WO2019188461A1 - Coated galvanized steel sheet - Google Patents

Coated galvanized steel sheet Download PDF

Info

Publication number
WO2019188461A1
WO2019188461A1 PCT/JP2019/011038 JP2019011038W WO2019188461A1 WO 2019188461 A1 WO2019188461 A1 WO 2019188461A1 JP 2019011038 W JP2019011038 W JP 2019011038W WO 2019188461 A1 WO2019188461 A1 WO 2019188461A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin
resin film
steel sheet
magnesium hydroxide
Prior art date
Application number
PCT/JP2019/011038
Other languages
French (fr)
Japanese (ja)
Inventor
山本 哲也
大輝 酒井
礼士 白岩
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019029020A external-priority patent/JP7112349B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201980021450.XA priority Critical patent/CN111902272B/en
Priority to KR1020207028900A priority patent/KR102431941B1/en
Publication of WO2019188461A1 publication Critical patent/WO2019188461A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a coated galvanized steel sheet having a coating containing an inorganic compound in a resin (hereinafter sometimes referred to as “inorganic coating”) on the surface of the galvanized steel sheet.
  • the surface-treated steel sheet is plated and painted on the surface of the base material and exhibits excellent corrosion resistance.
  • red rust is gradually generated in the atmospheric environment on the end surface of the surface-treated steel plate from which the steel as the base material is exposed. Red rust generated on the end surface of the surface-treated steel sheet not only deteriorates the appearance, but if it occurs in the vicinity of a circuit board such as an electrical product, it may fall off the steel sheet and short circuit, impairing the safety of the product. May cause.
  • a general pre-coated metal plate has a coating film with a thickness of several tens of ⁇ m.
  • the end face corrosion resistance is improved by optimizing the components.
  • a coated steel sheet having a special chemical conversion coating with a coating thickness smaller than that of a pre-coated metal sheet has few rust-preventive components that can be eluted and cannot sufficiently cover the cut end face, so that good end face corrosion resistance can be obtained.
  • magnesium-based compounds exhibit an antirust effect.
  • techniques for highly corrosion resistant coatings containing nano-sized magnesium particles have been developed.
  • Patent Document 1 discloses a coating made of a composition containing nano magnesium hydroxide particles having an average particle diameter of less than 200 nm.
  • Patent Document 2 discloses a rust preventive for metal containing a composite colloid composed of magnesium hydroxide and fine silica. Disclosed is a film formed using an agent.
  • Patent Document 3 includes oxide particles, phosphoric acid and / or a phosphoric acid compound, and a magnesium compound on the surface of a zinc-based plated steel sheet.
  • An organic coated steel sheet having a composite oxide film and having an organic film containing a reaction product of an organic resin and an active hydrogen-containing compound and an antirust additive component on the composite oxide film is disclosed.
  • the coating disclosed in Patent Document 1 has a thickness of 2.5 to 75 ⁇ m and is not assumed to be press-molded. Further, the coating disclosed in Patent Document 1 does not exhibit a sufficient antirust effect after press molding when the thickness is several ⁇ m or less.
  • Patent Document 2 requires the use of a metal anticorrosive containing a composite colloid composed of magnesium hydroxide and fine silica during film formation. It is stable and prone to problems in the coating process for gelation. Moreover, although the film disclosed in Patent Document 2 is presumed to be effective in corrosion resistance in that it is eluted at the end face, it contains a water-soluble component, so that the water resistance is insufficient, such as condensation or water wetting during transportation. There is a high risk of discoloration due to.
  • the organic coated steel sheet disclosed in Patent Document 3 since the magnesium compound is added in the form of water-soluble ions or molecules when forming the composite oxide film, the treatment liquid stability decreases when the addition amount of the magnesium compound is increased. . For this reason, there is a limit in improving the corrosion inhibiting effect of the composite oxide film by increasing the magnesium component. In addition, the organic coated steel sheet disclosed in Patent Document 3 has a problem in that productivity is low and manufacturing cost is high because it is necessary to form an organic film after forming a composite oxide film.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a coated galvanized steel sheet having excellent end face corrosion resistance even when the thickness of the coating is several ⁇ m or less.
  • One aspect of the present invention is a coated galvanized steel sheet having a resin film containing silica and magnesium hydroxide on the surface of the galvanized steel sheet, wherein the total content of silica and magnesium hydroxide in the resin film is 50 to 50%. 75 mass%, the resin component content of the resin film is 25 to 50 mass%, the mass ratio of the magnesium hydroxide to the silica is 0.2 to 1.5, and the thickness of the resin film is It is a coated galvanized steel sheet having a thickness of 0.3 to 3.0 ⁇ m.
  • the present inventors examined from various angles in order to achieve the above object. As a result, by appropriately adjusting the total content of silica and magnesium hydroxide in the resin film, the mass ratio of magnesium hydroxide to silica, and the thickness of the resin film, the protective effect of the cut end surface of the galvanized steel sheet is enhanced. As a result, the inventors have found that the above object can be achieved brilliantly and completed the present invention.
  • the coated galvanized steel sheet according to an embodiment of the present invention has a resin film containing silica and magnesium hydroxide on the surface of the galvanized steel sheet.
  • the total content of silica and magnesium hydroxide in the resin film is 50 to 75% by mass.
  • the resin component content of the resin film is 25 to 50% by mass.
  • the mass ratio of the magnesium hydroxide to the silica is 0.2 to 1.5.
  • the resin film has a thickness of 0.3 to 3.0 ⁇ m.
  • a coated galvanized steel sheet exhibiting excellent corrosion resistance can be provided even when the thickness of the film is several ⁇ m or less.
  • total content of silica and magnesium hydroxide 50 to 75% by mass
  • the total content of silica and magnesium hydroxide in the resin film is 50 to 75% by mass. It is presumed that silica and magnesium hydroxide in the resin film are eluted from the resin film in a corrosive environment and exhibit an effect of protecting the cut end face.
  • the total content of silica and magnesium hydroxide in the resin film is less than 50% by mass, the amount of elution is not sufficient, so that the protective action of the end face portion is not ensured.
  • it is 55 mass% or more, More preferably, it is 60 mass% or more.
  • the resin component serving as the binder is insufficient and the film has many defective portions, so that the corrosion resistance as a flat plate is not ensured.
  • the resin component serving as the binder is insufficient and the film has many defective portions, so that the corrosion resistance as a flat plate is not ensured.
  • it is 73 mass% or less, More preferably, it is 70 mass% or less.
  • the inorganic compound contained in the resin film of this embodiment is silica and magnesium hydroxide
  • the inorganic film means a resin film containing silica and magnesium hydroxide.
  • the silica used in the present embodiment is preferably colloidal silica excellent in compatibility with an aqueous resin described later. If the average particle size of the silica is too large, or reduced denseness of the film, there is a possibility that or generating a film defects, it is preferred that the average particle size D 50 is 500nm or less, 450 nm or less It is more preferable that Note that the average particle diameter D 50 of the silica, the integrated value of the silica (integrated value) means the average particle diameter when the 50 mass%.
  • the magnesium hydroxide used in the present embodiment is not particularly limited as long as it is stable as an aqueous dispersion, and the magnesium hydroxide powder and dispersion method are not particularly limited.
  • the average particle diameter D 50 of the magnesium hydroxide in a state of being dispersed in water i.e., the average particle diameter D 50 of magnesium hydroxide in magnesium hydroxide aqueous dispersion is preferably less than that of the resin film thickness, for example, 0. It is preferably 7 ⁇ m or less. Thereby, corrosion of the end surface due to insufficient elution amount due to the particulate magnesium hydroxide falling off from the resin film can be suppressed.
  • the lower limit of the average particle diameter D 50 in a state where magnesium hydroxide is dispersed in water is not particularly limited, but if the average particle diameter D 50 becomes too small, the stability of the dispersion (for example, dispersion) is reduced. Since there exists a possibility that it may fall, it is preferable that it is 0.1 micrometer or more. More preferably, it is 0.14 ⁇ m or more.
  • the average particle diameter D 50 of the magnesium hydroxide means the average particle diameter when the cumulative value of magnesium hydroxide (integrated value) of 50 wt%.
  • a polymer dispersant for example, a water-soluble acrylic resin, a water-soluble styrene acrylic resin, a nonionic surfactant
  • a polymer dispersant for example, a water-soluble acrylic resin, a water-soluble styrene acrylic resin, a nonionic surfactant
  • the content of the resin component in the resin film is 25 to 50% by mass.
  • the content of the resin component in the resin film is 25% by mass or more. Preferably it is 30 mass% or more.
  • the content of the resin component in the resin film is 50% by mass or less. Preferably it is 40 mass% or less.
  • Mass ratio of magnesium hydroxide to silica 0.2 to 1.5
  • the mass ratio of magnesium hydroxide to silica is 0.2 to 1.5.
  • Magnesium hydroxide and silica are both known as rust preventives for zinc plating.
  • the present inventors have found that excellent corrosion resistance can be obtained by blending magnesium hydroxide and silica in a resin film at a specific mass ratio. Excellent corrosion resistance is exhibited when the mass ratio of magnesium hydroxide to silica [Mg (OH) 2 / SiO 2 ] is in the range of 0.2 to 1.5.
  • This mass ratio is preferably 0.3 or more, and preferably 1.0 or less.
  • the mechanism by which the corrosion resistance is improved by adjusting the mass ratio to an appropriate range is unknown, but is probably as follows. That is, it is considered that magnesium ions eluted from magnesium hydroxide stabilized a corrosion product having a high protective action against galvanization produced by silica, and improved the barrier effect by the stabilized corrosion product.
  • the protective action against galvanization means a barrier property that blocks corrosion factors such as water and oxygen.
  • the component eluted from the resin film in a corrosive environment is also considered to be affected by the mass ratio of magnesium hydroxide to silica [Mg (OH) 2 / SiO 2 ], and the mass ratio is 0.2 to 1. By making it within the range of 5, it is presumed that the component eluted from the resin film has a composition ratio excellent in end face protection.
  • particulate magnesium hydroxide makes it possible to increase the magnesium component addition ratio in the resin film without impairing the stability of the treatment liquid, and as a result, corrosion generation with a high protective action against galvanization. It is presumed that the object will be supplied to the cut end face.
  • the resin film thickness affects the corrosion resistance of both the flat plate portion and the end surface portion.
  • the resin film thickness is 0.3 ⁇ m or more.
  • the resin film thickness is 0.2 ⁇ m, a level of corrosion resistance with no practical problem can be obtained.
  • the corrosion resistance is insufficient when the resin film thickness is less than 0.3 ⁇ m.
  • the upper limit of the resin film thickness is not particularly required because it depends on the area (plate thickness) of the cut surface.
  • the resin film thickness is preferably 3.0 ⁇ m or less from the viewpoint of manufacturing cost.
  • the type of resin used in the present embodiment is not particularly limited, and any of a water-based resin and a non-aqueous resin can be used.
  • an aqueous dispersion of magnesium hydroxide or colloidal silica it is preferable to use an aqueous resin.
  • Such an aqueous resin is not particularly limited, but is preferably mixed with an aqueous dispersion of magnesium hydroxide and colloidal silica.
  • the aqueous resin in the present embodiment refers to a resin that is an aqueous dispersion or a water-soluble resin.
  • Such water-based resins are preferably polyolefin-based resins, polyurethane-based resins, and polyester-based resins, and among these, polyolefin-based resins and polyurethane-based resins are more preferable.
  • the polyolefin resin and the polyurethane resin will be specifically described.
  • polyolefin resin As the polyolefin resin, an ethylene-unsaturated carboxylic acid copolymer is preferable.
  • the ethylene-unsaturated carboxylic acid copolymer for example, those described in JP-A-2005-246953 and JP-A-2006-43913 can be used.
  • Examples of the unsaturated carboxylic acid include (meth) acrylic acid, crotonic acid, isocrotonic acid, maleic acid, fumaric acid, itaconic acid, and the like.
  • An ethylene-unsaturated carboxylic acid copolymer can be obtained by polymerization using a combination method.
  • the copolymerization ratio of unsaturated carboxylic acid to ethylene is preferably 10% by mass or more, more preferably 15% by mass or more when unsaturated monomer is 100% by mass. 40% by mass or less, and more preferably 25% by mass or less.
  • the coating strength emulsion composition
  • the unsaturated carboxylic acid exceeds 40% by mass, the corrosion resistance and water resistance of the resin film may be inferior.
  • the coating liquid can be emulsified (water dispersion) by neutralization with an organic base or metal ion.
  • an amine having a boiling point of 100 ° C. or less under atmospheric pressure is preferable from the viewpoint of not significantly reducing the corrosion resistance of the resin film.
  • Specific examples include tertiary amines such as triethylamine; secondary amines such as diethylamine; primary amines such as propylamine, and the like, and one or more of these can be used in combination. Of these, tertiary amines are preferred, and triethylamine is most preferred.
  • the amine is preferably 0.2 mol or more with respect to 1 mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer, and is preferably 0.8 mol or less. preferable. And it is more preferable that it is 0.3 mol or more, and it is more preferable that it is 0.6 mol or less on the other hand.
  • the amount of monovalent metal ions is preferably 0.02 mol or more with respect to 1 mol of carboxyl groups in the ethylene-unsaturated carboxylic acid copolymer from the viewpoint of ensuring the emulsion stability of the coating liquid. More preferably, it is 0.03 mol or more. On the other hand, from the viewpoint of ensuring corrosion resistance, the amount is preferably 0.4 mol or less, more preferably 0.3 mol or less, based on 1 mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer.
  • the metal compound for imparting monovalent metal ions is preferably NaOH, KOH, LiOH or the like, and NaOH is most preferable because of its best performance.
  • the ethylene-unsaturated carboxylic acid copolymer is stirred at high speed in a container capable of reacting at a high temperature (about 150 ° C.) and a high pressure (about 5 atm), for example, in the presence of a carboxylic acid polymer described later, if necessary.
  • a high temperature about 150 ° C.
  • a high pressure about 5 atm
  • an appropriate amount of a compound having a surfactant function such as tall oil fatty acid may be added.
  • a hydrophilic organic solvent such as a lower alcohol having about 1 to 5 carbon atoms may be partially added to water.
  • the mass average molecular weight (Mw) of the ethylene-unsaturated carboxylic acid copolymer is preferably 1,000 or more and 100,000 or less in terms of polystyrene.
  • a more preferable lower limit is 3,000 or more, and further preferably 5,000 or more.
  • a more preferable upper limit value is 70,000 or less, more preferably 30,000 or less. This Mw can be measured by gel permeation chromatography (GPC) using polystyrene as a standard.
  • a carboxylic acid polymer can also be used as the resin component.
  • the carboxylic acid polymer any polymer having an unsaturated carboxylic acid as a constituent unit exemplified as one that can be used for the synthesis of the ethylene-unsaturated carboxylic acid copolymer can be used. Among these, acrylic acid and maleic acid are preferable, and maleic acid is more preferable.
  • the carboxylic acid polymer may contain a constituent unit derived from a monomer other than the unsaturated carboxylic acid, but the constituent unit amount derived from the other monomer is 10% by mass or less in the polymer. More preferably, it is 5 mass% or less, and the carboxylic acid polymer comprised only from unsaturated carboxylic acid is further more preferable.
  • Preferred carboxylic acid polymers include polyacrylic acid, polymethacrylic acid, acrylic acid-maleic acid copolymer, polymaleic acid and the like. Of these, polymaleic acid is more preferable from the viewpoints of resin film adhesion and corrosion resistance. Although the exact mechanism by which the corrosion resistance is improved by using polymaleic acid is unknown, the adhesion between the resin film and the galvanized steel sheet is improved due to the large amount of carboxyl groups. It is done. However, the present invention is not limited to this estimation.
  • the mass average molecular weight (Mw) of the carboxylic acid polymer used in the present embodiment is preferably 500 or more and 30,000 or less in terms of polystyrene.
  • a more preferable lower limit value is 800 or more, more preferably 900 or more, and most preferably 1,000 or more.
  • a more preferable upper limit value is 10,000 or less, more preferably 3,000 or less, and most preferably 2,000 or less. This Mw can be measured by GPC using polystyrene as a standard.
  • the content ratio of the ethylene-unsaturated carboxylic acid copolymer and the carboxylic acid polymer is 1,000: 1 to 10: 1, preferably 200: 1 to 20: 1 in terms of mass ratio. If the content ratio of the carboxylic acid polymer is too low, the effect of combining the olefin-acid copolymer and the carboxylic acid polymer may not be sufficiently exhibited. On the contrary, if the content ratio of the carboxylic acid polymer is excessive, the olefin-acid copolymer and the carboxylic acid polymer are phase-separated in the first layer forming coating solution, and a uniform resin film is formed. There is a risk of disappearing.
  • polyurethane resin As the polyurethane resin, a carboxyl group-containing polyurethane resin is preferable.
  • the carboxyl group-containing polyurethane resin for example, those described in JP-A-2006-43913 can be used.
  • the carboxyl group-containing polyurethane resin is preferably obtained by chain extension reaction of a urethane prepolymer with a chain extender.
  • the urethane prepolymer is obtained, for example, by reacting a polyisocyanate component and a polyol component.
  • At least one polyisocyanate selected from the group consisting of tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI) and dicyclohexylmethane diisocyanate (hydrogenated MDI) as the polyisocyanate component.
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • hydrophilated MDI dicyclohexylmethane diisocyanate
  • the content of the polyisocyanate is preferably 70% by mass or more of the total polyisocyanate component from the viewpoint of ensuring the corrosion resistance of the resin film and the stability of reaction control.
  • polyisocyanate other than the above polyisocyanate component examples include tetramethylene diisocyanate, hexamethylene diisocyanate, dodecane methylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, and phenylene diisocyanate. One or more of these are used. May be.
  • polyol component it is preferable to use three types of polyols, 1,4-cyclohexanedimethanol, polyether polyol, and polyol having a carboxyl group, as the polyol component.
  • polyol component it is more preferable to use three kinds of diols of 1,4-cyclohexanedimethanol, polyether diol, and diol having a carboxyl group.
  • the use of 1,4-cyclohexanedimethanol as the polyol component can enhance the rust prevention effect of the obtained polyurethane resin.
  • the polyether polyol is not particularly limited as long as it has at least two hydroxyl groups in the molecular chain and the main skeleton is composed of alkylene oxide units. Specific examples include polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol and the like, and it is preferable to use polyoxypropylene glycol or polytetramethylene ether glycol.
  • the number of functional groups of the polyether polyol is not particularly limited as long as it is at least 2 or more, and for example, it may be trifunctional or tetrafunctional or polyfunctional.
  • the average molecular weight of the polyether polyol is preferably about 400 to 4000 from the viewpoint of obtaining a resin film having an appropriate hardness. The average molecular weight can be determined by measuring the OH value (hydroxyl value).
  • the polyol having a carboxyl group is not particularly limited as long as it has at least one carboxyl group and at least two hydroxyl groups. Specific examples include dimethylolpropionic acid, dimethylolbutanoic acid, dihydroxypropionic acid, dihydroxysuccinic acid and the like.
  • the content of the three kinds of polyols is preferably 70% by mass or more of the total polyol components from the viewpoint of ensuring the corrosion resistance of the resin film.
  • the polyol other than the above three types of polyol is not particularly limited as long as it has a plurality of hydroxyl groups.
  • a low molecular weight polyol, a high molecular weight polyol, etc. are mentioned.
  • the low molecular weight polyol is a polyol having an average molecular weight of about 500 or less.
  • diols such as ethylene glycol, diethylene glycol, triethylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol; glycerin, trimethylolpropane, hexanetriol, etc.
  • the high molecular weight polyol is a polyol having an average molecular weight exceeding about 500.
  • polyester polyols such as polyethylene adipate (PEA), polybutylene adipate (PBA), and polyhexamethylene adipate (PHMA); lactone polyester polyols such as poly- ⁇ -caprolactone (PCL); polyhexamethylene Polycarbonate polyols such as carbonate; and acrylic polyols.
  • PEA polyethylene adipate
  • PBA polybutylene adipate
  • PHMA polyhexamethylene adipate
  • lactone polyester polyols such as poly- ⁇ -caprolactone (PCL)
  • PCL polyhexamethylene Polycarbonate polyols such as carbonate
  • acrylic polyols such as polyethylene adipate (PEA), polybutylene adipate (PBA), and polyhexamethylene adipate (PHMA)
  • lactone polyester polyols such as poly- ⁇ -caprolactone (PCL)
  • PCL polyhexamethylene Polycarbonate polyols
  • the chain extender is not particularly limited, and examples thereof include polyamines, low molecular weight polyols, and alkanolamines.
  • polyamines aliphatic polyamines such as ethylenediamine, propylenediamine and hexamethylenediamine; aromatic polyamines such as tolylenediamine, xylylenediamine and diaminodiphenylmethane; alicyclic polyamines such as diaminocyclohexylmethane, piperazine and isophoronediamine; hydrazine, And hydrazines such as succinic acid dihydrazide, adipic acid dihydrazide, and phthalic acid dihydrazide.
  • alkanolamine include diethanolamine and monoethanolamine.
  • the carboxyl group-containing polyurethane resin can be emulsified (emulsified) by a known method, for example, the following method. That is, a method in which a carboxyl group of a carboxyl group-containing urethane prepolymer is neutralized with a base and emulsified and dispersed in an aqueous medium to cause chain extension reaction; a carboxyl group-containing polyurethane resin is emulsified with high shear force in the presence of an emulsifier This is a method of dispersing and chain extending reaction.
  • the acid value of the carboxyl group-containing polyurethane resin is preferably 10 mgKOH / g or more from the viewpoint of ensuring the stability of the coating liquid, and on the other hand, 60 mgKOH / g or less from the viewpoint of ensuring the corrosion resistance of the resin film. Is preferred.
  • the acid value is measured according to JIS-K0070 (1992).
  • the resin film is applied to the surface of the galvanized steel sheet using a known coating method, that is, a roll coater method, a bar coater method, a spray method, or a curtain flow coater method, and dried by heating.
  • a known coating method that is, a roll coater method, a bar coater method, a spray method, or a curtain flow coater method, and dried by heating.
  • the coating liquid contains a predetermined amount of silica, magnesium hydroxide and the above resin.
  • the resin solid content in the coating liquid is preferably about 15 to 25% by mass.
  • a coating liquid may contain various additives in the range which does not inhibit the effect of this invention for the purpose of improving membrane
  • additives examples include silane coupling agents, elution inhibitors, rust inhibitors, waxes, crosslinking agents, diluents, antiskinning agents, surfactants, emulsifiers, dispersants, leveling agents, antifoaming agents, and penetrants. , Film forming aids, dyes, pigments, thickeners, lubricants and the like.
  • the resin film becomes dense and the corrosion resistance is improved.
  • the adhesiveness of a galvanized steel plate and a resin film is also improved, and corrosion resistance is improved.
  • glycidoxy-based silane coupling agents are highly reactive and have a large effect of improving corrosion resistance.
  • Glycidyl group-containing silane coupling agents include ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxymethyldimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyl Examples include trimethoxysilane.
  • the amount of the silane coupling agent is preferably 0.1 parts by mass or more, more preferably 3 parts by mass or more, with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic film. More preferably, it is 5 parts by mass or more. If the amount is less than 0.1 parts by mass, the adhesion between the galvanized steel sheet and the resin film and the bonding force between the resin component and colloidal silica may be insufficient, and the toughness and corrosion resistance of the film may be insufficient. is there.
  • the amount of the silane coupling agent is preferably 10 parts by mass or less, more preferably 9 parts by mass or less, with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic film. More preferably, it is 7 parts by mass or less. Even if it exceeds 10 parts by mass, not only the effect of improving the adhesion between the metal plate and the resin film is saturated, but also the functional group in the resin may decrease and the paintability may deteriorate. Moreover, it is because silane coupling agents raise
  • metavanadate which is an elution inhibitor
  • dissolution and elution of a galvanized steel sheet are suppressed by elution of metavanadate, and corrosion resistance is improved.
  • Metavanadate is particularly effective in improving the bare corrosion resistance of the galvannealed steel sheet.
  • the metavanadate include sodium metavanadate (NaVO 3 ), ammonium metavanadate (NH 4 VO 3 ), and potassium metavanadate (KVO 3 ). These 1 type (s) or 2 or more types can be used.
  • the amount of metavanadate is preferably 0.5 parts by mass or more and more preferably 1.0 part by mass or more with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic coating. Preferably, it is 1.5 parts by mass or more. This is because if the amount is less than 0.5 parts by mass, the effect of improving the bare corrosion resistance becomes insufficient.
  • the amount of metavanadate is preferably 5.5 parts by mass or less, and 5.0 parts by mass or less with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic coating. Is more preferably 4.5 parts by mass or less.
  • the suitable amount of this metavanadate is a V element conversion amount.
  • the type of galvanized steel sheet used in the present embodiment is not particularly limited, and any of electrogalvanized steel sheet, hot dip galvanized steel sheet, and alloyed hot dip galvanized steel sheet (hereinafter, these may be referred to as “original plates”). Can also be adopted. Moreover, there is no limitation in particular also about the kind of zinc plating layer, An alloying element may be included in a plating layer.
  • the galvanized layer is coated on one side or both sides of the base steel plate, and the resin film is accordingly coated on one side or both sides of the galvanized steel plate.
  • the coated galvanized steel sheet according to one aspect of the present invention is a coated galvanized steel sheet having a resin film containing silica and magnesium hydroxide on the surface of the galvanized steel sheet, and the silica in the resin film and
  • the total content of magnesium hydroxide is 50 to 75% by mass
  • the content of the resin component of the resin film is 25 to 50% by mass
  • the mass ratio of the magnesium hydroxide to the silica is 0.2 to 1.%. 5
  • the thickness of the resin film is 0.3 to 3.0 ⁇ m.
  • a coated galvanized steel sheet exhibiting excellent corrosion resistance can be realized even when the thickness of the resin film is several ⁇ m or less.
  • Magnesium hydroxide particles (manufactured by Kyowa Chemical Industry Co., Ltd., trade name: Kisuma 5Q-S) are used as a dispersant and dispersed using a polymer dispersant to obtain an aqueous dispersion (resin solid content: about 30 wt%, average particle size D 50: 0.69 .mu.m) was formulated.
  • the average particle diameter D 50 of the magnesium hydroxide in the dispersion was diluted with 0.2 wt% aqueous solution of sodium hexametaphosphate, a laser diffraction scattering particle size distribution measuring device (Microtrac Bell Co., Ltd., trade name: Micro Measurement was performed using a track MT3300EXII).
  • the above polyethylene resin manufactured by Toho Chemical Co., Ltd. and its aqueous dispersion were prepared by the following method.
  • an ethylene-acrylic acid copolymer manufactured by Dow Chemical Co., Ltd., trade name: Primacol 5990I, structural unit derived from acrylic acid: 20% by mass, mass
  • polymaleic acid aqueous solution manufactured by NOF Corporation, trade name: Non-Paul PMA-50W, Mw: about 1100 (polystyrene conversion)
  • the above urethane resin manufactured by Toho Chemical Co., Ltd. and its aqueous dispersion were prepared by the following method.
  • test piece (Corrosion resistance of the end face)
  • a rectangular test piece having a width of 50 ⁇ 120 mm was cut out from a sample for evaluating the corrosion resistance of the end face using the same shearing equipment.
  • the number of cut out test pieces is the test number. In any of 1 to 13, there are 12 sheets.
  • Each test piece was subjected to a salt spray test for 96 hours in accordance with JIS Z2371 (2015) without sealing the end face.
  • the test pieces after the salt spray test are each packed with copy paper and left in an air-conditioned room (temperature: about 23 ° C., humidity: about 30%) for 3 weeks to test the corrosion of the end face. Proceeded. After completion of the room temperature standing test, test no.
  • Red rust occurrence rate at the end face portion is 15 area% or less
  • Red rust occurrence rate at the end face portion is more than 15 area% and 30 area% or less
  • the example (No. 8) in which the resin content is 60% by mass has too much resin content, and thus the corrosion resistance of the end face portion is deteriorated.
  • the resin content is less than 25% by mass (Nos. 9 and 13)
  • the resin content is too small, film defects are increased, and the corrosion resistance of the end face portion and the white rust corrosion resistance of the flat plate portion are deteriorated. It was.
  • the mass ratio [Mg (OH) 2 / SiO 2 ] is outside the range of 0.2 to 1.5 (test Nos. 10 and 12)
  • the corrosion resistance of the end face portion was deteriorated.
  • the example (test No. 11) whose resin film thickness is 0.2 micrometer deteriorated the corrosion resistance of the end surface part, and the white rust corrosion resistance of the flat plate part.
  • the coated galvanized steel sheet of the present invention (test Nos. 1 to 7) in which the total content, mass ratio [Mg (OH) 2 / SiO 2 ], and resin film thickness of silica and magnesium hydroxide were appropriately adjusted Exhibited excellent corrosion resistance in both the flat plate portion and the end face portion.
  • the present invention has wide industrial applicability in the technical fields related to steel plates, galvanized steel plates and methods for producing them.

