TWI345843B - - Google Patents

Download PDF

Info

Publication number
TWI345843B
TWI345843B TW96109861A TW96109861A TWI345843B TW I345843 B TWI345843 B TW I345843B TW 96109861 A TW96109861 A TW 96109861A TW 96109861 A TW96109861 A TW 96109861A TW I345843 B TWI345843 B TW I345843B
Authority
TW
Taiwan
Prior art keywords
layer
light
emitting diode
semiconductor layer
electrical contact
Prior art date
Application number
TW96109861A
Other languages
Chinese (zh)
Other versions
TW200840081A (en
Inventor
Chung Hua Li
Original Assignee
Chung Hua Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Hua Li filed Critical Chung Hua Li
Priority to TW96109861A priority Critical patent/TW200840081A/en
Publication of TW200840081A publication Critical patent/TW200840081A/en
Application granted granted Critical
Publication of TWI345843B publication Critical patent/TWI345843B/zh

Links

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

1345843 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種發光二極體,尤指—種具有較長之 發光壽命、較佳之發光效率與較穩定之發光亮度的發光二 5 極體。 【先前技術】 發光二極體(LED)目前已經廣泛地被應用於各個領域 中,如背光模組、照明燈具以及顯示燈號等。但是,由於 10 發光二極體發光時所產生的熱能往往無法順利移除,其溫 度便隨著使用時間的增加而逐漸升高,造成其發光效能及 發光受度逐漸地退化。為此,業界無不竭力發展各種移除 熱能的方式,如各種主動式散熱裝置及被動式散熱裝置, 希望旎有效地導出累積於發光二極體内部的熱能,以延長 15其發光壽命、增加其發光效率及提升其發光亮度的穩定度。 如圖1所示,習知之發光二極體i包括:一基板u ; 一 6又置於基板11之表面的第一半導體層12; 一設置於第一半 導體層12之表面的活性層13 ; 一設置於活性層13之表面的 第二半導體層14’且第二半導體層14與第一半導體層12將 20活性層13夾置於兩者之間;一電連接於基板11的第一電接 觸部15 ’以及一電連接於第二半導體層14的第二電接觸部 16 ° 再如圖1所示,習知之發光二極體1更設置有一外部迴 路π ’其係電連接於第—電接觸部15及第二電接觸部16, 5 1345843 以將一來自外界的驅動電流經由第一電接觸部15及第二電 捿觸部16輸入至習知之發光二極體丨,供習知之發光二極體 1運作所需。 但如前所述,當習知之發光二極體丨運作時,其活性層 5 Π產生光線並同時產生可觀的熱能,且這些熱能因無法順 利排出而逐漸累積於習知之發光二極體j的内部,造成習知、 之發光二極體1的溫度逐漸升高。等到熱能累積到一定程度 以後,習知之發光二極體丨的發光結構便逐漸地被破壞,造 成%知之發光二極體丨之發光亮度逐漸地降低,最終無法再 10 發出任何光線。 因此,業界需要一種可在長時間運作後,其的溫度仍 可保持於一正常的範圍内的發光二極體,以使此發光二極 體具有較長之發光壽命、較佳之發光效率及較穩定之發光 亮度。 15 【發明内容】 • 本發明之主要目的係在提供一種發光二極體,俾能延 長發光二極體之發光壽命。 本發明之另一目的係在提供一種發光二極體,俾能增 20進發光二極體之發光效率及提升發光亮度的穩定度。 為達成上述目的’本發明之發光二極體,係包括:一 基板’一導熱層’係設置於此基板之表面並具有一開口; 一第一半導體層,係設置於此導熱層之部分表面,且此第 半導體層並藉由此一開口而與此基板連接;一活性層, 6 1345843 於半導體層之表面;一第二半導體層,係設 置於此活性層之表面,且此第二半導體層與此第—半導體 層將此活性層失置雨去夕卩冑· 主 罝於兩者之間,一散熱膜層,係設置於此 5 15 20 導,·,、層之未被此第-半導體層覆蓋之部分的表面;一絕緣 二:係形成於導熱層之未被此第一半導體層與此散熱膜層 覆盍之部分的表面’·一第—電接觸部,係電連接於此基板, 以及一第二電接觸部’係電連接於此第二半導體層。 為達成上述目的,本發明之發光二極體,係包括:一 基板;一第一半導體層,係設置於此基板之表面;一導埶 層,係設置於此第一半導體層之表面並具有一開口; 一^ 性層,係設置於此導熱層之部分表面,此活性層並藉由此 開口而與此第-半導體層連接;一第二半導體層’係設置 於此活性層之表面’且此第二半導體層與此第一半導體層 將此活性層夾置於兩者之間;—散熱膜層,係設置於此^ 熱層之未被此活性層覆蓋之部分的表面;一絕緣層,係形 成於導熱層之未被此活性層與此散熱膜層覆蓋之部分的表 面;一第一電接觸部,係電連接於此第—半導體層;以及 一第二電接觸部,係電連接於此第二半導體層。 因此,當本發明之發光二極體運作時,將本發明之發 光-極體可將其活性層所產生的熱能利用其導熱層從复 「内部」導出來並傳導至外界’再藉由其散熱膜層將此 熱能轉換為所謂的「熱電流」。最後,此「熱電流」便藉 由分別與本發明之發光二極體之散熱膜層與第—電接觸告; 1連接之電子收集迴路被傳導至其第_電接觸部。如此, 7 1345843 ; 本發明之發光二極體可將其運作時所產生的熱能回收再利 用而再次應用於驅動本發明之發光二極體發光。所以,即 使在長期運作後,本發明之發光二極體的溫度仍可保持於 一正常的範圍内而不會發生過熱現象,其發光結構便不會 5因為過熱現象的發生而被破壞,使得其發光壽命可進一步 . 延長,其發光效率亦可進一步提升,而其發光亮度也更佳 - 穩定。此外,由於本發明之發光二極體可藉由目前業界所 使用之各種製程機台製作而成,所以本發明之發光二極體 • 的製程與現有發光二極體之製程具有極大的相容性,且可 10廣'乏地應用於各種無機或有機之發光二極體中。 本發明之發光二極體可具有任何種類之電子收集迴 路,其較佳為一銅導線。本發明之發光二極體可具有任何 材貝之基板,其材質較佳為氧化紹、單晶石夕多晶石夕、非 曰日矽、砷化鎵、磷化銦、磷化鎵銦或硒化銦銅。本發明之 15發光二極體可具有任何材質之導熱層,其較佳為鑽石膜與 金屬膜相互疊合而成之膜層、氧化鋅膜與金屬膜相互疊合 • 而成之膜層或氮化鎵膜與金屬膜相互疊合而成之膜層。本 如明之發光二極體的導熱層可具有任何種類之結構,其較 佳/、有金屬反射鏡結構。本發明之發光二極體可具有任 20何材質之第一半導體層,其材質較佳為n型氮化鎵、n型磷 化銦N型砷化鎵鋁、N型砷化鎵、N型磷化銦鎵或n型鋁鎵 銦磷。本發明之發光二極體的第一半導體層可具有任何種 類之結構,其較佳具有_金屬反射鏡結構。本發明之發光 二極體可具有任何材質之活性層,其較佳為I型鋁鎵銦磷。 8 1345843 本發明之發光二極體可具有任何材質之第 佳為p型氮化録、㈣化W化録,、;型砰 之㈣m銦鎵。本發明之發光二極體可具有任何種類 5 10 15 20 導體;=佳為一電子共振穿遂式熱電薄膜或-半 =體:·,,'電缚膜。本發明之發光二極體可具有任何 ^電接觸部,其較佳為金鎳合金之薄膜電極。本發 ==極體可具有任何義之第二電接觸部,其較佳為氧 化銦錫賴電極。本發明之發光二極體可具有 絕緣層’其材質較佳為氧切、氧⑽或氣切。本= 一極體可具有任何種類之外部迴路,其較佳為一銅 本發明之發光二極體可具有任何種類之電子收集迴 材併其1交佳為—銅導線。本發明之發光二極體可具有任何 材貝之基板’其材質較佳為氧化銘、單晶石夕、多晶 晶石夕、神化鎵、魏銦、磷化鎵銦或砸化銦銅。本發明之 體可具有任何材質之導熱層,其較佳為鑽石膜盘 =膜相互疊合而成之膜層、氧化鋅膜與金屬膜相互疊合 =之膜層或氮化鎵膜與金屬膜相互疊合而成之膜層。本 ‘月之發光二極體可具有任何材質之第一半導體層,其材 車又佳為N型氮化鎵、N型碟化銦、N型砰化鎵紹、n型碎化 鎵或N型磷化銦鎵。本發明之發光二極體之活性層可 結構’其較佳由複數個氮化鎵銦膜層與複數個氮 =膜層交錯堆叠而成。本發明之發光二極體的第二半導 立曰可具有任何種類之結構,其較佳具有一金屬反射鏡結 9 1345843 ,。本發明之發光二極體可具有任何材質之第二半導體 曰、、材隸佳為P魏化鎵、p型魏銦、p㈣化錄銘 p型石申化鎵或P型磷化銦鎵。本發明之發光二極體可具有任 :種::散熱膜層,其較佳為一電子共振穿遂式熱電薄膜 或-半導體式熱電薄膜。本發明之發光二極體可具有任何 種類之第-電接觸部,其較佳為銘銘合金之薄膜電極。本 發明之發光二極體可具有任何種類之第二電接觸部,其較 佳為氧化銦錫薄膜電極。本發明之發光二極體可具有任何 材質之絕緣層’其材f較佳為氧切、氧仙或氮化石夕。 本發明之發光二極體可具有任何種類之外部迴路,其較佳 為-銅導線。本發明之發光二極體可具有任何種類之電子 收集迴路,其較佳為一銅導線。 