WO2019188460A1 - Coated galvanized steel sheet - Google Patents

Coated galvanized steel sheet Download PDF

Info

Publication number
WO2019188460A1
WO2019188460A1 PCT/JP2019/011032 JP2019011032W WO2019188460A1 WO 2019188460 A1 WO2019188460 A1 WO 2019188460A1 JP 2019011032 W JP2019011032 W JP 2019011032W WO 2019188460 A1 WO2019188460 A1 WO 2019188460A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin
film
steel sheet
galvanized steel
Prior art date
Application number
PCT/JP2019/011032
Other languages
French (fr)
Japanese (ja)
Inventor
山本 哲也
大輝 酒井
礼士 白岩
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019030545A external-priority patent/JP7112350B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020207028776A priority Critical patent/KR102473795B1/en
Priority to CN201980021239.8A priority patent/CN111971170B/en
Publication of WO2019188460A1 publication Critical patent/WO2019188460A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a coated galvanized steel sheet having a coating containing an inorganic compound in a resin (hereinafter sometimes referred to as “inorganic coating”) on the surface of the galvanized steel sheet.
  • the surface of the material is severely slid by the roll. For this reason, when a roll forming process is performed on a coated galvanized steel sheet having a resin film on the surface layer, a part of the resin film is peeled off to generate a film residue.
  • the film residue mixes with the coolant liquid for roll forming, adheres to the molded product, and deteriorates the appearance of the molded product. Further, the film residue mixed in the coolant liquid is deposited on the surface of the draining pad for wiping the coolant liquid before cutting the molded product.
  • the film residue deposited on the surface of the draining pad may cause abnormal noise due to friction with the molded product when the coolant liquid adhering to the molded product is wiped by the draining pad, or may cause a defective dimension of the molded product.
  • the roll forming apparatus is provided with a filter for removing film residue mixed in the coolant liquid.
  • the filter is clogged immediately during roll forming, and therefore the frequency of replacement of the filter increases, resulting in a decrease in productivity.
  • magnesium-based compounds exhibit an antirust effect.
  • techniques for highly corrosion resistant coatings containing nano-sized magnesium particles have been developed.
  • Patent Document 1 discloses a coating made of a composition containing nano magnesium hydroxide particles having an average particle diameter of less than 200 nm.
  • Patent Document 2 discloses a rust preventive for metal containing a composite colloid composed of magnesium hydroxide and fine silica. Disclosed is a film formed using an agent.
  • Patent Document 3 includes oxide particles, phosphoric acid and / or a phosphoric acid compound, and a magnesium compound on the surface of a zinc-based plated steel sheet.
  • An organic coated steel sheet having a composite oxide film and having an organic film containing a reaction product of an organic resin and an active hydrogen-containing compound and an antirust additive component on the composite oxide film is disclosed.
  • the coating disclosed in Patent Document 1 has a thickness of 2.5 to 75 ⁇ m and is not assumed to be roll-formed. Further, the coating disclosed in Patent Document 1 does not exhibit a sufficient antirust effect when the thickness is 1 ⁇ m or less.
  • Patent Document 2 requires the use of a metal anticorrosive containing a composite colloid composed of magnesium hydroxide and fine silica during film formation. It is stable and prone to problems in the coating process for gelation. Moreover, since the film disclosed in Patent Document 2 contains a water-soluble component, its water resistance is insufficient, and discoloration due to condensation or water wetting during transportation is conspicuous.
  • the organic coated steel sheet disclosed in Patent Document 3 since the magnesium compound is added in the form of water-soluble ions or molecules when forming the composite oxide film, the treatment liquid stability decreases when the addition amount of the magnesium compound is increased. . For this reason, there exists a limit in improving a corrosion inhibitory effect by complex oxide film. In addition, the organic coated steel sheet disclosed in Patent Document 3 has a problem in that productivity is low and manufacturing cost is high because it is necessary to form an organic film after forming a composite oxide film.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a coated galvanized steel sheet that has less film residue during roll forming and has excellent corrosion resistance.
  • One aspect of the present invention is a coated galvanized steel sheet having a resin film containing silica and magnesium hydroxide on the surface of the galvanized steel sheet, wherein the total content of silica and magnesium hydroxide in the resin film is 75 to 75%. 90% by mass, the content of the resin component of the resin film is 10 to 25% by mass, the mass ratio of the magnesium hydroxide to the silica is 0.15 to 3, and the thickness of the resin film is 0.00. It is a coated galvanized steel sheet having a thickness of 20 to 1.1 ⁇ m.
  • the present inventors examined from various angles in order to achieve the above object. As a result, it has been found that the above object can be achieved brilliantly by appropriately adjusting the total content of silica and magnesium hydroxide in the resin film, the mass ratio of magnesium hydroxide to silica, and the thickness of the resin film.
  • the present invention has been completed.
  • the coated galvanized steel sheet according to an embodiment of the present invention has a resin film containing silica and magnesium hydroxide on the surface of the galvanized steel sheet.
  • the total content of silica and magnesium hydroxide in the resin film is 75 to 90% by mass.
  • the resin component content of the resin film is 10 to 25% by mass.
  • the mass ratio of the magnesium hydroxide to the silica is 0.15 to 3.
  • the resin film has a thickness of 0.20 to 1.1 ⁇ m.
  • the total content of silica and magnesium hydroxide in the resin film is 75 to 90% by mass.
  • the inorganic coating mainly contains an inorganic compound having a specific gravity larger than that of the organic compound, a dense coating with a high barrier effect against corrosion factors can be obtained. Thereby, there exists an advantage which can make the film thickness for obtaining the same corrosion resistance smaller than an organic type film, and it becomes advantageous to generation
  • the inorganic compound contained in the resin film of this embodiment is silica and magnesium hydroxide, and the inorganic film means a resin film containing silica and magnesium hydroxide.
  • the corrosion resistance deteriorates due to insufficient inorganic components.
  • the hardness of the film is not sufficient, film peeling is likely to occur during roll forming.
  • the specific gravity of the film residue is small, it is easy to accumulate on the surface of the draining pad.
  • it is 77 mass% or more, More preferably, it is 80 mass% or more.
  • the corrosion resistance deteriorates.
  • it is 88 mass% or less, More preferably, it is 85 mass% or less.
  • the silica used in the present embodiment is preferably colloidal silica excellent in compatibility with an aqueous resin described later. If the average particle size of the silica is too large, or reduced denseness of the film, there is a possibility that or generating a film defects, it is preferred that the average particle size D 50 is 500nm or less, 450 nm or less It is more preferable that Note that the average particle diameter D 50 of the silica, the integrated value of the silica (integrated value) means the average particle diameter when the 50 mass%.
  • the magnesium hydroxide used in the present embodiment is not particularly limited as long as it is stable as an aqueous dispersion, and the magnesium hydroxide powder and dispersion method are not particularly limited.
  • the average particle diameter D 50 of the magnesium hydroxide in a state of being dispersed in water i.e., the average particle diameter D 50 of magnesium hydroxide in magnesium hydroxide aqueous dispersion is preferably less than that of the resin film thickness, for example, 0. It is preferably 7 ⁇ m or less. Thereby, deterioration of roll moldability and generation
  • the lower limit of the average particle diameter D 50 in a state where magnesium hydroxide is dispersed in water is not particularly limited, but if the average particle diameter D 50 becomes too small, the stability of the dispersion (for example, dispersion) is reduced. Since there exists a possibility that it may fall, it is preferable that it is 0.1 micrometer or more. More preferably, it is 0.14 ⁇ m or more.
  • the average particle diameter D 50 of the magnesium hydroxide means the average particle diameter when the cumulative value of magnesium hydroxide (integrated value) of 50 wt%.
  • a polymer dispersant for example, a water-soluble acrylic resin, a water-soluble styrene acrylic resin, a nonionic surfactant
  • a polymer dispersant for example, a water-soluble acrylic resin, a water-soluble styrene acrylic resin, a nonionic surfactant
  • the content of the resin component in the resin film is 10 to 25% by mass.
  • the content of the resin component in the resin film is 10% by mass or more. Preferably it is 15 mass% or more.
  • the content of the resin component in the resin film is 25% by mass or less. Preferably it is 20 mass% or less.
  • Mass ratio of magnesium hydroxide to silica 0.15 to 3
  • the mass ratio of magnesium hydroxide to silica is 0.15 to 3.
  • Magnesium hydroxide and silica are both known as rust preventives for zinc plating.
  • the present inventors have found that excellent corrosion resistance can be obtained even when the thickness of the coating is 1 ⁇ m or less by blending magnesium hydroxide and silica in the resin coating at a specific mass ratio.
  • the mass ratio [Mg (OH) 2 / SiO 2 ] of magnesium hydroxide to silica is in the range of 0.15 to 3, excellent corrosion resistance is exhibited.
  • the mass ratio is preferably 0.3 or more, and more preferably 2.0 or less.
  • the mechanism by which the corrosion resistance is improved by adjusting the mass ratio to an appropriate range is unknown, but is probably as follows. That is, it is considered that magnesium ions eluted from magnesium hydroxide stabilized a corrosion product having a high protective action against galvanization produced by silica, and improved the barrier effect by the stabilized corrosion product.
  • the protective action against galvanization means a barrier property that blocks corrosion factors such as water and oxygen. And by using particulate magnesium hydroxide, it became possible to increase the addition ratio of the magnesium component in the resin film without impairing the stability of the treatment liquid. It is presumed to show high corrosion resistance.
  • the resin film thickness is 0.20 to 1.1 ⁇ m.
  • the resin film thickness is less than 0.20 ⁇ m, the corrosion resistance deteriorates.
  • the resin film thickness exceeds 1.1 ⁇ m, not only the generation of film residue during roll forming increases, but also it becomes very difficult to ensure conductivity.
  • the resin film thickness is preferably 0.3 ⁇ m or more, and preferably 0.8 ⁇ m or less. More preferably, it is 0.3 to 0.6 ⁇ m.
  • the resin film thickness is in the range of 0.3 to 0.8 ⁇ m, the balance of corrosion resistance, roll mold resistance, and conductivity is excellent, and it is advantageous for application to electrical appliances that require grounding properties. .
  • the type of resin used in the present embodiment is not particularly limited, and any of a water-based resin and a non-aqueous resin can be used.
  • an aqueous dispersion of magnesium hydroxide or colloidal silica it is preferable to use an aqueous resin.
  • Such an aqueous resin is not particularly limited, but is preferably mixed with an aqueous dispersion of magnesium hydroxide and colloidal silica.
  • the aqueous resin in the present embodiment refers to a resin that is an aqueous dispersion or a water-soluble resin.
  • Such water-based resins are preferably polyolefin-based resins, polyurethane-based resins, and polyester-based resins, and among these, polyolefin-based resins and polyurethane-based resins are more preferable.
  • the polyolefin resin and the polyurethane resin will be specifically described.
  • polyolefin resin As the polyolefin resin, an ethylene-unsaturated carboxylic acid copolymer is preferable.
  • the ethylene-unsaturated carboxylic acid copolymer for example, those described in JP-A-2005-246953 and JP-A-2006-43913 can be used.
  • Examples of the unsaturated carboxylic acid include (meth) acrylic acid, crotonic acid, isocrotonic acid, maleic acid, fumaric acid, itaconic acid, and the like.
  • An ethylene-unsaturated carboxylic acid copolymer can be obtained by polymerization using a combination method.
  • the copolymerization ratio of unsaturated carboxylic acid to ethylene is preferably 10% by mass or more, more preferably 15% by mass or more when unsaturated monomer is 100% by mass. 40% by mass or less, and more preferably 25% by mass or less.
  • the coating strength emulsion composition
  • the unsaturated carboxylic acid exceeds 40% by mass, the corrosion resistance and water resistance of the resin film may be inferior.
  • the coating liquid can be emulsified (water dispersion) by neutralization with an organic base or metal ion.
  • an amine having a boiling point of 100 ° C. or less under atmospheric pressure is preferable from the viewpoint of not significantly reducing the corrosion resistance of the resin film.
  • Specific examples include tertiary amines such as triethylamine; secondary amines such as diethylamine; primary amines such as propylamine, and the like, and one or more of these can be used in combination. Of these, tertiary amines are preferred, and triethylamine is most preferred.
  • the amine is preferably 0.2 mol or more with respect to 1 mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer, and is preferably 0.8 mol or less. preferable. Further, it is more preferably 0.3 mol or more, and more preferably 0.6 mol or less.
  • the amount of monovalent metal ions is preferably 0.02 mol or more with respect to 1 mol of carboxyl groups in the ethylene-unsaturated carboxylic acid copolymer from the viewpoint of ensuring the emulsion stability of the coating liquid. More preferably, it is 0.03 mol or more. On the other hand, from the viewpoint of ensuring corrosion resistance, the amount is preferably 0.4 mol or less, more preferably 0.3 mol or less, based on 1 mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer.
  • the metal compound for imparting monovalent metal ions is preferably NaOH, KOH, LiOH or the like, and NaOH is most preferable because of its best performance.
  • the ethylene-unsaturated carboxylic acid copolymer is stirred at high speed in a container capable of reacting at a high temperature (about 150 ° C.) and a high pressure (about 5 atm), for example, in the presence of a carboxylic acid polymer described later, if necessary.
  • a high temperature about 150 ° C.
  • a high pressure about 5 atm
  • an appropriate amount of a compound having a surfactant function such as tall oil fatty acid may be added.
  • a hydrophilic organic solvent such as a lower alcohol having about 1 to 5 carbon atoms may be partially added to water.
  • the mass average molecular weight (Mw) of the ethylene-unsaturated carboxylic acid copolymer is preferably 1,000 or more and 100,000 or less in terms of polystyrene.
  • a more preferable lower limit is 3,000 or more, and further preferably 5,000 or more.
  • a more preferable upper limit value is 70,000 or less, and further preferably 30,000 or less. This Mw can be measured by gel permeation chromatography (GPC) using polystyrene as a standard.
  • a carboxylic acid polymer can also be used as the resin component.
  • the carboxylic acid polymer any polymer having an unsaturated carboxylic acid as a constituent unit exemplified as one that can be used for the synthesis of the ethylene-unsaturated carboxylic acid copolymer can be used. Among these, acrylic acid and maleic acid are preferable, and maleic acid is more preferable.
  • the carboxylic acid polymer may contain a constituent unit derived from a monomer other than the unsaturated carboxylic acid, but the constituent unit amount derived from the other monomer is 10% by mass or less in the polymer. More preferably, it is 5 mass% or less, and the carboxylic acid polymer comprised only from unsaturated carboxylic acid is further more preferable.