Abstract

One aspect of the present invention relates to a coated galvanized steel sheet which has a resin coating film that contains silica and magnesium hydroxide on the surface of a galvanized steel sheet, and which is configured such that: the total content of the silica and the magnesium hydroxide in the resin coating film is 50-75% by mass; the content of a resin component in the resin coating film is 25-50% by mass; the mass ratio of the magnesium hydroxide to the silica is 0.2-1.5; and the thickness of the resin coating film is 0.3-3.0 μm.

Description

塗装亜鉛めっき鋼板Painted galvanized steel sheet
 本発明は、亜鉛めっき鋼板の表面に、樹脂中に無機化合物を含む皮膜(以下、「無機系皮膜」と呼ぶことがある)を有する塗装亜鉛めっき鋼板に関する。 The present invention relates to a coated galvanized steel sheet having a coating containing an inorganic compound in a resin (hereinafter sometimes referred to as “inorganic coating”) on the surface of the galvanized steel sheet.
 表面処理鋼板はめっきや塗装が母材表面に施されており、優れた耐食性を示す。しかし、母材である鋼が露出している表面処理鋼板の端面では、大気環境下において徐々に赤錆が発生する。表面処理鋼板の端面に発生した赤錆は、外観を悪化させるだけでなく、例えば電気製品等の回路基板の近傍で発生すると、鋼板から脱落して回路を短絡させ、製品の安全性を損なう問題を引き起こすおそれがある。 The surface-treated steel sheet is plated and painted on the surface of the base material and exhibits excellent corrosion resistance. However, red rust is gradually generated in the atmospheric environment on the end surface of the surface-treated steel plate from which the steel as the base material is exposed. Red rust generated on the end surface of the surface-treated steel sheet not only deteriorates the appearance, but if it occurs in the vicinity of a circuit board such as an electrical product, it may fall off the steel sheet and short circuit, impairing the safety of the product. May cause.
 塗装鋼板の端面における赤錆発生を防止するために、様々な検討がこれまでになされている。例えば、一般的なプレコート金属板では、数十μmの厚みの塗膜を有していることから、塗膜から切断端面に溶出した防錆成分による保護作用が大きいことを利用して、塗膜成分の最適化による端面耐食性の向上が図られている。一方、プレコート金属板に比べて塗膜厚みの小さい特殊化成処理皮膜を有する塗装鋼板では、溶出できる防錆成分が少なく、切断端面を充分に覆うことができないため、良好な端面耐食性を得ることは困難である。そのため、高度な端面耐食性が求められる用途では、冷延鋼板をプレス成形した後に塗装やめっきを施した部品が適用されることが多い。 Various studies have been made so far to prevent the occurrence of red rust on the end face of the coated steel sheet. For example, a general pre-coated metal plate has a coating film with a thickness of several tens of μm. The end face corrosion resistance is improved by optimizing the components. On the other hand, a coated steel sheet having a special chemical conversion coating with a coating thickness smaller than that of a pre-coated metal sheet has few rust-preventive components that can be eluted and cannot sufficiently cover the cut end face, so that good end face corrosion resistance can be obtained. Have difficulty. Therefore, in applications where high end face corrosion resistance is required, parts that have been coated or plated after press forming cold-rolled steel sheets are often used.
 亜鉛めっきに対しては、マグネシウム系化合物が防錆効果を示すことが知られている。近年、ナノサイズのマグネシウム粒子を含有する高耐食性皮膜の技術が開発されている。 For galvanizing, it is known that magnesium-based compounds exhibit an antirust effect. In recent years, techniques for highly corrosion resistant coatings containing nano-sized magnesium particles have been developed.
 こうした技術として、例えば特許文献1は、200nm未満の平均粒径を有するナノ水酸化マグネシウム粒子を含む組成物からなるコーティングを開示している。 As such a technique, for example, Patent Document 1 discloses a coating made of a composition containing nano magnesium hydroxide particles having an average particle diameter of less than 200 nm.
 また、自己修復作用で皮膜欠陥部を修復し不動態化させることで、皮膜の耐食性を保持する技術として、特許文献2は、水酸化マグネシウムと微粒シリカからなる複合コロイドを含有する金属用防錆剤を用いて形成された皮膜を開示している。 Further, as a technique for maintaining the corrosion resistance of the film by repairing and passivating the film defect by self-repairing action, Patent Document 2 discloses a rust preventive for metal containing a composite colloid composed of magnesium hydroxide and fine silica. Disclosed is a film formed using an agent.
 他方、マグネシウム含有皮膜をクロムフリーの有機被覆鋼板の皮膜に用いた技術として、特許文献3は、亜鉛系めっき鋼板の表面に、酸化物粒子、リン酸および/またはリン酸化合物並びにマグネシウム化合物を含む複合酸化物皮膜を有し、当該複合酸化物皮膜の上に、有機樹脂と活性水素含有化合物の反応生成物、および防錆添加成分を含む有機皮膜を有する、有機被覆鋼板を開示している。 On the other hand, as a technique using a magnesium-containing film as a film of a chromium-free organic coated steel sheet, Patent Document 3 includes oxide particles, phosphoric acid and / or a phosphoric acid compound, and a magnesium compound on the surface of a zinc-based plated steel sheet. An organic coated steel sheet having a composite oxide film and having an organic film containing a reaction product of an organic resin and an active hydrogen-containing compound and an antirust additive component on the composite oxide film is disclosed.
 特許文献1に開示されたコーティングは、厚みが2.5~75μmであり、プレス成形されることを想定されていない。また、特許文献1に開示されたコーティングは、厚みが数μm以下では、プレス成形後の充分な防錆効果を発現しない。 The coating disclosed in Patent Document 1 has a thickness of 2.5 to 75 μm and is not assumed to be press-molded. Further, the coating disclosed in Patent Document 1 does not exhibit a sufficient antirust effect after press molding when the thickness is several μm or less.
 特許文献2に開示された皮膜は、皮膜形成時に水酸化マグネシウムと微粒シリカからなる複合コロイドを含有する金属用防錆剤を用いる必要があるが、当該複合コロイドは処理液成分と反応するため不安定であり、ゲル化させる塗装工程で問題が発生しやすい。また、特許文献2に開示された皮膜は、端面に溶出する点で耐食性に有効と推測されるが、水溶性成分を含有するため耐水性が不充分であり、結露や輸送中の水濡れ等による変色のおそれが大きい。 The coating disclosed in Patent Document 2 requires the use of a metal anticorrosive containing a composite colloid composed of magnesium hydroxide and fine silica during film formation. It is stable and prone to problems in the coating process for gelation. Moreover, although the film disclosed in Patent Document 2 is presumed to be effective in corrosion resistance in that it is eluted at the end face, it contains a water-soluble component, so that the water resistance is insufficient, such as condensation or water wetting during transportation. There is a high risk of discoloration due to.
 特許文献3に開示された有機被覆鋼板は、複合酸化物皮膜形成時にマグネシウム化合物が水溶性のイオンまたは分子の形態で添加されるため、マグネシウム化合物の添加量を高めると処理液安定性が低下する。このため、マグネシウム成分増量によって複合酸化物皮膜の腐食抑制効果を向上させるには限界がある。また、特許文献3に開示された有機被覆鋼板は、複合酸化物皮膜を形成した後、さらに有機皮膜を形成する必要があるため、生産性が低く、製造コストが高いという問題もある。 In the organic coated steel sheet disclosed in Patent Document 3, since the magnesium compound is added in the form of water-soluble ions or molecules when forming the composite oxide film, the treatment liquid stability decreases when the addition amount of the magnesium compound is increased. . For this reason, there is a limit in improving the corrosion inhibiting effect of the composite oxide film by increasing the magnesium component. In addition, the organic coated steel sheet disclosed in Patent Document 3 has a problem in that productivity is low and manufacturing cost is high because it is necessary to form an organic film after forming a composite oxide film.
 本発明は上記事情に鑑みてなされたものであり、皮膜の厚みが数μm以下であるときにおいても、優れた端面耐食性を有する塗装亜鉛めっき鋼板を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a coated galvanized steel sheet having excellent end face corrosion resistance even when the thickness of the coating is several μm or less.
特開2016-104574号公報JP 2016-104574 A 特開2002-322569号公報JP 2002-322569 A 特開2002-053979号公報JP 2002-053979 A
 本発明の一局面は、亜鉛めっき鋼板の表面に、シリカおよび水酸化マグネシウムを含む樹脂皮膜を有する塗装亜鉛めっき鋼板であって、前記樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量が50~75質量%、かつ前記樹脂皮膜の樹脂成分の含有量が25~50質量%であり、前記シリカに対する前記水酸化マグネシウムの質量比率が0.2~1.5であり、前記樹脂皮膜の厚みが0.3~3.0μmである塗装亜鉛めっき鋼板である。 One aspect of the present invention is a coated galvanized steel sheet having a resin film containing silica and magnesium hydroxide on the surface of the galvanized steel sheet, wherein the total content of silica and magnesium hydroxide in the resin film is 50 to 50%. 75 mass%, the resin component content of the resin film is 25 to 50 mass%, the mass ratio of the magnesium hydroxide to the silica is 0.2 to 1.5, and the thickness of the resin film is It is a coated galvanized steel sheet having a thickness of 0.3 to 3.0 μm.
 本発明者らは、上記目的を達成すべく、様々な角度から検討した。その結果、樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量並びにシリカに対する水酸化マグネシウムの質量比率、そして樹脂皮膜の厚みを適切に調整することによって、亜鉛めっき鋼板の切断端面の保護作用が高められ、上記目的が見事に達成されることを見出し、本発明を完成させた。 The present inventors examined from various angles in order to achieve the above object. As a result, by appropriately adjusting the total content of silica and magnesium hydroxide in the resin film, the mass ratio of magnesium hydroxide to silica, and the thickness of the resin film, the protective effect of the cut end surface of the galvanized steel sheet is enhanced. As a result, the inventors have found that the above object can be achieved brilliantly and completed the present invention.
 本発明の一実施形態に係る塗装亜鉛めっき鋼板は、亜鉛めっき鋼板の表面に、シリカおよび水酸化マグネシウムを含む樹脂皮膜を有する。上記樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量は50~75質量%である。上記樹脂皮膜の樹脂成分の含有量は25~50質量%である。上記シリカに対する上記水酸化マグネシウムの質量比率は0.2~1.5である。上記樹脂皮膜の厚みは0.3~3.0μmである。 The coated galvanized steel sheet according to an embodiment of the present invention has a resin film containing silica and magnesium hydroxide on the surface of the galvanized steel sheet. The total content of silica and magnesium hydroxide in the resin film is 50 to 75% by mass. The resin component content of the resin film is 25 to 50% by mass. The mass ratio of the magnesium hydroxide to the silica is 0.2 to 1.5. The resin film has a thickness of 0.3 to 3.0 μm.
 上記構成によれば、皮膜の厚みが数μm以下であるときにおいても、優れた耐食性を示す塗装亜鉛めっき鋼板を提供することができる。 According to the above configuration, a coated galvanized steel sheet exhibiting excellent corrosion resistance can be provided even when the thickness of the film is several μm or less.
 以下、本実施形態についてより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present embodiment will be described more specifically, but the present invention is not limited thereto.
 [シリカおよび水酸化マグネシウムの合計含有量:50~75質量%]
 本実施形態において、樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量を50~75質量%とする。樹脂皮膜中のシリカと水酸化マグネシウムは、腐食環境下で樹脂皮膜から溶出して、切断端面を保護する作用を発現すると推測される。樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量が50質量%未満であると、溶出量が充分ではないため端面部の保護作用が確保されない。好ましくは55質量%以上であり、より好ましくは60質量%以上である。一方、樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量が75質量%を超えると、バインダーとなる樹脂分が不足して欠陥部の多い皮膜となるため、平板としての耐食性が確保されない。好ましくは73質量%以下であり、より好ましくは70質量%以下である。
[Total content of silica and magnesium hydroxide: 50 to 75% by mass]
In the present embodiment, the total content of silica and magnesium hydroxide in the resin film is 50 to 75% by mass. It is presumed that silica and magnesium hydroxide in the resin film are eluted from the resin film in a corrosive environment and exhibit an effect of protecting the cut end face. When the total content of silica and magnesium hydroxide in the resin film is less than 50% by mass, the amount of elution is not sufficient, so that the protective action of the end face portion is not ensured. Preferably it is 55 mass% or more, More preferably, it is 60 mass% or more. On the other hand, if the total content of silica and magnesium hydroxide in the resin film exceeds 75% by mass, the resin component serving as the binder is insufficient and the film has many defective portions, so that the corrosion resistance as a flat plate is not ensured. Preferably it is 73 mass% or less, More preferably, it is 70 mass% or less.
 なお、以下の説明において、本実施形態の樹脂皮膜に含まれる無機化合物とはシリカおよび水酸化マグネシウムのことであり、無機系皮膜とは、シリカおよび水酸化マグネシウムを含む樹脂皮膜を意味する。 In the following description, the inorganic compound contained in the resin film of this embodiment is silica and magnesium hydroxide, and the inorganic film means a resin film containing silica and magnesium hydroxide.
 本実施形態で用いるシリカは、後述する水系樹脂との相溶性に優れるコロイダルシリカが望ましい。また、シリカの平均粒径が大きくなり過ぎると、皮膜の緻密さが低下したり、皮膜欠陥を発生させたりするおそれがあるので、平均粒径D50は500nm以下であることが好ましく、450nm以下であることがより好ましい。なお、シリカの平均粒径D50とは、シリカの積算値(積算値)が50質量%となるときの平均粒径を意味する。 The silica used in the present embodiment is preferably colloidal silica excellent in compatibility with an aqueous resin described later. If the average particle size of the silica is too large, or reduced denseness of the film, there is a possibility that or generating a film defects, it is preferred that the average particle size D 50 is 500nm or less, 450 nm or less It is more preferable that Note that the average particle diameter D 50 of the silica, the integrated value of the silica (integrated value) means the average particle diameter when the 50 mass%.