【實施方式】 15 如圖2A及圖2B所示,其中圖2A係本發明第一實施例之 發光二極體的剖面示意圖,圖2B係同一發光二極體的立體 示思圖。本發明第一實施例之發光二極體2包括:一基板 21,一 s史置於基板21之表面的導熱層22,其並具有一開口 221 ; —設置於導熱層22之部分表面的第一半導體層23,且 20第一半導體層23藉由開口221而與基板21連接;一設置於第 一半導體層23之表面的活性層24 ; 一設置於活性層24之表 面的第二半導體層25,且第二半導體層25與第一半導體層 23將活性層24夾置於兩者之間;一設置於導熱層22之未被 第一半導體層23覆蓋之部分表面的散熱膜層26; 一形成於 1345843 • 導熱層22之未被第一半導體層23與散熱膜層26覆蓋之部分 表面的絕緣層27 ;—電連接於基板21的第一電接觸部281 ; 以及一電連接於第二半導體層25的第二電接觸部282 〇 此外,在本實施例中,基板21之材質為砷化鎵 5 (N type GaAs),且基板21更設置有一 N型氮化鎵磊晶層(圖 中未示)於基板21的表面,使得此1^型氮化鎵磊晶層(圖中未 示)位於基板21與導熱層η之間。導熱層22為金鈹合金 (Au/Be),其亦可為反射鏡層,且開口 221的形狀可依據實際 _ 需要而為長方形、正方形或其他任何適當的形狀。另一方 10面,第一半導體層23之材質為N型鋁鎵銦磷(N_type A1GaInP)。第二羊導體層25之材質為P型砷化鎵(P-type GaAs)’而夾置於第—半導體層23與第二半導體層乃之間的 活f生層24之材貝為I型銘鎵銦磷(i_type AiGainp),且活性層 24具有複數個量子井(quantum weU)結構。 15 至於没置於導熱層22之未被第一半導體層23覆蓋之部 分表面的散熱膜層26,其為一「電子共振穿遂式熱電薄 I 膜」’且政熱膜層26具有一真空腔(圖中未示)。但是,在不 同的應用中,散熱膜層26亦可為一「半導體式熱電薄膜」, 並不僅限於一「電子共振穿遂式熱電薄膜」。而「電子共 2〇振穿遂式熱電薄膜」及「半導體式熱電薄膜」之結構,將 配合圖3與圖4述述於後。最後,在此發光二極體2中,形成 於導熱層22之未被第—半導體層23與散熱膜層“覆蓋之部 分表面的絕緣層27之材質為氧切,且第—電接觸部281為1345843 IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode, and more particularly to a light-emitting diode having a long luminous lifetime, a preferred luminous efficiency, and a relatively stable luminance. . [Prior Art] Light-emitting diodes (LEDs) have been widely used in various fields, such as backlight modules, lighting fixtures, and display lights. However, the thermal energy generated by the illumination of the 10 LEDs is often not removed smoothly, and the temperature gradually increases with the increase of the use time, resulting in the gradual degradation of the luminous efficacy and the luminous acceptance. To this end, the industry is striving to develop various ways to remove thermal energy, such as various active heat sinks and passive heat sinks. It is hoped that the heat energy accumulated inside the light-emitting diodes will be effectively derived to extend the life of the light-emitting diode by 15 Luminous efficiency and stability of its luminous brightness. As shown in FIG. 1, the conventional light-emitting diode i includes: a substrate u; a first semiconductor layer 12 disposed on the surface of the substrate 11; an active layer 13 disposed on the surface of the first semiconductor layer 12; a second semiconductor layer 14' disposed on the surface of the active layer 13 and the second semiconductor layer 14 and the first semiconductor layer 12 sandwich the 20 active layer 13 therebetween; a first electrical connection electrically connected to the substrate 11. The contact portion 15' and a second electrical contact portion 16 electrically connected to the second semiconductor layer 14 are further shown in FIG. 1. The conventional light-emitting diode 1 is further provided with an external circuit π' which is electrically connected to the first portion. The electrical contact portion 15 and the second electrical contact portion 16, 5 1345843 are used to input a driving current from the outside to the conventional light-emitting diode via the first electrical contact portion 15 and the second electrical contact portion 16 for conventional use. Light-emitting diode 1 is required for operation. However, as described above, when the conventional light-emitting diodes are operated, the active layer 5 Π generates light and simultaneously generates considerable heat energy, and these heat energy gradually accumulates in the conventional light-emitting diode j due to the inability to smoothly discharge. Internally, the temperature of the light-emitting diode 1 is gradually increased. After the accumulation of thermal energy to a certain extent, the light-emitting structure of the conventional light-emitting diode is gradually destroyed, and the luminance of the light-emitting diode of the known light is gradually lowered, and finally no light can be emitted. Therefore, the industry needs a light-emitting diode that can maintain its temperature within a normal range after a long period of operation, so that the light-emitting diode has a longer light-emitting life, better luminous efficiency, and Stable luminous brightness. 