  • Preferred carboxylic acid polymers include polyacrylic acid, polymethacrylic acid, acrylic acid-maleic acid copolymer, polymaleic acid and the like. Of these, polymaleic acid is more preferable from the viewpoints of resin film adhesion and corrosion resistance. Although the exact mechanism by which the corrosion resistance is improved by using polymaleic acid is unknown, the adhesion between the resin film and the galvanized steel sheet is improved due to the large amount of carboxyl groups. It is done. However, the present invention is not limited to this estimation.
  • the mass average molecular weight (Mw) of the carboxylic acid polymer used in the present embodiment is preferably 500 or more and 30,000 or less in terms of polystyrene.
  • a more preferable lower limit value is 800 or more, more preferably 900 or more, and most preferably 1,000 or more.
  • a more preferable upper limit value is 10,000 or less, more preferably 3,000 or less, and most preferably 2,000 or less. This Mw can be measured by GPC using polystyrene as a standard.
  • the content ratio of the ethylene-unsaturated carboxylic acid copolymer and the carboxylic acid polymer is 1,000: 1 to 10: 1, preferably 200: 1 to 20: 1 in terms of mass ratio. This is because if the content ratio of the carboxylic acid polymer is too low, the effect of combining the olefin-acid copolymer and the carboxylic acid polymer cannot be sufficiently exhibited. On the contrary, if the content ratio of the carboxylic acid polymer is excessive, the olefin-acid copolymer and the carboxylic acid polymer are phase-separated in the first layer forming coating solution, and a uniform resin film is formed. It is because there is a risk of disappearing.
  • polyurethane resin As the polyurethane resin, a carboxyl group-containing polyurethane resin is preferable.
  • the carboxyl group-containing polyurethane resin for example, those described in JP-A-2006-43913 can be used.
  • the carboxyl group-containing polyurethane resin is preferably obtained by chain extension reaction of a urethane prepolymer with a chain extender.
  • the urethane prepolymer is obtained, for example, by reacting a polyisocyanate component and a polyol component.
  • At least one polyisocyanate selected from the group consisting of tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI) and dicyclohexylmethane diisocyanate (hydrogenated MDI) as the polyisocyanate component.
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • hydrophilated MDI dicyclohexylmethane diisocyanate
  • the content of the polyisocyanate is preferably 70% by mass or more of the total polyisocyanate component from the viewpoint of ensuring the corrosion resistance of the resin film and the stability of reaction control.
  • polyisocyanate other than the above polyisocyanate component examples include tetramethylene diisocyanate, hexamethylene diisocyanate, dodecane methylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, and phenylene diisocyanate. One or more of these are used. May be.
  • polyol component it is preferable to use three types of polyols, 1,4-cyclohexanedimethanol, polyether polyol, and polyol having a carboxyl group, as the polyol component.
  • the polyol component it is more preferable to use three kinds of diols of 1,4-cyclohexanedimethanol, polyether diol, and diol having a carboxyl group.
  • the rust prevention effect of the obtained polyurethane resin can be enhanced by using 1,4-cyclohexanedimethanol as the polyol component.
  • the polyether polyol is not particularly limited as long as it has at least two hydroxyl groups in the molecular chain and the main skeleton is composed of alkylene oxide units. Specific examples include polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol and the like, and it is preferable to use polyoxypropylene glycol or polytetramethylene ether glycol.
  • the number of functional groups of the polyether polyol is not particularly limited as long as it is at least 2 or more, and for example, it may be trifunctional or tetrafunctional or polyfunctional.
  • the average molecular weight of the polyether polyol is preferably about 400 to 4000 from the viewpoint of obtaining a resin film having an appropriate hardness. The average molecular weight can be determined by measuring the OH value (hydroxyl value).
  • the polyol having a carboxyl group is not particularly limited as long as it has at least one carboxyl group and at least two hydroxyl groups. Specific examples include dimethylolpropionic acid, dimethylolbutanoic acid, dihydroxypropionic acid, dihydroxysuccinic acid and the like.
  • the content of the three kinds of polyols is preferably 70% by mass or more of the total polyol components from the viewpoint of ensuring the corrosion resistance of the resin film.
  • the polyol other than the above three types of polyol is not particularly limited as long as it has a plurality of hydroxyl groups.
  • a low molecular weight polyol, a high molecular weight polyol, etc. are mentioned.
  • the low molecular weight polyol is a polyol having an average molecular weight of about 500 or less.
  • diols such as ethylene glycol, diethylene glycol, triethylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol; glycerin, trimethylolpropane, hexanetriol, etc.
  • the high molecular weight polyol is a polyol having an average molecular weight exceeding about 500.
  • polyester polyols such as polyethylene adipate (PEA), polybutylene adipate (PBA), and polyhexamethylene adipate (PHMA); lactone polyester polyols such as poly- ⁇ -caprolactone (PCL); polyhexamethylene Polycarbonate polyols such as carbonate; and acrylic polyols.
  • PEA polyethylene adipate
  • PBA polybutylene adipate
  • PHMA polyhexamethylene adipate
  • lactone polyester polyols such as poly- ⁇ -caprolactone (PCL)
  • PCL polyhexamethylene Polycarbonate polyols such as carbonate
  • acrylic polyols such as polyethylene adipate (PEA), polybutylene adipate (PBA), and polyhexamethylene adipate (PHMA)
  • lactone polyester polyols such as poly- ⁇ -caprolactone (PCL)
  • PCL polyhexamethylene Polycarbonate polyols
  • the chain extender is not particularly limited, and examples thereof include polyamines, low molecular weight polyols, and alkanolamines.
  • polyamines aliphatic polyamines such as ethylenediamine, propylenediamine and hexamethylenediamine; aromatic polyamines such as tolylenediamine, xylylenediamine and diaminodiphenylmethane; alicyclic polyamines such as diaminocyclohexylmethane, piperazine and isophoronediamine; hydrazine, And hydrazines such as succinic acid dihydrazide, adipic acid dihydrazide, and phthalic acid dihydrazide.
  • alkanolamine include diethanolamine and monoethanolamine.
  • the carboxyl group-containing polyurethane resin can be emulsified (emulsified) by a known method, for example, the following method. That is, a method in which a carboxyl group of a carboxyl group-containing urethane prepolymer is neutralized with a base and emulsified and dispersed in an aqueous medium to cause chain extension reaction; a carboxyl group-containing polyurethane resin is emulsified with high shear force in the presence of an emulsifier This is a method of dispersing and chain extending reaction.
  • the acid value of the carboxyl group-containing polyurethane resin is preferably 10 mgKOH / g or more from the viewpoint of ensuring the stability of the coating liquid, and on the other hand, 60 mgKOH / g or less from the viewpoint of ensuring the corrosion resistance of the resin film. Is preferred.
  • the acid value is measured according to JIS-K0070 (1992).
  • the resin film is applied to the surface of the galvanized steel sheet using a known coating method, that is, a roll coater method, a bar coater method, a spray method, or a curtain flow coater method, and dried by heating.
  • a known coating method that is, a roll coater method, a bar coater method, a spray method, or a curtain flow coater method, and dried by heating.
  • the coating liquid contains a predetermined amount of silica, magnesium hydroxide and the above resin.
  • the resin solid content in the coating liquid is preferably about 15 to 25% by mass.
  • a coating liquid may contain various additives in the range which does not inhibit the effect of this invention for the purpose of improving membrane
  • additives examples include silane coupling agents, elution inhibitors, rust inhibitors, waxes, crosslinking agents, diluents, antiskinning agents, surfactants, emulsifiers, dispersants, leveling agents, antifoaming agents, and penetrants. , Film forming aids, dyes, pigments, thickeners, lubricants and the like.
  • the resin film becomes dense and the corrosion resistance is improved.
  • the adhesiveness of a galvanized steel plate and a resin film is also improved, and corrosion resistance is improved.
  • glycidoxy-based silane coupling agents are highly reactive and have a large effect of improving corrosion resistance.
  • Glycidyl group-containing silane coupling agents include ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxymethyldimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyl Examples include trimethoxysilane.
  • the amount of the silane coupling agent is preferably 0.1 parts by mass or more, more preferably 3 parts by mass or more, with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic film. More preferably, it is 5 parts by mass or more. If the amount is less than 0.1 parts by mass, the adhesion between the galvanized steel sheet and the resin film and the bonding force between the resin component and colloidal silica may be insufficient, and the toughness and corrosion resistance of the film may be insufficient. is there.
  • the amount of the silane coupling agent is preferably 10 parts by mass or less, more preferably 9 parts by mass or less, with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic film. More preferably, it is 7 parts by mass or less. Even if it exceeds 10 parts by mass, not only the effect of improving the adhesion between the metal plate and the resin film is saturated, but also the functional group in the resin may decrease and the paintability may deteriorate. Moreover, it is because silane coupling agents raise
  • metavanadate which is an elution inhibitor
  • dissolution and elution of a galvanized steel sheet are suppressed by elution of metavanadate, and corrosion resistance is improved.
  • Metavanadate is particularly effective in improving the bare corrosion resistance of the galvannealed steel sheet.
  • the metavanadate include sodium metavanadate (NaVO 3 ), ammonium metavanadate (NH 4 VO 3 ), and potassium metavanadate (KVO 3 ). These 1 type (s) or 2 or more types can be used.
  • the amount of metavanadate is preferably 0.5 parts by mass or more and more preferably 0.7 parts by mass or more with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic coating. Preferably, it is 1.0 part by mass or more. This is because if the amount is less than 0.5 parts by mass, the effect of improving the bare corrosion resistance becomes insufficient.
  • the amount of metavanadate is preferably 5.5 parts by mass or less, and 5.0 parts by mass or less with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic coating. Is more preferable, and it is further more preferable that it is 3.0 mass parts or less.
  • the suitable amount of this metavanadate is a V element conversion amount.
  • the type of galvanized steel sheet used in the present embodiment is not particularly limited, and any of electrogalvanized steel sheet, hot dip galvanized steel sheet, and alloyed hot dip galvanized steel sheet (hereinafter, these may be referred to as “original plates”). Can also be adopted. Moreover, there is no limitation in particular also about the kind of zinc plating layer, An alloying element may be included in a plating layer.
  • the galvanized layer is coated on one side or both sides of the base steel plate, and the resin film is accordingly coated on one side or both sides of the galvanized steel plate.
  • the coated galvanized steel sheet according to one aspect of the present invention is a coated galvanized steel sheet having a resin film containing silica and magnesium hydroxide on the surface of the galvanized steel sheet, and the silica in the resin film and
  • the total content of magnesium hydroxide is 75 to 90% by mass
  • the resin component content of the resin film is 10 to 25% by mass
  • the mass ratio of the magnesium hydroxide to the silica is 0.15 to 3
  • the thickness of the resin film is 0.20 to 1.1 ⁇ m.
  • a coated galvanized steel sheet exhibiting excellent corrosion resistance can be realized with less film residue generated during roll forming while the thickness of the resin film is 1.1 ⁇ m or less.
  • Magnesium hydroxide particles (manufactured by Kyowa Chemical Industry Co., Ltd., trade name: Kisuma 5Q-S) are used as a dispersant and dispersed using a polymer dispersant to obtain an aqueous dispersion (resin solid content: about 30 wt%, average particle size D 50: 0.69 .mu.m) was formulated.
  • the average particle diameter D 50 of the magnesium hydroxide in the dispersion was diluted with 0.2 wt% aqueous solution of sodium hexametaphosphate, a laser diffraction scattering particle size distribution measuring device (Microtrac Bell Co., Ltd., trade name: Micro Measurement was performed using a track MT3300EXII).
  • the above polyethylene resin manufactured by Toho Chemical Co., Ltd. and its aqueous dispersion were prepared by the following method.
  • an ethylene-acrylic acid copolymer manufactured by Dow Chemical Co., Ltd., trade name: Primacol 5990I, structural unit derived from acrylic acid: 20% by mass, mass
  • polymaleic acid aqueous solution manufactured by NOF Corporation, trade name: Nonpole PMA-50W, Mw: about 1100 (polystyrene conversion)
  • the above urethane resin manufactured by Toho Chemical Co., Ltd. and its aqueous dispersion were prepared by the following method.
  • the magnesium hydroxide aqueous dispersion, the polyethylene resin aqueous dispersion or the urethane resin aqueous dispersion, and colloidal silica are mixed to obtain a resin solid content. About 10% by mass of coating liquid was prepared.
  • Hot-dip galvanized steel sheet GI: plate thickness 0.8 mm, zinc basis weight: 60 g / m 2
  • Alloyed galvanized steel sheet GA
  • plate thickness 0.8 mm, zinc basis weight 45 g / m 2
  • Electrogalvanized steel sheet EG: plate thickness 0.8 mm, zinc basis weight: 20 g / m 2
  • Example As shown in Tables 1 and 2 within the above range, using (1) hot dip galvanized steel sheet, (2) galvannealed steel sheet and (3) electrogalvanized steel sheet as the original plate.
  • Various coated galvanized steel sheets (Test Nos. 1 to 17 in Table 1 and Test Nos. 18 to 35 in Table 2) were prepared under various conditions, and roll forming resistance and corrosion resistance of the obtained coated galvanized steel sheets. was evaluated by the following method.
  • X represents the mass per unit area of the silicon element in the coating (mg / m 2 ), and Y represents the composition ratio (mass%) of silica (SiO 2 ) in the coating.
  • the reduction amount (W 0 -W 1 ) of the film adhesion amount was calculated as the generated film residue, and ⁇ and ⁇ were evaluated as acceptable and ⁇ as unacceptable based on the following criteria.
  • the method of the repeated sliding test is as follows. First, a test piece cut out from a coated galvanized steel sheet into a rectangular shape having a width of 40 mm and a length of 300 mm is vertically mounted on a tensile tester, and a flat plate die (material: SKD11) is brought into contact. Next, a jig (semi-cylindrical die, material: SKD11) having a convex portion with a tip radius of 9.1 mm is brought into contact with the other surface (sliding surface) of the test piece, and 2940 N (300 kgf) of the jig is brought into contact with the jig.
  • the sliding operation is performed by moving the jig downward at a speed of 300 mm / min within a range where the flat plate die is in contact with the sliding surface of the test piece while applying a load in the horizontal direction.
  • the jig (semi-cylindrical die) is separated from the sliding surface of the test piece and returned to the position before the sliding operation. Repeat the sliding operation similar to the above 9 times. That is, the process ends after a total of 10 sliding operations.
  • Test No. 14, 15, 31, and 32 are examples in which the mass ratio [Mg (OH) 2 / SiO 2 ] is outside the range of 0.15 to 3, and the corrosion resistance deteriorates when the original plate is either GI or GA. It was. Further, in the examples where the resin film thickness is less than 0.20 ⁇ m (Test Nos. 16, 18, 25, and 33), the corrosion resistance was deteriorated regardless of whether the original plate was GI or GA.
  • the coated galvanized steel sheet of the present invention (test Nos. 1 to 6, 8 to 13, 17, 19 to 23, 26 to 30, 34, and 35) satisfying all of the prescribed requirements is the original plate.
  • any of GI, GA, and EG and in any of the polyethylene resin and the urethane resin, excellent roll resistance was exhibited while exhibiting excellent corrosion resistance.
  • the present invention has wide industrial applicability in the technical fields related to steel plates, galvanized steel plates and methods for producing them.

