TW200905933A - Method for fabricating a light emitting diode (LED) with an electrically and thermally conductive substrate and the structure thereof - Google Patents

Method for fabricating a light emitting diode (LED) with an electrically and thermally conductive substrate and the structure thereof Download PDF

Info

Publication number
TW200905933A
TW200905933A TW097136331A TW97136331A TW200905933A TW 200905933 A TW200905933 A TW 200905933A TW 097136331 A TW097136331 A TW 097136331A TW 97136331 A TW97136331 A TW 97136331A TW 200905933 A TW200905933 A TW 200905933A
Authority
TW
Taiwan
Prior art keywords
substrate
emitting diode
light
metal
layer
Prior art date
Application number
TW097136331A
Other languages
Chinese (zh)
Inventor
Hsu-Yuan Chang
Original Assignee
Jyu Heng Electronic Materials & Amp Component Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jyu Heng Electronic Materials & Amp Component Co Ltd filed Critical Jyu Heng Electronic Materials & Amp Component Co Ltd
Priority to TW097136331A priority Critical patent/TW200905933A/en
Publication of TW200905933A publication Critical patent/TW200905933A/en

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

The present invention discloses a method for fabricating a light emitting diode (LED) with an electrically and thermally conductive substrate and the structure thereof. The method includes following steps: providing a first substrate, forming a lighting epitaxitial layer, combining a second substrate on a first surface of the lighting epitaxitial layer, and forming an electrode. By implementing the method, a LED structure with the electrically and thermally conductive substrate can be fabricated. The second substrate of the LED structure is the electrically and thermally conductive substrate so that it can be helpful to remove heat generating during LED lighting.