15 SUMMARY OF THE INVENTION The main object of the present invention is to provide a light-emitting diode which can extend the light-emitting lifetime of the light-emitting diode. Another object of the present invention is to provide a light-emitting diode which can increase the luminous efficiency of the light-emitting diode and improve the stability of the light-emitting brightness. The light emitting diode of the present invention comprises: a substrate 'a heat conducting layer' disposed on a surface of the substrate and having an opening; a first semiconductor layer disposed on a portion of the surface of the heat conducting layer And the second semiconductor layer is connected to the substrate by an opening; an active layer, 6 1345843 is on the surface of the semiconductor layer; a second semiconductor layer is disposed on the surface of the active layer, and the second semiconductor The layer and the first-semiconductor layer are detached from the active layer, and the main layer is between the two, and a heat-dissipating film layer is disposed on the 5 15 20 guide, and the layer is not a surface of a portion covered by the semiconductor layer; an insulating layer 2 formed on a surface of the heat conducting layer not covered by the first semiconductor layer and the heat dissipating film layer, and a first electrical contact portion electrically connected The substrate, and a second electrical contact portion are electrically connected to the second semiconductor layer. In order to achieve the above object, the light emitting diode of the present invention comprises: a substrate; a first semiconductor layer disposed on a surface of the substrate; and a conductive layer disposed on the surface of the first semiconductor layer and having An opening; a layer disposed on a portion of the surface of the thermally conductive layer, the active layer being connected to the first semiconductor layer by the opening; and a second semiconductor layer 'on the surface of the active layer' And the second semiconductor layer and the first semiconductor layer sandwich the active layer therebetween; the heat dissipation film layer is disposed on a surface of the portion of the thermal layer that is not covered by the active layer; a layer formed on a surface of the heat conductive layer that is not covered by the active layer and the heat dissipation film layer; a first electrical contact portion electrically connected to the first semiconductor layer; and a second electrical contact portion Electrically connected to the second semiconductor layer. Therefore, when the light-emitting diode of the present invention operates, the light-emitting body of the present invention can derive the thermal energy generated by the active layer from the complex "inside" and conduct it to the outside by its heat conducting layer. The heat dissipation film converts this thermal energy into a so-called "thermal current". Finally, the "thermal current" is conducted to the first electrical contact portion by the electron-collecting circuit connected to the heat-dissipating film layer of the light-emitting diode of the present invention and the first electrical contact. Thus, 7 1345843; the light-emitting diode of the present invention can be reused for driving the light-emitting diode of the present invention to recover the heat energy generated during its operation. Therefore, even after long-term operation, the temperature of the light-emitting diode of the present invention can be maintained within a normal range without overheating, and the light-emitting structure is not destroyed by the occurrence of overheating. Its luminescence lifetime can be further extended. Its luminous efficiency can be further improved, and its illuminance is also better - stable. In addition, since the light-emitting diode of the present invention can be fabricated by various processing machines used in the industry, the process of the light-emitting diode of the present invention is greatly compatible with the process of the existing light-emitting diode. Sexuality, and can be used in a variety of inorganic or organic light-emitting diodes. The light-emitting diode of the present invention can have any type of electron