 本実施形態で用いる水酸化マグネシウムは、水分散体として安定するものであればよく、水酸化マグネシウムの粉末および分散方法は特に限定されない。水酸化マグネシウムを水に分散した状態での平均粒径D50、すなわち、水酸化マグネシウム水分散体における水酸化マグネシウムの平均粒径D50は、樹脂皮膜厚みよりも小さいことが好ましく、例えば0.7μm以下であることが好ましい。これにより、粒子状の水酸化マグネシウムが樹脂皮膜から脱落したことに起因した、溶出量不充分による端面部の腐食を抑制することができる。一方、水酸化マグネシウムを水に分散した状態での平均粒径D50の下限は、特に限定されないが、平均粒径D50があまり小さくなり過ぎると分散体(例えば、分散液)の安定性が低下するおそれがあるので、0.1μm以上であることが好ましい。より好ましくは0.14μm以上である。なお、水酸化マグネシウムの平均粒径D50とは、水酸化マグネシウムの積算値(積算値)が50質量%となるときの平均粒径を意味する。 The magnesium hydroxide used in the present embodiment is not particularly limited as long as it is stable as an aqueous dispersion, and the magnesium hydroxide powder and dispersion method are not particularly limited. The average particle diameter D 50 of the magnesium hydroxide in a state of being dispersed in water, i.e., the average particle diameter D 50 of magnesium hydroxide in magnesium hydroxide aqueous dispersion is preferably less than that of the resin film thickness, for example, 0. It is preferably 7 μm or less. Thereby, corrosion of the end surface due to insufficient elution amount due to the particulate magnesium hydroxide falling off from the resin film can be suppressed. On the other hand, the lower limit of the average particle diameter D 50 in a state where magnesium hydroxide is dispersed in water is not particularly limited, but if the average particle diameter D 50 becomes too small, the stability of the dispersion (for example, dispersion) is reduced. Since there exists a possibility that it may fall, it is preferable that it is 0.1 micrometer or more. More preferably, it is 0.14 μm or more. Note that the average particle diameter D 50 of the magnesium hydroxide, means the average particle diameter when the cumulative value of magnesium hydroxide (integrated value) of 50 wt%.
 水酸化マグネシウム水分散体を調合する際に、樹脂皮膜とした際に耐食性への悪影響が小さい高分子分散剤(例えば水溶性アクリル樹脂、水溶性スチレンアクリル樹脂、ノニオン系界面活性剤)を用いてもよい。 When preparing a magnesium hydroxide aqueous dispersion, using a polymer dispersant (for example, a water-soluble acrylic resin, a water-soluble styrene acrylic resin, a nonionic surfactant) that has a small adverse effect on corrosion resistance when a resin film is formed. Also good.
 [樹脂皮膜中の樹脂成分の含有量:25~50質量%]
 本実施形態において、樹脂皮膜中の樹脂成分の含有量は25~50質量%とする。上述したように、樹脂皮膜中の樹脂成分が不足すると、欠陥部の多い皮膜となり耐食性が劣化する。こうした観点から、樹脂皮膜中の樹脂成分の含有量は25質量%以上とする。好ましくは30質量%以上である。しかし、樹脂皮膜中の樹脂成分の含有量が多すぎると、樹脂皮膜における緻密さの低下による耐食性劣化に加えて、樹脂皮膜が軟質化してプレス成形時に皮膜カスの発生が増加するおそれがある。こうした観点から、樹脂皮膜中の樹脂成分の含有量は50質量%以下とする。好ましくは40質量%以下である。
[Content of resin component in resin film: 25 to 50% by mass]
In the present embodiment, the content of the resin component in the resin film is 25 to 50% by mass. As described above, when the resin component in the resin film is insufficient, the film has many defective portions and the corrosion resistance is deteriorated. From such a viewpoint, the content of the resin component in the resin film is 25% by mass or more. Preferably it is 30 mass% or more. However, if the content of the resin component in the resin film is too large, in addition to the deterioration of corrosion resistance due to the decrease in the density of the resin film, the resin film may become soft and the generation of film residue during press molding may increase. From such a viewpoint, the content of the resin component in the resin film is 50% by mass or less. Preferably it is 40 mass% or less.
 [シリカに対する水酸化マグネシウムの質量比率:0.2~1.5]
 本実施形態において、シリカに対する水酸化マグネシウムの質量比率は0.2~1.5とする。水酸化マグネシウムおよびシリカは、いずれも亜鉛めっきに対する防錆剤として知られている。本発明者らは、樹脂皮膜中に水酸化マグネシウムとシリカを、特定の質量比率で配合することで、優れた耐食性が得られることを見出した。シリカに対する水酸化マグネシウムの質量比率[Mg(OH)/SiO]が、0.2~1.5の範囲内にあるとき、優れた耐食性を示す。この質量比率は、0.3以上であることが好ましく、1.0以下であることが好ましい。
[Mass ratio of magnesium hydroxide to silica: 0.2 to 1.5]
In this embodiment, the mass ratio of magnesium hydroxide to silica is 0.2 to 1.5. Magnesium hydroxide and silica are both known as rust preventives for zinc plating. The present inventors have found that excellent corrosion resistance can be obtained by blending magnesium hydroxide and silica in a resin film at a specific mass ratio. Excellent corrosion resistance is exhibited when the mass ratio of magnesium hydroxide to silica [Mg (OH) 2 / SiO 2 ] is in the range of 0.2 to 1.5. This mass ratio is preferably 0.3 or more, and preferably 1.0 or less.
 上記質量比率を適切な範囲に調整することによって耐食性が向上するメカニズムは、不明であるが、おそらく次のように考えられる。すなわち、水酸化マグネシウムから溶出したマグネシウムイオンが、シリカによって生成した亜鉛めっきに対する保護作用の高い腐食生成物を安定化させ、安定化した腐食生成物によるバリア効果が向上したと考えられる。上記亜鉛めっきに対する保護作用とは、水や酸素等の腐食因子を遮断するバリア性を意味する。そして、腐食環境下で樹脂皮膜から溶出する成分も、シリカに対する水酸化マグネシウムの質量比率[Mg(OH)/SiO]の影響を受けると考えられ、当該質量比率を0.2~1.5の範囲内にすることで、樹脂皮膜から溶出する成分が端面の保護作用に優れた組成比率になると推定される。 The mechanism by which the corrosion resistance is improved by adjusting the mass ratio to an appropriate range is unknown, but is probably as follows. That is, it is considered that magnesium ions eluted from magnesium hydroxide stabilized a corrosion product having a high protective action against galvanization produced by silica, and improved the barrier effect by the stabilized corrosion product. The protective action against galvanization means a barrier property that blocks corrosion factors such as water and oxygen. The component eluted from the resin film in a corrosive environment is also considered to be affected by the mass ratio of magnesium hydroxide to silica [Mg (OH) 2 / SiO 2 ], and the mass ratio is 0.2 to 1. By making it within the range of 5, it is presumed that the component eluted from the resin film has a composition ratio excellent in end face protection.
 また、粒子状の水酸化マグネシウムを用いることで、処理液の安定性を損なうことなく樹脂皮膜中のマグネシウム成分の添加比率を高めることが可能となり、その結果、亜鉛めっきに対する保護作用の高い腐食生成物が切断端面に供給されるようになると推定される。 In addition, the use of particulate magnesium hydroxide makes it possible to increase the magnesium component addition ratio in the resin film without impairing the stability of the treatment liquid, and as a result, corrosion generation with a high protective action against galvanization. It is presumed that the object will be supplied to the cut end face.
 [樹脂皮膜厚み:0.3~3.0μm]
 樹脂皮膜厚みは、平板部および端面部のいずれの耐食性にも影響を与える。本実施形態において、樹脂皮膜厚みは0.3μm以上とする。平板部においては、樹脂皮膜厚みが0.2μmであれば実用上問題ないレベルの耐食性が得られる。しかし、端面部においては、樹脂皮膜厚みが0.3μm未満の場合に耐食性が不充分であるからである。一方、樹脂皮膜厚みの上限については、切断面の面積(板厚)に依存するため特に定める必要はない。しかし、樹脂皮膜厚みが3.0μmを超えると大規模な乾燥設備を要するため、製造コストの観点から樹脂皮膜厚みは3.0μm以下であることが好ましい。
[Resin film thickness: 0.3 to 3.0 μm]
The resin film thickness affects the corrosion resistance of both the flat plate portion and the end surface portion. In the present embodiment, the resin film thickness is 0.3 μm or more. In the flat plate portion, when the resin film thickness is 0.2 μm, a level of corrosion resistance with no practical problem can be obtained. However, in the end face portion, the corrosion resistance is insufficient when the resin film thickness is less than 0.3 μm. On the other hand, the upper limit of the resin film thickness is not particularly required because it depends on the area (plate thickness) of the cut surface. However, since a large-scale drying facility is required when the resin film thickness exceeds 3.0 μm, the resin film thickness is preferably 3.0 μm or less from the viewpoint of manufacturing cost.
 [樹脂の種類]
 本実施形態で用いる樹脂の種類については、特に限定されず、水系樹脂および非水系樹脂のいずれも用いることができる。水酸化マグネシウムの水分散体や、コロイダルシリカを用いる場合には、水系樹脂を用いることが好ましい。このような水系樹脂についても特に限定されないが、水酸化マグネシウムの水分散体およびコロイダルシリカと混合できることが好ましい。なお、本実施形態における水系樹脂は、水分散体となっている樹脂、あるいは水溶性樹脂を指す。
[Resin type]
The type of resin used in the present embodiment is not particularly limited, and any of a water-based resin and a non-aqueous resin can be used. When using an aqueous dispersion of magnesium hydroxide or colloidal silica, it is preferable to use an aqueous resin. Such an aqueous resin is not particularly limited, but is preferably mixed with an aqueous dispersion of magnesium hydroxide and colloidal silica. The aqueous resin in the present embodiment refers to a resin that is an aqueous dispersion or a water-soluble resin.
 こうした水系樹脂として、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂が好ましく、これらのうち、ポリオレフィン系樹脂、ポリウレタン系樹脂がより好ましい。以下、ポリオレフィン系樹脂およびポリウレタン系樹脂について、それぞれ具体的に説明する。 Such water-based resins are preferably polyolefin-based resins, polyurethane-based resins, and polyester-based resins, and among these, polyolefin-based resins and polyurethane-based resins are more preferable. Hereinafter, the polyolefin resin and the polyurethane resin will be specifically described.
 [ポリオレフィン系樹脂]
 ポリオレフィン系樹脂として、エチレン-不飽和カルボン酸共重合体が好ましい。エチレン-不飽和カルボン酸共重合体として、例えば特開2005-246953号公報や特開2006-43913号公報に記載されたものを用いることができる。
[Polyolefin resin]
As the polyolefin resin, an ethylene-unsaturated carboxylic acid copolymer is preferable. As the ethylene-unsaturated carboxylic acid copolymer, for example, those described in JP-A-2005-246953 and JP-A-2006-43913 can be used.
 不飽和カルボン酸としては、(メタ)アクリル酸、クロトン酸、イソクロトン酸、マレイン酸、フマル酸、イタコン酸等が挙げられ、これらのうちの1種以上と、エチレンとを、公知の高温高圧重合法等で重合することにより、エチレン-不飽和カルボン酸共重合体を得ることができる。 Examples of the unsaturated carboxylic acid include (meth) acrylic acid, crotonic acid, isocrotonic acid, maleic acid, fumaric acid, itaconic acid, and the like. An ethylene-unsaturated carboxylic acid copolymer can be obtained by polymerization using a combination method.
 エチレンに対する不飽和カルボン酸の共重合比率は、モノマー全量を100質量%としたときに、不飽和カルボン酸が10質量%以上であることが好ましく、15質量%以上であることがより好ましく、一方、40質量%以下であることが好ましく、25質量%以下であることがより好ましい。不飽和カルボン酸が10質量%よりも少ないと、イオンクラスターによる分子間会合の起点となるカルボキシル基が少ないため、皮膜強度効果が発揮されず、後述する塗装液(エマルジョン組成物)の乳化安定性に劣る場合がある。一方、不飽和カルボン酸が40質量%を超えると、樹脂皮膜の耐食性や耐水性に劣る可能性がある。 The copolymerization ratio of unsaturated carboxylic acid to ethylene is preferably 10% by mass or more, more preferably 15% by mass or more when unsaturated monomer is 100% by mass. 40% by mass or less, and more preferably 25% by mass or less. When the amount of unsaturated carboxylic acid is less than 10% by mass, the coating strength (emulsion composition), which will be described later, is not stable because the number of carboxyl groups that are the starting point of intermolecular association by ion clusters is small. May be inferior. On the other hand, if the unsaturated carboxylic acid exceeds 40% by mass, the corrosion resistance and water resistance of the resin film may be inferior.
 上記エチレン-不飽和カルボン酸共重合体はカルボキシル基を有するので、有機塩基や金属イオンで中和することにより、塗装液のエマルション化(水分散体化)が可能となる。 Since the ethylene-unsaturated carboxylic acid copolymer has a carboxyl group, the coating liquid can be emulsified (water dispersion) by neutralization with an organic base or metal ion.
 有機塩基として、樹脂皮膜の耐食性をあまり低下させないという観点から、大気圧下での沸点が100℃以下のアミンが好ましい。具体例として、トリエチルアミン等の3級アミン;ジエチルアミン等の2級アミン;プロピルアミン等の1級アミン等が挙げられ、これらの1種または2種以上を混合して使用することができる。これらの中でも3級アミンが好ましく、トリエチルアミンが最も好ましい。また、耐溶剤性および皮膜硬度を向上させる観点から、1価の金属イオンを上記アミンと併せて用いることが好ましい。 As the organic base, an amine having a boiling point of 100 ° C. or less under atmospheric pressure is preferable from the viewpoint of not significantly reducing the corrosion resistance of the resin film. Specific examples include tertiary amines such as triethylamine; secondary amines such as diethylamine; primary amines such as propylamine, and the like, and one or more of these can be used in combination. Of these, tertiary amines are preferred, and triethylamine is most preferred. Moreover, it is preferable to use a monovalent metal ion together with the amine from the viewpoint of improving solvent resistance and film hardness.
 上記アミンは、耐食性を確保する観点から、エチレン-不飽和カルボン酸共重合体中のカルボキシル基1モルに対し0.2モル以上であることが好ましく、一方、0.8モル以下であることが好ましい。そして、0.3モル以上であることがより好ましく、一方、0.6モル以下であることがより好ましい。 From the viewpoint of ensuring corrosion resistance, the amine is preferably 0.2 mol or more with respect to 1 mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer, and is preferably 0.8 mol or less. preferable. And it is more preferable that it is 0.3 mol or more, and it is more preferable that it is 0.6 mol or less on the other hand.