Description

200905933 九、發明說明: 【發明所屬之技術領域^ 本發明係為一種具有導電導熱基板之發光二極體製造方 法及其結構,特別為一種應用於使用可導電及導熱基板之 一極體製造方法及其結構。 【先前技術】 ζ. f知使用藍寶石基板之發光二極體,由於藍寶石基板之導 熱效果差,使得發光二極體於出光時所產生之熱無法有效排 除,因此降低了發光二極體之出光效率,並且縮短了發光二極 體使用哥命。且藍寶石基板具有不導電之特性,因此容易產生 靜電累積之問題。 如中華民國專利第1224876號「形成具有金屬基板之發光 二極體之製造方法」中所揭露之製造方法,其係包括下列步 驟:提供一暫時基板;依序形成一發光二極體蠢晶層及一第一 〇電極層於暫時基板上;形成一金屬永久基板於第一電極層上; 移除暫時基板’使發光二極體i晶層之—表面露出;形成複數 個第二電極層於發光二極體磊晶層之表面;以及切割金屬永久 基板、第一電極層及發光二極體磊晶層,以形成複數個發光二 極體。 — 上述之前案係利用金屬永久基板取代藍寶石基板,用以改 善導熱不良之問題及達到抗靜電之功效,然而金屬永久基板係 以金屬材料製作之,雖可以幫助導熱,然而卻也提高了發光二 極體之製作成本。 一 200905933 【發明内容】 本毛月係為一種具有導電導熱基板之發光二極體製造方 法及其結構,其传盐山m α .、 由使用具局部導電之非金屬且具有高導熱 係數之導熱絕緣基铋 时 材’除可以幫助發光二極體有效散熱之外, 也可以降低製作成本。 本發明係為—種具有導電導熱基板之發光二極體製造方 法及U |係於導熱絕緣基材中設置有導電部,因此於封 裝時,可透過金屬層及導電部與導線支架電性相連,進一步並 可以達到熱電分離之功效。 為達上述目的,本發明提供一種具有導電導熱基板之發光 二極體製造方法,其包括下列步驟:提供一第一基板;形成一 發光磊晶層於第一基板上,其係具有一第一表面及一第二表 面;結合一第二基板於第一表面上,第二基板係具有:一導熱 絕緣基材’·一第一金屬層及一第二金屬層,其係分別形成於導 熱絕緣基材之兩侧面,且第一金屬層係與第一表面結合;以及 一導電部,其係形成於導熱絕緣基材’且分別與第一金屬層及 第二金屬層導電相連·’移除第一基板,其係自第二表面被移 除;以及形成一電極’其係形成於第二表面上。 為達上述目的,本發明又提供一種具有導電導熱基板之發 光二極體結構,其包括:一第二基板,其係具有··一導熱絕緣 基材;一第一金屬層及一第二金屬層,其係分別形成於導熱絕 緣基材之兩側面;以及一導電部,其係形成於導熱絕緣基材, 且分別與第一金屬層及第二金屬層導電相連;一發光磊晶層, 200905933 其係具有:—第—表面及—第 屬層結合;以及-第二表面;以第:表面係與第-金 面上。 _’其係設置於第二表 藉由本發明的實施,至少可 一、由於使用具有高導 下列進步功致: -光時之產熱可有===’因此發先二極 二:金屬之導熱絕緣基材,所先:質之功致。 私成本。 Ί降低發光二極體之製 為了使任何熟習相 以實施,且根據本說明書所;露 式,任何熟習相關技藝者可輕易地理解本發明::利範圍及圖 點,因此將在實施方式中詳細敘述本發明之^1之目的及優 點。 咩細特徵以及優 【實施方式】 (j , fi®係為本發明之—種具料電導熱基板 之發光二極體 4造方法之流程實施·。第2a圖至第π圖係為本發明之 -種具有導電導熱基板之發光二極體製造方法之製程實施例 圖。第3圖係為本發明之一種具有導電導熱基板之發光二極體 結構立體分解實施例圖一。第4圖係為本發明之一種具有導電 導熱基板之發光二極體結構立體分解實施例圖二。第5圖係為 本發明之-ί重具有導電導熱基板之發光二極體結構立體分解 實施例圖三。 如第1圖所示’本實施例係為一種具有導電導熱基板之發 200905933 光二極體製造方法,其包括下列步驟:提供一第一基板 形成一發光磊晶層於第一基板上S20 ;結合一第二^板於第 表面上S30 ;移除第一基板S4〇 ;以及形成—電極。' 一基板10係可 提供一第一基板S10 :如第2A圖所示, 以為適合磊晶成長之一藍寶石基板。200905933 IX. Description of the invention: [Technical field of invention] The present invention relates to a method for fabricating a light-emitting diode having an electrically and thermally conductive substrate and a structure thereof, and particularly to a method for manufacturing a pole body using an electrically conductive and thermally conductive substrate And its structure. [Prior Art] 知 f f f 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用Efficiency, and shortened the use of light-emitting diodes. Moreover, the sapphire substrate has a non-conducting property, so that the problem of static electricity accumulation is apt to occur. For example, the manufacturing method disclosed in the "Method for Manufacturing a Light-Emitting Diode Having a Metal Substrate" of the Republic of China Patent No. 1224876 includes the following steps: providing a temporary substrate; sequentially forming a light-emitting diode stray layer And a first electrode layer on the temporary substrate; forming a metal permanent substrate on the first electrode layer; removing the temporary substrate 'to expose the surface of the light-emitting diode i-layer; forming a plurality of second electrode layers a surface of the epitaxial layer of the light emitting diode; and a metal permanent substrate, a first electrode layer, and an epitaxial layer of the light emitting diode are cut to form a plurality of light emitting diodes. — The previous case used a metal permanent substrate instead of a sapphire substrate to improve the problem of poor thermal conductivity and achieve antistatic effect. However, the metal permanent substrate is made of a metal material, which can help heat conduction, but also improves the light emission. The production cost of the polar body. A 200905933 [Summary of the Invention] The present invention is a method for manufacturing a light-emitting diode having an electrically conductive substrate, and a structure thereof, which is taught by using a non-metallic material having local conductivity and a high thermal conductivity. The insulating base material 'in addition to the effective heat dissipation of the light-emitting diode can also reduce the manufacturing