collection circuit, which is preferably a copper wire. The light-emitting diode of the present invention may have any substrate of a material, and the material thereof is preferably oxidized, single crystal, monocrystalline, non-arc, gallium arsenide, indium phosphide, indium gallium phosphide or Indium selenide copper. The light-emitting diode of the present invention may have a thermal conductive layer of any material, preferably a film layer in which a diamond film and a metal film are superposed on each other, a film in which a zinc oxide film and a metal film are superposed on each other, or a film layer or A film layer formed by laminating a gallium nitride film and a metal film. The heat conducting layer of the light emitting diode of the present invention may have any kind of structure, which is preferably/having a metal mirror structure. The light emitting diode of the present invention may have any first semiconductor layer of any material, and the material thereof is preferably n-type gallium nitride, n-type indium phosphide N-type gallium aluminum arsenide, N-type gallium arsenide, N-type. Indium gallium phosphide or n-type aluminum gallium indium phosphorus. The first semiconductor layer of the light-emitting diode of the present invention may have any kind of structure, which preferably has a metal mirror structure. The light-emitting diode of the present invention may have an active layer of any material, which is preferably type I aluminum gallium indium phosphorus. 8 1345843 The light-emitting diode of the present invention may have any material of the preferred p-type nitride recording, (four) chemical recording, and (four) m-indium gallium. The light-emitting diode of the present invention may have any kind of 5 10 15 20 conductor; = preferably an electron resonance through-type thermoelectric film or -semi = body: ·,, 'electrically bonded film. The light-emitting diode of the present invention may have any electrical contact portion, which is preferably a gold-nickel alloy thin film electrode. The present invention == the polar body may have any second electrical contact, which is preferably an indium tin oxide electrode. The light-emitting diode of the present invention may have an insulating layer 'the material of which is preferably oxygen cut, oxygen (10) or gas cut. The present invention may have any type of external circuit, preferably a copper. The light-emitting diode of the present invention may have any kind of electron-collecting material and it is preferably a copper wire. The light-emitting diode of the present invention may have a substrate of any material. The material thereof is preferably oxidized, single crystal, polycrystalline, galvanized, indium, gallium phosphide or indium antimonide. The body of the present invention may have a heat conducting layer of any material, preferably a diamond film disk = a film layer formed by laminating films, a zinc oxide film and a metal film overlapping each other = a film layer or a gallium nitride film and a metal A film layer in which the films are superposed on each other. The 'month's light-emitting diode can have the first semiconductor layer of any material, and the material car is preferably N-type gallium nitride, N-type indium-plated indium, N-type gallium antimonide, n-type gallium-depleted or N Indium gallium phosphide. The active layer of the light-emitting diode of the present invention may be structurally formed by interleaving a plurality of gallium indium nitride film layers and a plurality of nitrogen=film layers. The second semi-conducting crucible of the light-emitting diode of the present invention may have any kind of structure, preferably having a metal mirror junction 9 1345843 . The light-emitting diode of the present invention may have a second semiconductor of any material, a material of P, a P-type Wei-indium, a p-type, a p-type, or a P-type indium gallium phosphide. The light-emitting diode of the present invention may have any of the following: a heat-dissipating film layer, which is preferably an electron resonance through-type thermoelectric film or a semiconductor-type thermoelectric film. The