 1価の金属イオンの量は、塗装液の乳化安定性を確保する観点から、エチレン-不飽和カルボン酸共重合体中のカルボキシル基1モルに対し0.02モル以上であることが好ましく、0.03モル以上であることがより好ましい。一方、耐食性を確保する観点から、エチレン-不飽和カルボン酸共重合体中のカルボキシル基1モルに対し0.4モル以下であることが好ましく、0.3モル以下であることがより好ましい。なお、1価の金属イオンを付与するための金属化合物は、NaOH、KOH、LiOH等が好ましく、NaOHが最も性能が良く好ましい。 The amount of monovalent metal ions is preferably 0.02 mol or more with respect to 1 mol of carboxyl groups in the ethylene-unsaturated carboxylic acid copolymer from the viewpoint of ensuring the emulsion stability of the coating liquid. More preferably, it is 0.03 mol or more. On the other hand, from the viewpoint of ensuring corrosion resistance, the amount is preferably 0.4 mol or less, more preferably 0.3 mol or less, based on 1 mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer. The metal compound for imparting monovalent metal ions is preferably NaOH, KOH, LiOH or the like, and NaOH is most preferable because of its best performance.
 上記エチレン-不飽和カルボン酸共重合体は、必要により後述のカルボン酸重合体存在下で、例えば、高温(150℃程度)、高圧(5気圧程度)の反応が可能な容器内で、高速攪拌を1~6時間行えば、乳化(エマルション化)する。乳化に際しては、トール油脂肪酸等の界面活性剤機能を持つ化合物を適量添加してもよい。また、親水性有機溶媒、例えば、炭素数1~5程度の低級アルコールなどを一部水に加えても構わない。 The ethylene-unsaturated carboxylic acid copolymer is stirred at high speed in a container capable of reacting at a high temperature (about 150 ° C.) and a high pressure (about 5 atm), for example, in the presence of a carboxylic acid polymer described later, if necessary. For 1 to 6 hours to emulsify (emulsify). In emulsification, an appropriate amount of a compound having a surfactant function such as tall oil fatty acid may be added. Further, a hydrophilic organic solvent such as a lower alcohol having about 1 to 5 carbon atoms may be partially added to water.
 上記エチレン-不飽和カルボン酸共重合体の質量平均分子量(Mw)は、ポリスチレン換算で、好ましくは1,000以上、10万以下である。より好ましい下限値は3,000以上、さらに好ましくは5,000以上である。一方、より好ましい上限値は、7万以下、さらに好ましくは3万以下である。このMwは、ポリスチレンを標準として用いるゲル浸透クロマトグラフィー(Gel Permeation Chromatography:GPC)により測定することができる。 The mass average molecular weight (Mw) of the ethylene-unsaturated carboxylic acid copolymer is preferably 1,000 or more and 100,000 or less in terms of polystyrene. A more preferable lower limit is 3,000 or more, and further preferably 5,000 or more. On the other hand, a more preferable upper limit value is 70,000 or less, more preferably 30,000 or less. This Mw can be measured by gel permeation chromatography (GPC) using polystyrene as a standard.
 樹脂成分としてカルボン酸重合体も用いることができる。カルボン酸重合体として、上記エチレン-不飽和カルボン酸共重合体の合成に使用することのできるものとして例示した不飽和カルボン酸を構成単位とする重合体がいずれも使用可能である。これらの中で、アクリル酸およびマレイン酸が好ましく、マレイン酸がより好ましい。カルボン酸重合体は、不飽和カルボン酸以外の単量体に由来する構成単位を含有していても良いが、その他の単量体に由来する構成単位量は、重合体中に10質量%以下が好ましく、より好ましくは5質量%以下であり、不飽和カルボン酸のみから構成されるカルボン酸重合体がさらに好ましい。好ましいカルボン酸重合体として、ポリアクリル酸、ポリメタクリル酸、アクリル酸-マレイン酸共重合体、ポリマレイン酸等が挙げられる。これらのうち、樹脂皮膜密着性および耐食性の観点から、ポリマレイン酸がより好ましい。ポリマレイン酸を使用することにより耐食性等が向上する正確なメカニズムは不明であるが、カルボキシル基量が多いため、樹脂皮膜と亜鉛めっき鋼板の密着性が向上し、それに伴い耐食性も向上することが考えられる。但し本発明は、この推定には限定されない。 A carboxylic acid polymer can also be used as the resin component. As the carboxylic acid polymer, any polymer having an unsaturated carboxylic acid as a constituent unit exemplified as one that can be used for the synthesis of the ethylene-unsaturated carboxylic acid copolymer can be used. Among these, acrylic acid and maleic acid are preferable, and maleic acid is more preferable. The carboxylic acid polymer may contain a constituent unit derived from a monomer other than the unsaturated carboxylic acid, but the constituent unit amount derived from the other monomer is 10% by mass or less in the polymer. More preferably, it is 5 mass% or less, and the carboxylic acid polymer comprised only from unsaturated carboxylic acid is further more preferable. Preferred carboxylic acid polymers include polyacrylic acid, polymethacrylic acid, acrylic acid-maleic acid copolymer, polymaleic acid and the like. Of these, polymaleic acid is more preferable from the viewpoints of resin film adhesion and corrosion resistance. Although the exact mechanism by which the corrosion resistance is improved by using polymaleic acid is unknown, the adhesion between the resin film and the galvanized steel sheet is improved due to the large amount of carboxyl groups. It is done. However, the present invention is not limited to this estimation.
 本実施形態で用いるカルボン酸重合体の質量平均分子量(Mw)は、ポリスチレン換算で、好ましくは500以上、3万以下である。より好ましい下限値は800以上、さらに好ましくは900以上、最も好ましくは1,000以上である。より好ましい上限値は1万以下、さらに好ましくは3,000以下、最も好ましくは2,000以下である。このMwは、ポリスチレンを標準として用いるGPCにより測定することができる。 The mass average molecular weight (Mw) of the carboxylic acid polymer used in the present embodiment is preferably 500 or more and 30,000 or less in terms of polystyrene. A more preferable lower limit value is 800 or more, more preferably 900 or more, and most preferably 1,000 or more. A more preferable upper limit value is 10,000 or less, more preferably 3,000 or less, and most preferably 2,000 or less. This Mw can be measured by GPC using polystyrene as a standard.
 エチレン-不飽和カルボン酸共重合体とカルボン酸重合体との含有比率は、質量比で、1,000:1~10:1、好ましくは200:1~20:1である。カルボン酸重合体の含有比率が低すぎると、オレフィン-酸共重合体とカルボン酸重合体とを組み合わせた効果が充分に発揮されない場合がある。逆に、カルボン酸重合体の含有比率が過剰であると、第一層形成用塗工液中でオレフィン-酸共重合体とカルボン酸重合体とが相分離し、均一な樹脂皮膜が形成されなくなるおそれがある。 The content ratio of the ethylene-unsaturated carboxylic acid copolymer and the carboxylic acid polymer is 1,000: 1 to 10: 1, preferably 200: 1 to 20: 1 in terms of mass ratio. If the content ratio of the carboxylic acid polymer is too low, the effect of combining the olefin-acid copolymer and the carboxylic acid polymer may not be sufficiently exhibited. On the contrary, if the content ratio of the carboxylic acid polymer is excessive, the olefin-acid copolymer and the carboxylic acid polymer are phase-separated in the first layer forming coating solution, and a uniform resin film is formed. There is a risk of disappearing.
 [ポリウレタン系樹脂]
 ポリウレタン系樹脂として、カルボキシル基含有ポリウレタン樹脂が好ましい。カルボキシル基含有ポリウレタン樹脂として、例えば特開2006-43913号公報に記載されたものを用いることができる。
[Polyurethane resin]
As the polyurethane resin, a carboxyl group-containing polyurethane resin is preferable. As the carboxyl group-containing polyurethane resin, for example, those described in JP-A-2006-43913 can be used.
 カルボキシル基含有ポリウレタン樹脂は、ウレタンプレポリマーを鎖延長剤で鎖延長反応して得られるものが好ましい。ウレタンプレポリマーは、例えば、ポリイソシアネート成分とポリオール成分とを反応させて得られる。 The carboxyl group-containing polyurethane resin is preferably obtained by chain extension reaction of a urethane prepolymer with a chain extender. The urethane prepolymer is obtained, for example, by reacting a polyisocyanate component and a polyol component.
 上記ポリイソシアネート成分として、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)およびジシクロヘキシルメタンジイソシアネート(水素添加MDI)からなる群から選択される少なくとも1種のポリイソシアネートを使用することが、耐食性および反応制御の安定性に優れる樹脂皮膜を得る観点から、好ましい。上記ポリイソシアネートの他にも、耐食性や反応制御の安定性を低下させない範囲で他のポリイソシアネートを使用することができる。但し、上記ポリイソシアネートの含有率は、樹脂皮膜の耐食性および反応制御の安定性を確保する観点から、全ポリイソシアネート成分の70質量%以上であることが好ましい。上記ポリイソシアネート成分以外のポリイソシアネートとして、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ドデカンメチレンジイソシアネート、イソホロンジイソシアネート、キシレンジイソシアネート、フェニレンジイソシアネート等を挙げることができ、これらの1種または2種以上を使用してもよい。 It is possible to use at least one polyisocyanate selected from the group consisting of tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI) and dicyclohexylmethane diisocyanate (hydrogenated MDI) as the polyisocyanate component. From the viewpoint of obtaining a resin film having excellent stability. In addition to the above polyisocyanates, other polyisocyanates can be used as long as the corrosion resistance and reaction control stability are not lowered. However, the content of the polyisocyanate is preferably 70% by mass or more of the total polyisocyanate component from the viewpoint of ensuring the corrosion resistance of the resin film and the stability of reaction control. Examples of the polyisocyanate other than the above polyisocyanate component include tetramethylene diisocyanate, hexamethylene diisocyanate, dodecane methylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, and phenylene diisocyanate. One or more of these are used. May be.
 上記ポリオール成分として、1,4-シクロヘキサンジメタノール、ポリエーテルポリオール、および、カルボキシル基を有するポリオールの3種類のポリオールを使用することが、耐食性および摺動性に優れる樹脂皮膜を得る観点から、好ましい。そして、上記ポリオール成分として、1,4-シクロヘキサンジメタノール、ポリエーテルジオール、および、カルボキシル基を有するジオールの3種類のジオールを使用することが、より好ましい。なお、上記ポリオール成分として1,4-シクロヘキサンジメタノールを使用することによって、得られるポリウレタン樹脂の防錆効果を高めることができる。 From the viewpoint of obtaining a resin film having excellent corrosion resistance and slidability, it is preferable to use three types of polyols, 1,4-cyclohexanedimethanol, polyether polyol, and polyol having a carboxyl group, as the polyol component. . As the polyol component, it is more preferable to use three kinds of diols of 1,4-cyclohexanedimethanol, polyether diol, and diol having a carboxyl group. The use of 1,4-cyclohexanedimethanol as the polyol component can enhance the rust prevention effect of the obtained polyurethane resin.
 上記ポリエーテルポリオールは、分子鎖にヒドロキシル基を少なくとも2以上有し、主骨格がアルキレンオキサイド単位によって構成されているものであれば特に限定されない。具体例として、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール等を挙げられ、ポリオキシプロピレングリコールまたはポリテトラメチレンエーテルグリコールを使用することが好ましい。ポリエーテルポリオールの官能基数は、少なくとも2以上であれば特に限定されず、例えば、3官能、4官能以上の多官能であってもよい。ポリエーテルポリオールの平均分子量は、適度な硬度を有する樹脂皮膜を得る観点から、約400~4000程度であることが好ましい。なお、平均分子量は、OH価(水酸基価)を測定することにより求めることができる。 The polyether polyol is not particularly limited as long as it has at least two hydroxyl groups in the molecular chain and the main skeleton is composed of alkylene oxide units. Specific examples include polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol and the like, and it is preferable to use polyoxypropylene glycol or polytetramethylene ether glycol. The number of functional groups of the polyether polyol is not particularly limited as long as it is at least 2 or more, and for example, it may be trifunctional or tetrafunctional or polyfunctional. The average molecular weight of the polyether polyol is preferably about 400 to 4000 from the viewpoint of obtaining a resin film having an appropriate hardness. The average molecular weight can be determined by measuring the OH value (hydroxyl value).
 上記ポリオール成分において、質量比で、1,4-シクロヘキサンジメタノール:ポリエーテルポリオール=1:1~1:19であることが、樹脂皮膜の防錆効果を一層高める観点から、好ましい。また、上記カルボキシル基を有するポリオールは、少なくとも1以上のカルボキシル基と少なくとも2以上のヒドロキシル基を有するものであれば、特に限定されない。具体例として、ジメチロールプロピオン酸、ジメチロールブタン酸、ジヒドロキシプロピオン酸、ジヒドロキシコハク酸等が挙げられる。 In the above polyol component, the mass ratio of 1,4-cyclohexanedimethanol: polyether polyol = 1: 1 to 1:19 is preferable from the viewpoint of further enhancing the rust prevention effect of the resin film. The polyol having a carboxyl group is not particularly limited as long as it has at least one carboxyl group and at least two hydroxyl groups. Specific examples include dimethylolpropionic acid, dimethylolbutanoic acid, dihydroxypropionic acid, dihydroxysuccinic acid and the like.
 上記ポリオール成分において、上記3種類のポリオールの他にも、耐食性を低下させない範囲で他のポリオールを使用することができる。但し、上記3種類のポリオールの含有率は、樹脂皮膜の耐食性を確保する観点から、全ポリオール成分の70質量%以上であることが好ましい。上記3種類のポリオール以外のポリオールは、水酸基を複数有するものであれば特に限定されない。例えば、低分子量のポリオールや高分子量のポリオール等を挙げられる。低分子量のポリオールは、平均分子量が500程度以下のポリオールである。具体例として、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のジオール;グリセリン、トリメチロールプロパン、ヘキサントリオール等のトリオールが挙げられる。高分子量のポリオールは、平均分子量が500程度を超えるポリオールである。具体例として、ポリエチレンアジペート(PEA)、ポリブチレンアジペート(PBA)、ポリヘキサメチレンアジペート(PHMA)などの縮合系ポリエステルポリオール;ポリ-ε-カプロラクトン(PCL)のようなラクトン系ポリエステルポリオール;ポリヘキサメチレンカーボネートなどのポリカーボネートポリオール;及びアクリルポリオールなどが挙げられる。 In the above polyol component, in addition to the above three kinds of polyols, other polyols can be used as long as the corrosion resistance is not lowered. However, the content of the three kinds of polyols is preferably 70% by mass or more of the total polyol components from the viewpoint of ensuring the corrosion resistance of the resin film. The polyol other than the above three types of polyol is not particularly limited as long as it has a plurality of hydroxyl groups. For example, a low molecular weight polyol, a high molecular weight polyol, etc. are mentioned. The low molecular weight polyol is a polyol having an average molecular weight of about 500 or less. Specific examples include diols such as ethylene glycol, diethylene glycol, triethylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol; glycerin, trimethylolpropane, hexanetriol, etc. Of the triol. The high molecular weight polyol is a polyol having an average molecular weight exceeding about 500. Specific examples include condensed polyester polyols such as polyethylene adipate (PEA), polybutylene adipate (PBA), and polyhexamethylene adipate (PHMA); lactone polyester polyols such as poly-ε-caprolactone (PCL); polyhexamethylene Polycarbonate polyols such as carbonate; and acrylic polyols.