Abstract

One aspect of the present invention relates to a coated galvanized steel sheet which has a resin coating film that contains silica and magnesium hydroxide on the surface of a galvanized steel sheet, and which is configured such that: the total content of the silica and the magnesium hydroxide in the resin coating film is 75-90% by mass; the content of a resin component in the resin coating film is 10-25% by mass; the mass ratio of the magnesium hydroxide to the silica is 0.15-3; and the thickness of the resin coating film is 0.20-1.1 μm.

Description

塗装亜鉛めっき鋼板Painted galvanized steel sheet
 本発明は、亜鉛めっき鋼板の表面に、樹脂中に無機化合物を含む皮膜(以下、「無機系皮膜」と呼ぶことがある)を有する塗装亜鉛めっき鋼板に関する。 The present invention relates to a coated galvanized steel sheet having a coating containing an inorganic compound in a resin (hereinafter sometimes referred to as “inorganic coating”) on the surface of the galvanized steel sheet.
 ロール成形加工では、材料の表面がロールにより厳しい摺動を受ける。このため、表層に樹脂皮膜を備えた塗装亜鉛めっき鋼板にロール成形加工を施すと、樹脂皮膜の一部が剥離して皮膜カスが発生する。皮膜カスは、ロール成形用クーラント液に混入し、成形品に付着して成形品の外観を劣化させる。また、クーラント液に混入した皮膜カスは、成形品の切断前にクーラント液を拭うための水切りパッドの表面に堆積する。水切りパッドの表面に堆積した皮膜カスは、成形品に付着したクーラント液が水切りパッドによって拭われる際に、成形品との摩擦で異音を生じさせたり、成形品の寸法不良を引き起こしたりする。これらの対策として、ロール成形装置には、クーラント液に混入した皮膜カスを除去するためのフィルターが備えられている。しかし、皮膜カスの発生が多い塗装亜鉛めっき鋼板が被成形材料として用いられた場合には、ロール成形時にフィルターが直ぐに目詰まりするため、フィルターの交換頻度が高くなり、生産性が低下する。 In roll forming, the surface of the material is severely slid by the roll. For this reason, when a roll forming process is performed on a coated galvanized steel sheet having a resin film on the surface layer, a part of the resin film is peeled off to generate a film residue. The film residue mixes with the coolant liquid for roll forming, adheres to the molded product, and deteriorates the appearance of the molded product. Further, the film residue mixed in the coolant liquid is deposited on the surface of the draining pad for wiping the coolant liquid before cutting the molded product. The film residue deposited on the surface of the draining pad may cause abnormal noise due to friction with the molded product when the coolant liquid adhering to the molded product is wiped by the draining pad, or may cause a defective dimension of the molded product. As these measures, the roll forming apparatus is provided with a filter for removing film residue mixed in the coolant liquid. However, when a coated galvanized steel sheet having a large amount of film residue is used as a material to be molded, the filter is clogged immediately during roll forming, and therefore the frequency of replacement of the filter increases, resulting in a decrease in productivity.
 ロール成形時に皮膜カスの発生を低減するには、皮膜に対して、破壊しにくいこと、そして、破壊した際の剥離量が少ないことが求められる。このような要求を満たす皮膜として、例えば、無機物質を主成分とした硬質で薄い皮膜がある。しかし、厚みが数μm以下である特殊化成処理皮膜を有する塗装亜鉛めっき鋼板に対して、皮膜の厚みをさらに下げようとすると、腐食因子からめっき表面を保護するためのバリア性が著しく低下して、耐食性が著しく悪化してしまう。 In order to reduce the generation of film residue during roll forming, it is required that the film is difficult to break and that the amount of peeling when broken is small. As a film satisfying such requirements, for example, there is a hard and thin film mainly composed of an inorganic substance. However, for coated galvanized steel sheets with a special chemical conversion coating with a thickness of several μm or less, if the coating thickness is further reduced, the barrier property for protecting the plating surface from corrosion factors is significantly reduced. Corrosion resistance will deteriorate significantly.
 亜鉛めっきに対しては、マグネシウム系化合物が防錆効果を示すことが知られている。近年、ナノサイズのマグネシウム粒子を含有する高耐食性皮膜の技術が開発されている。 For galvanizing, it is known that magnesium-based compounds exhibit an antirust effect. In recent years, techniques for highly corrosion resistant coatings containing nano-sized magnesium particles have been developed.
 こうした技術として、例えば特許文献1は、200nm未満の平均粒径を有するナノ水酸化マグネシウム粒子を含む組成物からなるコーティングを開示している。 As such a technique, for example, Patent Document 1 discloses a coating made of a composition containing nano magnesium hydroxide particles having an average particle diameter of less than 200 nm.
 また、自己修復作用で皮膜欠陥部を修復し不動態化させることで、皮膜の耐食性を保持する技術として、特許文献2は、水酸化マグネシウムと微粒シリカからなる複合コロイドを含有する金属用防錆剤を用いて形成された皮膜を開示している。 Further, as a technique for maintaining the corrosion resistance of the film by repairing and passivating the film defect by self-repairing action, Patent Document 2 discloses a rust preventive for metal containing a composite colloid composed of magnesium hydroxide and fine silica. Disclosed is a film formed using an agent.
 他方、マグネシウム含有皮膜をクロムフリーの有機被覆鋼板の皮膜に用いた技術として、特許文献3は、亜鉛系めっき鋼板の表面に、酸化物粒子、リン酸および/またはリン酸化合物並びにマグネシウム化合物を含む複合酸化物皮膜を有し、当該複合酸化物皮膜の上に、有機樹脂と活性水素含有化合物の反応生成物、および防錆添加成分を含む有機皮膜を有する、有機被覆鋼板を開示している。 On the other hand, as a technique using a magnesium-containing film as a film of a chromium-free organic coated steel sheet, Patent Document 3 includes oxide particles, phosphoric acid and / or a phosphoric acid compound, and a magnesium compound on the surface of a zinc-based plated steel sheet. An organic coated steel sheet having a composite oxide film and having an organic film containing a reaction product of an organic resin and an active hydrogen-containing compound and an antirust additive component on the composite oxide film is disclosed.
 しかし、特許文献1に開示されたコーティングは、厚みが2.5~75μmであり、ロール成形されることを想定されていない。また、特許文献1に開示されたコーティングは、厚みが1μm以下では、充分な防錆効果を発現しない。 However, the coating disclosed in Patent Document 1 has a thickness of 2.5 to 75 μm and is not assumed to be roll-formed. Further, the coating disclosed in Patent Document 1 does not exhibit a sufficient antirust effect when the thickness is 1 μm or less.
 特許文献2に開示された皮膜は、皮膜形成時に水酸化マグネシウムと微粒シリカからなる複合コロイドを含有する金属用防錆剤を用いる必要があるが、当該複合コロイドは処理液成分と反応するため不安定であり、ゲル化させる塗装工程で問題が発生しやすい。また、特許文献2に開示された皮膜は、水溶性成分を含有するため耐水性が不充分であり、結露や輸送中の水濡れ等による変色が目立ちやすい。 The coating disclosed in Patent Document 2 requires the use of a metal anticorrosive containing a composite colloid composed of magnesium hydroxide and fine silica during film formation. It is stable and prone to problems in the coating process for gelation. Moreover, since the film disclosed in Patent Document 2 contains a water-soluble component, its water resistance is insufficient, and discoloration due to condensation or water wetting during transportation is conspicuous.
 特許文献3に開示された有機被覆鋼板は、複合酸化物皮膜形成時にマグネシウム化合物が水溶性のイオンまたは分子の形態で添加されるため、マグネシウム化合物の添加量を高めると処理液安定性が低下する。このため、複合酸化物皮膜によって腐食抑制効果を向上させるには限界がある。また、特許文献3に開示された有機被覆鋼板は、複合酸化物皮膜を形成した後、さらに有機皮膜を形成する必要があるため、生産性が低く、製造コストが高いという問題もある。 In the organic coated steel sheet disclosed in Patent Document 3, since the magnesium compound is added in the form of water-soluble ions or molecules when forming the composite oxide film, the treatment liquid stability decreases when the addition amount of the magnesium compound is increased. . For this reason, there exists a limit in improving a corrosion inhibitory effect by complex oxide film. In addition, the organic coated steel sheet disclosed in Patent Document 3 has a problem in that productivity is low and manufacturing cost is high because it is necessary to form an organic film after forming a composite oxide film.
 本発明は上記事情に鑑みてなされたものであり、ロール成形加工時に生じる皮膜カスが少なく、耐食性に優れた塗装亜鉛めっき鋼板を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a coated galvanized steel sheet that has less film residue during roll forming and has excellent corrosion resistance.
特開2016-104574号公報JP 2016-104574 A 特開2002-322569号公報JP 2002-322569 A 特開2002-053979号公報JP 2002-053979 A
 本発明の一局面は、亜鉛めっき鋼板の表面に、シリカおよび水酸化マグネシウムを含む樹脂皮膜を有する塗装亜鉛めっき鋼板であって、前記樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量が75~90質量%、かつ前記樹脂皮膜の樹脂成分の含有量が10~25質量%であり、前記シリカに対する前記水酸化マグネシウムの質量比率が0.15~3であり、前記樹脂皮膜の厚みが0.20~1.1μmである塗装亜鉛めっき鋼板である。 One aspect of the present invention is a coated galvanized steel sheet having a resin film containing silica and magnesium hydroxide on the surface of the galvanized steel sheet, wherein the total content of silica and magnesium hydroxide in the resin film is 75 to 75%. 90% by mass, the content of the resin component of the resin film is 10 to 25% by mass, the mass ratio of the magnesium hydroxide to the silica is 0.15 to 3, and the thickness of the resin film is 0.00. It is a coated galvanized steel sheet having a thickness of 20 to 1.1 μm.
 本発明者らは、上記目的を達成すべく、様々な角度から検討した。その結果、樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量並びにシリカに対する水酸化マグネシウムの質量比率、そして樹脂皮膜の厚みを適切に調整することによって、上記目的が見事に達成されることを見出し、本発明を完成させた。 The present inventors examined from various angles in order to achieve the above object. As a result, it has been found that the above object can be achieved brilliantly by appropriately adjusting the total content of silica and magnesium hydroxide in the resin film, the mass ratio of magnesium hydroxide to silica, and the thickness of the resin film. The present invention has been completed.
 本発明の一実施形態に係る塗装亜鉛めっき鋼板は、亜鉛めっき鋼板の表面に、シリカおよび水酸化マグネシウムを含む樹脂皮膜を有する。上記樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量は75~90質量%である。上記樹脂皮膜の樹脂成分の含有量は10~25質量%である。上記シリカに対する上記水酸化マグネシウムの質量比率は0.15~3である。上記樹脂皮膜の厚みは0.20~1.1μmである。 The coated galvanized steel sheet according to an embodiment of the present invention has a resin film containing silica and magnesium hydroxide on the surface of the galvanized steel sheet. The total content of silica and magnesium hydroxide in the resin film is 75 to 90% by mass. The resin component content of the resin film is 10 to 25% by mass. The mass ratio of the magnesium hydroxide to the silica is 0.15 to 3. The resin film has a thickness of 0.20 to 1.1 μm.
 本発明によれば、ロール成形加工時に生じる皮膜カスが少なく、優れた耐食性を示す塗装亜鉛めっき鋼板を提供することができる。 According to the present invention, it is possible to provide a coated galvanized steel sheet with less film residue generated during roll forming and exhibiting excellent corrosion resistance.
 以下、本実施形態についてより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present embodiment will be described more specifically, but the present invention is not limited thereto.
 [シリカおよび水酸化マグネシウムの合計含有量:75~90質量%]
 本実施形態において、樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量を75~90質量%とする。無機系皮膜は、有機化合物に比べて比重が大きい無機化合物を主成分とするため、腐食因子のバリア効果の高い緻密な皮膜が得られる。これにより、同一の耐食性を得るための皮膜厚みを、有機系皮膜より小さくできる利点があり、ロール成形時の皮膜カスの発生抑制に有利となる。
[Total content of silica and magnesium hydroxide: 75 to 90% by mass]
In the present embodiment, the total content of silica and magnesium hydroxide in the resin film is 75 to 90% by mass. Since the inorganic coating mainly contains an inorganic compound having a specific gravity larger than that of the organic compound, a dense coating with a high barrier effect against corrosion factors can be obtained. Thereby, there exists an advantage which can make the film thickness for obtaining the same corrosion resistance smaller than an organic type film, and it becomes advantageous to generation | occurrence | production suppression of the film debris at the time of roll forming.
 なお、本実施形態の樹脂皮膜に含まれる無機化合物とはシリカおよび水酸化マグネシウムのことであり、無機系皮膜とは、シリカおよび水酸化マグネシウムを含む樹脂皮膜を意味する。 The inorganic compound contained in the resin film of this embodiment is silica and magnesium hydroxide, and the inorganic film means a resin film containing silica and magnesium hydroxide.
 樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量が75質量%未満であると、無機成分が充分ではないため耐食性が劣化する。加えて皮膜の硬さも充分ではないためロール成形時に皮膜剥離が発生しやすい。そして、皮膜カスの比重が小さいため、水切りパッドの表面に蓄積しやすい。好ましくは77質量%以上であり、より好ましくは80質量%以上である。一方、樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量が90質量%を超えると、バインダーとなる樹脂成分が不足して欠陥部の多い皮膜となるため、皮膜カスの発生が抑制されたとしても耐食性が劣化する。好ましくは88質量%以下であり、より好ましくは85質量%以下である。 If the total content of silica and magnesium hydroxide in the resin film is less than 75% by mass, the corrosion resistance deteriorates due to insufficient inorganic components. In addition, since the hardness of the film is not sufficient, film peeling is likely to occur during roll forming. And since the specific gravity of the film residue is small, it is easy to accumulate on the surface of the draining pad. Preferably it is 77 mass% or more, More preferably, it is 80 mass% or more. On the other hand, if the total content of silica and magnesium hydroxide in the resin film exceeds 90% by mass, the resin component serving as the binder is insufficient and the film has many defective parts, so that generation of film residue is suppressed. However, the corrosion resistance deteriorates. Preferably it is 88 mass% or less, More preferably, it is 85 mass% or less.
 本実施形態で用いるシリカは、後述する水系樹脂との相溶性に優れるコロイダルシリカが望ましい。また、シリカの平均粒径が大きくなり過ぎると、皮膜の緻密さが低下したり、皮膜欠陥を発生させたりするおそれがあるので、平均粒径D50は500nm以下であることが好ましく、450nm以下であることがより好ましい。なお、シリカの平均粒径D50とは、シリカの積算値(積算値)が50質量%となるときの平均粒径を意味する。 The silica used in the present embodiment is preferably colloidal silica excellent in compatibility with an aqueous resin described later. If the average particle size of the silica is too large, or reduced denseness of the film, there is a possibility that or generating a film defects, it is preferred that the average particle size D 50 is 500nm or less, 450 nm or less It is more preferable that Note that the average particle diameter D 50 of the silica, the integrated value of the silica (integrated value) means the average particle diameter when the 50 mass%.
 本実施形態で用いる水酸化マグネシウムは、水分散体として安定するものであればよく、水酸化マグネシウムの粉末および分散方法は特に限定されない。水酸化マグネシウムを水に分散した状態での平均粒径D50、すなわち、水酸化マグネシウム水分散体における水酸化マグネシウムの平均粒径D50は、樹脂皮膜厚みよりも小さいことが好ましく、例えば0.7μm以下であることが好ましい。これにより、粒子状の水酸化マグネシウムが樹脂皮膜から脱落したことによる、耐ロール成形性の劣化および皮膜欠陥の発生を抑制することができる。一方、水酸化マグネシウムを水に分散した状態での平均粒径D50の下限は、特に限定されないが、平均粒径D50があまり小さくなり過ぎると分散体(例えば、分散液)の安定性が低下するおそれがあるので、0.1μm以上であることが好ましい。より好ましくは0.14μm以上である。なお、水酸化マグネシウムの平均粒径D50とは、水酸化マグネシウムの積算値(積算値)が50質量%となるときの平均粒径を意味する。 The magnesium hydroxide used in the present embodiment is not particularly limited as long as it is stable as an aqueous dispersion, and the magnesium hydroxide powder and dispersion method are not particularly limited. The average particle diameter D 50 of the magnesium hydroxide in a state of being dispersed in water, i.e., the average particle diameter D 50 of magnesium hydroxide in magnesium hydroxide aqueous dispersion is preferably less than that of the resin film thickness, for example, 0. It is preferably 7 μm or less. Thereby, deterioration of roll moldability and generation | occurrence | production of a film | membrane defect by the particulate magnesium hydroxide having fallen from the resin film can be suppressed. On the other hand, the lower limit of the average particle diameter D 50 in a state where magnesium hydroxide is dispersed in water is not particularly limited, but if the average particle diameter D 50 becomes too small, the stability of the dispersion (for example, dispersion) is reduced. Since there exists a possibility that it may fall, it is preferable that it is 0.1 micrometer or more. More preferably, it is 0.14 μm or more. Note that the average particle diameter D 50 of the magnesium hydroxide, means the average particle diameter when the cumulative value of magnesium hydroxide (integrated value) of 50 wt%.
 水酸化マグネシウム水分散体を調合する際に、樹脂皮膜とした際に耐食性への悪影響が小さい高分子分散剤(例えば水溶性アクリル樹脂、水溶性スチレンアクリル樹脂、ノニオン系界面活性剤)を用いてもよい。 When preparing a magnesium hydroxide aqueous dispersion, using a polymer dispersant (for example, a water-soluble acrylic resin, a water-soluble styrene acrylic resin, a nonionic surfactant) that has a small adverse effect on corrosion resistance when a resin film is formed. Also good.
 [樹脂皮膜中の樹脂成分の含有量:10~25質量%]
 本実施形態において、樹脂皮膜中の樹脂成分の含有量は10~25質量%とする。上述したように、樹脂皮膜中の樹脂成分が不足すると、欠陥部の多い皮膜となり耐食性が劣化する。こうした観点から、樹脂皮膜中の樹脂成分の含有量は10質量%以上とする。好ましくは15質量%以上である。しかし、樹脂皮膜中の樹脂成分の含有量が多すぎると、樹脂皮膜における緻密さの低下による耐食性劣化に加えて、樹脂皮膜が軟質化してロール成形時に皮膜カスの発生が増加するおそれがある。こうした観点から、樹脂皮膜中の樹脂成分の含有量は25質量%以下とする。好ましくは20質量%以下である。
[Content of resin component in resin film: 10 to 25% by mass]
In the present embodiment, the content of the resin component in the resin film is 10 to 25% by mass. As described above, when the resin component in the resin film is insufficient, the film has many defective portions and the corrosion resistance is deteriorated. From such a viewpoint, the content of the resin component in the resin film is 10% by mass or more. Preferably it is 15 mass% or more. However, if the content of the resin component in the resin film is too large, in addition to the deterioration of corrosion resistance due to the decrease in the density of the resin film, the resin film may become soft and the generation of film residue during roll forming may increase. From such a viewpoint, the content of the resin component in the resin film is 25% by mass or less. Preferably it is 20 mass% or less.
 [シリカに対する水酸化マグネシウムの質量比率:0.15~3]
 本実施形態において、シリカに対する水酸化マグネシウムの質量比率は0.15~3とする。水酸化マグネシウムおよびシリカは、いずれも亜鉛めっきに対する防錆剤として知られている。本発明者らは、樹脂皮膜中に水酸化マグネシウムとシリカを、特定の質量比率で配合することで、皮膜の厚みが1μm以下であっても優れた耐食性が得られることを見出した。シリカに対する水酸化マグネシウムの質量比率[Mg(OH)/SiO]が、0.15~3の範囲内にあるとき、優れた耐食性を示す。この質量比率は、さらに、0.3以上であることが好ましく、2.0以下であることが好ましい。
[Mass ratio of magnesium hydroxide to silica: 0.15 to 3]
In the present embodiment, the mass ratio of magnesium hydroxide to silica is 0.15 to 3. Magnesium hydroxide and silica are both known as rust preventives for zinc plating. The present inventors have found that excellent corrosion resistance can be obtained even when the thickness of the coating is 1 μm or less by blending magnesium hydroxide and silica in the resin coating at a specific mass ratio. When the mass ratio [Mg (OH) 2 / SiO 2 ] of magnesium hydroxide to silica is in the range of 0.15 to 3, excellent corrosion resistance is exhibited. The mass ratio is preferably 0.3 or more, and more preferably 2.0 or less.
 上記質量比率を適切な範囲に調整することによって耐食性が向上するメカニズムは、不明であるが、おそらく次のように考えられる。すなわち、水酸化マグネシウムから溶出したマグネシウムイオンが、シリカによって生成した亜鉛めっきに対する保護作用の高い腐食生成物を安定化させ、安定化した腐食生成物によるバリア効果が向上したと考えられる。上記亜鉛めっきに対する保護作用とは、水や酸素等の腐食因子を遮断するバリア性を意味する。そして、粒子状の水酸化マグネシウムを用いることで、処理液の安定性を損なうことなく樹脂皮膜中のマグネシウム成分の添加比率を高めることが可能になった結果、上記メカニズムが長時間継続して優れた耐食性を示すと推定される。 The mechanism by which the corrosion resistance is improved by adjusting the mass ratio to an appropriate range is unknown, but is probably as follows. That is, it is considered that magnesium ions eluted from magnesium hydroxide stabilized a corrosion product having a high protective action against galvanization produced by silica, and improved the barrier effect by the stabilized corrosion product. The protective action against galvanization means a barrier property that blocks corrosion factors such as water and oxygen. And by using particulate magnesium hydroxide, it became possible to increase the addition ratio of the magnesium component in the resin film without impairing the stability of the treatment liquid. It is presumed to show high corrosion resistance.
 [樹脂皮膜厚み:0.20~1.1μm]
 本実施形態において、樹脂皮膜厚みは0.20~1.1μmとする。樹脂皮膜厚みが0.20μm未満の場合には、耐食性が劣化する。一方、樹脂皮膜厚みが1.1μmを超えるとロール成形時の皮膜カスの発生が多くなるだけでなく、導電性の確保が非常に困難になる。耐食性と皮膜カスの発生抑制とをバランスよく両立させる観点から、樹脂皮膜厚みは0.3μm以上であることが好ましく、0.8μm以下であることが好ましい。より好ましくは0.3~0.6μmである。そして、樹脂皮膜厚みが0.3~0.8μmの範囲内にあるとき、耐食性、耐ロール成形性、導電性のバランスが優れ、アース性が求められる電機製品用途への適用にも有利である。
[Resin film thickness: 0.20 to 1.1 μm]
In the present embodiment, the resin film thickness is 0.20 to 1.1 μm. When the resin film thickness is less than 0.20 μm, the corrosion resistance deteriorates. On the other hand, if the resin film thickness exceeds 1.1 μm, not only the generation of film residue during roll forming increases, but also it becomes very difficult to ensure conductivity. From the viewpoint of achieving a good balance between corrosion resistance and suppression of film residue, the resin film thickness is preferably 0.3 μm or more, and preferably 0.8 μm or less. More preferably, it is 0.3 to 0.6 μm. When the resin film thickness is in the range of 0.3 to 0.8 μm, the balance of corrosion resistance, roll mold resistance, and conductivity is excellent, and it is advantageous for application to electrical appliances that require grounding properties. .
 [樹脂の種類]
 本実施形態で用いる樹脂の種類については、特に限定されず、水系樹脂および非水系樹脂のいずれも用いることができる。水酸化マグネシウムの水分散体や、コロイダルシリカを用いる場合には、水系樹脂を用いることが好ましい。このような水系樹脂についても特に限定されないが、水酸化マグネシウムの水分散体およびコロイダルシリカと混合できることが好ましい。なお、本実施形態における水系樹脂は、水分散体となっている樹脂、あるいは水溶性樹脂を指す。
[Resin type]
The type of resin used in the present embodiment is not particularly limited, and any of a water-based resin and a non-aqueous resin can be used. When using an aqueous dispersion of magnesium hydroxide or colloidal silica, it is preferable to use an aqueous resin. Such an aqueous resin is not particularly limited, but is preferably mixed with an aqueous dispersion of magnesium hydroxide and colloidal silica. The aqueous resin in the present embodiment refers to a resin that is an aqueous dispersion or a water-soluble resin.
 こうした水系樹脂として、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂が好ましく、これらのうち、ポリオレフィン系樹脂、ポリウレタン系樹脂がより好ましい。以下、ポリオレフィン系樹脂およびポリウレタン系樹脂について、それぞれ具体的に説明する。 Such water-based resins are preferably polyolefin-based resins, polyurethane-based resins, and polyester-based resins, and among these, polyolefin-based resins and polyurethane-based resins are more preferable. Hereinafter, the polyolefin resin and the polyurethane resin will be specifically described.
 [ポリオレフィン系樹脂]
 ポリオレフィン系樹脂として、エチレン-不飽和カルボン酸共重合体が好ましい。エチレン-不飽和カルボン酸共重合体として、例えば特開2005-246953号公報や特開2006-43913号公報に記載されたものを用いることができる。
[Polyolefin resin]
As the polyolefin resin, an ethylene-unsaturated carboxylic acid copolymer is preferable. As the ethylene-unsaturated carboxylic acid copolymer, for example, those described in JP-A-2005-246953 and JP-A-2006-43913 can be used.
 不飽和カルボン酸としては、(メタ)アクリル酸、クロトン酸、イソクロトン酸、マレイン酸、フマル酸、イタコン酸等が挙げられ、これらのうちの1種以上と、エチレンとを、公知の高温高圧重合法等で重合することにより、エチレン-不飽和カルボン酸共重合体を得ることができる。 Examples of the unsaturated carboxylic acid include (meth) acrylic acid, crotonic acid, isocrotonic acid, maleic acid, fumaric acid, itaconic acid, and the like. An ethylene-unsaturated carboxylic acid copolymer can be obtained by polymerization using a combination method.
 エチレンに対する不飽和カルボン酸の共重合比率は、モノマー全量を100質量%としたときに、不飽和カルボン酸が10質量%以上であることが好ましく、15質量%以上であることがより好ましく、一方、40質量%以下であることが好ましく、25質量%以下であることがより好ましい。不飽和カルボン酸が10質量%よりも少ないと、イオンクラスターによる分子間会合の起点となるカルボキシル基が少ないため、皮膜強度効果が発揮されず、後述する塗装液(エマルジョン組成物)の乳化安定性に劣る場合がある。一方、不飽和カルボン酸が40質量%を超えると、樹脂皮膜の耐食性や耐水性が劣る可能性がある。 The copolymerization ratio of unsaturated carboxylic acid to ethylene is preferably 10% by mass or more, more preferably 15% by mass or more when unsaturated monomer is 100% by mass. 40% by mass or less, and more preferably 25% by mass or less. When the amount of unsaturated carboxylic acid is less than 10% by mass, the coating strength (emulsion composition), which will be described later, is not stable because the number of carboxyl groups that are the starting point of intermolecular association by ion clusters is small. May be inferior. On the other hand, if the unsaturated carboxylic acid exceeds 40% by mass, the corrosion resistance and water resistance of the resin film may be inferior.
 上記エチレン-不飽和カルボン酸共重合体はカルボキシル基を有するので、有機塩基や金属イオンで中和することにより、塗装液のエマルション化(水分散体化)が可能となる。 Since the ethylene-unsaturated carboxylic acid copolymer has a carboxyl group, the coating liquid can be emulsified (water dispersion) by neutralization with an organic base or metal ion.