light-emitting diode of the present invention may have any kind of first electrical contact, which is preferably a thin film electrode of the alloy. The light-emitting diode of the present invention may have any kind of second electrical contact, which is preferably an indium tin oxide thin film electrode. The light-emitting diode of the present invention may have an insulating layer of any material, and the material f is preferably oxygen cut, oxygen oxide or nitrite. The light-emitting diode of the present invention may have any kind of external circuit, which is preferably a copper wire. The light-emitting diode of the present invention may have any kind of electron collecting circuit, which is preferably a copper wire. [Embodiment] FIG. 2A and FIG. 2B, FIG. 2A is a schematic cross-sectional view of a light-emitting diode according to a first embodiment of the present invention, and FIG. 2B is a perspective view of the same light-emitting diode. The light emitting diode 2 of the first embodiment of the present invention comprises: a substrate 21, a heat conducting layer 22 disposed on the surface of the substrate 21, and having an opening 221; a portion disposed on a surface of the heat conducting layer 22 a semiconductor layer 23, and 20 the first semiconductor layer 23 is connected to the substrate 21 through the opening 221; an active layer 24 disposed on the surface of the first semiconductor layer 23; and a second semiconductor layer disposed on the surface of the active layer 24. 25, and the second semiconductor layer 25 and the first semiconductor layer 23 between the active layer 24 is sandwiched between the two; a heat dissipating film layer 26 disposed on the surface of the heat conducting layer 22 not covered by the first semiconductor layer 23; An insulating layer 27 formed on the surface of the heat conducting layer 22 that is not covered by the first semiconductor layer 23 and the heat dissipation film layer 26; a first electrical contact portion 281 electrically connected to the substrate 21; and an electrical connection The second electrical contact portion 282 of the second semiconductor layer 25 is further provided. In the embodiment, the material of the substrate 21 is gallium arsenide 5 (N type GaAs), and the substrate 21 is further provided with an N-type gallium nitride epitaxial layer ( The surface of the substrate 21 is not shown in the drawing, so that the gallium nitride type 1 Crystal layer (not shown) of the substrate 21 and the thermally conductive layer between η. The thermally conductive layer 22 is a gold-bismuth alloy (Au/Be), which may also be a mirror layer, and the shape of the opening 221 may be rectangular, square or any other suitable shape depending on the actual needs. On the other side, the first semiconductor layer 23 is made of N-type aluminum gallium indium phosphorus (N_type A1GaInP). The material of the second sheep conductor layer 25 is P-type GaAs, and the material of the active layer 24 sandwiched between the first semiconductor layer 23 and the second semiconductor layer is type I. Indium gallium indium phosphate (i_type AiGainp), and the active layer 24 has a plurality of quantum weU structures. 15 is a heat dissipating film layer 26 which is not disposed on a portion of the heat conducting layer 22 which is not covered by the first semiconductor layer 23, which is an "electron resonance through-type thermoelectric thin film I" and the thermal film layer 26 has a vacuum Cavity (not shown). However, in different applications, the heat dissipation film layer 26 may also be a "semiconductor type thermoelectric film" and is not limited to an "electron resonance through-type thermoelectric film". The structure of "Electron-based 〇-type 热-type thermoelectric film" and "Semiconductor-type thermoelectric film" will be described later with reference to Figs. 3 and 4. Finally, in the light-emitting diode 2, the material of the insulating layer 27 formed on the surface of the heat-conducting layer 22 which is not covered by the first semiconductor layer 23 and the heat-dissipating film layer is oxygen-cut, and the first electrical contact portion 281 for