cost. The invention provides a method for manufacturing a light-emitting diode having a conductive and thermally conductive substrate, and a conductive portion provided in the thermally conductive insulating substrate, so that the metal layer and the conductive portion are electrically connected to the wire holder during packaging. Further, the effect of thermoelectric separation can be achieved. In order to achieve the above object, the present invention provides a method for fabricating a light emitting diode having an electrically and thermally conductive substrate, comprising the steps of: providing a first substrate; forming a luminescent epitaxial layer on the first substrate, the system having a first a surface and a second surface; a second substrate is coupled to the first surface, the second substrate has: a thermally conductive insulating substrate 'a first metal layer and a second metal layer, respectively formed in the thermal insulation Two sides of the substrate, and the first metal layer is combined with the first surface; and a conductive portion formed on the thermally conductive insulating substrate 'and electrically connected to the first metal layer and the second metal layer respectively a first substrate that is removed from the second surface; and an electrode formed to be formed on the second surface. In order to achieve the above object, the present invention further provides a light emitting diode structure having an electrically and thermally conductive substrate, comprising: a second substrate having a thermally conductive insulating substrate; a first metal layer and a second metal; a layer respectively formed on two sides of the thermally conductive insulating substrate; and a conductive portion formed on the thermally conductive insulating substrate and electrically connected to the first metal layer and the second metal layer respectively; a luminescent epitaxial layer, 200905933 The system has: - the first surface and - the first layer combination; and - the second surface; the first: the surface system and the first - gold surface. _' is set in the second table by the implementation of the present invention, at least one, due to the use of high conductivity with the following progress: - the heat of light can have ===' therefore the first two poles: metal Thermally conductive and insulating substrate, the first: quality. Private cost. ΊReducing the Light Emitting Diode In order to enable any familiarity to be implemented, and in accordance with the present specification, any person skilled in the art can readily understand the present invention: the scope and the point of view, and thus will be in the embodiment The purpose and advantages of the present invention will be described in detail.咩 特征 特征 以及 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( j j j j j j j j j j j j j j j j j j j 。 。 。 。 。 。 。 。 。 。 。 FIG. 3 is a perspective view showing a three-dimensional exploded embodiment of a light-emitting diode structure having an electrically and thermally conductive substrate according to the present invention. FIG. 4 is a first embodiment of the present invention. FIG. 2 is a perspective exploded view of a light-emitting diode structure having an electrically and thermally conductive substrate according to the present invention. FIG. 5 is a perspective exploded view of a light-emitting diode structure having an electrically conductive substrate. As shown in FIG. 1 , the present embodiment is a method for manufacturing a photodiode having a conductive and thermally conductive substrate, which comprises the steps of: providing a first substrate to form a luminescent epitaxial layer on the first substrate S20; a second board is on the surface S30; the first substrate S4 is removed; and an electrode is formed. ' A substrate 10 can provide a first substrate S10: as shown in FIG. 2A, which is suitable for epitaxial growth. Sapphire base board.