 上記鎖延長剤は、特に限定されないが、例えば、ポリアミン、低分子量のポリオール、アルカノールアミンなどを挙げられる。ポリアミンとして、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミンなどの脂肪族ポリアミン;トリレンジアミン、キシリレンジアミン、ジアミノジフェニルメタンなどの芳香族ポリアミン;ジアミノシクロヘキシルメタン、ピペラジン、イソホロンジアミンなどの脂環式ポリアミン;ヒドラジン、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、フタル酸ジヒドラジドなどのヒドラジン類などが挙げられる。これらの中で、エチレンジアミンおよび/またはヒドラジンを鎖延長剤成分として使用することが好ましい。アルカノールアミンとして、例えば、ジエタノールアミン、モノエタノールアミンなどが挙げられる。 The chain extender is not particularly limited, and examples thereof include polyamines, low molecular weight polyols, and alkanolamines. As polyamines, aliphatic polyamines such as ethylenediamine, propylenediamine and hexamethylenediamine; aromatic polyamines such as tolylenediamine, xylylenediamine and diaminodiphenylmethane; alicyclic polyamines such as diaminocyclohexylmethane, piperazine and isophoronediamine; hydrazine, And hydrazines such as succinic acid dihydrazide, adipic acid dihydrazide, and phthalic acid dihydrazide. Among these, it is preferable to use ethylenediamine and / or hydrazine as a chain extender component. Examples of the alkanolamine include diethanolamine and monoethanolamine.
 カルボキシル基含有ポリウレタン樹脂は、公知の方法で乳化(エマルション化)させることができ、例えば、次の方法がある。すなわち、カルボキシル基含有ウレタンプレポリマーのカルボキシル基を塩基で中和して、水性媒体中に乳化分散して鎖延長反応させる方法;カルボキシル基含有ポリウレタン樹脂を乳化剤の存在下で、高せん断力で乳化分散して鎖延長反応させる方法である。 The carboxyl group-containing polyurethane resin can be emulsified (emulsified) by a known method, for example, the following method. That is, a method in which a carboxyl group of a carboxyl group-containing urethane prepolymer is neutralized with a base and emulsified and dispersed in an aqueous medium to cause chain extension reaction; a carboxyl group-containing polyurethane resin is emulsified with high shear force in the presence of an emulsifier This is a method of dispersing and chain extending reaction.
 カルボキシル基含有ポリウレタン樹脂の酸価は、塗装液の安定性を確保する観点から、10mgKOH/g以上であることが好ましく、一方、樹脂皮膜の耐食性を確保する観点から、60mgKOH/g以下であることが好ましい。酸価の測定は、JIS-K0070(1992年)に準ずる。 The acid value of the carboxyl group-containing polyurethane resin is preferably 10 mgKOH / g or more from the viewpoint of ensuring the stability of the coating liquid, and on the other hand, 60 mgKOH / g or less from the viewpoint of ensuring the corrosion resistance of the resin film. Is preferred. The acid value is measured according to JIS-K0070 (1992).
 [塗装液中の添加剤]
 本実施形態において、樹脂皮膜は、塗装液を公知の塗装方法、すなわち、ロールコーター法、バーコーター法、スプレー法またはカーテンフローコーター法等を用いて亜鉛めっき鋼板の表面に塗布し、加熱乾燥させることで、形成することができる。塗装液は、所定量のシリカ、水酸化マグネシウムおよび上記樹脂を含有する。塗装液における樹脂固形分は15~25質量%程度であることが好ましい。そして、塗装液は、皮膜性能を向上させる目的で、各種添加剤を本発明の効果を阻害しない範囲で含有してもよい。添加剤として、例えば、シランカップリング剤、溶出抑制剤、防錆剤、ワックス、架橋剤、希釈剤、皮張り防止剤、界面活性剤、乳化剤、分散剤、レベリング剤、消泡剤、浸透剤、造膜助剤、染料、顔料、増粘剤、潤滑剤等が挙げられる。
[Additives in coating liquid]
In the present embodiment, the resin film is applied to the surface of the galvanized steel sheet using a known coating method, that is, a roll coater method, a bar coater method, a spray method, or a curtain flow coater method, and dried by heating. Thus, it can be formed. The coating liquid contains a predetermined amount of silica, magnesium hydroxide and the above resin. The resin solid content in the coating liquid is preferably about 15 to 25% by mass. And a coating liquid may contain various additives in the range which does not inhibit the effect of this invention for the purpose of improving membrane | film | coat performance. Examples of additives include silane coupling agents, elution inhibitors, rust inhibitors, waxes, crosslinking agents, diluents, antiskinning agents, surfactants, emulsifiers, dispersants, leveling agents, antifoaming agents, and penetrants. , Film forming aids, dyes, pigments, thickeners, lubricants and the like.
 例えば、シランカップリング剤を添加剤として用いると、樹脂皮膜が緻密化して耐食性が向上する。また、亜鉛めっき鋼板と樹脂皮膜の密着性も向上して耐食性を向上させる。そして、樹脂成分とコロイダルシリカとの結合力を向上させる効果があり、皮膜の強靱さが向上する。中でも、グリシドキシ系のシランカップリング剤は反応性が高く、耐食性向上効果が大きい。グリシジル基含有シランカップリング剤として、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。 For example, when a silane coupling agent is used as an additive, the resin film becomes dense and the corrosion resistance is improved. Moreover, the adhesiveness of a galvanized steel plate and a resin film is also improved, and corrosion resistance is improved. And there exists an effect which improves the bond strength of a resin component and colloidal silica, and the toughness of a film | membrane improves. Among them, glycidoxy-based silane coupling agents are highly reactive and have a large effect of improving corrosion resistance. Glycidyl group-containing silane coupling agents include γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxymethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyl Examples include trimethoxysilane.
 シランカップリング剤量は、無機系皮膜中の無機化合物と樹脂成分との合計100質量部に対して、0.1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。0.1質量部より少ないと、亜鉛めっき鋼板と樹脂皮膜との密着性や、樹脂成分とコロイダルシリカとの結合力が不足して、皮膜の強靱さや耐食性が不充分となるおそれがあるからである。一方、シランカップリング剤量は、無機系皮膜中の無機化合物と樹脂成分との合計100質量部に対して、10質量部以下であることが好ましく、9質量部以下であることがより好ましく、7質量部以下であることがさらに好ましい。10質量部を超えても、金属板と樹脂皮膜との密着性向上効果が飽和するだけでなく、樹脂中の官能基が減少して塗装性が低下するおそれがあるからである。また、シランカップリング剤同士が加水分解縮合反応を起こして、塗装液の安定性が低下し、ゲル化やコロイダルシリカの沈殿を引き起こすおそれがあるからである。 The amount of the silane coupling agent is preferably 0.1 parts by mass or more, more preferably 3 parts by mass or more, with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic film. More preferably, it is 5 parts by mass or more. If the amount is less than 0.1 parts by mass, the adhesion between the galvanized steel sheet and the resin film and the bonding force between the resin component and colloidal silica may be insufficient, and the toughness and corrosion resistance of the film may be insufficient. is there. On the other hand, the amount of the silane coupling agent is preferably 10 parts by mass or less, more preferably 9 parts by mass or less, with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic film. More preferably, it is 7 parts by mass or less. Even if it exceeds 10 parts by mass, not only the effect of improving the adhesion between the metal plate and the resin film is saturated, but also the functional group in the resin may decrease and the paintability may deteriorate. Moreover, it is because silane coupling agents raise | generate a hydrolysis-condensation reaction, the stability of a coating liquid falls and there exists a possibility of causing gelation and precipitation of colloidal silica.
 また、例えば溶出抑制剤であるメタバナジン酸塩を添加剤として用いると、メタバナジン酸塩の溶出によって亜鉛めっき鋼板の溶解や溶出を抑制して、耐食性が向上する。メタバナジン酸塩は、特に、合金化溶融亜鉛めっき鋼板に対して裸耐食性を向上させる効果がある。メタバナジン酸塩として、例えば、メタバナジン酸ナトリウム(NaVO)、メタバナジン酸アンモニウム(NHVO)、メタバナジン酸カリウム(KVO)等が挙げられる。これらの1種または2種以上を使用することができる。 For example, when metavanadate which is an elution inhibitor is used as an additive, dissolution and elution of a galvanized steel sheet are suppressed by elution of metavanadate, and corrosion resistance is improved. Metavanadate is particularly effective in improving the bare corrosion resistance of the galvannealed steel sheet. Examples of the metavanadate include sodium metavanadate (NaVO 3 ), ammonium metavanadate (NH 4 VO 3 ), and potassium metavanadate (KVO 3 ). These 1 type (s) or 2 or more types can be used.
 メタバナジン酸塩の量は、無機系皮膜中の無機化合物と樹脂成分との合計100質量部に対して、0.5質量部以上であることが好ましく、1.0質量部以上であることがより好ましく、1.5質量部以上であることがさらに好ましい。0.5質量部より少ないと、裸耐食性向上効果が不充分となるからである。一方、メタバナジン酸塩の量は、無機系皮膜中の無機化合物と樹脂成分との合計100質量部に対して、5.5質量部以下であることが好ましく、5.0質量部以下であることがより好ましく、4.5質量部以下であることがさらに好ましい。5.5質量部を超えると、裸耐食性が若干低下する傾向が認められるだけでなく、さらに皮膜密着性が著しく低下する傾向があるからである。なお、このメタバナジン酸塩の好適量は、V元素換算量である。 The amount of metavanadate is preferably 0.5 parts by mass or more and more preferably 1.0 part by mass or more with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic coating. Preferably, it is 1.5 parts by mass or more. This is because if the amount is less than 0.5 parts by mass, the effect of improving the bare corrosion resistance becomes insufficient. On the other hand, the amount of metavanadate is preferably 5.5 parts by mass or less, and 5.0 parts by mass or less with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic coating. Is more preferably 4.5 parts by mass or less. This is because when the amount exceeds 5.5 parts by mass, not only the bare corrosion resistance tends to be slightly lowered but also the film adhesion tends to be remarkably lowered. In addition, the suitable amount of this metavanadate is a V element conversion amount.
 [亜鉛めっき鋼板の種類]
 本実施形態で用いる亜鉛めっき鋼板の種類については、特に限定はなく、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板(以下、これらを「原板」と呼ぶことがある)のいずれも採用できる。また、亜鉛めっき層の種類についても、特に限定はなく、めっき層中に合金元素を含むものであってもよい。なお、亜鉛めっき層は、素地鋼板の片面または両面に被覆され、それに応じて樹脂皮膜も亜鉛めっき鋼板の片面または両面に被覆される。
[Types of galvanized steel sheets]
The type of galvanized steel sheet used in the present embodiment is not particularly limited, and any of electrogalvanized steel sheet, hot dip galvanized steel sheet, and alloyed hot dip galvanized steel sheet (hereinafter, these may be referred to as “original plates”). Can also be adopted. Moreover, there is no limitation in particular also about the kind of zinc plating layer, An alloying element may be included in a plating layer. The galvanized layer is coated on one side or both sides of the base steel plate, and the resin film is accordingly coated on one side or both sides of the galvanized steel plate.
 上述したように、本発明の一局面に関する塗装亜鉛めっき鋼板は、亜鉛めっき鋼板の表面に、シリカおよび水酸化マグネシウムを含む樹脂皮膜を有する塗装亜鉛めっき鋼板であって、前記樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量が50~75質量%、かつ前記樹脂皮膜の樹脂成分の含有量が25~50質量%であり、前記シリカに対する前記水酸化マグネシウムの質量比率が0.2~1.5であり、前記樹脂皮膜の厚みが0.3~3.0μmであることを特徴とする。 As described above, the coated galvanized steel sheet according to one aspect of the present invention is a coated galvanized steel sheet having a resin film containing silica and magnesium hydroxide on the surface of the galvanized steel sheet, and the silica in the resin film and The total content of magnesium hydroxide is 50 to 75% by mass, the content of the resin component of the resin film is 25 to 50% by mass, and the mass ratio of the magnesium hydroxide to the silica is 0.2 to 1.%. 5 and the thickness of the resin film is 0.3 to 3.0 μm.
 この構成によれば、樹脂皮膜の厚みが数μm以下であるときにおいても、優れた耐食性を示す塗装亜鉛めっき鋼板が実現できる。 According to this configuration, a coated galvanized steel sheet exhibiting excellent corrosion resistance can be realized even when the thickness of the resin film is several μm or less.
 以下、実施例を挙げて本発明をより具体的に説明する。なお、本発明は下記実施例によって制限されず、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することは可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described more specifically with reference to examples. It should be noted that the present invention is not limited by the following examples, and can be implemented with modifications within a range that can be adapted to the gist described above and below, all of which are included in the technical scope of the present invention. .
 (水酸化マグネシウム分散液の調合)
 水酸化マグネシウム粒子(協和化学工業株式会社製、商品名:キスマ5Q-S)を、水を分散剤として使用するとともに高分子分散剤を用いて分散させて、水分散液(樹脂固形分:約30質量%、平均粒径D50:0.69μm)を調合した。
(Preparation of magnesium hydroxide dispersion)
Magnesium hydroxide particles (manufactured by Kyowa Chemical Industry Co., Ltd., trade name: Kisuma 5Q-S) are used as a dispersant and dispersed using a polymer dispersant to obtain an aqueous dispersion (resin solid content: about 30 wt%, average particle size D 50: 0.69 .mu.m) was formulated.
 分散液中の水酸化マグネシウムの平均粒径D50は、0.2質量%ヘキサメタリン酸ナトリウム水溶液で希釈した後、レーザー回折散乱式粒度分布測定装置(マイクロトラック・ベル株式会社製、商品名:マイクロトラックMT3300EXII)を用いて測定した。 The average particle diameter D 50 of the magnesium hydroxide in the dispersion was diluted with 0.2 wt% aqueous solution of sodium hexametaphosphate, a laser diffraction scattering particle size distribution measuring device (Microtrac Bell Co., Ltd., trade name: Micro Measurement was performed using a track MT3300EXII).
 (樹脂)
 樹脂皮膜を形成するときの樹脂として、東邦化学株式会社製のポリエチレン樹脂または東邦化学工業製のウレタン樹脂を用いた。
(resin)
Polyethylene resin manufactured by Toho Chemical Co., Ltd. or urethane resin manufactured by Toho Chemical Industry was used as the resin for forming the resin film.
 上記東邦化学株式会社製のポリエチレン樹脂およびその水性分散液を、次の方法で調製した。 The above polyethylene resin manufactured by Toho Chemical Co., Ltd. and its aqueous dispersion were prepared by the following method.
 攪拌機、温度計、温度コントローラを備えた乳化設備を有するオートクレイブに、エチレン-アクリル酸共重合体(ダウケミカル社製、商品名:プリマコール5990I、アクリル酸由来の構成単位:20質量%、質量平均分子量(Mw):20,000、メルトインデックス:1300、酸価:150)200.0質量部、ポリマレイン酸水溶液(日油社製、商品名:ノンポール PMA-50W、Mw:約1100(ポリスチレン換算)、50質量%品)8.0質量部、トリエチルアミン35.5質量部(エチレン-アクリル酸共重合体のカルボキシル基に対して0.63当量)、48%NaOH水溶液6.9質量部(エチレン-アクリル酸共重合体のカルボキシル基に対して0.15当量)、トール油脂肪酸(ハリマ化成社製、商品名:ハートールFA3)3.5質量部、イオン交換水792.6質量部を加えて密封し、150℃および5気圧で3時間高速攪拌してから、30℃まで冷却した。 In an autoclave having an emulsification facility equipped with a stirrer, a thermometer and a temperature controller, an ethylene-acrylic acid copolymer (manufactured by Dow Chemical Co., Ltd., trade name: Primacol 5990I, structural unit derived from acrylic acid: 20% by mass, mass) Average molecular weight (Mw): 20,000, melt index: 1300, acid value: 150, 200.0 parts by mass, polymaleic acid aqueous solution (manufactured by NOF Corporation, trade name: Non-Paul PMA-50W, Mw: about 1100 (polystyrene conversion) ), 50% by mass) 8.0 parts by mass, 35.5 parts by mass of triethylamine (0.63 equivalent to the carboxyl group of the ethylene-acrylic acid copolymer), 6.9 parts by mass of 48% NaOH aqueous solution (ethylene -0.15 equivalent to the carboxyl group of acrylic acid copolymer), tall oil fatty acid (manufactured by Harima Chemicals Co., Ltd.) : HARTALL FA3) 3.5 parts by weight, and sealed with ion exchange water 792.6 parts by mass, from 3 hours high speed stirring at 0.99 ° C. and 5 atm, and cooled to 30 ° C..
 次いで、γ-グリシドキシプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、商品名:TSL8350)10.4質量部、ポリカルボジイミド(日清紡社株式会社製、商品名:カルボジライト SV-02、Mw:2,700、固形分40質量%)31.2質量部、イオン交換水72.8質量部を添加し、10分間攪拌して、エチレン-アクリル酸共重合体が乳化し、各成分と混合されたポリエチレン樹脂水性分散液が得られた(樹脂固形分20.3質量%、JIS K6833(2014年)に準じて測定)。 Next, 10.4 parts by mass of γ-glycidoxypropyltrimethoxysilane (Momentive Performance Materials, trade name: TSL8350), polycarbodiimide (Nisshinbo Co., Ltd., trade name: Carbodilite SV-02, Mw) : 2,700, solid content 40% by mass) 31.2 parts by mass and ion-exchanged water 72.8 parts by mass were added and stirred for 10 minutes to emulsify the ethylene-acrylic acid copolymer and mix with each component. A polyethylene resin aqueous dispersion was obtained (resin solid content 20.3% by mass, measured according to JIS K6833 (2014)).
 上記東邦化学株式会社製のウレタン樹脂およびその水性分散液を、次の方法で調製した。 The above urethane resin manufactured by Toho Chemical Co., Ltd. and its aqueous dispersion were prepared by the following method.
 撹拌機、温度計、温度コントローラを備えた内容量0.8Lの合成装置に、ポリテトラメチレンエーテルグリコール(保土ヶ谷化学工業株式会社製、平均分子量1,000)60g、1,4-シクロヘキサンジメタノール14g、ジメチロールプロピオン酸20gを仕込み、さらにN-メチルピロリドン30.0gを加えた。そして、トリレンジイソシアネート104gを仕込み、80から85℃に昇温し5時間反応させた。得られたプレポリマーのNCO含有量は、8.9%であった。さらにトリエチルアミン16gを加えて中和を行い、エチレンジアミン16gと水480gの混合水溶液を加えて、50℃で4時間乳化し、鎖延長反応させてウレタン樹脂水性分散液を得た(不揮発性樹脂成分29.1%、酸価41.4)。 In a 0.8 L internal volume synthesizer equipped with a stirrer, thermometer and temperature controller, polytetramethylene ether glycol (Hodogaya Chemical Co., Ltd., average molecular weight 1,000) 60 g, 1,4-cyclohexanedimethanol 14 g Then, 20 g of dimethylolpropionic acid was charged, and 30.0 g of N-methylpyrrolidone was further added. Then, 104 g of tolylene diisocyanate was charged, the temperature was raised from 80 to 85 ° C., and reacted for 5 hours. The obtained prepolymer had an NCO content of 8.9%. Further, 16 g of triethylamine was added for neutralization, a mixed aqueous solution of 16 g of ethylenediamine and 480 g of water was added, emulsified at 50 ° C. for 4 hours, and chain extension reaction was performed to obtain an aqueous urethane resin dispersion (nonvolatile resin component 29 0.1%, acid value 41.4).
 (塗装液の調合)
 上記水酸化マグネシウム水分散液、上記ポリエチレン樹脂水性分散液または上記ウレタン樹脂水性分散液、および、コロイダルシリカ(日産化学工業株式会社製、商品名:スノーテックス-XS)を混合して、樹脂固形分約5質量%の塗装液を調合した。
(Preparation of coating liquid)
The magnesium hydroxide aqueous dispersion, the polyethylene resin aqueous dispersion or the urethane resin aqueous dispersion, and colloidal silica (manufactured by Nissan Chemical Industries, Ltd., trade name: Snowtex-XS) are mixed to obtain a resin solid content. About 5% by mass of coating liquid was prepared.
 (原板の種類)
 電気亜鉛めっき鋼板(EG):板厚0.8mm、亜鉛目付量:おもて面18g/m、うら面18g/m
(Type of original plate)
Electro-galvanized steel sheet (EG): Thickness 0.8mm, Zinc weight per unit area: Front surface 18g / m 2 , Back surface 18g / m 2
 (亜鉛めっき鋼板の前処理)
 脱脂:アルカリ脱脂(日本パーカーライジング社製、商品名:ファインクリーナー)
 乾燥:熱風乾燥させ、水分を蒸発させた。
(Pretreatment of galvanized steel sheet)
Degreasing: Alkaline degreasing (Nippon Parker Rising Co., Ltd., trade name: Fine Cleaner)
Drying: Hot air drying was performed to evaporate water.
 (塗装方法)
 方法:バーコーター
 樹脂皮膜厚み:所定の皮膜厚みが得られるようにバーの番手を選定した。端面部の耐食性を評価する試料については、おもて面とうら面の両面に同一厚みの樹脂皮膜を形成した。
(Painting method)
Method: Bar coater Resin film thickness: The number of bars was selected so that a predetermined film thickness was obtained. About the sample which evaluates the corrosion resistance of an end surface part, the resin film of the same thickness was formed in both surfaces of the front surface and the back surface.
 (乾燥方法)
 時間:1分間
 条件:塗装板の最高到達温度80℃(サーモラベルで確認)
(Drying method)
Time: 1 minute Conditions: Maximum reached temperature of the coated plate 80 ° C (confirmed with thermo label)
 上記した範囲内で、下記表1に示すように条件を様々変えて、各種塗装亜鉛めっき鋼板(試験No.1~13)を作製し、得られた塗装亜鉛めっき鋼板の平板部および端面部の耐食性について、下記の方法で評価した。 Within the above range, various coated galvanized steel sheets (test Nos. 1 to 13) were prepared under various conditions as shown in Table 1 below, and the flat and end surface portions of the obtained coated galvanized steel sheets were prepared. The corrosion resistance was evaluated by the following method.
 (平板部の耐食性)
 得られた塗装亜鉛めっき鋼板(試料)に対して、JIS Z2371(2015年)に準拠した塩水噴霧試験を96時間実施して、試料表面における白錆発生率(100×白錆が発生した面積/樹脂塗装金属板の全面積)を算出した。そして、下記基準に基づいて、○を合格とし、×を不合格として評価した。
(Corrosion resistance of flat plate part)
The obtained galvanized steel sheet (sample) was subjected to a salt spray test based on JIS Z2371 (2015) for 96 hours, and the white rust generation rate (100 × area where white rust occurred / The total area of the resin-coated metal plate was calculated. And based on the following reference | standard, (circle) was set as the pass and x was evaluated as failure.
 〈評価基準〉
  ○:白錆発生率15面積%以下
  ×:白錆発生率15面積%超
<Evaluation criteria>
○: White rust occurrence rate of 15 area% or less ×: White rust occurrence rate of over 15 area%
 また、得られた塗装亜鉛めっき鋼板(試料)に対して、JIS Z2371(2015年)に準拠した塩水噴霧試験を480時間実施して、試料表面における赤錆発生状況を目視によって観察した。そして、下記基準に基づいて、○を合格とし、×を不合格として評価した。 Further, a salt spray test based on JIS Z2371 (2015) was performed on the obtained coated galvanized steel sheet (sample) for 480 hours, and the occurrence of red rust on the sample surface was visually observed. And based on the following reference | standard, (circle) was set as the pass and x was evaluated as failure.
 〈評価基準〉
  ○:赤錆の発生が認められない
  ×:赤錆の発生が認められる
<Evaluation criteria>
○: Generation of red rust is not observed ×: Generation of red rust is recognized
 (端面部の耐食性)
 切断面のバリの形状をそろえるために、同一のシャー設備を用いて、幅50×長さ120mmの長方形形状の試験片を、端面部の耐食性を評価する試料から切り出した。切り出した試験片の枚数は、試験No.1~13のいずれにおいても12枚である。各試験片は端面をシールせずに、そのままJIS Z2371(2015年)に準拠した塩水噴霧試験を96時間実施した。そして、塩水噴霧試験後の試験片をそれぞれコピー紙で梱包し、室温放置試験として空調された室内(温度:約23℃、湿度:約30%)に3週間放置することで、端面の腐食を進行させた。室温放置試験完了後に、試験No.1~13のそれぞれに対して試験片12枚を重ねた状態で端面部の腐食状況を写真撮影し、下バリ端面と上バリ端面のそれぞれに発生した赤錆発生率(100×赤錆が発生した面積/樹脂塗装金属板の該当端面の面積)を算出し、それらの平均値を端面部の赤錆発生率として求めた。そして、下記基準に基づいて、◎および○を合格とし、△を不合格として評価した。
(Corrosion resistance of the end face)
In order to align the shape of the burrs on the cut surface, a rectangular test piece having a width of 50 × 120 mm was cut out from a sample for evaluating the corrosion resistance of the end face using the same shearing equipment. The number of cut out test pieces is the test number. In any of 1 to 13, there are 12 sheets. Each test piece was subjected to a salt spray test for 96 hours in accordance with JIS Z2371 (2015) without sealing the end face. The test pieces after the salt spray test are each packed with copy paper and left in an air-conditioned room (temperature: about 23 ° C., humidity: about 30%) for 3 weeks to test the corrosion of the end face. Proceeded. After completion of the room temperature standing test, test no. Photographs of the corrosion status of the end face part with 12 test pieces stacked on each of 1 to 13, and the occurrence rate of red rust generated on each of the lower burr end face and the upper burr end face (100 × area where red rust occurred) / Area of the corresponding end face of the resin-coated metal plate) was calculated, and the average value thereof was determined as the red rust occurrence rate of the end face portion. And based on the following reference | standard, (double-circle) and (circle) were set as the pass, and (triangle | delta) was evaluated as disqualified.
 〈評価基準〉
  ◎:端面部の赤錆発生率15面積%以下
  ○:端面部の赤錆発生率15面積%超30面積%以下
  △:端面部の赤錆発生率30面積%超
<Evaluation criteria>
◎: Red rust occurrence rate at the end face portion is 15 area% or less ○: Red rust occurrence rate at the end face portion is more than 15 area% and 30 area% or less
 その結果を、各塗装亜鉛めっき鋼板を製造したときの条件(樹脂の種類、樹脂皮膜の組成比率、[Mg(OH)/SiO]、樹脂皮膜厚み)と共に、下記表1に示す。 The results are shown in Table 1 below together with the conditions (type of resin, composition ratio of resin film, [Mg (OH) 2 / SiO 2 ], resin film thickness) when each coated galvanized steel sheet was produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この結果から明らかなように、樹脂の含有量が60質量%である例(No.8)は、樹脂の含有量が多すぎるため、端面部の耐食性が劣化していた。樹脂の含有量が25質量%未満である例(No.9、13)は、樹脂の含有量が少なすぎるため、皮膜欠陥が多くなり、端面部の耐食性および平板部の白錆耐食性が劣化していた。質量比率[Mg(OH)/SiO]が0.2~1.5の範囲外にある例(試験No.10、12)は、端面部の耐食性が劣化していた。そして、樹脂皮膜厚みが0.2μmである例(試験No.11)は、端面部の耐食性および平板部の白錆耐食性が劣化していた。 As is apparent from the results, the example (No. 8) in which the resin content is 60% by mass has too much resin content, and thus the corrosion resistance of the end face portion is deteriorated. In the case where the resin content is less than 25% by mass (Nos. 9 and 13), since the resin content is too small, film defects are increased, and the corrosion resistance of the end face portion and the white rust corrosion resistance of the flat plate portion are deteriorated. It was. In the examples where the mass ratio [Mg (OH) 2 / SiO 2 ] is outside the range of 0.2 to 1.5 (test Nos. 10 and 12), the corrosion resistance of the end face portion was deteriorated. And the example (test No. 11) whose resin film thickness is 0.2 micrometer deteriorated the corrosion resistance of the end surface part, and the white rust corrosion resistance of the flat plate part.
 これに対し、シリカおよび水酸化マグネシウムの合計含有量、質量比率[Mg(OH)/SiO]および樹脂皮膜厚みを適切に調整した本発明の塗装亜鉛めっき鋼板(試験No.1~7)は、平板部および端面部の双方において優れた耐食性を示していた。 On the other hand, the coated galvanized steel sheet of the present invention (test Nos. 1 to 7) in which the total content, mass ratio [Mg (OH) 2 / SiO 2 ], and resin film thickness of silica and magnesium hydroxide were appropriately adjusted Exhibited excellent corrosion resistance in both the flat plate portion and the end face portion.
 この出願は、2018年3月29日に出願された日本国特許出願特願2018-64767および2019年2月21日に出願された日本国特許出願特願2019-29020を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2018-64767 filed on Mar. 29, 2018 and Japanese Patent Application No. 2019-29020 filed on Feb. 21, 2019. The contents thereof are included in the present application.
 本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to specific examples and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明は、鋼板、亜鉛めっき鋼板やそれらの製造方法等に関する技術分野において、広範な産業上の利用可能性を有する。 The present invention has wide industrial applicability in the technical fields related to steel plates, galvanized steel plates and methods for producing them.

Claims (1)

  1.  亜鉛めっき鋼板の表面に、シリカおよび水酸化マグネシウムを含む樹脂皮膜を有する塗装亜鉛めっき鋼板であって、
     前記樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量が50~75質量%、かつ前記樹脂皮膜の樹脂成分の含有量が25~50質量%であり、
     前記シリカに対する前記水酸化マグネシウムの質量比率が0.2~1.5であり、
     前記樹脂皮膜の厚みが0.3~3.0μmであることを特徴とする、塗装亜鉛めっき鋼板。
    A coated galvanized steel sheet having a resin film containing silica and magnesium hydroxide on the surface of the galvanized steel sheet,
    The total content of silica and magnesium hydroxide in the resin film is 50 to 75% by mass, and the content of the resin component of the resin film is 25 to 50% by mass,
    A mass ratio of the magnesium hydroxide to the silica is 0.2 to 1.5;
    A coated galvanized steel sheet, wherein the resin film has a thickness of 0.3 to 3.0 μm.
PCT/JP2019/011038 2018-03-29 2019-03-18 Coated galvanized steel sheet WO2019188461A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980021450.XA CN111902272B (en) 2018-03-29 2019-03-18 Coated galvanized steel sheet
KR1020207028900A KR102431941B1 (en) 2018-03-29 2019-03-18 painted galvanized steel sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018064767 2018-03-29
JP2018-064767 2018-03-29
JP2019029020A JP7112349B2 (en) 2018-03-29 2019-02-21 Painted galvanized steel sheet
JP2019-029020 2019-02-21