Claims (1)

十、申請專利範圍: 1. 一種發光二極體,係包括: 一基板; 一導熱層,係設置於該基板之表面並具有一開口; 一第一半導體層’係設置於該導熱層之部分表面,該 第一半導體層並藉由該開口而與該基板連接; 一活性層’係設置於該第一半導體層之表面; 一第二半導體層’係設置於該活性層之表面,且該第 二半導體層與該第一半導體層將該活性層夾置於兩者之 間; 一散熱膜層’係設置於該導熱層之未被該第一半導體 層覆蓋之部分的表面,且該散熱膜層係為一熱電薄膜; 一絕緣層’係形成於導熱層之未被該第一半導體層與 該散熱膜層覆蓋之部分的表面; 一第一電接觸部,係電連接於該基板; 一第二電接觸部’係電連接於該第二半導體層;以及 一電子收集迴路’係電連接於該散熱膜層及該第一電 接觸部。 2. 如申請專利範圍第1項所述之發光二極體,其中該 基板之材質為N型神化鎵。 3. 如申請專利範圍第1項所述之發光二極體,更包括 一N型氮化鎵磊晶層於該基板之表面,且該n型氮化鎵磊晶 層係位於該基板與該導熱層之間。 1345843 --— ----- 一 \ ^年广月ι日修(受)正替換頁 4. 如申請專利範圍第1項所述之發光二極體,其中該 導熱層為金鈹合金。 5. 如申請專利範圍第1項所述之發光二極體,其中該 第一半導體層之材質為N型鋁鎵銦磷。 5 6·如申請專利範圍第1項所述之發光二極體,其中該 導熱層具有一金屬反射鏡結構於其中。 7·如申請專利範圍第1項所述之發光二極體,其中該 活性層之材質為I型鋁鎵銦磷。 8·如申請專利範圍第1項所述之發光二極體,其中該 10 活性層具有複數個量子井結構。 9·如申請專利範圍第1項所述之發光二極體,其中該 第二半導體層之材質為P型砷化鎵。 10.如申請專利範圍第1項所述之發光二極體,其中該 散熱膜層為一電子共振穿遂式熱電薄膜。 15 U.如申請專利範圍第1項所述之發光二極體,其中該 第一電接觸部為金鎳合金之薄膜電極。 12_如申請專利範圍第丨項所述之發光二極體,其中該 第二電接觸部為氧化銦錫薄膜電極。 13. 如申請專利範圍第丨項所述之發光二極體,其中該 20 絕緣層之材質為氧化矽。 14. 如申請專利範圍第丨項所述之發光二極體,更設置 有一外部迴路,且該外部迴路電連接於該第一電接觸部及 該第二電接觸部。 29 1345843 __ , >年厂月θ修(要)正替換頁 15.如申請專利範圍第1項所述之發光二極體,更設置 有一外部迴路,該外部迴路係電連接於該第一電接觸部及 該第二電接觸部,且該外部迴路並電連接於該電子收集迴 路0 5 16.如申請專利範圍第1項所述之發光二極體,更設置 有一儲存電容’且該儲存電容電連接於該電子收集迴路。 17. —種發光二極體,係包括: 一基板; 一第一半導體層,係設置於該基板之表面; 10 一導熱層,係設置於該第一半導體層之表面並具有一 開口; 、一活性層,係設置於該導熱層之部分表面,該活性層 並藉由該開口而與該第一半導體層連接; 15 _主:第二半導體層,係設置於該活性層之表面,且該第 二半導體層與該第一半導體層將該活性層夾置於兩者之 之部八沾主工 %庄< 禾破該活性層覆蓋 刀的表面,且該散熱膜層係為一熱電薄膜; 20 肢思:絕緣層,係形成於導熱層之未被該活性層與《埶 祺層覆蓋之部分的表面; ㈣該政熱 第一電接觸部,係電連接於該第一半導體層. 二^電接觸部,係電連接於該第二半導體層; ’以及 接觸部。迴路,係電連接於該散熱膜層及該第-電 30 25 1345843X. Patent application scope: 1. A light-emitting diode comprising: a substrate; a heat conducting layer disposed on a surface of the substrate and having an opening; a first semiconductor layer being disposed on the heat conducting layer a surface of the first semiconductor layer connected to the substrate through the opening; an active layer ' is disposed on a surface of the first semiconductor layer; a second semiconductor layer ' is disposed on a surface of the active layer, and the a second semiconductor layer and the first semiconductor layer sandwich the active layer therebetween; a heat dissipation film layer is disposed on a surface of the heat conductive layer that is not covered by the first semiconductor layer, and the heat dissipation The film layer is a thermoelectric film; an insulating layer is formed on a surface of the heat conductive layer that is not covered by the first semiconductor layer and the heat dissipation film layer; a first electrical contact portion is electrically connected to the substrate; A second electrical contact portion is electrically connected to the second semiconductor layer; and an electron collection circuit ' is electrically connected to the heat dissipation film layer and the first electrical contact portion. 2. The light-emitting diode according to claim 1, wherein the substrate is made of N-type gallium. 3. The light-emitting diode according to claim 1, further comprising an N-type gallium nitride epitaxial layer on the surface of the substrate, wherein the n-type gallium nitride epitaxial layer is located on the substrate Between the thermal layers. 1 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5. The light-emitting diode according to claim 1, wherein the material of the first semiconductor layer is N-type aluminum gallium indium phosphorus. The light-emitting diode of claim 1, wherein the heat-conducting layer has a metal mirror structure therein. 7. The light-emitting diode according to claim 1, wherein the active layer is made of I-type aluminum gallium indium phosphorus. 8. The light-emitting diode of claim 1, wherein the 10 active layer has a plurality of quantum well structures. 9. The light-emitting diode according to claim 1, wherein the material of the second semiconductor layer is P-type gallium arsenide. 10. The light-emitting diode according to claim 1, wherein the heat-dissipating film layer is an electron resonance through-type thermoelectric film. The light-emitting diode according to claim 1, wherein the first electrical contact portion is a gold-nickel alloy thin film electrode. The light-emitting diode according to claim 2, wherein the second electrical contact portion is an indium tin oxide film electrode. 13. The light-emitting diode according to claim 2, wherein the insulating material is made of yttrium oxide. 14. The light-emitting diode of claim 2, further comprising an external circuit electrically connected to the first electrical contact and the second electrical contact. 29 1345843 __ , > Year of the factory θ repair (to be) is being replaced by the page 15. The light-emitting diode according to claim 1 is further provided with an external circuit, the external circuit is electrically connected to the first The electrical contact portion and the second electrical contact portion, and the external circuit is electrically connected to the electron collecting circuit 0. 