形成一發光蟲晶層於第-基板上S2〇 :如第2b圖所示, :光蟲晶層20係蟲晶形成於第一基板1〇上,且發編層% 係可以依序由—n型半導體層23、_主動層22及—p型半導 體層21所堆疊組成。又發光蟲晶層2()係具有—第—表面% 及—第二表面25,且其分別為η型半導體層23&p型半導體 曰21之表面。為當有電流依序經過p型半導體層21、主動層 2及η型半導體層23時,由於電子與電洞結合,使得電能轉 換成光能’因此可以由主動層22出光。 結合一第二基板於第一表面上S30 :如第2Β圖及第2C圖 所示,其中第二基板30係為一可導電及導熱之基板,且第二 基板30係可以藉由高溫加壓之方式結合於發光磊晶層20之第 表面24上。又第二基板30係具有:一導熱絕緣基材32 ; 一 第一金屬層31及一第二金屬層33 ;以及一導電部34。 導熱絕緣基材32’其係可以為一具有高導熱係數且絕緣之 材質’例如:氮化鋁、陶瓷、碳化矽...。 第一金屬層31及第二金屬層33,其係分別形成於導熱絕 緣基材32之相對的兩侧面,且第一金屬層31係與發光磊晶層 20之第—表面24結合。第一金屬層31及第二金屬層33之材 質係可以為一具有高導電係數之金屬,例如:一鋁金屬、一錫 200905933 金屬或一銘錫合金之金屬。 導電部34,其係形成於導熱絕緣基材32中,並貫穿導熱 絕緣基材32,且分別與第一金屬層31及第二金屬層33導電相 連。而導電部34係可以由至少一導電通道341所構成,且導 電通道341之材質係可以為銅、銀、金、鋁…等。 移除第一基板S40 :如第2D圖所示,第一基板10係自發 光磊晶層20之一第二表面25被移除。而移除第一基板10之 方法可以選自於雷射掀離、濕式蝕刻法、化學拋光法或其組合。 ( 形成一電極S50 :如第2E圖所示,電極40係形成於發光 磊晶層20之第二表面25上,且電極40係可以為一透明電極, 亦可以為一金屬電極。而電極40係用以於封裝過程中提供打 線,使得具有導電導熱基板之發光二極體100可與導線支架導 電相連。 而藉由實施上述之具有導電導熱基板之發光二極體製造 方法,係可以得到如第3圖所示之一種具有導電導熱基板之發 (;光二極體100,其包括:一第二基板30; —發光磊晶層20;以 及一電極40。而第二基板30係由導熱絕緣基材32、第一金屬 層31、第二金屬層33以及一導電部34所構成,且導電部34 係由至少一導電通道341所構成。 由於導電部34可以為至少一導電通道341所構成,使得 如第4圖所示,第二金屬層33亦可以為由複數個金屬板所形 成,且每一金屬板係與導電通道341導電相連。 而如第5圖所示,導電部34亦可以為至少一金屬層342 所構成,且金屬層342係形成於導熱絕緣基材32之側邊,又 200905933 金屬層342形成之方式可以為蒸鑛 係分別與第一金屬声31 B戮...等。又金屬層342 -導通且右屬層33導電相連。 其^H 熱基板之發光二極體_時,由於第 伙、有導電部34,且導電部34係分別盥第今,一 ^ =二金屬層33電性相連,因此當有電流二=金屬層 流入弟一基板30時,雷、、*可、悉、H撞 、’屬層31 層33。 時電抓可透過導電部^而傳遞至第二金屬 * ’、有導Ί導熱基板之發光—徑 時,可直接使用第二基板30之第二金屬層33與;中 藉由打線方式,使得電㈣及導電 源導電相連。 電 >而透過外部電源輸入電流之後,發光蟲晶層Μ將被 出光’且其所產生之熱可以透過第二基板3G中之第 31傳遞至導熱絕緣基材32而快速被排除,使得具有導電導^ 基板之發光二極體!⑼可維持穩定之出光品質,並也可二免因 高溫而縮短使用壽命。除此之外,具有導電導熱基板之發光二 極體100由於導熱絕緣基材32及導電部34之設置,因此可: 到熱電分離之功效。 惟上述各實施例係用以說明本發明之特點,其目的在使熟 習該技術者能瞭解本發明之内容並據以實施,而非限定本發明 之專利範圍,故凡其他未脫離本發明所揭示之精神而完成之等 效修飾或修改,仍應包含在以下所述之申請專利範圍中。 200905933 【圖式簡單說明】 第1圖係為本發明之一種具有導電導熱基板之發光二極體製造 方法之流程實施例圖。 第2A圖至第2E圖係為本發明之一種具有導電導熱基板之發 光二極體製造方法之製程實施例圖。 第3圖係為本發明之一種具有導電導熱基板之發光二極體結構 立體分解實施例圖一。 第4圖係為本發明之一種具有導電導熱基板之發光二極體結構 立體分解實施例圖二。 第5圖係為本發明之一種具有導電導熱基板之發光二極體結構 立體分解實施例圖二。 【主要元件符號說明】 100..........具有導電導熱基板之發光二極體 10............第一基板 ^ 2 0............發光蠢晶層 21 ............ρ型半導體層 22 ............主動層 23 ............η型半導體層 24 ............第一表面 25 ............第二表面 30 ............第二基板 32............導熱絕緣基材 31 ............第一金屬層 11 200905933 33 ............第二金屬層 34 ............導電部 341 ..........導電通道 342 ..........金屬層 40............電極Forming a luminescent insect crystal layer on the first substrate S2 〇: as shown in FIG. 2b, the photo-insect crystal layer 20 is formed on the first substrate 1 ,, and the hair splicing layer % can be sequentially- The n-type semiconductor layer 23, the active layer 22, and the -p-type semiconductor layer 21 are stacked. Further, the luminescent layer 2 () has a - surface % and - a second surface 25, and is a surface of the n-type semiconductor layer 23 & p-type semiconductor 曰 21, respectively. In order to sequentially pass the p-type semiconductor layer 21, the active layer 2, and the n-type semiconductor layer 23, the electric energy is converted into light energy by the combination of electrons and holes, so that the active layer 22 can be emitted. Bonding a second substrate to the first surface S30: as shown in FIG. 2 and FIG. 2C, wherein the second substrate 30 is a conductive and thermally conductive substrate, and the second substrate 30 can be pressurized by high temperature. The manner is bonded to the first surface 24 of the luminescent epitaxial layer 20. The second substrate 30 has a thermally conductive insulating substrate 32, a first metal layer 31 and a second metal layer 33, and a conductive portion 34. The thermally conductive insulating substrate 32' may be a material having a high thermal conductivity and insulation such as: aluminum nitride, ceramic, tantalum carbide. The first metal layer 31 and the second metal layer 33 are respectively formed on opposite sides of the thermally conductive insulating substrate 32, and the first metal layer 31 is bonded to the first surface 24 of the luminescent epitaxial layer 20. The material of the first metal layer 31 and the second metal layer 33 may be a metal having a high conductivity, for example, an aluminum metal, a tin 200905933 metal or a metal of a tin alloy. The conductive portion 34 is formed in the thermally conductive insulating substrate 32 and penetrates the thermally conductive insulating substrate 32 and is electrically connected to the first metal layer 31 and the second metal layer 33, respectively. The conductive portion 34 may be formed by at least one conductive channel 341, and the material of the conductive channel 341 may be copper, silver, gold, aluminum, or the like. The first substrate S40 is removed: as shown in Fig. 2D, the first substrate 10 is removed from the second surface 25 of one of the epitaxial layers 32. The method of removing the first substrate 10 may be selected from the group consisting of laser detachment, wet etching, chemical