 有機塩基として、樹脂皮膜の耐食性をあまり低下させないという観点から、大気圧下での沸点が100℃以下のアミンが好ましい。具体例として、トリエチルアミン等の3級アミン;ジエチルアミン等の2級アミン;プロピルアミン等の1級アミン等が挙げられ、これらの1種または2種以上を混合して使用することができる。これらの中でも3級アミンが好ましく、トリエチルアミンが最も好ましい。また、耐溶剤性および皮膜硬度を向上させる観点から、1価の金属イオンを上記アミンと併せて用いることが好ましい。 As the organic base, an amine having a boiling point of 100 ° C. or less under atmospheric pressure is preferable from the viewpoint of not significantly reducing the corrosion resistance of the resin film. Specific examples include tertiary amines such as triethylamine; secondary amines such as diethylamine; primary amines such as propylamine, and the like, and one or more of these can be used in combination. Of these, tertiary amines are preferred, and triethylamine is most preferred. Moreover, it is preferable to use a monovalent metal ion together with the amine from the viewpoint of improving solvent resistance and film hardness.
 上記アミンは、耐食性を確保する観点から、エチレン-不飽和カルボン酸共重合体中のカルボキシル基1モルに対し0.2モル以上であることが好ましく、一方、0.8モル以下であることが好ましい。さらには、0.3モル以上であることがより好ましく、一方、0.6モル以下であることがより好ましい。 From the viewpoint of ensuring corrosion resistance, the amine is preferably 0.2 mol or more with respect to 1 mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer, and is preferably 0.8 mol or less. preferable. Further, it is more preferably 0.3 mol or more, and more preferably 0.6 mol or less.
 1価の金属イオンの量は、塗装液の乳化安定性を確保する観点から、エチレン-不飽和カルボン酸共重合体中のカルボキシル基1モルに対し0.02モル以上であることが好ましく、0.03モル以上であることがより好ましい。一方、耐食性を確保する観点から、エチレン-不飽和カルボン酸共重合体中のカルボキシル基1モルに対し0.4モル以下であることが好ましく、0.3モル以下であることがより好ましい。なお、1価の金属イオンを付与するための金属化合物は、NaOH、KOH、LiOH等が好ましく、NaOHが最も性能が良く好ましい。 The amount of monovalent metal ions is preferably 0.02 mol or more with respect to 1 mol of carboxyl groups in the ethylene-unsaturated carboxylic acid copolymer from the viewpoint of ensuring the emulsion stability of the coating liquid. More preferably, it is 0.03 mol or more. On the other hand, from the viewpoint of ensuring corrosion resistance, the amount is preferably 0.4 mol or less, more preferably 0.3 mol or less, based on 1 mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer. The metal compound for imparting monovalent metal ions is preferably NaOH, KOH, LiOH or the like, and NaOH is most preferable because of its best performance.
 上記エチレン-不飽和カルボン酸共重合体は、必要により後述のカルボン酸重合体存在下で、例えば、高温(150℃程度)、高圧(5気圧程度)の反応が可能な容器内で、高速攪拌を1~6時間行えば、乳化(エマルション化)する。乳化に際しては、トール油脂肪酸等の界面活性剤機能を持つ化合物を適量添加してもよい。また、親水性有機溶媒、例えば、炭素数1~5程度の低級アルコールなどを一部水に加えても構わない。 The ethylene-unsaturated carboxylic acid copolymer is stirred at high speed in a container capable of reacting at a high temperature (about 150 ° C.) and a high pressure (about 5 atm), for example, in the presence of a carboxylic acid polymer described later, if necessary. For 1 to 6 hours to emulsify (emulsify). In emulsification, an appropriate amount of a compound having a surfactant function such as tall oil fatty acid may be added. Further, a hydrophilic organic solvent such as a lower alcohol having about 1 to 5 carbon atoms may be partially added to water.
 上記エチレン-不飽和カルボン酸共重合体の質量平均分子量(Mw)は、ポリスチレン換算で、好ましくは1,000以上、10万以下である。より好ましい下限値は3,000以上、さらに好ましくは5,000以上である。より好ましい上限値は、7万以下、さらに好ましくは3万以下である。このMwは、ポリスチレンを標準として用いるゲル浸透クロマトグラフィー(Gel Permeation Chromatography:GPC)により測定することができる。 The mass average molecular weight (Mw) of the ethylene-unsaturated carboxylic acid copolymer is preferably 1,000 or more and 100,000 or less in terms of polystyrene. A more preferable lower limit is 3,000 or more, and further preferably 5,000 or more. A more preferable upper limit value is 70,000 or less, and further preferably 30,000 or less. This Mw can be measured by gel permeation chromatography (GPC) using polystyrene as a standard.
 樹脂成分としてカルボン酸重合体も用いることができる。カルボン酸重合体として、上記エチレン-不飽和カルボン酸共重合体の合成に使用することのできるものとして例示した不飽和カルボン酸を構成単位とする重合体がいずれも使用可能である。これらの中で、アクリル酸およびマレイン酸が好ましく、マレイン酸がより好ましい。カルボン酸重合体は、不飽和カルボン酸以外の単量体に由来する構成単位を含有していても良いが、その他の単量体に由来する構成単位量は、重合体中に10質量%以下であることが好ましく、より好ましくは5質量%以下であり、不飽和カルボン酸のみから構成されるカルボン酸重合体がさらに好ましい。好ましいカルボン酸重合体として、ポリアクリル酸、ポリメタクリル酸、アクリル酸-マレイン酸共重合体、ポリマレイン酸等が挙げられる。これらのうち、樹脂皮膜密着性および耐食性の観点から、ポリマレイン酸がより好ましい。ポリマレイン酸を使用することにより耐食性等が向上する正確なメカニズムは不明であるが、カルボキシル基量が多いため、樹脂皮膜と亜鉛めっき鋼板の密着性が向上し、それに伴い耐食性も向上することが考えられる。但し本発明は、この推定には限定されない。 A carboxylic acid polymer can also be used as the resin component. As the carboxylic acid polymer, any polymer having an unsaturated carboxylic acid as a constituent unit exemplified as one that can be used for the synthesis of the ethylene-unsaturated carboxylic acid copolymer can be used. Among these, acrylic acid and maleic acid are preferable, and maleic acid is more preferable. The carboxylic acid polymer may contain a constituent unit derived from a monomer other than the unsaturated carboxylic acid, but the constituent unit amount derived from the other monomer is 10% by mass or less in the polymer. More preferably, it is 5 mass% or less, and the carboxylic acid polymer comprised only from unsaturated carboxylic acid is further more preferable. Preferred carboxylic acid polymers include polyacrylic acid, polymethacrylic acid, acrylic acid-maleic acid copolymer, polymaleic acid and the like. Of these, polymaleic acid is more preferable from the viewpoints of resin film adhesion and corrosion resistance. Although the exact mechanism by which the corrosion resistance is improved by using polymaleic acid is unknown, the adhesion between the resin film and the galvanized steel sheet is improved due to the large amount of carboxyl groups. It is done. However, the present invention is not limited to this estimation.
 本実施形態で用いるカルボン酸重合体の質量平均分子量(Mw)は、ポリスチレン換算で、好ましくは500以上、3万以下である。より好ましい下限値は800以上、さらに好ましくは900以上、最も好ましくは1,000以上である。より好ましい上限値は1万以下、さらに好ましくは3,000以下、最も好ましくは2,000以下である。このMwは、ポリスチレンを標準として用いるGPCにより測定することができる。 The mass average molecular weight (Mw) of the carboxylic acid polymer used in the present embodiment is preferably 500 or more and 30,000 or less in terms of polystyrene. A more preferable lower limit value is 800 or more, more preferably 900 or more, and most preferably 1,000 or more. A more preferable upper limit value is 10,000 or less, more preferably 3,000 or less, and most preferably 2,000 or less. This Mw can be measured by GPC using polystyrene as a standard.
 エチレン-不飽和カルボン酸共重合体とカルボン酸重合体との含有比率は、質量比で、1,000:1~10:1、好ましくは200:1~20:1である。カルボン酸重合体の含有比率が低すぎると、オレフィン-酸共重合体とカルボン酸重合体とを組み合わせた効果が充分に発揮されないからである。逆に、カルボン酸重合体の含有比率が過剰であると、第一層形成用塗工液中でオレフィン-酸共重合体とカルボン酸重合体とが相分離し、均一な樹脂皮膜が形成されなくなるおそれがあるからである。 The content ratio of the ethylene-unsaturated carboxylic acid copolymer and the carboxylic acid polymer is 1,000: 1 to 10: 1, preferably 200: 1 to 20: 1 in terms of mass ratio. This is because if the content ratio of the carboxylic acid polymer is too low, the effect of combining the olefin-acid copolymer and the carboxylic acid polymer cannot be sufficiently exhibited. On the contrary, if the content ratio of the carboxylic acid polymer is excessive, the olefin-acid copolymer and the carboxylic acid polymer are phase-separated in the first layer forming coating solution, and a uniform resin film is formed. It is because there is a risk of disappearing.
 [ポリウレタン系樹脂]
 ポリウレタン系樹脂として、カルボキシル基含有ポリウレタン樹脂が好ましい。カルボキシル基含有ポリウレタン樹脂として、例えば特開2006-43913号公報に記載されたものを用いることができる。
[Polyurethane resin]
As the polyurethane resin, a carboxyl group-containing polyurethane resin is preferable. As the carboxyl group-containing polyurethane resin, for example, those described in JP-A-2006-43913 can be used.
 カルボキシル基含有ポリウレタン樹脂は、ウレタンプレポリマーを鎖延長剤で鎖延長反応して得られるものが好ましい。ウレタンプレポリマーは、例えば、ポリイソシアネート成分とポリオール成分とを反応させて得られる。 The carboxyl group-containing polyurethane resin is preferably obtained by chain extension reaction of a urethane prepolymer with a chain extender. The urethane prepolymer is obtained, for example, by reacting a polyisocyanate component and a polyol component.
 上記ポリイソシアネート成分として、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)およびジシクロヘキシルメタンジイソシアネート(水素添加MDI)からなる群から選択される少なくとも1種のポリイソシアネートを使用することが、耐食性および反応制御の安定性に優れる樹脂皮膜を得る観点から、好ましい。上記ポリイソシアネートの他にも、耐食性や反応制御の安定性を低下させない範囲で他のポリイソシアネートを使用することができる。但し、上記ポリイソシアネートの含有率は、樹脂皮膜の耐食性および反応制御の安定性を確保する観点から、全ポリイソシアネート成分の70質量%以上であることが好ましい。上記ポリイソシアネート成分以外のポリイソシアネートとして、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ドデカンメチレンジイソシアネート、イソホロンジイソシアネート、キシレンジイソシアネート、フェニレンジイソシアネート等を挙げることができ、これらの1種または2種以上を使用してもよい。 It is possible to use at least one polyisocyanate selected from the group consisting of tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI) and dicyclohexylmethane diisocyanate (hydrogenated MDI) as the polyisocyanate component. From the viewpoint of obtaining a resin film having excellent stability. In addition to the above polyisocyanates, other polyisocyanates can be used as long as the corrosion resistance and reaction control stability are not lowered. However, the content of the polyisocyanate is preferably 70% by mass or more of the total polyisocyanate component from the viewpoint of ensuring the corrosion resistance of the resin film and the stability of reaction control. Examples of the polyisocyanate other than the above polyisocyanate component include tetramethylene diisocyanate, hexamethylene diisocyanate, dodecane methylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, and phenylene diisocyanate. One or more of these are used. May be.
 上記ポリオール成分として、1,4-シクロヘキサンジメタノール、ポリエーテルポリオール、および、カルボキシル基を有するポリオールの3種類のポリオールを使用することが、耐食性および摺動性に優れる樹脂皮膜を得る観点から好ましい。そして、上記ポリオール成分として、1,4-シクロヘキサンジメタノール、ポリエーテルジオール、および、カルボキシル基を有するジオールの3種類のジオールを使用することが、より好ましい。なお、上記ポリオール成分として1,4-シクロヘキサンジメタノールを使用することによって、得られるポリウレタン樹脂の防錆効果を高めることができると考えられる。 From the viewpoint of obtaining a resin film having excellent corrosion resistance and sliding properties, it is preferable to use three types of polyols, 1,4-cyclohexanedimethanol, polyether polyol, and polyol having a carboxyl group, as the polyol component. As the polyol component, it is more preferable to use three kinds of diols of 1,4-cyclohexanedimethanol, polyether diol, and diol having a carboxyl group. In addition, it is thought that the rust prevention effect of the obtained polyurethane resin can be enhanced by using 1,4-cyclohexanedimethanol as the polyol component.
 上記ポリエーテルポリオールは、分子鎖にヒドロキシル基を少なくとも2以上有し、主骨格がアルキレンオキサイド単位によって構成されているものであれば特に限定されない。具体例として、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール等を挙げられ、ポリオキシプロピレングリコールまたはポリテトラメチレンエーテルグリコールを使用することが好ましい。ポリエーテルポリオールの官能基数は、少なくとも2以上であれば特に限定されず、例えば、3官能、4官能以上の多官能であってもよい。ポリエーテルポリオールの平均分子量は、適度な硬度を有する樹脂皮膜を得る観点から、約400~4000程度であることが好ましい。なお、平均分子量は、OH価(水酸基価)を測定することにより求めることができる。 The polyether polyol is not particularly limited as long as it has at least two hydroxyl groups in the molecular chain and the main skeleton is composed of alkylene oxide units. Specific examples include polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol and the like, and it is preferable to use polyoxypropylene glycol or polytetramethylene ether glycol. The number of functional groups of the polyether polyol is not particularly limited as long as it is at least 2 or more, and for example, it may be trifunctional or tetrafunctional or polyfunctional. The average molecular weight of the polyether polyol is preferably about 400 to 4000 from the viewpoint of obtaining a resin film having an appropriate hardness. The average molecular weight can be determined by measuring the OH value (hydroxyl value).