Publications (1)

Publication Number Publication Date
WO2019188461A1 true WO2019188461A1 (en) 2019-10-03

Family

ID=68058836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011038 WO2019188461A1 (en) 2018-03-29 2019-03-18 Coated galvanized steel sheet

Country Status (1)

Country Link
WO (1) WO2019188461A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476441A (en) * 1977-12-01 1979-06-19 Kawasaki Steel Co Production of steel plate with oneeside plating
JP2002322569A (en) * 2001-04-23 2002-11-08 Nippon Steel Corp Rust preventive for metal and rust prevention treated steel
JP2005200757A (en) * 2003-02-05 2005-07-28 Kobe Steel Ltd Surface-treated metallic sheet
JP2013108126A (en) * 2011-11-18 2013-06-06 Kobe Steel Ltd Surface treated metal sheet excellent in corrosion resistance and conductivity
JP2014523457A (en) * 2011-06-09 2014-09-11 ピーアールシー−デソト インターナショナル,インコーポレイティド Coating composition comprising magnesium hydroxide particles and related coated substrates
JP2018172780A (en) * 2017-03-31 2018-11-08 株式会社神戸製鋼所 Coated galvanized steel sheet
JP2018172779A (en) * 2017-03-31 2018-11-08 株式会社神戸製鋼所 Coated galvanized steel sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476441A (en) * 1977-12-01 1979-06-19 Kawasaki Steel Co Production of steel plate with oneeside plating
JP2002322569A (en) * 2001-04-23 2002-11-08 Nippon Steel Corp Rust preventive for metal and rust prevention treated steel
JP2005200757A (en) * 2003-02-05 2005-07-28 Kobe Steel Ltd Surface-treated metallic sheet
JP2014523457A (en) * 2011-06-09 2014-09-11 ピーアールシー−デソト インターナショナル,インコーポレイティド Coating composition comprising magnesium hydroxide particles and related coated substrates
JP2013108126A (en) * 2011-11-18 2013-06-06 Kobe Steel Ltd Surface treated metal sheet excellent in corrosion resistance and conductivity
JP2018172780A (en) * 2017-03-31 2018-11-08 株式会社神戸製鋼所 Coated galvanized steel sheet
JP2018172779A (en) * 2017-03-31 2018-11-08 株式会社神戸製鋼所 Coated galvanized steel sheet

Similar Documents

Publication Publication Date Title
KR100711870B1 (en) Surface treated metal sheet
KR101452051B1 (en) Surface-treated metal sheet having excellent corrosion resistance and conductivity
JP4057626B2 (en) Electrical Zn-plated steel sheet with excellent stain resistance
JP7112350B2 (en) Painted galvanized steel sheet
JP4551847B2 (en) Resin coated metal plate
JP6626805B2 (en) Surface-treated metal plate and method for producing surface-treated metal plate
JP7112349B2 (en) Painted galvanized steel sheet
JP7235556B2 (en) Painted galvanized steel sheet
WO2019188461A1 (en) Coated galvanized steel sheet
JP4478054B2 (en) Resin coated metal plate
KR102550836B1 (en) Painted galvanized steel
WO2019188460A1 (en) Coated galvanized steel sheet
WO2019188237A1 (en) Coated galvanized steel sheet
JP2019173125A (en) Coated galvanized steel sheet
KR20170126973A (en) Resin coated zinc plated metal plate
JP6946377B2 (en) Resin coated metal plate
JP2009197303A (en) Electrogalvanized steel sheet excellent in stain resistance
JP2016175257A (en) Resin coated metal plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207028900

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19776466

Country of ref document: EP

Kind code of ref document: A1