polishing, or a combination thereof. ( forming an electrode S50: as shown in FIG. 2E, the electrode 40 is formed on the second surface 25 of the luminescent epitaxial layer 20, and the electrode 40 may be a transparent electrode or a metal electrode. The light-emitting diode 100 having the conductive and thermally conductive substrate can be electrically connected to the wire holder. The method for manufacturing the light-emitting diode having the conductive and heat-conductive substrate can be obtained as described above. FIG. 3 shows a light-emitting and heat-conducting substrate (photodiode 100 comprising: a second substrate 30; an illuminating epitaxial layer 20; and an electrode 40. The second substrate 30 is thermally insulated) The substrate 32, the first metal layer 31, the second metal layer 33 and a conductive portion 34 are formed, and the conductive portion 34 is formed by at least one conductive channel 341. The conductive portion 34 can be formed by at least one conductive channel 341. Therefore, as shown in FIG. 4, the second metal layer 33 may also be formed by a plurality of metal plates, and each metal plate is electrically connected to the conductive path 341. As shown in FIG. 5, the conductive portion 34 is also Can be at least one gold The layer 342 is formed, and the metal layer 342 is formed on the side of the thermally conductive insulating substrate 32, and the 200905933 metal layer 342 is formed by the vaporization system and the first metal sound 31 B戮, etc. The layer 342 is turned on and the right layer 33 is electrically connected. When the light emitting diode of the hot substrate is _, due to the first group, the conductive portion 34, and the conductive portion 34 are respectively the first, the second metal layer 33 is electrically connected, so when there is a current=metal layer flowing into the substrate one, the lightning, the * can be, the H, the collision, the 'layer 31 layer 33. The electric catch can be transmitted through the conductive portion ^ When the second metal*' has a light-emitting path of the conductive substrate, the second metal layer 33 of the second substrate 30 can be directly used; and the electric (four) and the conductive source are electrically connected by wire bonding. After the current is input through the external power source, the luminescent layer will be emitted and the heat generated can be quickly transmitted through the 31st of the second substrate 3G to the thermally conductive insulating substrate 32, so that the conductive substrate is quickly removed. Light-emitting diodes! (9) can maintain stable light quality, and can also be free In addition to the high temperature, the service life is shortened. In addition, since the light-emitting diode 100 having the conductive heat-conductive substrate is disposed by the heat-conductive insulating substrate 32 and the conductive portion 34, the heat-electric separation effect can be achieved. The features of the present invention are intended to be understood by those skilled in the art, and are intended to be understood by those skilled in the art, and are not intended to limit the scope of the invention. Equivalent modification or modification should still be included in the scope of the patent application described below. 200905933 [Simplified Schematic] FIG. 1 is a flow chart of a method for manufacturing a light-emitting diode having an electrically and thermally conductive substrate according to the present invention. Figure. 2A to 2E are diagrams showing a process example of a method of manufacturing a light-emitting diode having an electrically and thermally conductive substrate of the present invention. Figure 3 is a perspective exploded view of a light-emitting diode structure having an electrically and thermally conductive substrate of the present invention. Figure 4 is a perspective exploded view of a light-emitting diode structure having an electrically and thermally conductive substrate of the present invention. Fig. 5 is a perspective exploded view of a light-emitting diode structure having an electrically and thermally conductive substrate according to the present invention. [Description of main component symbols] 100..........Light-emitting diode 10 having an electrically and thermally conductive substrate.............first substrate ^ 2 0..... .......light-emitting layer 21............p-type semiconductor layer 22............active layer 23... . . . n-type semiconductor layer 24 ...... first surface 25 ............ second surface 30 ....... ..... second substrate 32 .... thermally conductive insulating substrate 31 .......... first metal layer 11 200905933 33 ..... .......the second metal layer 34............the conductive portion 341 ..........the conductive channel 342 .......... Metal layer 40............electrode

Claims (1)

200905933 十、申請專利範圍: 1. 一種具有導電導熱基板之發光二極體製造方法,其包括下 列步驟: 提供一第一基板; 形成一發光磊晶層於該第一基板上,其係具有一第一 表面及一第二表面; 結合一第二基板於該第一表面上,又該第二基板係具 有:一導熱絕緣基材;一第一金屬層及一第二金屬層’其 係分別形成於該導熱絕緣基材之兩侧面,且該第一金屬層 係與該第一表面結合;以及一導電部,其係形成於該導熱 絕緣基材,且分別與該第一金屬層及該第二金屬層導電相 連; 移除該第一基板,其係自該第二表面被移除;以及 形成一電極,其係形成於該第二表面上。 2. 如申請專利範圍第1項所述之發光二極體製造方法,其中 該第一基板係為一藍寶石基板。 3. 如申請專利範圍第1項所述之發光二極體製造方法,其中 該發光蟲晶層係依序由一 η型半導體層、一主動層及一 p 型半導體層所堆疊組成。 4. 如申請專利範圍第1項所述之發光二極體製造方法,其中 該第一金屬層之材質係為一紹金屬、一錫金屬或一铭錫合 金之金屬。 5. 如申請專利範圍第1項所述之發光二極體製造方法,其中 該導熱絕緣基材係為一氮化銘基材。 13. 200905933 6. 如申請專利範圍第1項所述之發光二極體製造方法,其中 該導熱絕緣基材係為一陶竞基材。 7. 如申請專利範圍第1項所述之發光二極體製造方法,其中 該導熱絕緣基材係為一碳化碎基材。 8. 如申請專利範圍第1項所述之發光二極體製造方法,其中 該第二金屬層之材質係為一銘金屬、一錫金屬或一銘錫合 金之金屬。 9. 如申請專利範圍第1項所述之發光二極體製造方法,其中 該導電部係由至少一導電通道所構成。 10. 如申請專利範圍第1項所述之發光二極體製造方法,其中 該導電部係由至少一金屬膜所構成。 11. 如申請專利範圍第1項所述之發光二極體製造方法,其中 該移除該第一基板之步驟所使用之方法係選自於雷射掀 離、濕式蝕刻法、化學拋光法或其組合。 12. 如申請專利範圍第1項所述之發光二極體製造方法,其中 該電極係為一透明電極。 13. 如申請專利範圍第1項所述之發光二極體製造方法,其中 該電極係為一金屬電極。 14. 一種具有導電導熱基板之發光二極體結構,其包括: 一第二基板,其係具有:一導熱絕緣基材;一第一金屬層 及一第二金屬層,其係分別形成於該導熱絕緣基材之兩 侧面;以及一導電部,其係形成於該導熱絕緣基材,且 分別與該第一金屬層及該第二金屬層導電相連; 一發光磊晶層,其係具有:一第一表面及一第二表面,又 14 200905933 該第一表面係與該第一金屬層結合;以及 一電極,其係設置於該第二表面上。 15. 如申請專利範圍第14項所述之發光二極體結構,其中該導 熱絕緣基材係為一氮化銘基材。 16. 如申請專利範圍第14項所述之發光二極體結構,其中該導 熱絕緣基材係為一陶兗基材。 17. 如申請專利範圍第14項所述之發光二極體結構,其中該導 熱絕緣基材係為'碳化碎基材。 18. 如申請專利範圍第14項所述之發光二極體結構,其中該第 一金屬層之材質係為一銘金屬、一錫金屬或一铭錫合金之 金屬。 19. 如申請專利範圍第14項所述之發光二極體結構,其中該第 二金屬層之材質係為一銘金屬、一錫金屬或一I呂錫合金之 金屬。 20. 如申請專利範圍第14項所述之發光二極體結構,其中該第 二金屬層係由複數個金屬板所形成。 21. 如申請專利範圍第14項所述之發光二極體結構,其中該導 電部係由至少一導電通道所構成。 22. 如申請專利範圍第14項所述之發光二極體結構,其中該導 電部係由至少一金屬膜所構成。 23. 如申請專利範圍第14項所述之發光二極體結構,其中該發 光磊晶層係依序由一 η型半導體層、一主動層及一 p型半 導體層所堆疊組成。 24. 如申請專利範圍第14項所述之發光二極體結構,其中該電 15 200905933 極係為一透明電極。 25.如申請專利範圍第14項所述之發光二極體結構,其中該電 極係為一金屬電極。200905933 X. Patent application scope: 1. A method for manufacturing a light-emitting diode having an electrically and thermally conductive substrate, comprising the steps of: providing a first substrate; forming a luminescent epitaxial layer on the first substrate, the system having a a first surface and a second surface; a second substrate is coupled to the first surface, and the second substrate has: a thermally conductive insulating substrate; a first metal layer and a second metal layer Formed on both sides of the thermally conductive insulating substrate, and the first metal layer is bonded to the first surface; and a conductive portion formed on the thermally conductive insulating substrate, and the first metal layer and the The second metal layer is electrically connected; the first substrate is removed from the second surface; and an electrode is formed on the second surface. 2. The method of manufacturing a light-emitting diode according to claim 1, wherein the first substrate is a sapphire substrate. 3. The method for fabricating a light-emitting diode according to claim 1, wherein the luminescent crystal layer is sequentially composed of an n-type semiconductor layer, an active layer and a p-type semiconductor layer. 4. The method for manufacturing a light-emitting diode according to claim 1, wherein the material of the first metal layer is a metal of a metal, a tin metal or a tin alloy. 5. The method of manufacturing a light-emitting diode according to claim 1, wherein the thermally conductive insulating substrate is a nitrided substrate. The method of manufacturing the light-emitting diode according to claim 1, wherein the thermally conductive insulating substrate is a ceramic substrate. 7. The method of manufacturing a light-emitting diode according to claim 1, wherein the thermally conductive insulating substrate is a carbonized crushed substrate. 8. The method for manufacturing a light-emitting diode according to claim 1, wherein the material of the second metal layer is a metal of a metal, a tin metal or a tin alloy. 9. The method of fabricating a light-emitting diode according to claim 1, wherein the conductive portion is composed of at least one conductive path. 10. The method of manufacturing a light-emitting diode according to claim 1, wherein the conductive portion is composed of at least one metal film. 11. The method of manufacturing a light-emitting diode according to claim 1, wherein the method of removing the first substrate is selected from the group consisting of laser detachment, wet etching, and chemical polishing. Or a combination thereof. 12. The method of producing a light-emitting diode according to claim 1, wherein the electrode is a transparent electrode. 13. The method of fabricating a light-emitting diode according to claim 1, wherein the electrode is a metal electrode. 14. A light emitting diode structure having an electrically and thermally conductive substrate, comprising: a second substrate having: a thermally conductive insulating substrate; a first metal layer and a second metal layer, respectively formed on the The two sides of the thermally conductive insulating substrate; and a conductive portion formed on the thermally conductive insulating substrate and electrically connected to the first metal layer and the second metal layer respectively; a luminescent epitaxial layer having: a first surface and a second surface, 14 200905933, the first surface is bonded to the first metal layer; and an electrode disposed on the second surface. 15. The light-emitting diode structure of claim 14, wherein the heat-conductive insulating substrate is a nitrided substrate. 16. The light-emitting diode structure of claim 14, wherein the heat-conductive insulating substrate is a ceramic substrate. 17. The light-emitting diode structure of claim 14, wherein the heat-conductive insulating substrate is a carbonized crushed substrate. 18. The light-emitting diode structure according to claim 14, wherein the material of the first metal layer is a metal of a metal, a tin metal or a metal of a tin alloy. 19. The light-emitting diode structure according to claim 14, wherein the material of the second metal layer is a metal of a metal, a tin metal or an I-lu tin alloy. 20. The light emitting diode structure of claim 14, wherein the second metal layer is formed of a plurality of metal plates. 21. The light emitting diode structure of claim 14, wherein the conductive portion is formed by at least one conductive via. 22. The light emitting diode structure of claim 14, wherein the conductive portion is composed of at least one metal film. 23. The light emitting diode structure of claim 14, wherein the light emitting epitaxial layer is sequentially composed of an n-type semiconductor layer, an active layer, and a p-type semiconductor layer. 24. The light emitting diode structure of claim 14, wherein the electricity 15 200905933 is a transparent electrode. 25. The light emitting diode structure of claim 14, wherein the electrode is a metal electrode.
TW097136331A 2008-09-22 2008-09-22 Method for fabricating a light emitting diode (LED) with an electrically and thermally conductive substrate and the structure thereof TW200905933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097136331A TW200905933A (en) 2008-09-22 2008-09-22 Method for fabricating a light emitting diode (LED) with an electrically and thermally conductive substrate and the structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097136331A TW200905933A (en) 2008-09-22 2008-09-22 Method for fabricating a light emitting diode (LED) with an electrically and thermally conductive substrate and the structure thereof

Publications (1)

Publication Number Publication Date
TW200905933A true TW200905933A (en) 2009-02-01

Family

ID=44722912

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097136331A TW200905933A (en) 2008-09-22 2008-09-22 Method for fabricating a light emitting diode (LED) with an electrically and thermally conductive substrate and the structure thereof

Country Status (1)

Country Link
TW (1) TW200905933A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466324B (en) * 2009-09-15 2014-12-21 Showa Denko Kk Light-emitting diode, light-emitting diode lamp and lighting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466324B (en) * 2009-09-15 2014-12-21 Showa Denko Kk Light-emitting diode, light-emitting diode lamp and lighting apparatus

Similar Documents

Publication Publication Date Title
TW200840088A (en) Light emitting diode apparatus
WO2016197966A1 (en) High optical efficiency vertical led structure chip with heat dissipation characteristic and manufacturing method therefor
TW201103121A (en) Light-emitting device
Wei et al. Improving light output of vertical-stand-type InGaN light-emitting diodes grown on a free-standing GaN substrate with self-assembled conical arrays
TWI246786B (en) Substrate-free flip chip light emitting diode and manufacturing method thereof
TW200934990A (en) Illumination device
TWI307175B (en) Non-substrate light emitting diode and fabrication method thereof
TW201103166A (en) Light-emitting device and manufacturing method thereof
TW200905933A (en) Method for fabricating a light emitting diode (LED) with an electrically and thermally conductive substrate and the structure thereof
CN103247742B (en) A kind of LED heat radiation substrate and manufacture method thereof
TW201228052A (en) Light-emitting semiconductor chip and method for manufacturing the same
CN101521252A (en) Method for manufacturing light-emitting dioxide having thermally and electrically conductive substrate and structure thereof
TWI467819B (en) Light emitting chip and mathod of fabricating light emitting chip
JP2004311480A (en) Semiconductor light emitting element
TW200845415A (en) Light source module with high heat dissipation capability
TWI360893B (en) Light emitting diode chip and method for fabricati
TW201501357A (en) Light emitting diode chip and method for making same
TWI379450B (en)
JP2004031945A (en) Nitride semiconductor light emitting chip
TW201117413A (en) Method for manufacturing light-emitting diode
KR101470754B1 (en) Light Emitting Diode
TWI345843B (en)
KR101491962B1 (en) Light Emitting Diode
TWI356512B (en) Light emitting diode and method for manufacturing
KR101479450B1 (en) Light Emitting Diode