 上記ポリオール成分において、質量比で、1,4-シクロヘキサンジメタノール:ポリエーテルポリオール=1:1~1:19であることが、樹脂皮膜の防錆効果を一層高める観点から、好ましい。また、上記カルボキシル基を有するポリオールは、少なくとも1以上のカルボキシル基と少なくとも2以上のヒドロキシル基を有するものであれば、特に限定されない。具体例として、ジメチロールプロピオン酸、ジメチロールブタン酸、ジヒドロキシプロピオン酸、ジヒドロキシコハク酸等が挙げられる。 In the above polyol component, the mass ratio of 1,4-cyclohexanedimethanol: polyether polyol = 1: 1 to 1:19 is preferable from the viewpoint of further enhancing the rust prevention effect of the resin film. The polyol having a carboxyl group is not particularly limited as long as it has at least one carboxyl group and at least two hydroxyl groups. Specific examples include dimethylolpropionic acid, dimethylolbutanoic acid, dihydroxypropionic acid, dihydroxysuccinic acid and the like.
 上記ポリオール成分において、上記3種類のポリオールの他にも、耐食性を低下させない範囲で他のポリオールを使用することができる。但し、上記3種類のポリオールの含有率は、樹脂皮膜の耐食性を確保する観点から、全ポリオール成分の70質量%以上であることが好ましい。上記3種類のポリオール以外のポリオールは、水酸基を複数有するものであれば特に限定されない。例えば、低分子量のポリオールや高分子量のポリオール等を挙げられる。低分子量のポリオールは、平均分子量が500程度以下のポリオールである。具体例として、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール等のジオール;グリセリン、トリメチロールプロパン、ヘキサントリオール等のトリオールが挙げられる。高分子量のポリオールは、平均分子量が500程度を超えるポリオールである。具体例として、ポリエチレンアジペート(PEA)、ポリブチレンアジペート(PBA)、ポリヘキサメチレンアジペート(PHMA)などの縮合系ポリエステルポリオール;ポリ-ε-カプロラクトン(PCL)のようなラクトン系ポリエステルポリオール;ポリヘキサメチレンカーボネートなどのポリカーボネートポリオール;およびアクリルポリオールなどが挙げられる。 In the above polyol component, in addition to the above three kinds of polyols, other polyols can be used as long as the corrosion resistance is not lowered. However, the content of the three kinds of polyols is preferably 70% by mass or more of the total polyol components from the viewpoint of ensuring the corrosion resistance of the resin film. The polyol other than the above three types of polyol is not particularly limited as long as it has a plurality of hydroxyl groups. For example, a low molecular weight polyol, a high molecular weight polyol, etc. are mentioned. The low molecular weight polyol is a polyol having an average molecular weight of about 500 or less. Specific examples include diols such as ethylene glycol, diethylene glycol, triethylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol; glycerin, trimethylolpropane, hexanetriol, etc. Of the triol. The high molecular weight polyol is a polyol having an average molecular weight exceeding about 500. Specific examples include condensed polyester polyols such as polyethylene adipate (PEA), polybutylene adipate (PBA), and polyhexamethylene adipate (PHMA); lactone polyester polyols such as poly-ε-caprolactone (PCL); polyhexamethylene Polycarbonate polyols such as carbonate; and acrylic polyols.
 上記鎖延長剤は、特に限定されないが、例えば、ポリアミン、低分子量のポリオール、アルカノールアミンなどを挙げられる。ポリアミンとして、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミンなどの脂肪族ポリアミン;トリレンジアミン、キシリレンジアミン、ジアミノジフェニルメタンなどの芳香族ポリアミン;ジアミノシクロヘキシルメタン、ピペラジン、イソホロンジアミンなどの脂環式ポリアミン;ヒドラジン、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、フタル酸ジヒドラジドなどのヒドラジン類などが挙げられる。これらの中で、エチレンジアミンおよび/またはヒドラジンを鎖延長剤成分として使用することが好ましい。アルカノールアミンとして、例えば、ジエタノールアミン、モノエタノールアミンなどが挙げられる。 The chain extender is not particularly limited, and examples thereof include polyamines, low molecular weight polyols, and alkanolamines. As polyamines, aliphatic polyamines such as ethylenediamine, propylenediamine and hexamethylenediamine; aromatic polyamines such as tolylenediamine, xylylenediamine and diaminodiphenylmethane; alicyclic polyamines such as diaminocyclohexylmethane, piperazine and isophoronediamine; hydrazine, And hydrazines such as succinic acid dihydrazide, adipic acid dihydrazide, and phthalic acid dihydrazide. Among these, it is preferable to use ethylenediamine and / or hydrazine as a chain extender component. Examples of the alkanolamine include diethanolamine and monoethanolamine.
 カルボキシル基含有ポリウレタン樹脂は、公知の方法で乳化(エマルション化)させることができ、例えば、次の方法がある。すなわち、カルボキシル基含有ウレタンプレポリマーのカルボキシル基を塩基で中和して、水性媒体中に乳化分散して鎖延長反応させる方法;カルボキシル基含有ポリウレタン樹脂を乳化剤の存在下で、高せん断力で乳化分散して鎖延長反応させる方法である。 The carboxyl group-containing polyurethane resin can be emulsified (emulsified) by a known method, for example, the following method. That is, a method in which a carboxyl group of a carboxyl group-containing urethane prepolymer is neutralized with a base and emulsified and dispersed in an aqueous medium to cause chain extension reaction; a carboxyl group-containing polyurethane resin is emulsified with high shear force in the presence of an emulsifier This is a method of dispersing and chain extending reaction.
 カルボキシル基含有ポリウレタン樹脂の酸価は、塗装液の安定性を確保する観点から、10mgKOH/g以上であることが好ましく、一方、樹脂皮膜の耐食性を確保する観点から、60mgKOH/g以下であることが好ましい。酸価の測定は、JIS-K0070(1992年)に準ずる。 The acid value of the carboxyl group-containing polyurethane resin is preferably 10 mgKOH / g or more from the viewpoint of ensuring the stability of the coating liquid, and on the other hand, 60 mgKOH / g or less from the viewpoint of ensuring the corrosion resistance of the resin film. Is preferred. The acid value is measured according to JIS-K0070 (1992).
 [塗装液中の添加剤]
 本実施形態において、樹脂皮膜は、塗装液を公知の塗装方法、すなわち、ロールコーター法、バーコーター法、スプレー法またはカーテンフローコーター法等を用いて亜鉛めっき鋼板の表面に塗布し、加熱乾燥させることで、形成することができる。塗装液は、所定量のシリカ、水酸化マグネシウムおよび上記樹脂を含有する。塗装液における樹脂固形分は15~25質量%程度であることが好ましい。そして、塗装液は、皮膜性能を向上させる目的で、各種添加剤を本発明の効果を阻害しない範囲で含有してもよい。添加剤として、例えば、シランカップリング剤、溶出抑制剤、防錆剤、ワックス、架橋剤、希釈剤、皮張り防止剤、界面活性剤、乳化剤、分散剤、レベリング剤、消泡剤、浸透剤、造膜助剤、染料、顔料、増粘剤、潤滑剤等が挙げられる。
[Additives in coating liquid]
In the present embodiment, the resin film is applied to the surface of the galvanized steel sheet using a known coating method, that is, a roll coater method, a bar coater method, a spray method, or a curtain flow coater method, and dried by heating. Thus, it can be formed. The coating liquid contains a predetermined amount of silica, magnesium hydroxide and the above resin. The resin solid content in the coating liquid is preferably about 15 to 25% by mass. And a coating liquid may contain various additives in the range which does not inhibit the effect of this invention for the purpose of improving membrane | film | coat performance. Examples of additives include silane coupling agents, elution inhibitors, rust inhibitors, waxes, crosslinking agents, diluents, antiskinning agents, surfactants, emulsifiers, dispersants, leveling agents, antifoaming agents, and penetrants. , Film forming aids, dyes, pigments, thickeners, lubricants and the like.
 例えば、シランカップリング剤を添加剤として用いると、樹脂皮膜が緻密化して耐食性が向上する。また、亜鉛めっき鋼板と樹脂皮膜の密着性も向上して耐食性を向上させる。そして、樹脂成分とコロイダルシリカとの結合力を向上させる効果があり、皮膜の強靱さが向上する。中でも、グリシドキシ系のシランカップリング剤は反応性が高く、耐食性向上効果が大きい。グリシジル基含有シランカップリング剤として、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。 For example, when a silane coupling agent is used as an additive, the resin film becomes dense and the corrosion resistance is improved. Moreover, the adhesiveness of a galvanized steel plate and a resin film is also improved, and corrosion resistance is improved. And there exists an effect which improves the bond strength of a resin component and colloidal silica, and the toughness of a film | membrane improves. Among them, glycidoxy-based silane coupling agents are highly reactive and have a large effect of improving corrosion resistance. Glycidyl group-containing silane coupling agents include γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxymethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyl Examples include trimethoxysilane.
 シランカップリング剤量は、無機系皮膜中の無機化合物と樹脂成分との合計100質量部に対して、0.1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。0.1質量部より少ないと、亜鉛めっき鋼板と樹脂皮膜との密着性や、樹脂成分とコロイダルシリカとの結合力が不足して、皮膜の強靱さや耐食性が不充分となるおそれがあるからである。一方、シランカップリング剤量は、無機系皮膜中の無機化合物と樹脂成分との合計100質量部に対して、10質量部以下であることが好ましく、9質量部以下であることがより好ましく、7質量部以下であることがさらに好ましい。10質量部を超えても、金属板と樹脂皮膜との密着性向上効果が飽和するだけでなく、樹脂中の官能基が減少して塗装性が低下するおそれがあるからである。また、シランカップリング剤同士が加水分解縮合反応を起こして、塗装液の安定性が低下し、ゲル化やコロイダルシリカの沈殿を引き起こすおそれがあるからである。 The amount of the silane coupling agent is preferably 0.1 parts by mass or more, more preferably 3 parts by mass or more, with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic film. More preferably, it is 5 parts by mass or more. If the amount is less than 0.1 parts by mass, the adhesion between the galvanized steel sheet and the resin film and the bonding force between the resin component and colloidal silica may be insufficient, and the toughness and corrosion resistance of the film may be insufficient. is there. On the other hand, the amount of the silane coupling agent is preferably 10 parts by mass or less, more preferably 9 parts by mass or less, with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic film. More preferably, it is 7 parts by mass or less. Even if it exceeds 10 parts by mass, not only the effect of improving the adhesion between the metal plate and the resin film is saturated, but also the functional group in the resin may decrease and the paintability may deteriorate. Moreover, it is because silane coupling agents raise | generate a hydrolysis-condensation reaction, the stability of a coating liquid falls and there exists a possibility of causing gelation and precipitation of colloidal silica.
 また、例えば溶出抑制剤であるメタバナジン酸塩を添加剤として用いると、メタバナジン酸塩の溶出によって亜鉛めっき鋼板の溶解や溶出を抑制して、耐食性が向上する。メタバナジン酸塩は、特に、合金化溶融亜鉛めっき鋼板に対して裸耐食性を向上させる効果がある。メタバナジン酸塩として、例えば、メタバナジン酸ナトリウム(NaVO)、メタバナジン酸アンモニウム(NHVO)、メタバナジン酸カリウム(KVO)等が挙げられる。これらの1種または2種以上を使用することができる。 For example, when metavanadate which is an elution inhibitor is used as an additive, dissolution and elution of a galvanized steel sheet are suppressed by elution of metavanadate, and corrosion resistance is improved. Metavanadate is particularly effective in improving the bare corrosion resistance of the galvannealed steel sheet. Examples of the metavanadate include sodium metavanadate (NaVO 3 ), ammonium metavanadate (NH 4 VO 3 ), and potassium metavanadate (KVO 3 ). These 1 type (s) or 2 or more types can be used.
 メタバナジン酸塩の量は、無機系皮膜中の無機化合物と樹脂成分との合計100質量部に対して、0.5質量部以上であることが好ましく、0.7質量部以上であることがより好ましく、1.0質量部以上であることがさらに好ましい。0.5質量部より少ないと、裸耐食性向上効果が不充分となるからである。一方、メタバナジン酸塩の量は、無機系皮膜中の無機化合物と樹脂成分との合計100質量部に対して、5.5質量部以下であることが好ましく、5.0質量部以下であることがより好ましく、3.0質量部以下であることがさらに好ましい。5.5質量部を超えると、裸耐食性が若干低下する傾向が認められるだけでなく、さらに皮膜密着性が著しく低下する傾向があるからである。なお、このメタバナジン酸塩の好適量は、V元素換算量である。 The amount of metavanadate is preferably 0.5 parts by mass or more and more preferably 0.7 parts by mass or more with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic coating. Preferably, it is 1.0 part by mass or more. This is because if the amount is less than 0.5 parts by mass, the effect of improving the bare corrosion resistance becomes insufficient. On the other hand, the amount of metavanadate is preferably 5.5 parts by mass or less, and 5.0 parts by mass or less with respect to 100 parts by mass in total of the inorganic compound and the resin component in the inorganic coating. Is more preferable, and it is further more preferable that it is 3.0 mass parts or less. This is because when the amount exceeds 5.5 parts by mass, not only the bare corrosion resistance tends to be slightly lowered but also the film adhesion tends to be remarkably lowered. In addition, the suitable amount of this metavanadate is a V element conversion amount.
 [亜鉛めっき鋼板の種類]
 本実施形態で用いる亜鉛めっき鋼板の種類については、特に限定はなく、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板(以下、これらを「原板」と呼ぶことがある)のいずれも採用できる。また、亜鉛めっき層の種類についても、特に限定はなく、めっき層中に合金元素を含むものであってもよい。なお、亜鉛めっき層は、素地鋼板の片面または両面に被覆され、それに応じて樹脂皮膜も亜鉛めっき鋼板の片面または両面に被覆される。
[Types of galvanized steel sheets]
The type of galvanized steel sheet used in the present embodiment is not particularly limited, and any of electrogalvanized steel sheet, hot dip galvanized steel sheet, and alloyed hot dip galvanized steel sheet (hereinafter, these may be referred to as “original plates”). Can also be adopted. Moreover, there is no limitation in particular also about the kind of zinc plating layer, An alloying element may be included in a plating layer. The galvanized layer is coated on one side or both sides of the base steel plate, and the resin film is accordingly coated on one side or both sides of the galvanized steel plate.

 上述したように、本発明の一局面に関する塗装亜鉛めっき鋼板は、亜鉛めっき鋼板の表面に、シリカおよび水酸化マグネシウムを含む樹脂皮膜を有する塗装亜鉛めっき鋼板であって、前記樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量が75~90質量%、かつ前記樹脂皮膜の樹脂成分の含有量が10~25質量%であり、前記シリカに対する前記水酸化マグネシウムの質量比率が0.15~3であり、前記樹脂皮膜の厚みが0.20~1.1μmであることを特徴とする。

As described above, the coated galvanized steel sheet according to one aspect of the present invention is a coated galvanized steel sheet having a resin film containing silica and magnesium hydroxide on the surface of the galvanized steel sheet, and the silica in the resin film and The total content of magnesium hydroxide is 75 to 90% by mass, the resin component content of the resin film is 10 to 25% by mass, and the mass ratio of the magnesium hydroxide to the silica is 0.15 to 3 And the thickness of the resin film is 0.20 to 1.1 μm.

 このような構成によれば、樹脂皮膜の厚みが1.1μm以下でありながら、ロール成形加工時に生じる皮膜カスが少なく、優れた耐食性を示す塗装亜鉛めっき鋼板が実現できる。

According to such a configuration, a coated galvanized steel sheet exhibiting excellent corrosion resistance can be realized with less film residue generated during roll forming while the thickness of the resin film is 1.1 μm or less.

 以下、実施例を挙げて本発明をより具体的に説明する。なお、本発明は下記実施例によって制限されず、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することは可能であり、それらはいずれも本発明の技術的範囲に包含される。

Hereinafter, the present invention will be described more specifically with reference to examples. It should be noted that the present invention is not limited by the following examples, and can be implemented with modifications within a range that can be adapted to the gist described above and below, all of which are included in the technical scope of the present invention. .

 (水酸化マグネシウム分散液の調合)

 水酸化マグネシウム粒子(協和化学工業株式会社製、商品名:キスマ5Q-S)を、水を分散剤として使用するとともに高分子分散剤を用いて分散させて、水分散液(樹脂固形分:約30質量%、平均粒径D50:0.69μm)を調合した。

(Preparation of magnesium hydroxide dispersion)

Magnesium hydroxide particles (manufactured by Kyowa Chemical Industry Co., Ltd., trade name: Kisuma 5Q-S) are used as a dispersant and dispersed using a polymer dispersant to obtain an aqueous dispersion (resin solid content: about 30 wt%, average particle size D 50: 0.69 .mu.m) was formulated.

 分散液中の水酸化マグネシウムの平均粒径D50は、0.2質量%ヘキサメタリン酸ナトリウム水溶液で希釈した後、レーザー回折散乱式粒度分布測定装置(マイクロトラック・ベル株式会社製、商品名:マイクロトラックMT3300EXII)を用いて測定した。

The average particle diameter D 50 of the magnesium hydroxide in the dispersion was diluted with 0.2 wt% aqueous solution of sodium hexametaphosphate, a laser diffraction scattering particle size distribution measuring device (Microtrac Bell Co., Ltd., trade name: Micro Measurement was performed using a track MT3300EXII).

 (樹脂)

 樹脂皮膜を形成するときの樹脂として、東邦化学株式会社製のポリエチレン樹脂または東邦化学工業製のウレタン樹脂を用いた。

(resin)

Polyethylene resin manufactured by Toho Chemical Co., Ltd. or urethane resin manufactured by Toho Chemical Industry was used as the resin for forming the resin film.

 上記東邦化学株式会社製のポリエチレン樹脂およびその水性分散液を、次の方法で調製した。

The above polyethylene resin manufactured by Toho Chemical Co., Ltd. and its aqueous dispersion were prepared by the following method.

 攪拌機、温度計、温度コントローラを備えた乳化設備を有するオートクレイブに、エチレン-アクリル酸共重合体(ダウケミカル社製、商品名:プリマコール5990I、アクリル酸由来の構成単位:20質量%、質量平均分子量(Mw):20,000、メルトインデックス:1300、酸価:150)200.0質量部、ポリマレイン酸水溶液(日油社製、商品名:ノンポール PMA-50W、Mw:約1100(ポリスチレン換算)、50質量%品)8.0質量部、トリエチルアミン35.5質量部(エチレン-アクリル酸共重合体のカルボキシル基に対して0.63当量)、48%NaOH水溶液6.9質量部(エチレン-アクリル酸共重合体のカルボキシル基に対して0.15当量)、トール油脂肪酸(ハリマ化成社製、商品名:ハートールFA3)3.5質量部、イオン交換水792.6質量部を加えて密封し、150℃および5気圧で3時間高速攪拌してから、30℃まで冷却した。

In an autoclave having an emulsification facility equipped with a stirrer, a thermometer and a temperature controller, an ethylene-acrylic acid copolymer (manufactured by Dow Chemical Co., Ltd., trade name: Primacol 5990I, structural unit derived from acrylic acid: 20% by mass, mass) Average molecular weight (Mw): 20,000, melt index: 1300, acid value: 150, 200.0 parts by mass, polymaleic acid aqueous solution (manufactured by NOF Corporation, trade name: Nonpole PMA-50W, Mw: about 1100 (polystyrene conversion) ), 50% by mass) 8.0 parts by mass, 35.5 parts by mass of triethylamine (0.63 equivalent to the carboxyl group of the ethylene-acrylic acid copolymer), 6.9 parts by mass of 48% NaOH aqueous solution (ethylene -0.15 equivalent to the carboxyl group of the acrylic acid copolymer), tall oil fatty acid (manufactured by Harima Chemicals, Inc., trade name: Hartle FA3) 3.5 parts by mass and 792.6 parts by mass of ion-exchanged water were added and sealed. The mixture was stirred at 150 ° C. and 5 atm for 3 hours at high speed, and then cooled to 30 ° C.
 次いで、γ-グリシドキシプロピルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ社製、商品名:TSL8350)10.4質量部、ポリカルボジイミド(日清紡社株式会社製、商品名:カルボジライト SV-02、Mw:2,700、固形分40質量%)31.2質量部、イオン交換水72.8質量部を添加し、10分間攪拌して、エチレン-アクリル酸共重合体が乳化し、各成分と混合されたポリエチレン樹脂水性分散液が得られた(樹脂固形分20.3質量%、JIS K6833(2014年)に準じて測定)。 Next, 10.4 parts by mass of γ-glycidoxypropyltrimethoxysilane (Momentive Performance Materials, trade name: TSL8350), polycarbodiimide (Nisshinbo Co., Ltd., trade name: Carbodilite SV-02, Mw) : 2,700, solid content 40% by mass) 31.2 parts by mass and ion-exchanged water 72.8 parts by mass were added and stirred for 10 minutes to emulsify the ethylene-acrylic acid copolymer and mix with each component. A polyethylene resin aqueous dispersion was obtained (resin solid content 20.3% by mass, measured according to JIS K6833 (2014)).
 上記東邦化学株式会社製のウレタン樹脂およびその水性分散液を、次の方法で調製した。 The above urethane resin manufactured by Toho Chemical Co., Ltd. and its aqueous dispersion were prepared by the following method.
 撹拌機、温度計、温度コントローラを備えた内容量0.8Lの合成装置に、ポリテトラメチレンエーテルグリコール(保土ヶ谷化学工業株式会社製、平均分子量1,000)60g、1,4-シクロヘキサンジメタノール14g、ジメチロールプロピオン酸20gを仕込み、さらにN-メチルピロリドン30.0gを加えた。そして、トリレンジイソシアネート104gを仕込み、80から85℃に昇温し5時間反応させた。得られたプレポリマーのNCO含有量は、8.9%であった。さらにトリエチルアミン16gを加えて中和を行い、エチレンジアミン16gと水480gの混合水溶液を加えて、50℃で4時間乳化し、鎖延長反応させてウレタン樹脂水性分散液を得た(不揮発性樹脂成分29.1%、酸価41.4)。 In a 0.8 L internal volume synthesizer equipped with a stirrer, thermometer and temperature controller, polytetramethylene ether glycol (Hodogaya Chemical Co., Ltd., average molecular weight 1,000) 60 g, 1,4-cyclohexanedimethanol 14 g Then, 20 g of dimethylolpropionic acid was charged, and 30.0 g of N-methylpyrrolidone was further added. Then, 104 g of tolylene diisocyanate was charged, the temperature was raised from 80 to 85 ° C., and reacted for 5 hours. The obtained prepolymer had an NCO content of 8.9%. Further, 16 g of triethylamine was added for neutralization, a mixed aqueous solution of 16 g of ethylenediamine and 480 g of water was added, emulsified at 50 ° C. for 4 hours, and chain extension reaction was performed to obtain an aqueous urethane resin dispersion (nonvolatile resin component 29 0.1%, acid value 41.4).
 (塗装液の調合)
 上記水酸化マグネシウム水分散液、上記ポリエチレン樹脂水性分散液または上記ウレタン樹脂水性分散液、および、コロイダルシリカ(日産化学工業株式会社製、商品名:スノーテックス-XS)を混合して、樹脂固形分約10質量%の塗装液を調合した。
(Preparation of coating liquid)
The magnesium hydroxide aqueous dispersion, the polyethylene resin aqueous dispersion or the urethane resin aqueous dispersion, and colloidal silica (manufactured by Nissan Chemical Industries, Ltd., trade name: Snowtex-XS) are mixed to obtain a resin solid content. About 10% by mass of coating liquid was prepared.
 (原板の種類)
(1)溶融亜鉛めっき鋼板(GI):板厚0.8mm、亜鉛目付量:60g/m
(2)合金化溶融亜鉛めっき鋼板(GA):板厚0.8mm、亜鉛目付量:45g/m(3)電気亜鉛めっき鋼板(EG):板厚0.8mm、亜鉛目付量:20g/m
(Type of original plate)
(1) Hot-dip galvanized steel sheet (GI): plate thickness 0.8 mm, zinc basis weight: 60 g / m 2
(2) Alloyed galvanized steel sheet (GA): plate thickness 0.8 mm, zinc basis weight: 45 g / m 2 (3) Electrogalvanized steel sheet (EG): plate thickness 0.8 mm, zinc basis weight: 20 g / m 2
 (亜鉛めっき鋼板の前処理)
 脱脂:アルカリ脱脂(日本パーカーライジング社製、商品名:ファインクリーナー)
 乾燥:熱風乾燥させ、水分を蒸発させた。
(Pretreatment of galvanized steel sheet)
Degreasing: Alkaline degreasing (Nippon Parker Rising Co., Ltd., trade name: Fine Cleaner)
Drying: Hot air drying was performed to evaporate water.
 (塗装方法)
 方法:バーコーター
 樹脂皮膜厚み:塗装液の樹脂固形分とバーの番手を選定して樹脂皮膜厚みを調整した。
(Painting method)
Method: Bar coater Resin film thickness: Resin film thickness was adjusted by selecting the resin solid content of the coating liquid and the number of bars.
 (乾燥方法)
 時間:1分間
 条件:塗装板の最高到達温度80℃(サーモラベルで確認)
(Drying method)
Time: 1 minute Conditions: Maximum reached temperature of the coated plate 80 ° C (confirmed with thermo label)
 [実施例]
 原板として、上記(1)溶融亜鉛めっき鋼板、上記(2)合金化溶融亜鉛めっき鋼板および上記(3)電気亜鉛めっき鋼板を用いて、上記した範囲内で、下記表1、2に示すように条件を様々変えて、各種塗装亜鉛めっき鋼板(表1の試験No.1~17および表2の試験No.18~35)を作製し、得られた塗装亜鉛めっき鋼板の耐ロール成形性および耐食性について、下記の方法で評価した。
[Example]
As shown in Tables 1 and 2 within the above range, using (1) hot dip galvanized steel sheet, (2) galvannealed steel sheet and (3) electrogalvanized steel sheet as the original plate. Various coated galvanized steel sheets (Test Nos. 1 to 17 in Table 1 and Test Nos. 18 to 35 in Table 2) were prepared under various conditions, and roll forming resistance and corrosion resistance of the obtained coated galvanized steel sheets. Was evaluated by the following method.
 (耐ロール成形性)
 上記塗装亜鉛めっき鋼板から切り出した試験片に対して、後述する繰返し摺動試験を行う前の皮膜付着量(W)と、同試験を行った後の皮膜付着量(W)とを、下記式(1)に基づいて算出した。式(1)中のXは、蛍光X線分析装置を用いて測定した。
(Roll formability)
With respect to the test piece cut out from the coated galvanized steel sheet, the coating amount before the repeated sliding test described later (W 0 ) and the coating amount after performing the test (W 1 ), It calculated based on following formula (1). X in Formula (1) was measured using a fluorescent X-ray analyzer.
Figure JPOXMLDOC01-appb-M000001
 式(1)において、Xは皮膜中のシリコン元素の単位面積当たりの質量(mg/m)、Yは被膜中のシリカ(SiO)の組成比率(質量%)を表す。
Figure JPOXMLDOC01-appb-M000001
In the formula (1), X represents the mass per unit area of the silicon element in the coating (mg / m 2 ), and Y represents the composition ratio (mass%) of silica (SiO 2 ) in the coating.
 そして、皮膜付着量の減少量(W-W)を発生した皮膜カスとして算出し、下記基準に基づいて、◎および○を合格とし、△を不合格として評価した。 Then, the reduction amount (W 0 -W 1 ) of the film adhesion amount was calculated as the generated film residue, and ◎ and ○ were evaluated as acceptable and Δ as unacceptable based on the following criteria.
 〈評価基準〉
  ◎:皮膜カス300mg/m以下
  ○:皮膜カス300mg/m超450mg/m以下
  △:皮膜カス450mg/m
<Evaluation criteria>
◎: film residue 300 mg / m 2 or less ○: film residue 300 mg / m 2 over 450 mg / m 2 or less Δ: film residue over 450 mg / m 2
 繰返し摺動試験の方法は次の通りである。
 まず、塗装亜鉛めっき鋼板から幅40mm×長さ300mmの長方形形状に切り出した試験片を、引張試験機に垂直に取り付けて、試験片の一方の面(非摺動面)に平板ダイス(材質:SKD11)を当接させる。次に、試験片の他方の面(摺動面)に、先端半径9.1mmの凸部を有する治具(半円柱ダイス、材質:SKD11)を当接させ、治具に2940N(300kgf)の負荷を水平方向にかけつつ、治具を下方へ300mm/minの速度で、試験片の摺動面に平板ダイスが当接している範囲内で移動させることで、摺動操作を行う。摺動操作の完了後に、治具(半円柱ダイス)を試験片の摺動面から離間させて摺動操作前の位置に戻す。上記と同様の摺動操作を9回繰返す。すなわち、合計10回の摺動操作を行った後に、終了する。
The method of the repeated sliding test is as follows.
First, a test piece cut out from a coated galvanized steel sheet into a rectangular shape having a width of 40 mm and a length of 300 mm is vertically mounted on a tensile tester, and a flat plate die (material: SKD11) is brought into contact. Next, a jig (semi-cylindrical die, material: SKD11) having a convex portion with a tip radius of 9.1 mm is brought into contact with the other surface (sliding surface) of the test piece, and 2940 N (300 kgf) of the jig is brought into contact with the jig. The sliding operation is performed by moving the jig downward at a speed of 300 mm / min within a range where the flat plate die is in contact with the sliding surface of the test piece while applying a load in the horizontal direction. After completion of the sliding operation, the jig (semi-cylindrical die) is separated from the sliding surface of the test piece and returned to the position before the sliding operation. Repeat the sliding operation similar to the above 9 times. That is, the process ends after a total of 10 sliding operations.
 (耐食性)
 上記塗装亜鉛めっき鋼板(試料)に対して、JIS Z2371(2015年)に準拠した塩水噴霧試験を24時間実施して、試料表面における白錆発生率(100×白錆が発生した面積/樹脂塗装金属板の全面積)を算出した。そして、下記基準に基づいて、○を合格とし、△を不合格として評価した。
(Corrosion resistance)
A salt spray test based on JIS Z2371 (2015) was conducted for 24 hours on the coated galvanized steel sheet (sample), and the white rust generation rate on the sample surface (100 × area where white rust was generated / resin coating) The total area of the metal plate) was calculated. And based on the following reference | standard, (circle) was set as the pass and (triangle | delta) was evaluated as a disqualification.
 〈評価基準〉
  ○:白錆発生率50面積%以下
  △:白錆発生率50面積%超
<Evaluation criteria>
○: White rust occurrence rate 50 area% or less △: White rust occurrence rate more than 50 area%
 また、上記塗装亜鉛めっき鋼板(試料)に対して、JIS Z2371(2015年)に準拠した塩水噴霧試験を実施して赤錆発生状況を調査した。このとき、原板の種類に応じて塩水噴霧試験の時間(試験時間)を変えて試験を実施した。 In addition, a salt spray test based on JIS Z2371 (2015) was performed on the coated galvanized steel sheet (sample) to investigate the occurrence of red rust. At this time, the test was carried out by changing the salt spray test time (test time) according to the type of the original plate.
 (A)溶融亜鉛めっき鋼板と電気亜鉛めっき鋼板の場合
 試験時間:480時間
 評価方法:試料表面における赤錆発生率(100×赤錆が発生した面積/樹脂塗装金属板の全面積)を算出し、下記の基準に基づいて、○を合格とし、△を不合格として評価した。
(A) In the case of hot-dip galvanized steel sheet and electrogalvanized steel sheet Test time: 480 hours Evaluation method: Calculate the red rust generation rate (100 × area where red rust occurred / total area of resin-coated metal plate) on the sample surface, and On the basis of the criteria, ◯ was evaluated as acceptable and △ was evaluated as unacceptable.
 〈評価基準〉
  ○:赤錆発生率5面積%以下
  △:赤錆発生率5面積%超
<Evaluation criteria>
○: Red rust incidence 5 area% or less △: Red rust incidence 5 area% or more
 (B)合金化溶融亜鉛めっき鋼板の場合
 試験時間:120時間
 評価方法:試料表面における赤錆発生状況を目視で観察し、下記の基準に基づいて、○を合格とし、△を不合格として評価した。
(B) In the case of alloyed hot-dip galvanized steel sheet Test time: 120 hours Evaluation method: The state of red rust occurrence on the sample surface was visually observed, and based on the following criteria, ○ was accepted and Δ was rejected. .
 〈評価基準〉
  ○:赤錆の発生が認められない
  △:赤錆の発生が認められる
<Evaluation criteria>
○: Red rust is not observed △: Red rust is observed
 その結果を、各塗装亜鉛めっき鋼板を製造したときの条件(原板の種類、樹脂の種類、樹脂皮膜の組成比率、シリカに対する水酸化マグネシウムの質量比率[Mg(OH)/SiO]、樹脂皮膜厚み)と共に、下記表1および表2に示す。 The results are the conditions when each coated galvanized steel sheet is manufactured (type of original plate, type of resin, composition ratio of resin film, mass ratio of magnesium hydroxide to silica [Mg (OH) 2 / SiO 2 ], resin Table 1 and Table 2 below are shown together with (film thickness).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 これらの結果から明らかなように、樹脂の含有量が5質量%である例(表1の試験No.7、表2の試験No.24:以下、試験No.だけを示す)は、樹脂の含有量が少なすぎるため、原板がGIおよびGAのいずれにおいても、皮膜欠陥が多くなり、耐食性が劣化していた。なお、これらの例は、質量比率[Mg(OH)/SiO]が0.15~3の範囲外でもある。 As is clear from these results, the examples in which the resin content is 5% by mass (Test No. 7 in Table 1, Test No. 24 in Table 2: hereinafter, only Test No. is shown) Since the content was too small, the film defect was increased and the corrosion resistance was deteriorated when the original plate was either GI or GA. In these examples, the mass ratio [Mg (OH) 2 / SiO 2 ] is also outside the range of 0.15 to 3.
 試験No.14、15、31、32は、質量比率[Mg(OH)/SiO]が0.15~3の範囲外にある例であり、原板がGIおよびGAのいずれにおいても、耐食性が劣化していた。また、樹脂皮膜厚みが0.20μm未満である例(試験No.16、18、25、33)は、原板がGIおよびGAのいずれにおいても、耐食性が劣化していた。 Test No. 14, 15, 31, and 32 are examples in which the mass ratio [Mg (OH) 2 / SiO 2 ] is outside the range of 0.15 to 3, and the corrosion resistance deteriorates when the original plate is either GI or GA. It was. Further, in the examples where the resin film thickness is less than 0.20 μm (Test Nos. 16, 18, 25, and 33), the corrosion resistance was deteriorated regardless of whether the original plate was GI or GA.
 これに対し、規定する要件のいずれをも満足する本発明の塗装亜鉛めっき鋼板(試験No.1~6、8~13、17、19~23、26~30、34、35)は、原板がGI、GAおよびEGのいずれにおいても、そして、樹脂がポリエチレン樹脂およびウレタン樹脂のいずれにおいても、優れた耐食性を発揮しつつ、優れた耐ロール成形性を示した。 On the other hand, the coated galvanized steel sheet of the present invention (test Nos. 1 to 6, 8 to 13, 17, 19 to 23, 26 to 30, 34, and 35) satisfying all of the prescribed requirements is the original plate. In any of GI, GA, and EG, and in any of the polyethylene resin and the urethane resin, excellent roll resistance was exhibited while exhibiting excellent corrosion resistance.
 この出願は、2018年3月29日に出願された日本国特許出願特願2018-64766および2019年2月22日に出願された日本国特許出願特願2019-30545を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2018-64766 filed on Mar. 29, 2018 and Japanese Patent Application No. 2019-30545 filed on Feb. 22, 2019. The contents thereof are included in the present application.
 本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to specific examples and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明は、鋼板、亜鉛めっき鋼板やそれらの製造方法等に関する技術分野において、広範な産業上の利用可能性を有する。 The present invention has wide industrial applicability in the technical fields related to steel plates, galvanized steel plates and methods for producing them.

Claims (1)

  1.  亜鉛めっき鋼板の表面に、シリカおよび水酸化マグネシウムを含む樹脂皮膜を有する塗装亜鉛めっき鋼板であって、
     前記樹脂皮膜中のシリカおよび水酸化マグネシウムの合計含有量が75~90質量%、かつ前記樹脂皮膜の樹脂成分の含有量が10~25質量%であり、
     前記シリカに対する前記水酸化マグネシウムの質量比率が0.15~3であり、
     前記樹脂皮膜の厚みが0.20~1.1μmであることを特徴とする塗装亜鉛めっき鋼板。
    A coated galvanized steel sheet having a resin film containing silica and magnesium hydroxide on the surface of the galvanized steel sheet,
    The total content of silica and magnesium hydroxide in the resin film is 75 to 90% by mass, and the resin component content of the resin film is 10 to 25% by mass,
    The mass ratio of the magnesium hydroxide to the silica is 0.15-3,
    A coated galvanized steel sheet, wherein the resin film has a thickness of 0.20 to 1.1 μm.
PCT/JP2019/011032 2018-03-29 2019-03-18 Coated galvanized steel sheet WO2019188460A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207028776A KR102473795B1 (en) 2018-03-29 2019-03-18 Painted galvanized steel
CN201980021239.8A CN111971170B (en) 2018-03-29 2019-03-18 Coated galvanized steel sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-064766 2018-03-29
JP2018064766 2018-03-29
JP2019-030545 2019-02-22
JP2019030545A JP7112350B2 (en) 2018-03-29 2019-02-22 Painted galvanized steel sheet

Publications (1)

Publication Number Publication Date
WO2019188460A1 true WO2019188460A1 (en) 2019-10-03

Family

ID=68058799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011032 WO2019188460A1 (en) 2018-03-29 2019-03-18 Coated galvanized steel sheet

Country Status (1)

Country Link
WO (1) WO2019188460A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476441A (en) * 1977-12-01 1979-06-19 Kawasaki Steel Co Production of steel plate with oneeside plating
JP2002322569A (en) * 2001-04-23 2002-11-08 Nippon Steel Corp Rust preventive for metal and rust prevention treated steel
JP2005200757A (en) * 2003-02-05 2005-07-28 Kobe Steel Ltd Surface-treated metallic sheet
JP2013108126A (en) * 2011-11-18 2013-06-06 Kobe Steel Ltd Surface treated metal sheet excellent in corrosion resistance and conductivity
JP2014523457A (en) * 2011-06-09 2014-09-11 ピーアールシー−デソト インターナショナル,インコーポレイティド Coating composition comprising magnesium hydroxide particles and related coated substrates
JP2018172780A (en) * 2017-03-31 2018-11-08 株式会社神戸製鋼所 Coated galvanized steel sheet
JP2018172779A (en) * 2017-03-31 2018-11-08 株式会社神戸製鋼所 Coated galvanized steel sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476441A (en) * 1977-12-01 1979-06-19 Kawasaki Steel Co Production of steel plate with oneeside plating
JP2002322569A (en) * 2001-04-23 2002-11-08 Nippon Steel Corp Rust preventive for metal and rust prevention treated steel
JP2005200757A (en) * 2003-02-05 2005-07-28 Kobe Steel Ltd Surface-treated metallic sheet
JP2014523457A (en) * 2011-06-09 2014-09-11 ピーアールシー−デソト インターナショナル,インコーポレイティド Coating composition comprising magnesium hydroxide particles and related coated substrates
JP2013108126A (en) * 2011-11-18 2013-06-06 Kobe Steel Ltd Surface treated metal sheet excellent in corrosion resistance and conductivity
JP2018172780A (en) * 2017-03-31 2018-11-08 株式会社神戸製鋼所 Coated galvanized steel sheet
JP2018172779A (en) * 2017-03-31 2018-11-08 株式会社神戸製鋼所 Coated galvanized steel sheet

Similar Documents

Publication Publication Date Title
KR100711870B1 (en) Surface treated metal sheet
KR101452051B1 (en) Surface-treated metal sheet having excellent corrosion resistance and conductivity
JP4159998B2 (en) Surface-treated metal plate
JP7112350B2 (en) Painted galvanized steel sheet
JP4551847B2 (en) Resin coated metal plate
WO2019188460A1 (en) Coated galvanized steel sheet
JP7112349B2 (en) Painted galvanized steel sheet
KR102550836B1 (en) Painted galvanized steel
JP7235556B2 (en) Painted galvanized steel sheet
WO2019188461A1 (en) Coated galvanized steel sheet
JP5503165B2 (en) Resin-coated metal plate with excellent film peeling resistance during roll forming
WO2019188237A1 (en) Coated galvanized steel sheet
JP6946377B2 (en) Resin coated metal plate
JP2019173125A (en) Coated galvanized steel sheet
JP2006272765A (en) Resin coated metal sheet
JP2016175257A (en) Resin coated metal plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207028776

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19778149

Country of ref document: EP

Kind code of ref document: A1