16. The light emitting diode according to claim 1 is further provided with a storage capacitor 'and The storage capacitor is electrically connected to the electron collecting circuit. 17. A light-emitting diode, comprising: a substrate; a first semiconductor layer disposed on a surface of the substrate; 10 a thermally conductive layer disposed on a surface of the first semiconductor layer and having an opening; An active layer is disposed on a portion of the surface of the thermally conductive layer, and the active layer is coupled to the first semiconductor layer by the opening; 15_main: a second semiconductor layer disposed on a surface of the active layer, and The second semiconductor layer and the first semiconductor layer sandwich the active layer between the two layers, and the surface of the active layer covers the knives, and the heat dissipation film layer is a thermoelectric Film; 20 body: the insulating layer is formed on the surface of the heat conducting layer that is not covered by the active layer and the layer of the germanium layer; (4) the first electrical contact portion of the political heat is electrically connected to the first semiconductor layer 2. The electrical contact portion is electrically connected to the second semiconductor layer; and the contact portion. a circuit electrically connected to the heat dissipation film layer and the first electricity 30 25 1345843 18. 如申請專利範圍第17項所述之發光二極體,其中該 基板之材質為氧化鋁。 19. 如申請專利範圍第丨7項所述之發光二極體,其中該 導熱層為一由鑽石膜與金屬膜相互疊合而成之膜層。 20_如申請專利範圍第17項所述之發光二極體,其中該 第一半導體層之材質為N型氮化鎵。 21.如申請專利範圍第17項所述之發光二極體其中該 第一半導體層具有一金屬反射鏡結構於其中。 ίο 15 20 22_如申請專利範圍第17項所述之發光二極體其中該 活性層係由複數個氮化鎵銦膜層與複數個氣化録膜層交= 堆疊而成。 、S曰 23·如申請專利範圍第17項所述之發光二極體,其中該 活性層具有複數個量子井結構。 八A 24.如申請專利範圍第17項所述之發光二極體其中該 第二半導體層之材質為P型氮化鎵。 、 25·如中請專利範㈣17項所述之發光二極體,其中該 散熱膜層為一電子共振穿遂式熱電薄膜。 26. 如中請專利範圍第17項所述之發光二極體,其中該 電接觸部為鉈鋁合金之薄膜電極。 ’、 27. 如申請專利範圍第17項所述之發光二極體,其中該 第一電接觸部為氧化銦錫薄膜電極。 、 28. 如申請專利範圍第17 絕緣層之材質為氧切。 之發先―極體’其中該 31 扣年π 正替換頁 有〜 如申請專利範圍第17項所述之發光二極體,更設置 卜。卩迴路,且該外部迴路電連接於該第一電接觸部及 ^第二電接觸部。 有3〇_如申請專利範圍第丨7項所述之發光二極體,更設置 誃一外部迴路,該外部迴路係電連接於該第一電接觸部及 ^ 電接觸部,且該外部迴路並電連接於該電子收集迴 路。 31.如申請專利範圍第17項所述之發光二極體,更設置 有-儲存電容,且該儲存電容電連接於該電子收集迴路又。 10 3218. The light-emitting diode of claim 17, wherein the substrate is made of aluminum oxide. 19. The light-emitting diode according to claim 7, wherein the heat conductive layer is a film layer formed by overlapping a diamond film and a metal film. The light-emitting diode according to claim 17, wherein the material of the first semiconductor layer is N-type gallium nitride. 21. The light emitting diode of claim 17, wherein the first semiconductor layer has a metal mirror structure therein. Ίο 15 20 22 The light-emitting diode according to claim 17, wherein the active layer is formed by stacking a plurality of gallium indium nitride film layers and a plurality of gasification recording film layers. The light-emitting diode according to claim 17, wherein the active layer has a plurality of quantum well structures. The light-emitting diode according to claim 17, wherein the material of the second semiconductor layer is P-type gallium nitride. 25. The light-emitting diode according to the invention of claim 4, wherein the heat-dissipating film layer is an electron resonance through-type thermoelectric film. 26. The light-emitting diode of claim 17, wherein the electrical contact portion is a thin film electrode of a tantalum aluminum alloy. The light-emitting diode according to claim 17, wherein the first electrical contact portion is an indium tin oxide film electrode. 28. The material of the 17th insulation layer is oxygen cut. The first is the "polar body", which is the 31-year-old π positive replacement page. There is a light-emitting diode as described in claim 17 of the patent application. The circuit is electrically connected to the first electrical contact and the second electrical contact. The light-emitting diode according to the seventh aspect of the patent application is further provided with an external circuit electrically connected to the first electrical contact portion and the electrical contact portion, and the external circuit And electrically connected to the electron collecting circuit. 31. The light-emitting diode according to claim 17, further comprising a storage capacitor, wherein the storage capacitor is electrically connected to the electron collecting circuit. 10 32
TW96109861A 2007-03-22 2007-03-22 Led TW200840081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96109861A TW200840081A (en) 2007-03-22 2007-03-22 Led

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96109861A TW200840081A (en) 2007-03-22 2007-03-22 Led

Publications (2)

Publication Number Publication Date
TW200840081A TW200840081A (en) 2008-10-01
TWI345843B true TWI345843B (en) 2011-07-21

Family

ID=44821053

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96109861A TW200840081A (en) 2007-03-22 2007-03-22 Led

Country Status (1)

Country Link
TW (1) TW200840081A (en)

Also Published As

Publication number Publication date
TW200840081A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP4476912B2 (en) Semiconductor light emitting device and manufacturing method thereof
US8283684B2 (en) LED semiconductor body and use of an LED semiconductor body
US20100195306A1 (en) Light emitting diode lamp with phosphor coated reflector
US7897988B2 (en) Electroluminescent device
EP2259318A2 (en) Light emitting device having a plurality of light emitting cells and method of fabricating the same
JP2010157679A (en) Chip-level package of light emitting diode
WO2016197966A1 (en) High optical efficiency vertical led structure chip with heat dissipation characteristic and manufacturing method therefor
US7772600B2 (en) Light emitting device having zener diode therein and method of fabricating the same
US20120049204A1 (en) Led module
Wei et al. Improving light output of vertical-stand-type InGaN light-emitting diodes grown on a free-standing GaN substrate with self-assembled conical arrays
US9312439B2 (en) Semiconductor light emitting device
TWI345843B (en)
JP5455852B2 (en) Compound semiconductor light emitting device and method for manufacturing the same
US11448381B2 (en) Light-emitting device with reflective ceramic substrate
TW201501357A (en) Light emitting diode chip and method for making same
US20160148917A1 (en) Cooling device for electronic components
TW201327946A (en) Light emitting chip and method of fabricating light emitting chip
CN102214754A (en) Light-emitting diode (LED) and manufacturing method thereof
TWI403008B (en) Method for fabricating light emitting diode chip
TWI360893B (en) Light emitting diode chip and method for fabricati
KR100683446B1 (en) Light emitting element with buffer layer having rugged upper surface and method for fabricating thereof
TWI408838B (en) Reflec+submon
TWI445210B (en) Light-emitting diode structure
CN109273570B (en) Deep ultraviolet diode device based on KBBF group crystal
CN102347322B (en) Light-emitting element, backlight module device and illuminating device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees