As the aqueous carboxyl group-containing polyurethane liquid, either an aqueous dispersion containing a carboxyl group-containing urethane resin or an aqueous solution in which the carboxyl group-containing urethane resin is dissolved in an aqueous medium can be used. The aqueous medium may contain a hydrophilic solvent such as a trace amount of alcohol, N-methylpyrrolidone or acetone in addition to water. The carboxyl group-containing urethane resin preferably has a resin obtained by chain-growth reaction of a urethane prepolymer with a chain extender, and the urethane prepolymer can be reacted, for example, with a polyisocyanate component described later. And get it. The polyisocyanate component constituting the urethane prepolymer is at least selected from the group consisting of toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), and dicyclohexylmethane diisocyanate (hydrogenated MDI). 1 kind of polyisocyanate. Here, as the polyol component constituting the urethane prepolymer, all three kinds of polyols using 1,4-cyclohexanedimethanol, a polyether polyol, and a polyol having a carboxyl group are used, and all three are set to three. Glycol. Further, the polyether polyol is not particularly limited as long as it has at least two or more hydroxyl groups in the molecular chain, and the main skeleton is composed of an alkylene oxide unit, and examples thereof include polyethylene oxide, polyoxypropylene glycol, and polyoxybutylene. The polyvalent tetramethylene glycol or the like is not particularly limited, and the chain extender is a chain extender of the above-mentioned urethane prepolymer. , alkanolamine and the like. The aqueous solution containing a carboxyl group-containing urethane resin can be produced by a known method, for example, by neutralizing a carboxyl group of a carboxyl group-containing urethane prepolymer with a base, emulsifying and dispersing in an aqueous medium, and performing a chain extension reaction. A method in which a carboxyl group-containing urethane resin is emulsified and dispersed under high shear force to carry out a chain extension reaction in the presence of a solvent. Hereinafter, an aqueous dispersion of an ethylene-unsaturated carboxylic acid copolymer will be described. The aqueous dispersion of the ethylene-unsaturated carboxylic acid copolymer is not particularly limited as long as it is a liquid in which an ethylene-unsaturated carboxylic acid copolymer is dispersed in an aqueous medium, and the ethylene-unsaturated carboxylic acid copolymer is not ethylene or ethylene. A copolymer of a saturated carboxylic acid. Examples of the unsaturated carboxylic acid include (meth)acrylic acid, crotonic acid, isocrotonic acid, maleic acid, fumaric acid, and itaconic acid, and one or more of these may be known from ethylene. The high temperature and high pressure polymerization method or the like is polymerized to obtain a copolymer. The above-mentioned ethylene monounsaturated carboxylic acid copolymer has a carboxyl group, and an aqueous dispersion can be formed by neutralizing the carboxyl group with an organic base (e.g., an amine having a boiling point of 100 ° C or lower) or a monovalent metal ion such as Na. Here, the monovalent metal ion is used for neutralization as described above, but is also effective in improving solvent resistance or film hardness. The compound of the monovalent metal is preferably one or more selected from the group consisting of sodium, potassium and lithium, and preferably a hydroxide, a carbon oxide or an oxide of the metal. Among them, NaOH, KOH, LiOH, etc. are preferred, and NaOH -21 - 200912047 is optimal. The present invention is an invention for improving the staining phenomenon caused by the NaOH. The amount of the quinone metal compound is 0.02 to 0.4 mol (2 to 40) with respect to the carboxyl group 1 molar in the ethylene monounsaturated carboxylic acid copolymer. The range of Moll%) is better. When the amount of the above metal compound is less than 0.0 2 mol, the emulsion stability becomes insufficient, and when it exceeds 0.4 mol, the hygroscopicity of the obtained resin film (especially for an alkaline solution) The increase in corrosion resistance after the degreasing step is deteriorated, which is not preferable. The lower limit of the amount of the preferred metal compound is 〇.〇3 mole, and the lower limit is preferably 0.1 mole. The upper limit of the optimum amount of the metal compound is 0.5 mole, and the particularly preferred upper limit is 0.2 mole. When the total amount (neutralization amount) of the above-mentioned organic base (the amine having a boiling point of 100 ° C or less) or the monovalent metal compound is too large, the viscosity of the aqueous dispersion may rapidly rise and solidify. Further, since an excessive amount of the alkali portion causes deterioration of corrosion resistance, it requires a large amount of energy in order to volatilize it, which is not preferable. However, since the amount of neutralization is too small, the emulsifiability is poor, and therefore it is not ideal. Therefore, the total amount of the organic base and the monovalent metal compound used is preferably in the range of 0.3 to 1.0 mol with respect to the carboxyl group 1 mol in the ethylene-unsaturated carboxylic acid copolymer. The aqueous dispersion of the ethylene-unsaturated carboxylic acid copolymer is emulsified by using an organic base and a monovalent metal ion in combination, and it is possible to obtain an extremely small particle (oil droplet) having an average particle diameter of 5 to 50 nm. The liquid in the medium. From this, it is estimated that the film formability of the obtained resin film, the adhesion to the metal plate, and the densification of the film can be improved to improve the corrosion resistance. In the above aqueous medium, a hydrophilic solvent such as alcohol or ether-22-200912047 may be contained in addition to water. Further, the particle diameter of the resin particles of the above aqueous dispersion can be measured, for example, by a laser diffraction method using a light scattering photometer (manufactured by Otsuka Electronics Co., Ltd.). As a method of preparing an aqueous dispersion of an ethylene-unsaturated carboxylic acid copolymer, an ethylene-unsaturated carboxylic acid copolymer is introduced together with an aqueous medium into, for example, a homogenizer apparatus or the like, and heated at 70 to 25 Torr as needed. Next, a compound having an boiling point of i 0 (an amine such as an amine below TC and a monovalent metal (first adding an amine having a boiling point of 1 〇〇 or less) or a boiling point of less than 100 ° C is appropriately added in the form of an aqueous solution or the like. The amine is added almost simultaneously with the compound of the monovalent metal), and is stirred with high shear force. Then, the aqueous solution of the carboxyl group-containing polyurethane resin obtained by the above method and the copolymer of the ethylene-unsaturated carboxylic acid are dispersed. The liquid is mixed with the cerium oxide particles and the decane coupling agent in a predetermined amount, and if necessary, a wax, a crosslinking agent, or the like is added to obtain a desired aqueous resin liquid, cerium oxide particles, a decane coupling agent, a wax, a crosslinking agent, and the like. It may be added at any stage. However, in order to prevent crosslinking and gelation after the addition of the crosslinking agent and the decane coupling agent, it is preferred not to carry out heating. In the resin film, in addition to the above components, components which are usually contained (for example, anti-skinning agent, leveling agent, defoaming) may be contained within a range not impairing the effects of the present invention. Agent, penetrant, emulsifier, film forming aid, coloring pigment, lubricant, surfactant, conductive additive for imparting conductivity, tackifier, dispersant, desiccant, stabilizer, mold inhibitor, Anti--23- 200912047 preservative, antifreeze, etc.) The thickness of the resin film is preferably in the range of 0.1 to 2 μm, preferably in the range of 〇.2 to Ι.Ομπι. When the thickness of the resin film is less than 〇 In the case of .ιμιη, the corrosion resistance is lowered. However, when it exceeds 2 μm, the conductivity is lowered on the resin film to improve the corrosion resistance (especially white rust resistance) or the coating property. A film such as an organic resin film, an organic inorganic composite film, an inorganic film, or an electrodeposition coating film may be provided. Here, examples of the organic resin film include a urethane resin and an epoxy resin. An olefin-based resin such as a fat, an acrylic resin, a polyethylene, a polypropylene or an ethylene-acrylic acid copolymer, a styrene resin such as polystyrene, a polyester, a copolymer or a modified product thereof, or the like, which is known as a coating material. A film formed by combining a cerium oxide sol, a solid lubricant, a crosslinking agent, or the like as needed. The organic-inorganic composite film is typically a water glass such as the above-mentioned organic resin or sodium citrate. The film formed by the combination of the components is typically a water glass film or a film formed of lithium niobate. The following is a method for producing a non-chromate electric shovel zinc steel sheet according to the present invention. First, the base steel sheet (electroplated original sheet) to be used as a base material is used. The base IS _ plate is not particularly limited as long as it is a steel sheet generally used in an electrogalvanized steel sheet. For example, an ordinary steel sheet or an aluminum deoxidized steel sheet can be used. A1 — -24- 200912047 killed steel sheet), various steel sheets such as high-strength steel sheets. It is preferable that the electroplated original plate is subjected to pre-treatment such as degreasing or pickling in the case of electro-galvanizing. Then, an electrogalvanized steel sheet is produced by forming an electrogalvanized layer on the base steel sheet by an electrogalvanizing method. In the acidic bath used for electrogalvanizing, in order to form a desired plating layer, Pb and T1 in an acidic liquid such as sulfuric acid or hydrochloric acid are controlled to a range of Pb: 0.08 ppm or less and Tl: 0.2 ppm or less. As will be described in the examples to be described later, when the amount of addition of Pb and T1 exceeds the above upper limit, the required stain resistance cannot be exhibited. The smaller the amount of Pb and T1 added, the better, and it is preferably controlled in the range of Pb: 0.05 ppm or less and Tl: O.lppm or less, and the control is in the range of Pb: 〇. 〇 3 ppm or less and Tl: 0.05 ppm or less. Better. In addition, in order to control Pb and T1 in the electroplated zinc layer within the range prescribed by the present invention, in addition to controlling the addition amount of Pb and T1 in the acidic liquid as described above, attention is paid to the raw material of Zn or electrogalvanized. The anode material or the like used in the method is preferred. Specifically, it is preferable to control Pb and T1 in Zn which are raw materials to be about 15 ppm or less and about 10 ppm or less, respectively. In addition, when a pb alloy such as a Pb—In—Ag alloy or a Pb—Sn alloy is used as an anode material, the amount of Pb in the zinc ore layer may increase due to dissolution and precipitation of the anode material, so that it is used. An anode material (for example, a ruthenium oxide electrode) which does not substantially contain P b is preferred. Further, in the acidic bath used in electrogalvanizing, in an acidic liquid such as sulfuric acid or hydrochloric acid, it may be selected from Ni: 20 to 20 00 Ppm, ρ ε 2 : 50 to 5 000 ppm, Fe 3 + : 50 to 5000 ppm, and Cr : 5 〜 20〇〇ppm, M〇-25- 200912047:50~2000ppm, Sn: 0.05~20ppm, Cu: 0.05~5〇ppm, Cd: 0.05~5ppm, Ag '·0.05 ~5ppm, Si: 20~2000ppm, Co : 0.05 to 50 ppm, In: 0.5 to 50 ppm, lr: 〇.〇5 to 5 ppm, and W: 0·5 to 50 ppm of at least one element in the group, whereby the stain resistance is further improved. When the amount of addition of each element is less than the above lower limit, the stain resistance cannot be effectively exhibited. However, when the amount of each element added exceeds the above upper limit, properties such as stain resistance and white rust resistance are caused. Yu. The preferable addition amount of each element is Ni: 200 ppm or more and 2000 ppm or less, Fe2+ · _ 200 ppm or more and 20 〇〇 ppm or less, Fe3+: 500 ppm or more and 2000 ppm or less, Cr: 50 ppm or more and 2 〇〇〇 ppm or less, and Mo: 200 ppm or more and 2000 ppm. Hereinafter, Sn: 〇·5ρρπ1 or more and 5 ppm or less, Cu: 2 ppm or more and 50 ppm or less, cd: 0.5 ppm or more and 5 ppm or less, Ag: 5. 5 ppm or more and 5 ppm or less, Si: 5 〇 ppm or more and 800 ppm or less, c 〇: 0.5 ppm or more 5 ppm or less, in: 2 ppm or more and 20 ppm or less, ir: 5 ppm or more and 5 ppm or less, and w: 2 ppm or more and 50 ppm or less. The above-mentioned elements (Pb and τ1 and the stain resistance improving element) are not particularly limited in the form of addition in the plating bath, and any form can be adopted as long as the atomic conversion amount of each element satisfies the above range. For example, it may be added to the plating solution in a metal state such as a metal powder or a metal box or may be added in the form of a metal salt such as a sulfate, a chloride salt, an acid salt of a phthalate or an oxide salt. In the case of being added in the form of a metal salt, the valence of the element is not particularly limited. A ruthenium which can be generally used can be used. For example, it may be 3 or 6 valence. M〇 or w, etc. can be *price or 6 price. As described in the examples of -26-200912047 to be described later, the above elements may be added in the form of a hydrate. In the plating solution, in addition to the above elements, other components which are generally added may be added. For example, a conductive auxiliary agent such as Na2S04, (NH4)2S04, KC1, or NaCl may be added for the purpose of improving conductivity and reducing power consumption. The zinc plating bath described above used in the present invention is novel and is included in the scope of the present invention. In other words, (A) is controlled to have a zinc plating bath of Pb: 0.08 ppm or less and Tl: 0.2 ppm or less, and (B) in the above (A), control is Pb: 0.08 ppm or less and Tl: 0.2 ppm or less, and contains From Ni: 20 to 2000 ppm, F e 2 + : 5 0 to 5 0 0 Opp m , Fe3+ : 50 to 5000 ppm, Cr: 5 to 2000 pp m, Mo: 50 to 2 0 0 ppm, S n · 0.05 to 20 ppm ' Cu : 0.05 - , 5 Oppm , Cd : 0,05 to 5 ppm, Ag · 0.05 to 5 ppm, Si: 20 to 2000 ppr n, Co: 0.05 to 50 ppm, In : 0.5 to 50 ppm ' Ir : 0.05 to 5 ppm and W : A zinc electroplating bath of at least one element in the group of 0.5 to 50 ppm is also included in the scope of the present invention. The zinc plating bath of the present invention has the following characteristics in a zinc plating bath which is generally used in electrogalvanizing or the like, that is, the amount of addition of Pb and T1 is controlled to the above-described level, or the amount of addition of the stain resistance improving element is also improved. The control is within the above range. 'The components in the other plating bath are not particularly limited. In the present invention, 'the zinc plating bath which is generally used, for example, a zinc sulfate bath (a zinc sulfate bath containing zinc sulfate and sulfuric acid, a zinc sulfate bath containing zinc sulfate and sodium sulfate, and the like) may be used in an acid zinc plating bath. , add the above elements. The zinc plating bath of the present invention may contain, in addition to the above elements, an additive component (for example, the above-mentioned conductive auxiliary agent) which is usually added to the zinc plating bath. -27- 200912047 Specifically, the following zinc plating baths can be used in addition to the zinc plating bath described in the examples to be described later. (Zinc sulfate bath...one)

ZnS04 · 7H20 3 5 Og/LZnS04 · 7H20 3 5 Og/L

H2S04 3 Og/L (硫酸鋅浴…其二)H2S04 3 Og/L (zinc sulfate bath...second)

ZnS04 * 7H20 3 50g/LZnS04 * 7H20 3 50g/L

Na2S04 70g/LNa2S04 70g/L

(NH4)2S〇4 3 0 g/L 本發明的製造方法的特徵是,將鍍液中的Pb及T1控 制爲規定水平’最佳爲使用還添加了規定量耐污性改善元 素的鍍液來形成電鍍鋅層,其他的電鍍條件可以在不損害 本發明的作用的範圍內適當地決定,例如,如下所表示地 控制爲佳。 考慮到與電流效率或鍍層燒傷現象的關係,鍍液的 pH大致上0.5〜4.0的範圍內爲佳,較佳爲1.〇〜2.0的範圍 內。 鍍液的溫度大致上設爲50〜7(TC的範圍內爲佳。 鍍液的相對流速大致上0.3〜5m/SeC的範圍內爲佳。 於此,所謂相對流速是指鍍液的流動方向速度與作爲電鍍 原板的鋼板的通板方向速度之差。 電鍍中所使用的電極(陽極)的種類只要是通常所使用 -28- 200912047 的就沒有特別限定,例如除了 P b - S η電極、P b — I η電極 、Pb— Ag電極、Pb — In — Ag電極等鉛系電極以外,還可 以舉出氧化銃電極、鲜電極等。 電鍍槽可以使用縱型及橫型的任一種的槽。電鍍鋅的 方法沒有特別限定,例如可以舉出恆電流電鍍法或脈衝電 鍍法等。 在如上所述地形成了鍍層後,如下所表示地形成樹脂 皮膜(非鉻酸鹽皮膜)。在樹脂皮膜的形成前,以提高皮膜 密著性、改善耐腐蝕性、控制外觀等爲目的,也可以在鍍 層的表面例如使用 Co、Ni、Mo、V、磷酸鹽、硝酸鹽等 的胺等進行公知的前處理。 具體來說,首先準備含有規定量含羧基樹脂的樹脂成 份及S i系無機化合物,含有規定量矽烷偶聯劑的無鉻化 學轉化處理液(以下有時簡稱爲「處理液」。)爲佳。處理 液爲將以下的成份溶解、分散在可以完全溶解的水系溶劑 (例如鹽酸或硝酸溶液等)中的液體。 處理液中所含的樹脂成份與Si系無機化合物的質量 比例大致上爲樹脂成份:Si系無機化合物=5份〜45份: 5 5份〜95份的範圍內爲佳。當含羧基樹脂等樹脂成份的量 少時’則會有耐腐蝕性、耐鹼脫脂性、塗裝性等降低的傾 向。另一方面,當樹脂成份的量多時,則耐磨損性、導電 性等就會降低。另外,當二氧化矽溶膠的量少時,則會有 耐磨損性、導電性等降低的傾向,當二氧化矽溶膠的量多 時’則由於樹脂成份變少,因此會使樹脂皮膜的成膜性降 -29- 200912047 低,耐腐蝕性降低。 處理液也可以還含有矽烷偶聯劑。處理液中所含的 烷偶聯劑的含有量如後述的實施例中所表示,相對於樹 成份與Si系無機化合物的合計100質量份,大致上5〜 質量份的範圍爲佳。當矽烷偶聯劑的含量少時,則除了 法有效地發揮耐污性改善作用以外,含羧基樹脂與Si 無機化合物的反應性也會降低,從而使耐磨損性、塗裝 、耐腐蝕性等降低。另一方面,當矽烷偶聯劑的含量多 ,則樹脂皮膜的製作中所使用的皮膜調製液的安定性降 ,有凝膠化之虞。另外,由於不參與反應的矽烷偶聯劑 量變多,因此鋅鍍層與樹脂皮膜的密著性有可能降低。 在處理液中,除了上述成份以外,根據需要,也可 添加蠟或交聯劑等。另外,在處理液中,在不損害本發 的作用的範圍內,也可以含有通常所含的成份(例如防 皮劑、平整劑、消泡劑、滲透劑、乳化劑、成膜輔助劑 著色顏料、潤滑劑、界面活性劑、用於賦予導電性的導 性添加劑、增黏劑、分散劑、乾燥劑、安定劑、防黴劑 防腐劑、阻凍劑等)。 當將含有上述的成份的處理液使用公知的方法,例 使用輥塗法、噴塗法、淋幕塗裝法、刀式塗佈法、棒塗 、浸塗法、刷毛塗佈法等塗佈於金屬板的一面或兩面上 ’進行加熱、乾燥時,則可以得到具備所需的樹脂皮膜 電鍍鋅鋼板。 加熱·乾燥溫度在所使用的含羧基樹脂與Si系無機 矽 脂 25 w 系 性 時 低 的 以 明 脫 、 電 如 法 後 的 化 -30- 200912047 合物的交聯反應充分進行的溫度(例如大致上板溫爲90〜 1 00 °C )下進行。另外’在作爲潤滑劑使用球形的聚乙烯蠟 的情況下,由於如果維持好球形的話,則在其後的加工步 驟中的加工性就會變得良好,因此最好在約70〜1 30t的 範圍內進行乾燥。 【實施方式】 [實施例] 下面將舉出實施例對本發明進行更爲具體地說明,然 而本發明並不受下述實施例限制,也可以在能夠適合上述 •後述的主旨的範圍中適當地進行改變而實施,此種方式 也包含於本發明的技術範圍中。 實施例1 本實施例中,硏究了鍍層中所含的Pb及T1對耐污性 以及耐白鏽性造成的影響。於此,與上述的特開20 04 -2 2 44 54號公報的實施例1中所記載的方法相同地製作了樹 脂皮膜。 (1)樹脂水性液的製作 於此,由含有含羧基聚氨酯樹脂水性液、乙烯-不飽 和羧酸共聚物水性分散液、二氧化矽粒子及矽烷偶聯劑的 樹脂水性液製作了樹脂皮膜。具體的製作方法如下所表示 -31 - 200912047 (1 - 1)含羧基聚氨酯樹脂水性液的調製 對具備攪拌機、溫度計、溫度控制器的內容量爲0.8L 的合成裝置中作爲多元醇成份加入保土谷化學工業(股份 有限公司)製聚四亞甲基醚乙二醇(平均分子量爲l〇〇〇)60g 、1,4 —環己烷二甲醇Mg、二羥甲基丙酸2〇g,繼而作爲 反應溶劑加入N -甲基吡略烷酮3〇.〇g。作爲異氰酸酯成 份加入1〇4g甲苯二異氰酸酯(以下有時簡稱爲「TDI」), 從8 0。(:升溫到8 5 °C,反應5小時。所得到的預聚物的N C Ο 含量爲8.9%。繼而添加三乙胺16g而進行中和,加入乙二 胺1 6 g和水4 8 0 g的混合水溶液’在5 0 °C下乳化4小時,進 行鏈增長反應而得到聚氨醋樹脂水性分散液(不揮發性樹 脂成份爲2 9 _ 1 % ’酸價爲4 1.4)。 (1 一 2)乙烯-不飽和羧酸共聚物水性分散液的配製 於具備攪拌機、溫度計、溫度控制器的內容量爲0.8L 的乳化設備的高壓釜中,加入水626質量份、乙烯-丙烯 酸共聚物(丙烯酸20質量%、熔融指數(MI)爲300)160質量 份,相對於乙烯-丙烯酸共聚物的羧基1莫耳’添加40莫 耳%三乙胺、15莫耳%氫氧化鈉’在150°C、5Pa的氣氛下 進行高速攪拌,冷卻爲40 °C而得到乙烯一丙烯酸共聚物的 水性分散液。接者’於上述水性分散液中,作爲交聯劑添 加4,4’ -雙(亞乙基亞氨基羰基氨基)二苯基甲烷(日本催化 劑製,CHEMITITE DZ— 22E, 「CHEMITITE」爲註冊商 -32- 200912047 標),使之相對於乙烯一丙烯酸共聚物的不揮發性樹脂成 份1 〇〇質量份達到5質量份的比例。 (1 一 3 )樹脂水性液的調製 將上述說明中得到的含羧基聚氨酯樹脂水性液、上述 乙烯-丙烯酸共聚物水性分散液、二氧化砂溶膠(日產化 學工業(股份有限公司)製「ST— XS」、平均粒徑4〜6nm) 以不揮發性成份換算合計添加1 0 0質量份,並使它們達到5 質量份:2 5質量份:7 0質量份的添加比例,另外相對於該 合計1 〇 〇質量份,再作爲矽烷偶聯劑添加1 〇質量份7•—環 氧丙氧基丙基三甲氧基矽烷(信越化學製「KBM403」), 調製了樹脂水性液。 (2)電鍍鋅鋼板的製作 作爲電鍍原板,使用了以常法製 作的A1鋁脫氧鋼板。將其脫脂·酸洗後,使用電鍍面 積爲180mmx300rnm的迴圏型電鍍裝置,使用硫酸鹽浴, 在下述的條件下實施電鍍,得到電鍍鋅鋼板。 (鍍液組成) 使用了含有以下的成份並且以硫酸鹽的形態在表1所 示的範圍中分別添加了表1中記載的元素(Pb/Tl)的鍍液。 另外,還準備了完全不添加此等元素的鍍液。(NH4)2S〇4 3 0 g/L The production method of the present invention is characterized in that Pb and T1 in the plating solution are controlled to a predetermined level, and it is preferable to use a plating solution in which a predetermined amount of the stain resistance improving element is added. In order to form an electrogalvanized layer, other plating conditions can be appropriately determined within a range that does not impair the effects of the present invention, and for example, it is preferably controlled as shown below. The pH of the plating solution is preferably in the range of 0.5 to 4.0, preferably in the range of 1. 〇 to 2.0, in view of the relationship with the current efficiency or the burn phenomenon of the plating layer. The temperature of the plating solution is approximately 50 to 7 (best in the range of TC. The relative flow rate of the plating solution is preferably in the range of 0.3 to 5 m/SeC. Here, the relative flow rate means the flow direction of the plating solution. The difference between the speed and the speed of the plate in the plate as the plated original plate. The type of the electrode (anode) used in the plating is not particularly limited as long as it is generally used -28-200912047, for example, in addition to the P b - S η electrode, Examples of the lead-based electrode such as P b — I η electrode, Pb—Ag electrode, and Pb—In—Ag electrode include a ruthenium oxide electrode, a fresh electrode, etc. The plating tank may use any of a vertical type and a horizontal type. The method of electroplating zinc is not particularly limited, and examples thereof include a constant current plating method, a pulse plating method, and the like. After the plating layer is formed as described above, a resin film (non-chromate film) is formed as shown below. Before the formation of the film, for the purpose of improving the film adhesion, improving the corrosion resistance, and controlling the appearance, the surface of the plating layer may be made of, for example, an amine such as Co, Ni, Mo, V, phosphate or nitrate. Specifically, first, a chromium-free chemical conversion treatment liquid containing a predetermined amount of a carboxyl group-containing resin component and a Si-based inorganic compound, and a predetermined amount of a decane coupling agent (hereinafter sometimes referred to simply as "treatment liquid" is prepared. The treatment liquid is a liquid in which the following components are dissolved and dispersed in an aqueous solvent (for example, hydrochloric acid or a nitric acid solution) which can be completely dissolved. The resin component contained in the treatment liquid and the quality of the Si-based inorganic compound. The ratio is roughly the resin component: Si-based inorganic compound = 5 parts to 45 parts: preferably in the range of 5 5 parts to 95 parts. When the amount of the resin component such as a carboxyl group-containing resin is small, there is corrosion resistance and resistance. When the amount of the resin component is large, the abrasion resistance, the electrical conductivity, and the like are lowered. When the amount of the cerium oxide sol is small, the amount of the cerium oxide sol is small. There is a tendency for abrasion resistance and electrical conductivity to decrease. When the amount of the cerium oxide sol is large, the resin composition is reduced, so that the film formation property of the resin film is lowered -29-200912047, and corrosion resistance is low. reduce. The treatment liquid may further contain a decane coupling agent. The content of the alkane coupling agent contained in the treatment liquid is generally 100 parts by mass based on the total of the tree component and the Si-based inorganic compound, as shown in Examples described later. The range of 5 parts by mass is preferably. When the content of the decane coupling agent is small, in addition to the effect of effectively improving the stain resistance, the reactivity of the carboxyl group-containing resin with the Si inorganic compound is also lowered, thereby making the wear resistant. On the other hand, when the content of the decane coupling agent is large, the stability of the coating liquid used in the production of the resin film is lowered, and gelation is caused. Since the amount of the decane coupling which does not participate in the reaction increases, the adhesion between the zinc plating layer and the resin film may be lowered. In the treatment liquid, in addition to the above components, a wax or a crosslinking agent or the like may be added as needed. Further, in the treatment liquid, it is also possible to contain a component (for example, an anti-skin agent, a leveling agent, an antifoaming agent, a penetrating agent, an emulsifier, a film-forming auxiliary agent) which is usually contained in a range which does not impair the effects of the present invention. Pigments, lubricants, surfactants, conductive additives for imparting conductivity, tackifiers, dispersants, desiccants, stabilizers, anti-fungal preservatives, antifreezes, etc.). When the treatment liquid containing the above components is used, a known method is used, and the method is applied by a roll coating method, a spray coating method, a curtain coating method, a knife coating method, a bar coating method, a dip coating method, a brush coating method, or the like. When one side or both sides of a metal plate is heated and dried, a desired resin film galvanized steel sheet can be obtained. The heating/drying temperature is a temperature at which the crosslinking reaction of the -30-200912047 compound which is low after the use of the carboxyl group-containing resin and the Si-based inorganic oxime is low (for example, The plate temperature is approximately 90 to 1 00 ° C). In addition, in the case of using a spherical polyethylene wax as a lubricant, since the processing property in the subsequent processing step becomes good if the spherical shape is maintained, it is preferably about 70 to 1 30 t. Drying is carried out within the range. [Embodiment] The present invention will be more specifically described by the following examples. However, the present invention is not limited by the following examples, and may be appropriately selected in the scope of the above-described subject matter. It is implemented by making a change, and such a mode is also included in the technical scope of the present invention. [Embodiment 1] In this embodiment, the effects of Pb and T1 contained in the plating layer on stain resistance and white rust resistance were examined. Here, a resin film was produced in the same manner as in the method described in Example 1 of the above-mentioned JP-A No. 20 04 -2 2 44 54. (1) Preparation of aqueous resin solution Here, a resin film was prepared from an aqueous resin liquid containing an aqueous solution of a carboxyl group-containing urethane resin, an aqueous dispersion of an ethylene-unsaturated carboxylic acid copolymer, cerium oxide particles and a decane coupling agent. The specific production method is as follows -31 - 200912047 (1 - 1) Preparation of aqueous solution containing carboxyl group-containing urethane resin In a synthetic device having a content of 0.8 L with a stirrer, a thermometer, and a temperature controller, it is added as a polyol component to the Baogu Valley. Chemical Industry Co., Ltd. produces polytetramethylene ether glycol (average molecular weight l〇〇〇) 60g, 1,4-cyclohexanedimethanol Mg, dimethylolpropionic acid 2〇g, and then N-methylpyrrolidone 3〇.〇g was added as a reaction solvent. To the isocyanate component, 1 4 g of toluene diisocyanate (hereinafter sometimes abbreviated as "TDI") was added, from 80. (: The temperature was raised to 85 ° C, and the reaction was carried out for 5 hours. The obtained prepolymer had an NC Ο content of 8.9%. Then, 16 g of triethylamine was added for neutralization, and ethylenediamine 16 g and water 4 8 0 were added. The mixed aqueous solution of g was emulsified at 50 ° C for 4 hours, and subjected to a chain extension reaction to obtain an aqueous dispersion of a polyurethane resin (the nonvolatile resin component was 2 9 _ 1 % 'acid value was 4 1.4). 1) Preparation of an aqueous dispersion of an ethylene-unsaturated carboxylic acid copolymer in an autoclave equipped with an emulsifier having a content of 0.8 L of a stirrer, a thermometer, and a temperature controller, and adding 626 parts by mass of water, an ethylene-acrylic acid copolymer (20% by mass of acrylic acid, 300: melt index (MI)) 160 parts by mass, adding 40 mol% of triethylamine, 15 mol% of sodium hydroxide' to 150 of the carboxyl group 1 molar of the ethylene-acrylic acid copolymer High-speed stirring was carried out in an atmosphere of ° C and 5 Pa, and the mixture was cooled to 40 ° C to obtain an aqueous dispersion of an ethylene-acrylic acid copolymer. In the above aqueous dispersion, 4,4'-double was added as a crosslinking agent. Ethyleneimidocarbonylamino)diphenylmethane (manufactured by Japan Catalyst, CH EMITITE DZ—22E, “CHEMITITE” is the registrar-32-200912047), which is 5 parts by mass relative to the non-volatile resin component of the ethylene-acrylic acid copolymer. (1 - 3 ) In the preparation of the aqueous resin solution, the aqueous solution of the carboxyl group-containing urethane resin obtained in the above description, the aqueous dispersion of the ethylene-acrylic acid copolymer, the silica dioxide sol ("ST-XS" manufactured by Nissan Chemical Industries Co., Ltd., and the average particle size) The diameter is 4 to 6 nm), and 100 parts by mass is added in total in terms of nonvolatile components, and they are brought to 5 parts by mass: 25 parts by mass: an addition ratio of 70 parts by mass, and 1 part by mass relative to the total amount Further, 1 part by mass of 7•-glycidoxypropyltrimethoxydecane ("KBM403" manufactured by Shin-Etsu Chemical Co., Ltd.) was added as a decane coupling agent to prepare a resin aqueous solution. (2) Preparation of an electrogalvanized steel sheet For the electroplating original plate, an A1 aluminum deoxidized steel plate produced by a conventional method is used. After degreasing and pickling, a reflow type plating apparatus having a plating area of 180 mm x 300 rnm is used, and a sulfate bath is used, in the following strip Electroplating was carried out to obtain an electrogalvanized steel sheet. (Polyplating liquid composition) The plating of the elements (Pb/Tl) shown in Table 1 was added in the range shown in Table 1 in the form of sulfate in the following composition. In addition, a plating solution in which these elements are not added at all is prepared.

ZnS04 * 7H2〇 3 5 0g/L -33- 200912047ZnS04 * 7H2〇 3 5 0g/L -33- 200912047

Na2S04 70g/LNa2S04 70g/L

H2S04 20g/L 其他的電鍍條件如下所表示。 -電流密度:1 00A/dm2 •鍍浴溫度:60±5乞 •鍍液流速:1.3m/Sec •電極(陽極):IrOx電極 •電鍍附著量:20g/m2 (3 )具備樹脂皮膜的電鍍鋅鋼板的製作 將上述(1)中得到的樹脂水性液藉由滾壓法塗佈(單面 塗佈)在上述(2)中得到的鋅鍍層上,在實驗爐中,以爐溫 2 2 0 °C、板溫9 5 °C加熱乾燥,得到具有厚度爲0.4 μηι的樹 脂皮膜(非鉻酸鹽皮膜)的電鍍鋅鋼板。 如此得到的樹脂皮膜含有樹脂成份、二氧化矽矽溶膠 及矽院偶聯劑’以質量比例計,大致上爲樹脂成份:二氧 化矽矽溶膠:矽烷偶聯劑=3 0份:7 0份:1 0份。 另外,在藉由原子吸光光度法(裝置:使用jarrel 一 Ash公司製的SOLARA— M6)確認後,其結果爲1.2質量% 。具體來說’構成樹脂皮膜的樹脂成份中所含的N a含量 爲0_55質量%,二氧化矽溶膠中所含的Na含量爲1_7質量 %。 (4)鍍層中的耐污性改善元素的分析 -34- 200912047 使用以下的方法分析了如此得到的鍍層中所含的耐污 性改善元素的量。 首先,準備將如上所述地得到的電鍍鋅鋼板以50 X 5 0 m m尺寸切割的分析用試樣,將其加入到稀釋爲2倍的 鹽酸液體中,浸漬至Ζ η的溶解反應結束,得到了浸漬液 (1) 。本實施例中,爲了消除由暫時溶解的耐污性改善元 素對作爲基材的鋼板表面取代析出而造成的測定誤差,在 Ζη的溶解反應結束後,立即提拉上述的試樣,再次在新 配製的鹽酸液體(2倍稀釋液)中浸漬30秒,得到了浸漬液 (2) 。其後,將如上所述地得到的浸漬液(1)及(2)合倂而定容 後,使用ICP-MS分析裝置(VGI公司製PLASMAQUAD型) ,分析了 Pb及Τ1以及耐污性改善元素(除了 Cu)的量。對 於CU,使用ICP分析裝置(島津製作所製ICPV — 1 000), 進行了分析。而且’本實施例中的Pb及T1的檢測極限爲 Pb: O.lppin,Tl: O.lppm。 (5)耐污性的評價 在將如上所述地得到的各電鍍鋅鋼板放入溫度爲5 0 °C 、相對濕度在95%以上的恆溫恆濕試驗裝置內而保管了 5 0 4小時後,以目視觀察表面的外觀,基於圖1 A〜圖1 E的 「斑污評價判定用照片樣本」(5 c m X 5 c m)評價了耐污性。 圖1 A〜圖1 E分別對應於下述的評價基準1〜5。本實施例 中,將評價基準爲「1」〜「3」判定爲合格,將「4」或 「5」判定爲不合格。 35- 200912047 (評價基準) 1 :完全沒有斑污的情況(圖1 A) 2 :產生微少的斑污的情況(圖1 B) 3 :產生斑污的情況(圖1C) 4 :明顯地產生斑污的情況(圖1 D) 5 :嚴重地產生斑污的情況(圖1 E) 於此,如果對比圖1B(評價2)和圖1C(評價3),則可知 在圖1 C中,與圖1B相比,明顯地產生更多斑痕樣的斑點 。另外,如果對比圖1C(評價3)和圖1D(評價4),則可知在 圖1 D中,與圖1C相比,整體上色調變黑,這可以認爲是 因爲Na凝聚部份(變爲發黑顏色的區域)的黑色化的程度 加劇,其結果是,兩者的斑污的差別變得醒目。另外,如 果對比圖1D(評價4)和圖1E(評價5),則可知在圖1E中,與 圖1 D相比色調進一步變黑,這可以認爲是因爲Na凝聚部 份的黑色化的程度過度地加劇。黑色化的程度例如可以用 Hunter— Lab表色法的L値(利用由L軸、a軸、b軸三個 坐標軸所組成的色立體坐標系,以將顏色分爲3個要素而 用數値表現/表計的方法算出的値)表示。如此在本實施例 中,包括黑色化的程度綜合地評價了耐污性。 (6)耐白鏽性的評價 對如上所述地得到的各電鍍鋅鋼板,實施JIS Z237 1 中規定的鹽水噴霧試驗,以下述基準判定了經過9 6小時後 -36- 200912047 的白鏽產生面積率,評價了耐白鏽性。本實施例中,將評 價基準爲「◎」或「〇」的判定爲合格(本發明例)。 ◎:未達5 % 〇:在5%以上而未達10% △:在1 0 %以上而未達5 0 % X :在50%以上 將此等結果一倂記入表1中。表1中,「一」表示在檢 測極限(測定極限)以下。 -37- 200912047 [表l]H2S04 20g/L Other plating conditions are as follows. - Current density: 1 00 A/dm2 • Plating bath temperature: 60 ± 5 乞 • Plating solution flow rate: 1.3 m/Sec • Electrode (anode): IrOx electrode • Plating adhesion: 20 g/m2 (3) Plating with resin film Preparation of zinc steel sheet The aqueous resin liquid obtained in the above (1) was applied by a rolling method (single-sided coating) to the zinc plating layer obtained in the above (2), and in a laboratory furnace, at a furnace temperature of 2 2 The plate was heated and dried at 0 ° C at 0 ° C to obtain an electrogalvanized steel sheet having a resin film (non-chromate film) having a thickness of 0.4 μm. The resin film thus obtained contains a resin component, a cerium oxide sol, and a brothel coupling agent in terms of a mass ratio, which is substantially a resin component: cerium oxide sol: decane coupling agent = 30 parts: 70 parts : 10 copies. In addition, it was confirmed by atomic absorption spectrophotometry (device: SOLARA-M6 manufactured by Jarrel-Ash Co., Ltd.), and the result was 1.2% by mass. Specifically, the content of Na contained in the resin component constituting the resin film is 0 to 55 mass%, and the content of Na contained in the cerium oxide sol is 1 to 7 mass%. (4) Analysis of the stain resistance improving element in the plating layer -34- 200912047 The amount of the stain resistance improving element contained in the plating layer thus obtained was analyzed by the following method. First, an analysis sample in which the electrogalvanized steel sheet obtained as described above is cut at a size of 50 × 50 mm is prepared, and this is added to a hydrochloric acid liquid diluted to twice, and immersed until the dissolution reaction of Ζ η is completed. The immersion liquid (1). In the present embodiment, in order to eliminate the measurement error caused by the precipitation of the surface of the steel sheet as the base material by the temporarily dissolved stain resistance improving element, the sample is pulled up immediately after the dissolution reaction of Ζη is completed, and again in the new The prepared hydrochloric acid liquid (2-fold dilution) was immersed for 30 seconds to obtain an immersion liquid (2). Then, the immersion liquids (1) and (2) obtained as described above were combined and brought to volume, and then Pb and Τ1 and the improvement of the stain resistance were analyzed using an ICP-MS analyzer (PLASMAQUAD type manufactured by VGI Corporation). The amount of element (except Cu). For the CU, an ICP analyzer (ICPV - 1 000 manufactured by Shimadzu Corporation) was used for analysis. Further, the detection limit of Pb and T1 in the present embodiment is Pb: O.lppin, Tl: O.lppm. (5) Evaluation of stain resistance Each of the electrogalvanized steel sheets obtained as described above was placed in a constant temperature and humidity test apparatus having a temperature of 50 ° C and a relative humidity of 95% or more and stored for 504 hours. The appearance of the surface was visually observed, and the stain resistance was evaluated based on "photograph of the stain evaluation evaluation" (5 cm X 5 cm) in Fig. 1A to Fig. 1E. 1A to 1E correspond to the following evaluation criteria 1 to 5, respectively. In the present embodiment, the evaluation criteria are "1" to "3", and it is judged as pass, and "4" or "5" is judged as unacceptable. 35- 200912047 (Evaluation Criteria) 1 : Case where there is no stain at all (Fig. 1 A) 2 : Case where little stain is generated (Fig. 1 B) 3: Case where stain is generated (Fig. 1C) 4: Obviously produced Case of staining (Fig. 1 D) 5 : Case where stains are severely generated (Fig. 1 E) Here, if Fig. 1B (evaluation 2) and Fig. 1C (evaluation 3) are compared, it is understood that in Fig. 1 C, More spot-like spots are clearly produced compared to Figure 1B. In addition, if FIG. 1C (Evaluation 3) and FIG. 1D (Evaluation 4) are compared, it can be seen that in FIG. 1D, the overall color tone is blacker than that of FIG. 1C, which can be considered because of the Na condensation portion. The degree of blackening of the area that is blackish is increased, and as a result, the difference in stains between the two becomes conspicuous. In addition, if FIG. 1D (evaluation 4) and FIG. 1E (evaluation 5) are compared, it can be seen that in FIG. 1E, the hue is further blackened as compared with FIG. 1D, which can be considered because of the blackening of the Na-condensed portion. The degree is excessively exacerbated. The degree of blackening can be, for example, the L値 of the Hunter-Lab color method (using a color solid coordinate system composed of three coordinate axes of the L-axis, the a-axis, and the b-axis to divide the color into three elements and use the number値) expressed by the method of performance/metering. Thus, in the present embodiment, the degree of blackening was comprehensively evaluated for the stain resistance. (6) Evaluation of white rust resistance The respective galvanized steel sheets obtained as described above were subjected to the salt spray test specified in JIS Z2371, and white rust generation after -36-200912047 after 96 hours was determined by the following criteria. The area ratio was evaluated for white rust resistance. In the present embodiment, the evaluation criterion is "◎" or "〇", and the judgment is acceptable (example of the present invention). ◎: less than 5% 〇: 5% or more and less than 10% △: 10% or more and less than 50% X: 50% or more These results are recorded in Table 1. In Table 1, "one" indicates that it is below the detection limit (measurement limit). -37- 200912047 [Table l]

No. Pb T 評價 鍍液中的濃度 (ppm) 鍍層中的濃度 (PPm) 鍍液中的濃度 (ppm) 鍍層中的濃度 (ppm) 耐污性 耐白鏽性 1 — — — — 3 ◎ 2 0.01 0.1 — — 3 ◎ 3 0.03 0.4 — — 3 ◎ 4 0.05 1.1 — — 3 ◎ 5 0.1 8.7 — — 4 〇 6 0.3 17.4 — — 4 〇 7 0.5 25 — — 4 Δ 8 1 37.8 — — 4 Δ 9 3 119 — — 5 X 10 5 224 — — 5 X 11 10 450 — — 5 X 12 — — 0.01 0.6 3 ◎ 13 — — 0.03 2.2 3 ◎ 14 — — 0.05 3.1 3 ◎ 15 — — 0.1 7.2 3 ◎ 16 — — 0.3 27 4 〇 17 — — 0.5 44 4 〇 18 — — 1 60 4 Δ 19 — — 3 168 4 X 20 — — 5 287 5 X 21 — — 10 650 5 X 22 0.06 2.2 0.04 2.5 3 ◎ 23 0.07 3.5 0.08 5.5 3 ◎ 24 0.07 4.4 0.15 9.2 3 ◎ 25 0.1 6.2 0.05 3.8 4 〇 26 0.12 8 0.09 6.7 5 Δ 27 0.2 12 0.14 8.8 4 X 28 0.06 2.5 0.3 13 4 X 29 0.07 4.1 0.28 12.5 4 Δ 30 0.07 4.8 0.4 15 5 X -38- 200912047 根據表1,可以如下所表示地考察。No. Pb T Evaluation of concentration in plating solution (ppm) Concentration in plating layer (PPm) Concentration in plating solution (ppm) Concentration in plating layer (ppm) Stain resistance White rust resistance 1 — — — — 3 ◎ 2 0.01 0.1 — — 3 ◎ 3 0.03 0.4 — — 3 ◎ 4 0.05 1.1 — — 3 ◎ 5 0.1 8.7 — — 4 〇6 0.3 17.4 — — 4 〇7 0.5 25 — — 4 Δ 8 1 37.8 — — 4 Δ 9 3 119 — — 5 X 10 5 224 — — 5 X 11 10 450 — — 5 X 12 — — 0.01 0.6 3 ◎ 13 — — 0.03 2.2 3 ◎ 14 — — 0.05 3.1 3 ◎ 15 — — 0.1 7.2 3 ◎ 16 — — 0.3 27 4 〇17 — — 0.5 44 4 〇18 — — 1 60 4 Δ 19 — — 3 168 4 X 20 — — 5 287 5 X 21 — — 10 650 5 X 22 0.06 2.2 0.04 2.5 3 ◎ 23 0.07 3.5 0.08 5.5 3 ◎ 24 0.07 4.4 0.15 9.2 3 ◎ 25 0.1 6.2 0.05 3.8 4 〇26 0.12 8 0.09 6.7 5 Δ 27 0.2 12 0.14 8.8 4 X 28 0.06 2.5 0.3 13 4 X 29 0.07 4.1 0.28 12.5 4 Δ 30 0.07 4.8 0.4 15 5 X -38- 200912047 According to Table 1, it can be examined as shown below.

No.l是使用了未添加Pb及T1雙方的鍍液的例子,爲 將鍍層中的Pb及T1雙方控制在本實施例的檢測極限以下 的例子;No .2〜4爲將鍍液中及鍍層中的Pb控制在本發明 的範圍中,並且將鍍層中的T1控制在本實施例的檢測極 限以下的例子;No. 12〜15爲將鍍液中及鍍層中的T1控制 在本發明的範圍內,並且將鍍層中的Pb控制在本實施例 的檢測極限以下的例子;N 〇 . 2 2〜2 4爲將鍍液中及鍍層中 的Pb及T1雙方控制在本發明的範圍內的例子,耐污性及 耐白鏽性兩個特性都得到提高。 與之不同,No.5〜11爲雖然將鍍層中的T1控制在本 實施例的檢測極限以下,但是鍍液中及鍍層中的Pb的含 量多的例子;Ν ο · 1 6〜2 1爲雖然將鍍層中的P b控制在本實 施例的檢測極限以下,但是鍍液中及鑛層中的T1的含量 多的例子;No.25〜30爲鍍液中及鍍層中的Pb及T1雙方 的含量都多的例子,除了耐污性都降低以外,其中還有耐 白鏽性降低的例子。 實施例2 本實施例中,硏究了耐污性改善元素的添加對耐污性 及耐白鏽性造成的影響。 具體來說,除了在實施例1中使用還添加了表2〜表9 中所記載的添加劑(耐污性改善元素)的鍍液以外,與實施 例1相同地製作具有樹脂皮膜(非鉻酸鹽皮膜)的電鍍鋅鋼 -39 - 200912047 板’與實施例1相同地評價了耐污性及耐白鏽性。如此等 表中所表示’耐污性改善元素中的Ni、Fe、、Sn、Cu 、C d、C o、W都作爲硫酸鹽添加,M 〇作爲鉬酸鈉添加,No. 1 is an example in which a plating solution in which both Pb and T1 are not added is used, and both Pb and T1 in the plating layer are controlled to be below the detection limit of the present embodiment; No. 2 to 4 are in the plating solution. The Pb in the plating layer is controlled within the scope of the present invention, and the T1 in the plating layer is controlled to be below the detection limit of the present embodiment; No. 12 to 15 is to control the T1 in the plating solution and in the plating layer in the present invention. In the range, and the Pb in the plating layer is controlled below the detection limit of the present embodiment; N 〇. 2 2 to 2 4 is to control both Pb and T1 in the plating solution and in the plating layer within the scope of the present invention. For example, both stain resistance and white rust resistance are improved. On the other hand, Nos. 5 to 11 are examples in which the T1 in the plating layer is controlled below the detection limit of the present embodiment, but the content of Pb in the plating solution and the plating layer is large; Ν ο · 1 6 to 2 1 Although Pb in the plating layer is controlled below the detection limit of the present embodiment, the content of T1 in the plating solution and the ore layer is large; No. 25 to 30 are both Pb and T1 in the plating solution and in the plating layer. In addition to the reduction in stain resistance, there are examples in which the white rust resistance is lowered. [Embodiment 2] In the present embodiment, the influence of the addition of the stain resistance improving element on the stain resistance and white rust resistance was examined. Specifically, a resin film (non-chromic acid) was produced in the same manner as in Example 1 except that the plating solution containing the additive (stain resistance improving element) described in Tables 2 to 9 was used as in Example 1. Galvanized steel of the salt film) - 39 - 200912047 The board was evaluated for stain resistance and white rust resistance in the same manner as in Example 1. Ni, Fe, Sn, Cu, C d, C o, and W in the stain resistance improving element are added as sulfates, and M 〇 is added as sodium molybdate.

Si作爲二氧化矽溶膠添加,Ag作爲硝酸銀添加,in作爲 氫氧化物添加’ Ir作爲溴化物添加。 將此等的結果一倂記入表2〜表9中。將用於參考的表 1的N 〇 . 1的結果也一倂記入表2〜表9中。 -40- 200912047 【2撇】 IM 耐白鏽性 ◎ ◎ ◎ ◎ 〇 X X ◎ 〇 〇 <3 X X ◎ 〇 〇 〇 X X ΙίϊΙπ 耐污性 m »—Η f ·Η cn ΓΠ 寸 1—Η m 寸 1 1 Η (Ν 寸 ^Τ) 口 鍍層中的濃度 (ppm) 1 880 3100 5500 950 3200 5450 120 200 500 310 550 00 200 Ο Ο 1 < 310 480 騰 鍍液中的濃度 (ppm) 1 300 ι_____ ... 1000 1500 300 1000 1500 300 1000 3000 300 1000 3000 ο 1000 3000 ο 1—Η 1000 3000 種類 1 NiS04 · 6Η20 FeS04 · 7Η20 Fe2(S〇4)3 · ηΗ^Ο 鍍層中的濃度 (ppm) 1 (Ν Ο οο ο (Ν 卜 ί-Η Ο (Ν Ο — (Ν νο ^―< r—Η ι—Η Ο Ο (Ν 00 366 PH 鍍液中的濃度 (PPm) 1 0.01 0.03 0.05 〇 ο ι—Η 0.01 0.03 0.05 ο Η Ο 1—^ 0.01 0.03 0.05 I-^ ο Ο d Z τ 1 Η (Ν m m m 00 m ο Ο] rn -41 - 200912047 u嗽】 評價 耐白鏽性 ◎ ◎ ◎ 〇 〇 X X ◎ 〇 〇 〇 X X ◎ ◎ 〇 〇 X X 耐污性 m ί—Η Τ—Η ^-Η r-H ΓΠ 寸 CN m 添加劑 鍍層中的濃度 (ppm) 1 οο Ο 1—i r-^ p ·Η (Ν 寸 180 310 440 200 330 470 § οο 450 Ό m (N 酽— 420 鍍液中的濃度 (ppm) 1 Ο 300 1000 Ο r—H 300 1000 300 1000 1500 300 1000 1500 Ο m ο r—H Ο m Ο m 〇 1—^ 300 種類 1 Cr2(S04)3 Na2Mo042H20 Si〇2 £ 鍍層中的濃度 (ppm) 1 CN Ο r- o ΓΝ 寸 \ό Ο Ό 389 ι_ Ο Ο CN m 卜 Ο 400 ο ο m ro 398 鍍液中的濃度 (PPm) 1 0.01 0.03 0.05 Ο Ο 0.01 0.03 0.05 1 '< Ο Ο 0.01 0.03 0.05 o o 〇 Γ·Η o in (Ν m yr) iT) 00 Ον ir> m Ό -42- 200912047 [表4]Si is added as a cerium oxide sol, Ag is added as silver nitrate, and in is added as a hydroxide to add Ir as a bromide. The results of these are recorded in Table 2 to Table 9. The results of N 〇 . 1 of Table 1 for reference are also recorded in Tables 2 to 9. -40- 200912047 【2撇】 IM White rust resistance ◎ ◎ ◎ ◎ 〇 XX ◎ 〇〇<3 XX ◎ 〇〇〇XX ΙίϊΙπ Stain resistance m »—Η f ·Η cn ΓΠ inch 1—Η m inch 1 1 Η (Ν inch^Τ) Concentration in the plating (ppm) 1 880 3100 5500 950 3200 5450 120 200 500 310 550 00 200 Ο Ο 1 < 310 480 Concentration in the bath (ppm) 1 300 ι_____ ... 1000 1500 300 1000 1500 300 1000 3000 300 1000 3000 ο 1000 3000 ο 1—Η 1000 3000 Type 1 NiS04 · 6Η20 FeS04 · 7Η20 Fe2(S〇4)3 · ηΗ^Ο Concentration in the coating (ppm) 1 (Ν Ο οο ο (Ν ί ί ί Ο Ν Ν Ν Ν Ν Ν Ν Ν Ν 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ι—Η 0.01 0.03 0.05 ο Η Ο 1—^ 0.01 0.03 0.05 I-^ ο Ο d Z τ 1 Η (Ν mmm 00 m ο Ο] rn -41 - 200912047 u嗽] Evaluation of white rust resistance ◎ ◎ ◎ 〇 〇XX ◎ 〇〇〇XX ◎ ◎ 〇〇XX Stain resistance m ί—Η Τ—Η ^-Η rH ΓΠ Inch CN m Concentration in the coating of the additive (ppm) 1 ο ο Ο 1—i r-^ p ·Η (Ν inch 180 310 440 200 330 470 § οο 450 Ό m (N 酽— concentration in 420 plating bath (ppm) 1 Ο 300 1000 Ο r—H 300 1000 300 1000 1500 300 1000 1500 Ο m ο r—H Ο m Ο m 〇1—^ 300 Type 1 Cr2(S04)3 Na2Mo042H20 Si〇2 £ Concentration in plating (ppm) 1 CN Ο r- o ΓΝ inch \ό Ο Ό 389 ι_ Ο Ο CN m Ο 400 ο ο m ro 398 Concentration in plating solution (PPm) 1 0.01 0.03 0.05 Ο Ο 0.01 0.03 0.05 1 '< Ο Ο 0.01 0.03 0.05 oo 〇Γ·Η o in (Ν m Yr) iT) 00 Ον ir> m Ό -42- 200912047 [Table 4]

No. Pb 添加劑 評價 鍍液中 的濃度 (ppm) 鍍層中 的濃度 (ppm) 種類 鍍液中 的濃度 (ppm) 鍍層中 的濃度 (ppm) 耐污性 耐白鏽性 1 — — — — — 3 ◎ 67 0.01 0.1 SnS〇4 0.1 1.3 1 ◎ 68 0.03 1.1 1 3.0 1 ◎ 69 0.05 3.9 3 6.0 1 〇 70 0.1 7.3 0.1 1.1 4 〇 71 1 39 1 4.0 5 X 72 10 322 3 8.0 5 X 73 0.01 0.2 CuS04 0.1 18 1 ◎ 74 0.03 0.8 1 88 1 〇 75 0.05 4.0 3 250 2 〇 76 0.1 7.5 0.1 25 4 Δ 77 1 50 1 110 4 X 78 10 380 3 220 5 X 79 0.01 0.1 C0SO4 0.1 0.0005 2 ◎ 80 0.03 0.5 1 0.0020 1 ◎ 81 0.05 2.9 3 0.0070 1 〇 82 0.1 7.0 0.1 0.0006 4 〇 83 1 42 1 0.0030 5 X 84 10 400 3 0.0070 5 X 85 0.01 0.2 W2S04 1 0.9 2 ◎ 86 0.03 1.3 3 2.5 1 〇 87 0.05 3.3 10 12 1 〇 88 0.1 7.8 1 1.2 4 〇 89 1 67 3 3.0 4 X 90 10 403 10 10 5 X -43- 200912047No. Pb Additive evaluation of concentration in plating solution (ppm) Concentration in plating layer (ppm) Concentration in type plating solution (ppm) Concentration in plating layer (ppm) Stain resistance White rust resistance 1 — — — — — 3 ◎ 67 0.01 0.1 SnS〇4 0.1 1.3 1 ◎ 68 0.03 1.1 1 3.0 1 ◎ 69 0.05 3.9 3 6.0 1 〇70 0.1 7.3 0.1 1.1 4 〇71 1 39 1 4.0 5 X 72 10 322 3 8.0 5 X 73 0.01 0.2 CuS04 0.1 18 1 ◎ 74 0.03 0.8 1 88 1 〇75 0.05 4.0 3 250 2 〇76 0.1 7.5 0.1 25 4 Δ 77 1 50 1 110 4 X 78 10 380 3 220 5 X 79 0.01 0.1 C0SO4 0.1 0.0005 2 ◎ 80 0.03 0.5 1 0.0020 1 ◎ 81 0.05 2.9 3 0.0070 1 〇82 0.1 7.0 0.1 0.0006 4 〇83 1 42 1 0.0030 5 X 84 10 400 3 0.0070 5 X 85 0.01 0.2 W2S04 1 0.9 2 ◎ 86 0.03 1.3 3 2.5 1 〇87 0.05 3.3 10 12 1 〇88 0.1 7.8 1 1.2 4 〇89 1 67 3 3.0 4 X 90 10 403 10 10 5 X -43- 200912047

[表5] No. Pb 添加劑 評價 鍍液中 的濃度 (ppm) 鍍層中 的濃度 (ppm) 種類 鍍液中 的濃度 (ppm) 鍍層中 的濃度 (ppm) 耐污性 耐白鏽性 1 — — —— 3 ◎ 91 0.01 0.1 In(OH)3 1 0.7 2 ◎ 92 0.03 1 3 1.5 1 ◎ 93 0.05 4 10 4 1 ◎ 94 0.1 8.2 1 0.8 3 〇 95 1 34 3 2 4 X 96 10 398 10 4.2 5 X 97 0.01 0.1 CdS04 0.1 0.0003 2 ◎ 98 0.03 0.8 1 0.0027 1 〇 99 0.05 3.8 3 0.008 1 〇 100 0.1 9 0.1 0.0002 4 〇 101 1 44 1 0.0033 5 X 102 10 421 3 0.009 5 X 103 0.01 0.1 AgN03 0.1 8 2 ◎ 104 0.03 0.5 1 58 1 〇 105 0.05 2.9 3 200 1 〇 106 0.1 8.1 0.1 10 4 〇 107 1 66 1 65 4 X 108 10 411 3 350 5 X 109 0.01 0.1 IrBr3 · 4H2〇 0.1 0.03 2 ◎ 110 0.03 0.8 1 0.7 1 〇 111 0.05 3.2 3 3.1 1 〇 112 0.1 7.3 0.1 0.02 3 〇 113 1 60 1 0.9 5 X 114 10 336 3 3.5 5 X -44 - 200912047 [表6][Table 5] No. Pb Additive evaluation of concentration in plating solution (ppm) Concentration in plating layer (ppm) Concentration in type plating solution (ppm) Concentration in plating layer (ppm) Stain resistance White rust resistance 1 — — —— 3 ◎ 91 0.01 0.1 In(OH)3 1 0.7 2 ◎ 92 0.03 1 3 1.5 1 ◎ 93 0.05 4 10 4 1 ◎ 94 0.1 8.2 1 0.8 3 〇95 1 34 3 2 4 X 96 10 398 10 4.2 5 X 97 0.01 0.1 CdS04 0.1 0.0003 2 ◎ 98 0.03 0.8 1 0.0027 1 〇99 0.05 3.8 3 0.008 1 〇100 0.1 9 0.1 0.0002 4 〇101 1 44 1 0.0033 5 X 102 10 421 3 0.009 5 X 103 0.01 0.1 AgN03 0.1 8 2 ◎ 104 0.03 0.5 1 58 1 〇105 0.05 2.9 3 200 1 〇106 0.1 8.1 0.1 10 4 〇107 1 66 1 65 4 X 108 10 411 3 350 5 X 109 0.01 0.1 IrBr3 · 4H2〇0.1 0.03 2 ◎ 110 0.03 0.8 1 0.7 1 〇111 0.05 3.2 3 3.1 1 〇112 0.1 7.3 0.1 0.02 3 〇113 1 60 1 0.9 5 X 114 10 336 3 3.5 5 X -44 - 200912047 [Table 6]

No. ΤΙ 添加劑 評價 鍍液中 的濃度 (ppm) 鍍層中 的濃度 (ppm) 種類 鍍液中 的濃度 (ppm) 鍍層中 的濃度 (ppm) 耐污性 耐白鏽性 1 — — — 3 ◎ 115 0.01 0.5 NiS04-6H20 100 320 1 ◎ 116 0.03 2 300 850 1 ◎ 117 0.05 3.5 1000 3100 1 ◎ 118 0.1 8 1500 5200 1 ◎ 119 0.3 20 100 298 3 〇 120 0.5 50 300 810 3 〇 121 1 82 1000 2890 4 △ 122 10 530 1500 5450 5 X 123 0.01 0.2 FeS04-7H20 100 67 1 ◎ 124 0.03 1.8 300 90 1 ◎ 125 0.05 4 1000 120 1 ◎ 126 0.1 6.9 3000 550 1 ◎ 127 0.3 18 100 70 3 〇 128 0.5 45 300 88 3 〇 129 1 66 1000 135 4 Δ 130 10 580 3000 570 5 X 131 0.01 0.4 Fe2(S〇4)3 · nH2〇 100 80 1 ◎ 132 0.03 2.8 300 120 1 ◎ 133 0.05 5 1000 210 1 ◎ 134 0.1 7 3000 500 1 ◎ 135 0.3 22 100 75 3 〇 136 0.5 50 300 90 3 〇 137 1 77 1000 220 4 Δ 138 10 540 3000 560 5 X -45 - 200912047No. 添加剂 Additive evaluation of the concentration in the plating solution (ppm) Concentration in the plating layer (ppm) Concentration in the plating solution (ppm) Concentration in the plating layer (ppm) Stain resistance White rust resistance 1 — — — 3 ◎ 115 0.01 0.5 NiS04-6H20 100 320 1 ◎ 116 0.03 2 300 850 1 ◎ 117 0.05 3.5 1000 3100 1 ◎ 118 0.1 8 1500 5200 1 ◎ 119 0.3 20 100 298 3 〇 120 0.5 50 300 810 3 〇 121 1 82 1000 2890 4 △ 122 10 530 1500 5450 5 X 123 0.01 0.2 FeS04-7H20 100 67 1 ◎ 124 0.03 1.8 300 90 1 ◎ 125 0.05 4 1000 120 1 ◎ 126 0.1 6.9 3000 550 1 ◎ 127 0.3 18 100 70 3 〇128 0.5 45 300 88 3 〇 129 1 66 1000 135 4 Δ 130 10 580 3000 570 5 X 131 0.01 0.4 Fe2(S〇4)3 · nH2〇100 80 1 ◎ 132 0.03 2.8 300 120 1 ◎ 133 0.05 5 1000 210 1 ◎ 134 0.1 7 3000 500 1 ◎ 135 0.3 22 100 75 3 〇 136 0.5 50 300 90 3 〇 137 1 77 1000 220 4 Δ 138 10 540 3000 560 5 X -45 - 200912047

[表7] No. ΤΙ 添加劑 評價 鍍液中 的濃度 (ppm) 鍍層中 的濃度 (ppm) 種類 鍍液中 的濃度 (ppm) 鍍層中 的濃度 (ppm) 耐污性 耐白鏽性 1 —— — — 3 ◎ 139 0.01 0.6 Cr2(S04)3 30 0.7 1 ◎ 140 0.03 2.2 100 1.5 1 ◎ 141 0.05 3.1 300 3 1 ◎ 142 0.1 8.5 1000 4.2 1 ◎ 143 0.3 25 30 0.8 3 〇 144 0.5 53 100 2 3 〇 145 1 60 300 3.9 4 Δ 146 10 580 1000 4.5 5 X 147 0.01 0.3 Na2Mo〇42H2〇 100 45 1 ◎ 148 0.03 3 300 180 1 ◎ 149 0.05 4.5 1000 320 1 ◎ 150 0.1 7.7 1500 470 1 ◎ 151 0.3 21 100 60 3 〇 152 0.5 44 300 123 3 〇 153 1 70 1000 326 4 Δ 154 10 657 1500 450 5 X 155 0.01 0.5 Si02 30 45 1 ◎ 156 0.03 2 100 130 1 ◎ 157 0.05 3.7 300 430 1 ◎ 158 0.1 7.6 1000 1200 1 ◎ 159 0.3 25 30 69 3 〇 160 0.5 53 100 157 3 〇 161 1 76 300 398 4 Δ 162 10 590 1000 1320 5 X -46- 200912047 [表8] ΤΙ 添加劑 評價 No. 鑛液中 鍍層中 鍍液中 鍍層中 的濃度 的濃度 種類 的濃度 的濃度 耐污性 耐白鏽性 (ppm) (ppm) (ppm) (PPm) 1 — — — 3 ◎ 163 0.01 0.4 0.1 1.3 1 ◎ 164 0.03 2.8 1 2.7 1 ◎ 165 0.05 4.2 3 6 1 ◎ 166 0.1 8.7 SnS04 10 15 1 ◎ 167 0.3 30 0.1 1.2 3 〇 168 0.5 58 1 3 3 〇 169 1 77 3 5.7 4 Δ 170 10 620 10 10 5 X 171 0.01 0.5 0.1 12 1 ◎ 172 0.03 2.4 1 68 1 ◎ 173 0.05 3.6 3 210 1 ◎ 174 0.1 8.1 CuS04 10 724 1 ◎ 175 0.3 19 0.1 15 3 〇 176 0.5 55 1 70 3 〇 177 1 82 3 236 4 Δ 178 10 590 10 630 5 X 179 0.01 0.6 0.1 0.0006 1 ◎ 180 0.03 2.5 1 0.003 1 ◎ 181 0.05 4 3 0.008 1 ◎ 182 0.1 7.2 CoS04 10 0.09 1 ◎ 183 0.3 28 0.1 0.0005 3 〇 184 0.5 44 1 0.005 3 〇 185 1 90 3 0.01 4 Δ 186 10 645 10 0.1 5 X 187 0.01 0.4 W2S〇4 1 0.5 1 ◎ -47- 200912047[Table 7] No. 添加剂 Evaluation of concentration in the plating solution (ppm) Concentration in the plating layer (ppm) Concentration in the plating solution (ppm) Concentration in the plating layer (ppm) Stain resistance White rust resistance 1 —— — 3 ◎ 139 0.01 0.6 Cr2(S04)3 30 0.7 1 ◎ 140 0.03 2.2 100 1.5 1 ◎ 141 0.05 3.1 300 3 1 ◎ 142 0.1 8.5 1000 4.2 1 ◎ 143 0.3 25 30 0.8 3 〇144 0.5 53 100 2 3 〇145 1 60 300 3.9 4 Δ 146 10 580 1000 4.5 5 X 147 0.01 0.3 Na2Mo〇42H2〇100 45 1 ◎ 148 0.03 3 300 180 1 ◎ 149 0.05 4.5 1000 320 1 ◎ 150 0.1 7.7 1500 470 1 ◎ 151 0.3 21 100 60 3 〇 152 0.5 44 300 123 3 〇 153 1 70 1000 326 4 Δ 154 10 657 1500 450 5 X 155 0.01 0.5 Si02 30 45 1 ◎ 156 0.03 2 100 130 1 ◎ 157 0.05 3.7 300 430 1 ◎ 158 0.1 7.6 1000 1200 1 ◎ 159 0.3 25 30 69 3 〇160 0.5 53 100 157 3 〇161 1 76 300 398 4 Δ 162 10 590 1000 1320 5 X -46- 200912047 [Table 8] 添加剂 Additive evaluation No. In the plating solution in the ore solution The concentration of the concentration in the plating solution is concentration-concentrated White rust resistance (ppm) (ppm) (ppm) (PPm) 1 — — — 3 ◎ 163 0.01 0.4 0.1 1.3 1 ◎ 164 0.03 2.8 1 2.7 1 ◎ 165 0.05 4.2 3 6 1 ◎ 166 0.1 8.7 SnS04 10 15 1 ◎ 167 0.3 30 0.1 1.2 3 〇 168 0.5 58 1 3 3 〇 169 1 77 3 5.7 4 Δ 170 10 620 10 10 5 X 171 0.01 0.5 0.1 12 1 ◎ 172 0.03 2.4 1 68 1 ◎ 173 0.05 3.6 3 210 1 ◎ 174 0.1 8.1 CuS04 10 724 1 ◎ 175 0.3 19 0.1 15 3 〇 176 0.5 55 1 70 3 〇 177 1 82 3 236 4 Δ 178 10 590 10 630 5 X 179 0.01 0.6 0.0006 1 ◎ 180 0.03 2.5 1 0.003 1 ◎ 181 0.05 4 3 0.008 1 ◎ 182 0.1 7.2 CoS04 10 0.09 1 ◎ 183 0.3 28 0.1 0.0005 3 〇184 0.5 44 1 0.005 3 〇185 1 90 3 0.01 4 Δ 186 10 645 10 0.1 5 X 187 0.01 0.4 W2S〇4 1 0.5 1 ◎ -47- 200912047

188 0.03 2.4 3 2.5 1 ◎ 189 0.05 3.9 10 12 1 ◎ 190 0.1 8.5 40 38 1 ◎ 191 0.3 22 1 0.8 3 〇 192 0.5 53 3 3.2 3 〇 193 1 88 10 9 4 Δ 194 10 570 40 40 5 X -48- 200912047 [表9] No. ΤΙ 添加劑 評價 鍍液中 的濃度 (ppm) 鍍層中 的濃度 (ppm) 種類 鍍液中 的濃度 (ppm) 鍍層中 的濃度 (ppm) 耐污性 耐白鏽性 1 — — — 3 ◎ 195 0.01 0.4 In(OH)3 1 0.4 1 ◎ 196 0.03 2.9 3 2 1 ◎ 197 0.05 4 10 5 1 ◎ 198 0.1 7.2 40 22 1 ◎ 199 0.3 25 1 0.5 3 〇 200 0.5 50 3 2.2 3 〇 201 1 70 10 5.2 4 Δ 202 10 610 40 25 5 X 203 0.01 0.6 CdS04 0.1 0.0004 1 ◎ 204 0.03 2.5 1 0.003 1 ◎ 205 0.05 3.8 3 0.007 1 ◎ 206 0.1 8 4 0.014 1 ◎ 207 0.3 32 0.1 0.0003 3 〇 208 0.5 53 1 0.0031 3 〇 209 1 85 3 0.008 4 Δ 210 10 650 4 0.012 5 X 211 0.01 0.6 AgN03 0.1 4 1 ◎ 212 0.03 2.1 1 70 1 ◎ 213 0.05 4 3 230 1 ◎ 214 0.1 7.7 4 379 1 ◎ 215 0.3 24 0.1 4.8 3 〇 216 0.5 50 1 74 3 〇 217 1 78 3 207 4 Δ 218 10 598 4 350 5 X 219 0.01 0.7 IrBr3-4H20 0.1 0.03 1 ◎ -49- 200912047188 0.03 2.4 3 2.5 1 ◎ 189 0.05 3.9 10 12 1 ◎ 190 0.1 8.5 40 38 1 ◎ 191 0.3 22 1 0.8 3 〇192 0.5 53 3 3.2 3 〇193 1 88 10 9 4 Δ 194 10 570 40 40 5 X - 48- 200912047 [Table 9] No. 添加剂 Evaluation of concentration in the plating solution (ppm) Concentration in the plating layer (ppm) Concentration in the plating solution (ppm) Concentration in the plating layer (ppm) Stain resistance White rust resistance 1 — — — 3 ◎ 195 0.01 0.4 In(OH)3 1 0.4 1 ◎ 196 0.03 2.9 3 2 1 ◎ 197 0.05 4 10 5 1 ◎ 198 0.1 7.2 40 22 1 ◎ 199 0.3 25 1 0.5 3 〇200 0.5 50 3 2.2 3 〇201 1 70 10 5.2 4 Δ 202 10 610 40 25 5 X 203 0.01 0.6 CdS04 0.1 0.0004 1 ◎ 204 0.03 2.5 1 0.003 1 ◎ 205 0.05 3.8 3 0.007 1 ◎ 206 0.1 8 4 0.014 1 ◎ 207 0.3 32 0.1 0.0003 3 〇208 0.5 53 1 0.0031 3 〇209 1 85 3 0.008 4 Δ 210 10 650 4 0.012 5 X 211 0.01 0.6 AgN03 0.1 4 1 ◎ 212 0.03 2.1 1 70 1 ◎ 213 0.05 4 3 230 1 ◎ 214 0.1 7.7 4 379 1 ◎ 215 0.3 24 0.1 4.8 3 〇216 0.5 50 1 74 3 〇217 1 78 3 207 4 Δ 218 10 598 4 350 5 X 219 0.0 1 0.7 IrBr3-4H20 0.1 0.03 1 ◎ -49- 200912047

220 0.03 2.9 1 1.1 1 ◎ 221 0.05 4 3 3 1 ◎ 222 0.1 7.9 4 7.7 1 ◎ 223 0.3 19 0.1 0.04 3 〇 224 0.5 54 1 0.9 3 〇 225 1 89 3 2.7 4 Δ 226 10 710 4 8 5 X 首先,對表2〜表5進行考察。這些表中,總結了 ΤΙ 被控制在本實施例的檢測極限以下,並且對鍍液中及鍍層 中的Pb量進行了各種變化後的耐污性改善元素的添加效 果。於此,耐污性改善元素皆於本發明的最佳範圍內變化 的。 . 其中,Νο·31〜33(Ni含有例)、Νο·37〜39(Fe 曰有 例)、1^〇.43~45(?^ + 含有例)、1^〇.49~51((:]*含有例)、 —•55〜57(&含有例)、>^〇.61~63(31含有例)、>^〇.67〜 69(Sn 含有例)、No.73 〜75(Cu 含有例)、No_79〜81(Co 含 有例)、1^〇.85〜87(\¥含有例)、1^〇_91〜93(111含有例)、 No.97 〜99(C;d 含有例)、Νο·1〇3 〜105(Ag 含有例)、 ]^〇.109〜111(11'含有例)皆於1>1)及"1'1雙方滿足本發明的 要件的鍍液中,在本發明的最佳的範圍內添加了上述的耐 污性改善元素的例子,與未添加耐污性改善兀素的實施例 1的情況相比’耐污性進一步提高。 與之不同,No.34〜36(Ni含有例)、N〇_40〜42(Fe2 + 含有例)、N〇_46〜48(Fe3 +含有例)、No.52〜54(Cr含有例) 、No.58 〜60(M〇6+含有例)、N〇·64 〜66(Si 含有例)、 -50- 200912047 Νο·70 〜72(Sn 含有例)、Νο·76 〜78(Cu 含有例)、No.82〜 84(Co 含有例)、Νο·88 〜90(W 含有例)、No.94 〜96(In 含 有例)、>^〇.100~102(€£1含有例)、心.106〜108(“含有 例)、No.112〜114(Ir含有例)皆於Pb量不滿足本發明的 範圍的鍍液中,在本發明的最佳的範圍內添加了上述的耐 污性改善元素的例子,全都可以看到耐污性或耐白鐵性的 程度降低的傾向。 接者,對表6〜表9進行考察。此等表中’總結了 Pb 被控制在本實施例的檢測極限以下’並且對鍍液中及鍍層 中的T1量進行了各種變化時的耐污性改善元素的添加效 果。於此,耐污性改善元素皆於本發明的最佳的範圍內變 化的。 其中,No_115 〜117(Ni 含有例)、No.123 〜125(Fe2 + 含有例)、No·131〜133(Fe3 + 含有例)、No.l39〜141(Cr含 有例)、Νο.147 〜149(Mo 含有例)、Νο·155 〜157(Si 含有 例)、No.163 〜165(Sn 含有例)、No.171 〜173(Cu 含有例) 、^'〇.179〜181((:〇含有例)、1^〇.187〜189(\^含有例)、 No.195 〜197(ln 含有例)、No.203 〜205 (Cd 含有例)、 No_211〜213(Ag含有例)、No.219〜221(Ir含有例)皆於 Pb及T1雙方滿足本發明的要件的鍍液中,在本發明的最 佳的範圍內添加了上述的耐污性改善元素的例子,與未添 加耐污性改善元素的實施例1的情況相比,耐污性進一步 提高。 與之不同,>}〇.118〜122(>^含有例)、;^〇.126〜 -51 - 200912047 13〇(Fe2+含有例)、No_134 〜138(Fe3+含有例)、No_142 〜 146(Cr 含有例)、Νο·150 〜154(Mo 含有例)、No.158 〜 162(81含有例)、^_166〜170(311含有例)、^1〇.174〜 178((:11含有例)、:^〇.182〜186((:〇含有例)、>^〇,190〜 194(W含有例)、No·198〜 202(In含有例)、NO.206〜 210(Cd 含有例)、No·214 〜218(“ 含有例)、N〇.222 〜 22 6 (Ir含有例)皆於T1量不滿足本發明的範圍的鍍液中, 在本發明的最佳的範圍內添加了上述的耐污性改善元素的 例子,全都可以看到耐污性或耐白鏽性的程度降低的傾向 實施例3 本實施例中’對矽烷偶聯劑的添加所致的耐污性提高 作用進行了硏究。於此’如下所表示地製作了具有樹脂成 份與二氧化矽溶膠的添加比例不同的四種樹脂皮膜的非鉻 酸鹽電鍍鋅鋼板,硏究了矽烷偶聯劑對各非鉻酸鹽電鍍鋅 鋼板的影響。 (No.227 〜230) 在上述的實施例1中,除了於「( 1 一 3 )樹脂水性液的 調製」中的含羧基聚氨酯樹脂水性液、乙烯-丙烯酸共聚 物水性分散液、二氧化矽溶膠(添加比例=5質量份:2 5質 量份:7〇質量份)的合計1〇〇質量份中,如表10所表示,在0 、10質量份、20質量份、30質量份的範圍內又添加了矽烷 -52- 200912047 偶聯劑以外,與實施例1相同地製作了樹脂皮膜。 另外,在上述的實施例1的「(2)電鍍鋅鋼板的製作」 中,除了使用含有表7中記載的所有各元素的鍍液以外, 與實施例1相同地製作了電鍍鋅鋼板。表11中記載的各元 素都是以上述的實施例1中記載的形態添加的元素。 然後,與實施例1相同地製作了非鉻酸鹽電鍍鋅鋼板 ,評價了耐污性及耐白鏽性。 (No.23 1 〜23 4) 在上述的實施例1中,除了在「〇 - 2)乙烯一不飽和 羧酸共聚物水性分散液的調製」中未添加氫氧化鈉,以及 在「(1 - 3)樹脂水性液的調製」中作爲二氧化矽溶膠使用 了日產化學工業(股份有限公司)製「ST — AK」,並且將 含羧基聚氨酯樹脂水性液、乙烯-丙烯酸共聚物水性分散 液(不含有Na)、二氧化矽溶膠的添加比例設爲5質量份: 3 〇質量份:6 5質量份,於此等的合計1 〇 〇質量份中,如表6 所示,在〇、10質量份、20質量份、30質量份的範圍內又 添加了矽烷偶聯劑以外,與實施例1相同地製作了樹脂皮 膜。 另外,在上述的實施例1的^ (2)電鍍鋅鋼板的製作」 中,除了使用含有表7中記載的所有各元素的鍍液以外, 與實施例1相同地製作了電鍍鋅鋼板。表1 1中記載的各元 素皆爲以上述的實施例1中記載的形態添加的元素。 然後,與實施例1相同地製作了非鉻酸鹽電鍍鋅鋼板 -53- 200912047 ,評價了耐污性及耐白鏽性。 (No.23 5 - 23 8) 在上述的實施例1中,除了在「(1 — 3)樹脂水性液的 調製」中作爲二氧化矽溶膠使用了在日產化學工業(股份 有限公司)製「ST— XS」中以提高強度爲目的添加了 5. 1質 量%的N a Ο Η的二氧化矽溶膠,並且將含羧基聚氨酯樹脂水 性液、乙烯-丙烯酸共聚物水性分散液、二氧化矽溶膠的 添加比例設爲6質量份:3 4質量份:6 0質量份,於此等的 合計100質量份中,如表6所表示,在〇、1〇質量份、20質量 份、3 0質量份的範圍內又添加了矽烷偶聯劑以外,與實施 例1相同地製作了樹脂皮膜。 另外,在上述的實施例1的「( 2)電鍍鋅鋼板的製作」中 ,除了使用含有表7中記載的所有各元素的鍍液以外,與 貫施例1相同地製作了電鍍辟鋼板。表1 1中記載的各元素 都是以上述的實施例1中記載的形態添加的元素。 然後’與實施例1相同地製作了非鉻酸鹽電鍍鋅鋼板 ,評價了耐污性及耐白鏽性。 將此等的結果一倂記入表10中。 而且’表10中’還一倂記載有構成樹脂皮膜的樹脂成 份及二氧化矽溶膠中所含的N a含量以及樹脂皮膜中所含 的Na含有量。 -54- 200912047 [表 10] 樹脂皮膜成份 樹脂皮膜 評價 No. 樹脂成份 Si02 矽烷偶聯劑 Na含量 耐污性 耐白鏽性 (質量份) (質量份) (質量份) (質量%) 227 0 1.4 2 〇 228 30 70 10 1.2 1 〇 229 (Na 0.55%) (Nal.7°/〇) 20 1.1 1 〇 230 30 1.0 凝膠化 231 0 0.13 2 〇 232 35 65 10 0.11 1 〇 233 (無 Na) (Na 0.2%) 20 0.10 1 〇 234 30 0.09 凝膠化 235 0 3.0 2 〇 236 40 60 10 2.7 1 〇 237 (Na0.55%) (Na 4.6%) 20 2.5 1 〇 238 30 2.3 凝膠化 -55- 200912047 [表η] 添加元素 添加化合物 鍍液中的濃度 (PPm) 鍍層中的含有率 (ppm) Pb PbS04 0.05 3.5 T1 T1S04 0.12 8.3 Ni NiS04.6H20 190 565 Fe2+ FeS04-7H20 1650 524 Fe3+ Fe2(S〇4)3 ·ηΗ2〇 350 524 Mo Na2Mo〇42H2〇 135 72 Cr Cr2(S04)3 120 2.2 Cu CuS04 0.2 31 Co C0SO4 0.2 0.002 W w2so4 1.3 1 Sn SnS04 0.2 1.1 In In(OH)3 1.2 0.8 Ag AgN03 0.15 18 Ir IrBr3 4H2〇 0.4 0.17 Cd CdS04 0.6 0.002 Si Si02 62 70 如表1 〇中所表示,當在本發明的最佳的範圍中添加矽 烷偶聯劑時,則與未添加矽烷偶聯劑的情況相比,上述的 特性皆提高。而且,在添加了 30質量份的矽烷偶聯劑的例 子中,由於處理液都產生凝膠化,無法塗佈於鍍層上,因 此無法評價外觀。 【圖式簡單說明】 圖1爲與本實施例的耐污性的評價基準1〜5對應的「 -56- 200912047 斑污評價判定用照片樣本」,圖1 A〜圖1 E分別對應於評 價基準1〜5。 -57-220 0.03 2.9 1 1.1 1 ◎ 221 0.05 4 3 3 1 ◎ 222 0.1 7.9 4 7.7 1 ◎ 223 0.3 19 0.1 0.04 3 〇 224 0.5 54 1 0.9 3 〇 225 1 89 3 2.7 4 Δ 226 10 710 4 8 5 X First Table 2 to Table 5 are examined. In these tables, it is summarized that ΤΙ is controlled to be below the detection limit of the present embodiment, and the effect of adding the stain resistance improving element to various changes in the amount of Pb in the plating solution and in the plating layer is summarized. Here, the stain resistance improving elements are all varied within the optimum range of the present invention. Among them, Νο·31~33 (Ni contains examples), Νο·37~39 (Fe 曰), 1^〇.43~45 (?^ + contains examples), 1^〇.49~51 (( :]* contains examples), - 55 to 57 (& included examples), >^〇.61 to 63 (31 contains examples), >^〇.67 to 69 (Sn contains examples), No. 73 ~75 (Cu containing example), No_79~81 (Co containing example), 1^〇.85~87 (\¥included example), 1^〇_91~93 (111 containing example), No.97 to 99 ( C; d contains examples), Νο·1〇3 to 105 (Ag containing examples), and ]^〇.109~111 (11' containing examples) satisfying the present invention in both 1>1) and "1'1 In the plating solution of the main component, the above-described example of the stain resistance improving element is added to the optimum range of the present invention, and the stain resistance is further improved as compared with the case of the first embodiment in which the stain resistance is not improved. . In contrast, No. 34 to 36 (Ni-containing examples), N〇_40 to 42 (Fe2 +-containing examples), N〇_46 to 48 (Fe3 +-containing examples), and No. 52 to 54 (Cr-containing examples) ), No. 58 to 60 (M〇6+ containing examples), N〇·64 to 66 (Si containing examples), -50-200912047 Νο·70 to 72 (Sn containing examples), Νο·76 to 78 (Cu Examples include, No. 82 to 84 (Co-containing examples), Νο·88 to 90 (W-containing examples), No. 94 to 96 (In-containing examples), and >^〇.100 to 102 (€£1 contains In the plating solution containing the amount of Pb which does not satisfy the range of the present invention, the cores 106 to 108 ("containing examples") and "not included in the present invention" are added to the best range of the present invention. In the above examples of the stain resistance improving element, the degree of stain resistance or white iron resistance tends to be lowered. The results are shown in Tables 6 to 9. In the tables, it is summarized that Pb is controlled. In addition to the detection limit of the present embodiment, the effect of adding the stain resistance improving element to the amount of T1 in the plating solution and the plating layer is variously changed. Here, the stain resistance improving element is the best in the present invention. Within the scope of change. Among them, No_ 115 to 117 (Ni containing examples), No. 123 to 125 (Fe2 + containing examples), No. 131 to 133 (Fe3 + containing examples), No. l39 to 141 (Cr containing examples), Νο. 147 to 149 ( Mo contains examples), Νο·155 to 157 (Si containing examples), No. 163 to 165 (Sn containing examples), No. 171 to 173 (Cu containing examples), and ^'〇.179 to 181 ((:〇 contains Examples), 1^〇.187~189 (\^ containing examples), No.195~197 (ln containing examples), No. 203 to 205 (Cd containing examples), No_211 to 213 (Ag containing examples), No. 219 to 221 (Ir-containing examples) are examples in which both the Pb and the T1 satisfy the requirements of the present invention, and the above-described antifouling improving element is added to the best range of the present invention, and the anti-staining is not added. In contrast to the case of the first embodiment, the stain resistance is further improved. In contrast, >}〇.118~122(>^ contains examples), ^〇.126~-51 - 200912047 13〇 (Fe2+ containing example), No_134 to 138 (Fe3+ containing example), No_142 to 146 (Cr containing example), Νο·150 to 154 (Mo containing example), No. 158 to 162 (81 containing example), ^_166 to 170 (311 contains examples), ^1〇.174~178 ((:11 contains Example):: 〇. 182 to 186 ((: 〇 contains examples), > ^ 〇, 190 ~ 194 (W contains examples), No. 198 to 202 (In contains examples), NO. 206 to 210 (Cd Inclusion Examples), Nos. 214 to 218 ("Inclusion Examples", N〇.222 to 22 6 (Ir-containing Examples) are all in the plating solution in which the amount of T1 does not satisfy the range of the present invention, and are in the optimum range of the present invention. In the example in which the above-described stain resistance improving element is added, the degree of stain resistance or white rust resistance is reduced. Example 3 In the present example, the stain resistance due to the addition of the decane coupling agent Sexual improvement has been studied. Herein, a non-chromate electrogalvanized steel sheet having four resin films having different addition ratios of a resin component to a cerium oxide sol was produced as follows, and a non-chromate electroplated zinc was prepared for each non-chromate coupling agent. The influence of the steel plate. (No. 227 to 230) In the above-described Example 1, the aqueous solution of the carboxyl group-containing urethane resin, the aqueous dispersion of the ethylene-acrylic acid copolymer, and the cerium oxide in the preparation of the "(1 - 3) resin aqueous liquid preparation" In a total of 1 part by mass of the sol (addition ratio = 5 parts by mass: 25 parts by mass: 7 parts by mass), as shown in Table 10, it is in the range of 0, 10 parts by mass, 20 parts by mass, and 30 parts by mass. A resin film was produced in the same manner as in Example 1 except that a coupling agent was further added with a decane-52-200912047 coupling agent. In addition, in the "(2) Preparation of galvanized steel sheet" of the above-described Example 1, an electrogalvanized steel sheet was produced in the same manner as in Example 1 except that the plating solution containing all the elements described in Table 7 was used. Each element described in Table 11 is an element added in the form described in the above first embodiment. Then, a non-chromate electrogalvanized steel sheet was produced in the same manner as in Example 1, and the stain resistance and white rust resistance were evaluated. (No. 23 1 to 23 4) In the above-described Example 1, except that in the preparation of "〇-2" aqueous dispersion of an ethylenically unsaturated carboxylic acid copolymer, sodium hydroxide was not added, and "(1) - 3) Preparation of Resin Aqueous Solution" As a cerium oxide sol, "ST-AK" manufactured by Nissan Chemical Industries Co., Ltd. was used, and an aqueous solution containing a carboxyl group-containing urethane resin and an aqueous dispersion of an ethylene-acrylic acid copolymer ( The addition ratio of Na) and the cerium oxide sol is set to 5 parts by mass: 3 parts by mass: 65 parts by mass, and the total of 1 part by mass of these is shown in Table 6, in 〇, 10 A resin film was produced in the same manner as in Example 1 except that a decane coupling agent was further added in a range of 20 parts by mass or 30 parts by mass. In addition, in the production of the (2) electrogalvanized steel sheet of the first embodiment, an electrogalvanized steel sheet was produced in the same manner as in the example 1 except that the plating solution containing all the elements described in Table 7 was used. Each of the elements described in Table 1 is an element added in the form described in the above Example 1. Then, a non-chromate electrogalvanized steel sheet -53-200912047 was produced in the same manner as in Example 1, and the stain resistance and white rust resistance were evaluated. (No. 23 5 - 23 8) In the above-mentioned Example 1, the product of Nissan Chemical Industry Co., Ltd. was used as the cerium oxide sol in the preparation of the "(1 - 3) resin aqueous liquid preparation". In the ST-XS", 5.1% by mass of a cerium oxide sol of Na Ο 添加 is added for the purpose of improving strength, and an aqueous solution of a carboxyl group-containing urethane resin, an aqueous dispersion of an ethylene-acrylic acid copolymer, and a cerium oxide sol are added. The addition ratio is set to 6 parts by mass: 34 parts by mass: 60 parts by mass, and as a total of 100 parts by mass, as shown in Table 6, in 〇, 1 〇 parts by mass, 20 parts by mass, 30% by mass A resin film was produced in the same manner as in Example 1 except that a decane coupling agent was further added to the portion. In addition, in the "(2) Preparation of galvanized steel sheet" of the above-mentioned Example 1, an electroplated steel sheet was produced in the same manner as in Example 1, except that a plating solution containing all the elements described in Table 7 was used. Each element described in Table 1 is an element added in the form described in the above first embodiment. Then, a non-chromate electrogalvanized steel sheet was produced in the same manner as in Example 1, and the stain resistance and white rust resistance were evaluated. The results of these are recorded in Table 10. Further, in the 'Table 10', the resin component constituting the resin film and the Na content contained in the cerium oxide sol and the Na content contained in the resin film are described. -54- 200912047 [Table 10] Resin film component resin film evaluation No. Resin component SiO 2 矽 coupling agent Na content Stain resistance White rust resistance (mass parts) (mass parts) (mass parts) (% by mass) 227 0 1.4 2 〇228 30 70 10 1.2 1 〇229 (Na 0.55%) (Nal.7°/〇) 20 1.1 1 〇230 30 1.0 Gelation 231 0 0.13 2 〇232 35 65 10 0.11 1 〇233 (No Na (Na 0.2%) 20 0.10 1 〇 234 30 0.09 Gelation 235 0 3.0 2 〇236 40 60 10 2.7 1 〇237 (Na0.55%) (Na 4.6%) 20 2.5 1 〇238 30 2.3 Gelation -55- 200912047 [Table η] Addition of element to compound concentration in plating solution (PPm) Content in plating layer (ppm) Pb PbS04 0.05 3.5 T1 T1S04 0.12 8.3 Ni NiS04.6H20 190 565 Fe2+ FeS04-7H20 1650 524 Fe3+ Fe2 (S〇4)3 ·ηΗ2〇350 524 Mo Na2Mo〇42H2〇135 72 Cr Cr2(S04)3 120 2.2 Cu CuS04 0.2 31 Co C0SO4 0.2 0.002 W w2so4 1.3 1 Sn SnS04 0.2 1.1 In In(OH)3 1.2 0.8 Ag AgN03 0.15 18 Ir IrBr3 4H2〇0.4 0.17 Cd CdS04 0.6 0.002 Si Si02 62 70 As shown in Table 1, 在, in this When adding Silane coupling agent out of the optimum range, compared with the case Silane coupling agent was not added, the above-described characteristics are improved. Further, in the example in which 30 parts by mass of the decane coupling agent was added, since the treatment liquid gelled and could not be applied to the plating layer, the appearance could not be evaluated. [Brief Description of the Drawings] Fig. 1 is a "photograph of the -56-200912047 stain evaluation" corresponding to the evaluation criteria 1 to 5 of the stain resistance of the present embodiment, and Fig. 1A to Fig. 1E correspond to evaluations, respectively. Benchmark 1 to 5. -57-

Claims (1)

200912047 十、申請專利範圍 1· 一種電鍍鋅鋼板’其特徵於電鍍鋅層之上設置了實 質上不含有Cr而含有Na 〇〇5〜5(%係指質量%。以下相 同)之樹脂皮膜’上述電鍍鋅層中的pb及τΐ以原子換算 被控制爲Pb : 5ppm(ppm係指質量ppm。以下相同)以下 及Tl: lOppm以下。 2.如申請專利範圍第1項之電鍍鋅鋼板,其中上述電 鍍鋅層含有選自 Ni、Fe、Cr、Mo、Sn、Cu、Cd、Ag、Si 、Co ' In、Ir及W所成群中的至少一種,以原子換算, Ni : 60 〜6000ppni、Fe : 60 〜6〇〇ppm、Cr : 0.5 〜5ppm、 Mo : 30 〜50〇ppm、: 〇_6 〜20ppm、Cu : 8 〜3 000ppm、 Cd : 0.000 1 〜〇.〇2ppm、Ag : i.o 〜400ppm、Si : 30 〜 2000ppm、Co : 〇 0 003 〜〇 3pprn、In : 〇_ 1 〜3 〇PPm、Ir : 0.01 〜lOppm、w: 0.1 〜50ppm 的範圍內。 3 _如申請專利範圍第1項或第2項之電鍍鋅鋼板,其中 上述樹脂皮膜含有含羧基樹脂及“系無機化合物。 4. 如申請專利範圍第3項之電鍍鋅鋼板,其中上述樹 脂皮膜還含有矽烷偶聯劑。 5. —種電鍍鋅鋼板的製造方法,其特徵爲包含 使用鍍液中的Pb及T1被控制爲Pb : 0.08ppm以下及 T1 : 0.2ppm以下的酸性鍍液實行電鍍鋅的步驟與 形成含有Na 0.05〜5質量%之樹脂皮膜的步驟。 6 ·如申請專利範圍第5項之電鍍鋅鋼板的製造方法, 其中上述酸性電鍍液含有選自Ni: 20〜2000ppm、Fe2+: -58- 200912047 50 〜5000ppm、Fe3+: 50 〜5000ppm、Cr: 5 〜2000ppm、 Mo : 50 〜2000ppm、S n * 0.05 〜20ppm、Cu : 0_05 〜 50ppm、Cd : 0.0 5 〜5 p p m、A g : 0.0 5 〜5 p p m、S i : 2 0 〜 2000ppm、Co: 0.05 〜50ppm、In: 0.5 〜50ppm、Ir: 0.05 〜5ppm及W: 0.5〜50ppm所成群中至少一種元素。 7.—種鋅電鍍浴,其特徵爲鍍浴中的Pb及T1被控制 爲 Pb: 0.08ppm 以下及 Tl: 0.2ppm 以下。 8 .如申請專利範圍第7項之鋅電鍍浴,其中含有選自 Ni : 20 〜2000ppm、Fe2 + : 50 〜5000ppm、Fe3 + 50 〜 5000ppm、Cr : 5 〜2000ppm、Mo: 50 〜2000ppm、Sn : 0.05 〜20ppm、Cu: 0.05 〜50ppm、Cd: 0.05 〜5ppm、A g :0.05 〜5ppm、Si: 20 〜2000ppm、Co: 0.05 〜50ppm、In • 0.5 〜50ppm、Ir: 0.05 〜5ppm 及 W: 0.5 〜50ppm 戶斤成 群中至少一種元素。 -59- 200912047 明 說 單 無簡 ..發 為符 圖件 表元 代之 定圖 :指表 圖案代 表本本 無 代 定一二 指CC 八、本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無200912047 X. Patent application scope 1. An electrogalvanized steel sheet is characterized in that a resin film containing substantially no Cr and containing Na 〇〇 5 〜 5 (% means mass%. The same applies hereinafter) is provided on the electrogalvanized layer. Pb and τΐ in the electrogalvanized layer are controlled to be Pb in an atomic conversion: 5 ppm (ppm means mass ppm, the same applies hereinafter) and T1: 10 ppm or less. 2. The electrogalvanized steel sheet according to claim 1, wherein the electrogalvanized layer contains a group selected from the group consisting of Ni, Fe, Cr, Mo, Sn, Cu, Cd, Ag, Si, Co' In, Ir, and W At least one of them, in atomic conversion, Ni: 60 to 6000 ppni, Fe: 60 to 6 〇〇 ppm, Cr: 0.5 to 5 ppm, Mo: 30 to 50 〇 ppm, 〇 _6 to 20 ppm, Cu: 8 to 3 000ppm, Cd: 0.000 1 ~ 〇. 〇 2ppm, Ag: io ~ 400ppm, Si: 30 ~ 2000ppm, Co: 〇0 003 ~ 〇 3pprn, In : 〇 _ 1 ~ 3 〇 PPm, Ir: 0.01 ~ lOppm, w : 0.1 to 50ppm range. 3 _ galvanized steel sheet according to claim 1 or 2, wherein the resin film contains a carboxyl group-containing resin and an "inorganic compound. 4. The electrogalvanized steel sheet according to item 3 of the patent application, wherein the resin film Further, a method for producing an electrogalvanized steel sheet is characterized in that the plating solution containing Pb and T1 in the plating solution is controlled to have an acid plating solution of Pb: 0.08 ppm or less and T1: 0.2 ppm or less. The step of zinc and the step of forming a resin film containing 0.05 to 5% by mass of Na. 6. The method for producing an electrogalvanized steel sheet according to claim 5, wherein the acidic plating solution contains a material selected from the group consisting of Ni: 20 to 2000 ppm, Fe2+ : -58- 200912047 50 ~ 5000ppm, Fe3+: 50 ~ 5000ppm, Cr: 5 ~ 2000ppm, Mo: 50 ~ 2000ppm, S n * 0.05 ~ 20ppm, Cu : 0_05 ~ 50ppm, Cd : 0.0 5 ~ 5 ppm, A g : 0.0 5 to 5 ppm, S i : 2 0 to 2000 ppm, Co: 0.05 to 50 ppm, In: 0.5 to 50 ppm, Ir: 0.05 to 5 ppm, and W: 0.5 to 50 ppm of at least one element in the group. Zinc plating bath characterized by Pb and T1 in the plating bath Pb: 0.08 ppm or less and Tl: 0.2 ppm or less. 8. A zinc electroplating bath according to claim 7 containing Ni: 20 to 2000 ppm, Fe2 + : 50 to 5000 ppm, Fe3 + 50 to 5000 ppm. , Cr : 5 to 2000 ppm, Mo: 50 to 2000 ppm, Sn: 0.05 to 20 ppm, Cu: 0.05 to 50 ppm, Cd: 0.05 to 5 ppm, A g : 0.05 to 5 ppm, Si: 20 to 2000 ppm, Co: 0.05 to 50 ppm, In • 0.5 ~50ppm, Ir: 0.05 ~5ppm and W: 0.5 ~50ppm At least one element in the group. -59- 200912047 The statement is not simple. It is issued as a map. The pattern represents the book without a set of two or two CC. 8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: none
TW097105795A 2007-03-26 2008-02-19 Stain-resistant electrogalvanized steel sheet TWI369419B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079917A JP5311756B2 (en) 2007-03-26 2007-03-26 Electrical Zn-plated steel sheet with excellent stain resistance

Publications (2)

Publication Number Publication Date
TW200912047A true TW200912047A (en) 2009-03-16
TWI369419B TWI369419B (en) 2012-08-01

Family

ID=39911721

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097105795A TWI369419B (en) 2007-03-26 2008-02-19 Stain-resistant electrogalvanized steel sheet

Country Status (4)

Country Link
JP (1) JP5311756B2 (en)
KR (1) KR100987912B1 (en)
CN (1) CN101307474A (en)
TW (1) TWI369419B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414633B (en) * 2010-09-29 2013-11-11 Jfe Steel Corp Galvanized steel plate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197303A (en) * 2008-02-25 2009-09-03 Kobe Steel Ltd Electrogalvanized steel sheet excellent in stain resistance
KR101112580B1 (en) * 2009-01-09 2012-02-22 오경호 Producing method for artificial copper plate
CN104878417A (en) * 2015-06-26 2015-09-02 厦门理工学院 Electroplate liquid, three-dimensional porous structure zinc film material and manufacturing method of three-dimensional porous structure zinc film material
JP6427541B2 (en) * 2016-09-16 2018-11-21 本田技研工業株式会社 Zinc-nickel composite plating bath and plating method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188898A (en) * 1995-01-11 1996-07-23 Kobe Steel Ltd Electrogalvanized steel sheet and its production
JPH09195082A (en) * 1996-01-17 1997-07-29 Nippon Steel Corp Electrogalvanized steel sheet excellent in plating appearance and its production
JP3043336B1 (en) * 1999-06-11 2000-05-22 株式会社神戸製鋼所 Electro-galvanized steel sheet excellent in white rust resistance and method for producing the same
EP1378345A4 (en) 2001-03-30 2004-06-16 Nippon Steel Corp Metal product surface-treated with alkali-soluble lubricating film exhibiting excellent formability and excellent film removal property being stable for a long time and independent of temperature for drying film
JP3801470B2 (en) * 2001-08-29 2006-07-26 新日本製鐵株式会社 Rust preventive containing water dispersible metal surface treatment agent, surface treatment metal material and method for producing the same
JP4318610B2 (en) 2004-07-30 2009-08-26 株式会社神戸製鋼所 Surface-treated metal plate
JP4057626B2 (en) * 2006-08-11 2008-03-05 株式会社神戸製鋼所 Electrical Zn-plated steel sheet with excellent stain resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414633B (en) * 2010-09-29 2013-11-11 Jfe Steel Corp Galvanized steel plate

Also Published As

Publication number Publication date
KR100987912B1 (en) 2010-10-13
TWI369419B (en) 2012-08-01
CN101307474A (en) 2008-11-19
JP5311756B2 (en) 2013-10-09
KR20080087698A (en) 2008-10-01
JP2008240036A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
TWI428478B (en) Non-chromate chemical conversion treatment zinc electroplated steel sheet having excellent white rust resistance
TWI352752B (en) Zine electro-plated steel sheet having excellent s
JP4159998B2 (en) Surface-treated metal plate
TW201138994A (en) Surface-treating composition and surface-treated steel sheet
KR20130051997A (en) Surface treatment fluid for zinc-plated steel sheet, zinc-plated steel sheet, and manufacturing method for same
TW200912047A (en) Stain-resistant electrogalvanized steel sheet
KR20150080012A (en) Coated plated steel material
CN109642329B (en) Surface-treated metal sheet and method for producing surface-treated metal sheet
JP4478056B2 (en) Resin coated metal plate
JP7112350B2 (en) Painted galvanized steel sheet
CN105670505B (en) The manufacture method of coated steel sheet, the steel plate for being coated with combination resin and the steel plate
JP2000273659A (en) Rust preventive treating agent for metallic surface and surface treated metallic product
WO2009107546A1 (en) Electro-galvanized steel sheet with excellent unsusceptibility to stain
JP6946377B2 (en) Resin coated metal plate
JP7112349B2 (en) Painted galvanized steel sheet
KR20190039548A (en) Surface-treated metal plate, and method of manufacturing surface-treated metal plate
WO2019188461A1 (en) Coated galvanized steel sheet
JP2019173125A (en) Coated galvanized steel sheet
JP2001026889A (en) Rust preventive agent for metallic surface and surface treated metallic product

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees