TW200840081A - Led - Google Patents

Led Download PDF

Info

Publication number
TW200840081A
TW200840081A TW96109861A TW96109861A TW200840081A TW 200840081 A TW200840081 A TW 200840081A TW 96109861 A TW96109861 A TW 96109861A TW 96109861 A TW96109861 A TW 96109861A TW 200840081 A TW200840081 A TW 200840081A
Authority
TW
Taiwan
Prior art keywords
layer
light
emitting diode
semiconductor layer
heat
Prior art date
Application number
TW96109861A
Other languages
Chinese (zh)
Other versions
TWI345843B (en
Inventor
Chung-Hua Li
Original Assignee
Chung-Hua Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung-Hua Li filed Critical Chung-Hua Li
Priority to TW96109861A priority Critical patent/TW200840081A/en
Publication of TW200840081A publication Critical patent/TW200840081A/en
Application granted granted Critical
Publication of TWI345843B publication Critical patent/TWI345843B/zh

Links

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

The invention relates to an LED, specifically an LED with long light emitting life, a high light emitting efficiency and stable brightness, comprising: a substrate; a thermal conductive layer disposed on surface of the substrate; a first semiconductor layer disposed on a part of the surface of the thermal conductive layer; an active layer disposed on surface of the first semiconductor layer; a second semiconductor layer disposed on surface of the active layer; a dissipation film layer disposed on apportion of the surface of the thermal conductive layer which is not covered by first semiconductor layer; an insulating layer disposed on a portion of the surface of the thermal conductive layer which is not covered by the first semiconductor layer and the dissipation film layer; a first electric contact part connected to the substrate electrically; and a second electric contact part connected to the second semiconductor layer electrically.

Description

200840081 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種發光二極體,尤指一種具有較長之 發光壽命、較佳之發光效率與較穩定之發光亮度的發光二 5 極體。 【先前技術】 發光二極體(LED)目前已經廣泛地被應用於各個領域 中,如背光模組、照明燈具以及顯示燈號等。但是,由於 10 發光二極體發光時所產生的熱能往往無法順利移除,其溫 度便隨著使用時間的增加而逐漸升高,造成其發光效能及 發光党度逐漸地退化。為此,業界無不竭力發展各種移除 熱能的方式,如各種主動式散熱裝置及被動式散熱裝置, 希王月b有效地導出累積於發光二極體内部的熱能,以延長 15其發光壽命、增加其發光效率及提升其發光亮度的穩定度T 如圖1所示,習知之發光二極體1包括:一基板u ; 一 α又置於基板11之表面的第一半導體層12; 一設置於第一半 導體層之表面的活性層13; 一設置於活性層13之表面的 第半‘體層14,且第二半導體層14與第一半導體層12將 20 /舌層13夾置於兩者之間;_電連接於基板u的第一電接 觸部1 5 ;以及一雷遠垃於隹 u ^ ^ 〇 弘連接於弟二半導體層14的第二電接觸部 16 ° 再女Θ 1所示,^知之發光二極體1更設置有一外部迴 路17,其係電連接於第一電接觸部”及第二電接觸部μ, 5 200840081 以將一來自外界的驅動電流經由第一電接觸部15及第二電 接觸部16輸入至習知之發光二極體丨,供習知之發光二極體 1運作所需。 但如前所述,當習知之發光二極體1運作時,其活性層 5 13產生光線並同時產生可觀的熱能,且這些熱能因無法; 利排出而逐漸累積於習知之發光二極體2的内部,造成習知 之I光一極體1的溫度逐漸升高。等到熱能累積到一定程度 以後^知之發光一極體1的發光結構便逐漸地被破壞,造 成4 4之赉光一極體1之發光亮度逐漸地降低,最終無法再 10 發出任何光線。 因此,業界需要一種可在長時間運作後,其的溫度仍 可保持於一正常的範圍内的發光二極體,以使此發光二極 體具有較長之發光壽命、較佳之發光效率及較穩定之發光 亮度。 15 【發明内容】 本發明之主要目的係在提供一種發光二極體,俾能延 長發光二極體之發光壽命。 本發明之另一目的係在提供一種發光二極體,俾能增 2〇進發光二極體之發光效率及提升發光亮度的穩定度。 為達成上述目的,本發明之發光二極體,係包括:一 土板’ ‘熱層’係設置於此基板之表面並具有一開口; 第.半導體層,係設置於此導熱層之部分表面,且此第 一半導體層並藉由此一開口而與此基板連接;一活性層, 6 200840081 - 係設置於此第一丰暮辨® —生工· ^ 、 午^體層之表面,一第二半導體層,係設 置於此活性層之表面,1此第二半導體層與此第一半導體 層將此活性層夾置於兩者之間;一散熱膜層,係設置於此 導熱層之未被此第一半導體層覆蓋之部分的表面;-絕緣 5層一係$成於導熱層之未被此第一半導體層與此散熱膜層 覆盍之料的表面;一第_電接觸部,係電連接於此基板; 以及一第二電接觸部,係電連接於此第二半導體層。 n I達成上述目的,本發明之發光二極體,係包括:一 / 基板,一第一半導體層,係設置於此基板之表面;一導敎 10層,係設置於此第一半導體層之表面並具有一開口; 一活 性層,係設置於此導熱層之部分表面,此活性層並藉由此 開口而與此第一半導體層連接;一第二半導體層,係設置 於此活丨生層之表面,且此第二半導體層與此第一半導體層 將此活f生層夾置於兩者之間;一散熱膜層,係設置於此導 15熱層之未被此活性層覆蓋之部分的表面;一絕緣層,係形 成於導熱層之未被此活性層與此散熱膜層覆蓋之部分的表 ϋ ®丄一第一電接觸部,係電連接於此第-半導體層;以及 一第二電接觸部,係電連接於此第二半導體層。 口此,§本發明之發光二極體運作時,將本發明之發 20光二極體可將其活性層所產生的熱能利用其導熱層從其 「内部」導引出來並傳導至外界,再藉由其散熱膜層將此 熱能轉換為所謂的「熱電流」。最後,此「熱電流」便藉 由分別與本發明之發光二極體之散熱膜層與第一電接觸部 電連接之電子收集迴路被傳導至其第一電接觸部。如此, 7 200840081 =:=光二極體可將其運作時所產生的熱能回收再利 使在夺於驅動本發明之發光二極體發光。所以,即 -正二=作後,本發明之發光二極體的溫度仍可保持於 5 c 15 20 吊、靶圍内而不會發生過熱現象,A 奋 因為過熱現象的發生而被破壞’使得其發光 ==光效率亦可進一步提升’而其發光亮度也更佳 : ’由於本發明之發光二極體可藉由目前業界所 的制㈣規:乂製成,所以本發明之發光二極體 H、現有發光二極體之製程具有極大的相容性,且可 男泛地應用於各種無機或有機之發光二極體中。 本t明之發光二極體可具有任何種類之電子收集迴 為銅導線。本發明之發光二極體可具有任何 曰貝之土板’其材質較佳為氧化紹、單晶石夕、多晶石夕、非 晶石夕、砰化鎵、石粦化銦、磷化鎵銦或石西化銦銅。本發明之 發光j極體可具有任何材質之導熱層,其較佳為鑽石膜與 金屬㈣立疊合而成之膜層、氧化鋅膜與金屬膜相互疊合 而成之膜層或氮化鎵膜與金屬膜相互疊合而成之膜層。本 發明之發光二極體的導熱層可具有任何種類之結構,其較 {土具有-金屬反射鏡結構。本發明之發光二極體可具有任 何材f之第—半導體層’其材質較佳為N型氮化鎵、N型石粦 化銦、N型石申化鎵紹、N型神化鎵、n型鱗化銦鎵或n型紹鎵 本發明之發光二極體的第一半導體層可具有任何種 一之結構’其較佳具有一金屬反射鏡結構。本發明之發光 二極體可具有任何材質之活性層,其較佳為I⑽鎵銦礙。 8 200840081 •::明之發光二極體可具有任何材質之第二半導體#,Α 材質較佳為Ρ型氮化鎵、 ^體曰 ^ h化銦、P型砷化鎵鋁、P型砷 化銥或P型磷化銦鎵。本發明之發 之散熱膜層,其較佳為一 二,^、有任何種類 "體式熱電薄膜。本發明二:二:=薄膜或-半 第一雷桩勰Μ ^ 又毛光—極體可具有任何種類之 弟電妾觸4,其較佳為金錄合金之薄膜電極 务先二極體可具有任何種類之第二電 化銦錫薄膜電極。本發明 /、奴仏為虱 Γ I㈣,其材質較42: 具有任何材質之 丨。=光二極體可具有任何種類之外部迴路,其二 本發明之發光二極體可具有任何種類之電子收隼迴 圭為一銅導線。本發明之發光二極體可具有任何 材貝之基板,並材曾妨社炎与 15 一材貝土為虱化鋁、單晶矽、多晶矽、 晶矽、砷化鎵、磷化銦、磷化鎵銦或硒化銦銅。本發明之 Ίδ光一極體可具有任何;暂夕i a 金屬膜相互疊合而成之膜:=::其較佳為鑽石膜與 、S 氧化鋅膜與金屬膜相互疊入 而成之膜層或氮化鎵膜與金屬膜相互疊合而成之膜層。: 毛明之發光—極體可具有任何材質之第—半導體層, 質較佳為N型氮化鎵、N型碟化銦、N型坤化嫁紹、N型砰化 ===盖姻蘇。本發明之發光二極體之活性層可具有任 °構,其較佳由複油氮化鎵銦制與複數個氮 化鎵膜層交錯堆疊而成。本發明之發光二極體的第二半導 體層可具有任何種類之結構,其較佳具有一金屬反射鏡結 20 200840081 * 構。本發明之發光二極體可具有任何材質之第二半導體 層其材貝較佳為P型氮化鎵、p型磷化銦、P型砷化鎵鋁、 P型石申化鎵或㈣魏靖。本發明之發光二極體可具有任 何種類之散熱膜層,其較佳為—電子共振穿遂式熱電薄膜 5或一半導體式熱電薄冑。本纟明之發光二極體可具有任何 種類之第-電接觸部,其較佳為銘紹合金之薄膜電極。本 毛月之I光—極體可具有任何種類之第二電接觸部,其較 ㈣氧化姻錫薄膜電極。本發明之發光二極體可具有;壬何 材質之絕緣層,其材質較佳為氧化石夕、氧化銘或氮化石夕。 10本毛月之毛光—極體可具有任何種類之外部迴路,其較佳 為一銅導線。本發明之發光二極體可具有任何種敎電子 收集迴路,其較佳為一銅導線。 【實施方式】 15 20 τ如圖2A及圖2B所示,其中圖2八係本發明第一實施例之 發=二極體的剖面示意圖,圖2B係同—發光二極體的立體 不思圖』。本發明第一實施例之發光二極體2包括:一基板 二,·叹置於基板21之表面的導熱層22,其並具有一開口 -設置於導熱層22之部分表面的第_半導體μ 藉由開口221而與基板21連接;-_第 、-曰3之表面的活性層24; 一設置於活性層μ之 面的第二半導體層25,且第二半導體層 23將活性層24夹置於兩者之間;—設 層 第一丰、冷…、層22之未被 ^ "復盍之部分表面的散熱膜層26 ,· —形成於 10 200840081 導熱層22之未被第一半導體層23與散熱膜層26覆蓋之部分 表面的纟巴緣層27 ; —電連接於基板21的第一電接觸部28 1 ; 以及一電連接於第二半導體層25的第二電接觸部282。 此外,在本實施例中,基板21之材質為^^型砷化鎵 5 (N_type GaAs),且基板21更設置有一 N型氮化鎵磊晶層(圖 中未示)於基板21的表面,使得此N型氮化鎵磊晶層(圖中未 示)位於基板21與導熱層22之間。導熱層22為金鈹合金 (Au/Be),其亦可為反射鏡層,且開口 221的形狀可依據實際 需要而為長方形、正方形或其他任何適當的形狀。另一方 10面,第一半導體層23之材質為N型鋁鎵銦磷(N-type AlGalnP)。第二半導體層25之材質為p型砷化鎵y GaAs),而夾置於第一半導體層23與第二半導體層乃之間的 活性層24之材質為I型鋁鎵銦磷(I-type AlGalnP),且活性層 24具有複數個置子井(guantum weu)結構。 15 、至於設置於導熱層22之未被第一半導體層23覆蓋之部 分表面的散熱膜層26,其為一「電子共振穿遂式熱電薄 膜」,且散熱膜層26具有一真空腔(圖中未示)。但是,在不 同的應用中,散熱膜層26亦可為一「半導體式熱電薄膜 並不僅限於一「電子共振穿遂式熱電薄膜」。而「電子共 2〇振穿遂式熱電薄膜」及「半導體式熱電薄膜」之結構,將 配合圖3與圖4述述於後。最後,在此發光二極體之中,形成 =導熱層22之未被第一半導體層23與散熱膜層%覆蓋之部 分表面的絕緣層27之材質為氧化石夕,且第一電接觸部281為 11 200840081 '金鎳合金之薄膜電極,而第二電接觸部282為氧化銦錫薄膜 電極。 再如圖2A及圖2B所示,本發明第—實施例之發光二極 體2更設置有_電子收集迴路291,其係電連接於散轉層 5 =及第-電接觸部281並為一銅導線,以將散熱膜⑽從熱 能轉換而得到的電流(熱電流)傳遞至第 注㈣是,雖然在本實施例中,電子收集迴路291;電^ r、 於弟一電接觸部281,但在不同的應用中,電子收集迴路291 亦可電連接於第_電接觸部282,以將散熱膜層%從熱能轉 ίο換而得到的電流傳遞至第二電接觸部282。另一方面,本發 明第一實施例之發光二極體2亦設置有一外部迴路M2,其 =兒連接於第一電接觸部281及第二電接觸部並為一銅 ^本 > 以將來自外界的驅動電流經由第一電接觸部2 81及 第二電接觸部282輸入至本發明第一實施例之發光二極體 15 2,供本發明第一實施例之發光二極體2運作所需。 當本發明第一實施例之發光二極體2運作時,其活性層 j 24產生光線並同時產生可觀的熱能。此時,導熱層22便將 此熱忐從此發光二極體2的「内部」導引出來並傳導至外 界,如傳導至散熱膜層26。而在本實施例中,散熱膜層% 2〇為一一「電子共振穿遂式熱電薄膜」,且其具有一真空腔(圖 中未不)並利用里子力學之「電子穿遂效應」將熱能轉換為 ,流,即產生所謂的「熱電流」。接著,此「熱電流」便 藉由分別與散熱膜層26與第一電接觸部28ι電連接之電子 收集迴路291而被傳導至第一電接觸部281。 12 200840081 因此,本發明第一實施例之發光二極體2運作時所產生 的熱能便可回收利用並再次應用於驅動本發明第_實施例 之發光二極體2。也就是說,在本發明第一實施例之發光二 極體2中,那些原本無法再次利用而飄散於空間中的「熱能」 5可藉由散熱膜層26之轉換而變成電流的形式,而再次應"用 於驅動本發明第-實施例之發光二極體2。如此,即使在長 期運作後,本發明第一實施例之發光二極體2的溫度仍可: 持於-正常的範圍内,而不會發生過熱現象。也就是說, 即使在長期運作後,本發明第—實施例之發光二極體2的發 1〇 =結構並不會因為過熱現象的發生而被破壞,使得其發光 壽命可進一步延長,其發光效率亦可進一步提升,而其發 光亮度也更佳穩定。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-emitting diode, and more particularly to a light-emitting diode having a long light-emitting lifetime, a preferable light-emitting efficiency, and a relatively stable light-emitting luminance. [Prior Art] Light-emitting diodes (LEDs) have been widely used in various fields, such as backlight modules, lighting fixtures, and display lights. However, the thermal energy generated by the illumination of the 10 LEDs is often unable to be removed smoothly, and the temperature gradually increases with the increase of the use time, resulting in the gradual degradation of the luminous efficacy and the illuminating party. To this end, the industry is striving to develop various ways to remove thermal energy, such as various active heat sinks and passive heat sinks. Xiwangyue b effectively derives the heat energy accumulated inside the light-emitting diode to extend its luminous lifetime. As shown in FIG. 1, the conventional light-emitting diode 1 includes: a substrate u; a first semiconductor layer 12 which is placed on the surface of the substrate 11; An active layer 13 on the surface of the first semiconductor layer; a first half body layer 14 disposed on the surface of the active layer 13, and the second semiconductor layer 14 and the first semiconductor layer 12 sandwich the 20 / tongue layer 13 Between the first electrical contact portion 15 electrically connected to the substrate u; and a second electrical contact portion connected to the second semiconductor layer 14 of the 二u ^ ^ 〇 Hong The light-emitting diode 1 is further provided with an external circuit 17 electrically connected to the first electrical contact portion and the second electrical contact portion μ, 5 200840081 to pass a driving current from the outside to the first electrical contact. The portion 15 and the second electrical contact portion 16 are input to the conventional hair The diode 丨 is required for the operation of the conventional light-emitting diode 1. However, as described above, when the conventional light-emitting diode 1 operates, the active layer 513 generates light and simultaneously generates considerable heat energy, and these The heat energy is unable to be discharged; it gradually accumulates in the inside of the conventional light-emitting diode 2, causing the temperature of the conventional I-light body 1 to gradually rise. After the heat energy is accumulated to a certain extent, the light of the light-emitting body 1 is known. The structure is gradually destroyed, causing the brightness of the light-emitting body 1 of the 4 4 to gradually decrease, and finally no more light can be emitted. Therefore, the industry needs a temperature that can be maintained after a long period of operation. a light-emitting diode in a normal range, so that the light-emitting diode has a long light-emitting lifetime, a preferable light-emitting efficiency, and a relatively stable light-emitting brightness. 15 [ SUMMARY OF THE INVENTION The main object of the present invention is to provide a light-emitting diode. The light-emitting diode can extend the light-emitting lifetime of the light-emitting diode. Another object of the present invention is to provide a light-emitting diode which can increase the light-emitting efficiency of the light-emitting diode. And improving the brightness of the illuminating brightness. To achieve the above object, the illuminating diode of the present invention comprises: an earth plate 'the hot layer' is disposed on the surface of the substrate and has an opening; the semiconductor layer Provided on a portion of the surface of the heat conducting layer, and the first semiconductor layer is connected to the substrate by an opening; an active layer, 6 200840081 - is disposed in the first Feng Wei Qiao® - Biotech ^, a second semiconductor layer disposed on the surface of the active layer, wherein the second semiconductor layer and the first semiconductor layer sandwich the active layer therebetween; a heat dissipation film layer, a surface disposed on a portion of the heat conductive layer that is not covered by the first semiconductor layer; and an insulating 5 layer is formed on a surface of the heat conductive layer that is not covered by the first semiconductor layer and the heat dissipation film layer a first electrical contact portion electrically connected to the substrate; and a second electrical contact portion electrically connected to the second semiconductor layer. The light-emitting diode of the present invention comprises: a/substrate, a first semiconductor layer disposed on a surface of the substrate; and a conductive layer 10 disposed on the first semiconductor layer. The surface has an opening; an active layer is disposed on a portion of the surface of the thermally conductive layer, and the active layer is connected to the first semiconductor layer by the opening; a second semiconductor layer is disposed on the living layer a surface of the layer, and the second semiconductor layer and the first semiconductor layer sandwich the active layer therebetween; a heat dissipation film layer is disposed on the conductive layer of the conductive layer 15 and is not covered by the active layer a portion of the surface; an insulating layer formed on the portion of the thermally conductive layer that is not covered by the active layer and the heat-dissipating film layer, the first electrical contact portion is electrically connected to the first-semiconductor layer; And a second electrical contact portion electrically connected to the second semiconductor layer. Therefore, when the light-emitting diode of the present invention is operated, the 20-light diode of the present invention can guide the heat energy generated by the active layer from its "inside" to the outside by its heat-conducting layer, and then conduct it to the outside. This thermal energy is converted into a so-called "thermal current" by its heat dissipation film layer. Finally, the "thermal current" is conducted to the first electrical contact portion by an electron collecting circuit electrically connected to the first and second electrical contacts of the heat-dissipating film layer of the light-emitting diode of the present invention. Thus, 7 200840081 =:= The photodiode can recover the heat energy generated during its operation and then illuminate the light-emitting diode that drives the present invention. Therefore, after the positive-negative operation, the temperature of the light-emitting diode of the present invention can be maintained in the 5 c 15 20 hanging, the target circumference without overheating, and A is destroyed due to the occurrence of overheating. Its illuminating == light efficiency can be further improved' and its illuminating brightness is also better: 'Since the illuminating diode of the present invention can be made by the current industry (4) gauge: 乂, the illuminating diode of the present invention The process of the body H and the existing light-emitting diode has great compatibility, and can be widely applied to various inorganic or organic light-emitting diodes. The light-emitting diode of the present invention can have any kind of electrons collected back into a copper wire. The light-emitting diode of the present invention may have any earthen plate of mussels. The material thereof is preferably oxidized, single crystal, polycrystalline stone, amorphous stone, gallium antimonide, indium antimony, phosphating. Gallium indium or indium copper. The illuminating j pole body of the present invention may have a heat conducting layer of any material, which is preferably a film layer in which a diamond film and a metal (4) are superposed, a film layer formed by laminating a zinc oxide film and a metal film, or nitriding. A film layer in which a gallium film and a metal film are superposed on each other. The heat conducting layer of the light-emitting diode of the present invention may have any kind of structure which is more than a soil-metal mirror structure. The light-emitting diode of the present invention may have any of the first-semiconductor layers of the material f. The material thereof is preferably N-type gallium nitride, N-type indium antimonide, N-type lithiated gallium, N-type gallium, n The first semiconductor layer of the light-emitting diode of the present invention may have any one of the structures 'which preferably has a metal mirror structure. The light-emitting diode of the present invention may have an active layer of any material, which is preferably I(10) gallium indium. 8 200840081 •:: The light-emitting diode of Ming can have any second material of any material#, 材质 The material is preferably Ρ-type gallium nitride, ^ body 曰 h indium, P-type aluminum gallium arsenide, P-type arsenic Bismuth or P-type indium gallium phosphide. The heat dissipating film layer of the present invention is preferably one or two, and has any kind of " bulk thermoelectric film. The invention is two: two: = film or - semi-first first pile 勰Μ ^ and the hair-light body can have any kind of electric power contact 4, which is preferably a film electrode of the gold alloy alloy first diode There may be any second indium tin oxide film electrode of any kind. The invention /, the slave is 虱 Γ I (four), the material of which is 42: has any material. The photodiode can have any kind of external loop, and the light emitting diode of the present invention can have any kind of electronic retraction as a copper wire. The light-emitting diode of the present invention can have any substrate of the material of the shell, and the material of the material and the material of the shell can be made of aluminum, single crystal germanium, polycrystalline germanium, germanium, gallium arsenide, indium phosphide, phosphorus Indium gallium indium or indium copper selenide. The Ίδ light-polar body of the present invention may have any film formed by laminating iridium metal films: =:: preferably, the film of the diamond film and the S zinc oxide film and the metal film are stacked on each other. Or a film layer formed by laminating a gallium nitride film and a metal film. : The luminescence of Maoming—the polar body can have the first-semiconductor layer of any material, and the quality is preferably N-type gallium nitride, N-type dish indium, N-type Kunhua, and N-type =化===盖姻苏. The active layer of the light-emitting diode of the present invention may have any structure, which is preferably formed by stacking a plurality of gallium nitride ingots and a plurality of gallium nitride film layers. The second semiconductor layer of the light-emitting diode of the present invention may have any kind of structure, and preferably has a metal mirror junction 20 200840081. The light-emitting diode of the present invention may have a second semiconductor layer of any material, preferably P-type gallium nitride, p-type indium phosphide, P-type gallium arsenide aluminum, P-type stellite gallium or (four) Wei Jing. The light-emitting diode of the present invention may have any type of heat-dissipating film layer, which is preferably an electron resonance through-type thermoelectric film 5 or a semiconductor type thermoelectric thin film. The light-emitting diode of the present invention may have any kind of first-electric contact portion, which is preferably a thin film electrode of Mingshao alloy. The I-light body of the hair month may have any kind of second electrical contact portion, which is more than (4) oxidized sulphur tin film electrode. The light-emitting diode of the present invention may have an insulating layer of any material, and the material thereof is preferably oxidized stone, oxidized or nitrided. The hair of the hair of the moon may be of any kind, and it is preferably a copper wire. The light-emitting diode of the present invention may have any kind of germanium electron collecting circuit, which is preferably a copper wire. [Embodiment] 15 20 τ is shown in FIG. 2A and FIG. 2B , wherein FIG. 2 is a schematic cross-sectional view of the hair-diode of the first embodiment of the present invention, and FIG. 2B is a stereoscopic view of the same-light-emitting diode. Figure』. The light-emitting diode 2 of the first embodiment of the present invention comprises: a substrate 2, a heat-conducting layer 22 slanted on the surface of the substrate 21, and having an opening-the semiconductor layer provided on a part of the surface of the heat-conducting layer 22 Connected to the substrate 21 through the opening 221; the active layer 24 on the surface of -_, -3; a second semiconductor layer 25 disposed on the surface of the active layer μ, and the second semiconductor layer 23 sandwiches the active layer 24 Between the two; - the first layer of the first layer, cold ..., the layer 22 of the heat-dissipating film layer 26 of the surface of the 盍 quot 盍 · · 形成 形成 形成 形成 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 a sidewall layer 27 of a portion of the surface of the semiconductor layer 23 and the heat dissipation film layer 26; a first electrical contact portion 28 1 electrically connected to the substrate 21; and a second electrical contact portion electrically connected to the second semiconductor layer 25 282. In addition, in the embodiment, the material of the substrate 21 is a gallium arsenide 5 (N_type GaAs), and the substrate 21 is further provided with an N-type gallium nitride epitaxial layer (not shown) on the surface of the substrate 21. The N-type gallium nitride epitaxial layer (not shown) is disposed between the substrate 21 and the heat conductive layer 22. The heat conducting layer 22 is a gold alloy (Au/Be), which may also be a mirror layer, and the shape of the opening 221 may be rectangular, square or any other suitable shape depending on actual needs. On the other side, the first semiconductor layer 23 is made of N-type AlGalnP. The material of the second semiconductor layer 25 is p-type gallium arsenide y GaAs), and the material of the active layer 24 sandwiched between the first semiconductor layer 23 and the second semiconductor layer is I-type aluminum gallium indium phosphorus (I- Type AlGalnP), and the active layer 24 has a plurality of guantum weu structures. 15 . The heat dissipation film layer 26 disposed on a portion of the heat conduction layer 22 not covered by the first semiconductor layer 23 is an “electron resonance through-type thermoelectric film”, and the heat dissipation film layer 26 has a vacuum chamber ( FIG. Not shown). However, in different applications, the heat dissipation film layer 26 may also be a "semiconductor type thermoelectric film" and is not limited to an "electron resonance through-type thermoelectric film". The structure of "Electron-based 〇-type 热-type thermoelectric film" and "Semiconductor-type thermoelectric film" will be described later with reference to Figs. 3 and 4. Finally, among the light-emitting diodes, the material of the insulating layer 27 which forms part of the surface of the heat-conducting layer 22 which is not covered by the first semiconductor layer 23 and the heat-dissipating film layer is made of oxidized stone, and the first electrical contact portion 281 is 11 200840081 'film electrode of gold-nickel alloy, and second electrical contact portion 282 is an indium tin oxide film electrode. As shown in FIG. 2A and FIG. 2B, the light-emitting diode 2 of the first embodiment of the present invention is further provided with an electron collecting circuit 291 electrically connected to the diffusing layer 5 and the first electrical contact portion 281. A copper wire, the current (thermal current) obtained by converting the heat radiation film (10) from thermal energy is transferred to the fourth note (4), although in the present embodiment, the electron collecting circuit 291; the electric device, the electric contact portion 281 However, in different applications, the electron collecting circuit 291 can also be electrically connected to the first electrical contact portion 282 to transfer the current obtained by transferring the heat dissipating film layer % from the thermal energy to the second electrical contact portion 282. On the other hand, the LED 2 of the first embodiment of the present invention is also provided with an external circuit M2, which is connected to the first electrical contact portion 281 and the second electrical contact portion and is a copper substrate. The driving current from the outside is input to the light-emitting diode 15 2 of the first embodiment of the present invention via the first electrical contact portion 2 81 and the second electrical contact portion 282 for operation of the light-emitting diode 2 of the first embodiment of the present invention. Required. When the light-emitting diode 2 of the first embodiment of the present invention operates, its active layer j 24 generates light while generating considerable heat energy. At this time, the heat conductive layer 22 guides the heat from the "inside" of the light-emitting diode 2 and conducts it to the outside, such as to the heat-dissipating film layer 26. In the present embodiment, the heat dissipation film layer % 2 is an "electron resonance through-type thermoelectric film", and it has a vacuum chamber (not shown in the figure) and utilizes the "electron piercing effect" of the neutron mechanics. The heat energy is converted into a flow, that is, a so-called "thermal current" is generated. Then, the "thermal current" is conducted to the first electrical contact portion 281 by the electron collection circuit 291 electrically connected to the heat dissipation film layer 26 and the first electrical contact portion 28, respectively. 12 200840081 Therefore, the heat energy generated when the light-emitting diode 2 of the first embodiment of the present invention operates can be recycled and reused to drive the light-emitting diode 2 of the first embodiment of the present invention. That is, in the light-emitting diode 2 of the first embodiment of the present invention, the "thermal energy" 5 which is originally unable to be reused and floats in the space can be converted into a current by the conversion of the heat-dissipating film layer 26, and Again, it should be used to drive the light-emitting diode 2 of the first embodiment of the present invention. Thus, even after a long period of operation, the temperature of the light-emitting diode 2 of the first embodiment of the present invention can be maintained within the normal range without overheating. That is to say, even after long-term operation, the structure of the light-emitting diode 2 of the first embodiment of the present invention is not destroyed by the occurrence of overheating, so that the light-emitting lifetime can be further extended, and the light is emitted. The efficiency can be further improved, and the brightness of the light is also better and more stable.

需注意的是,構成本發明第—實施例之發光二極體2 各元㈣㈣均非以前述之材質輕,如基仙之材質 亚非以虱化鋁為限,其材質亦可為矽、矽鍺化合物、磷化 碳切、_化鎵或魏_。至於各元件可應用之材 質,分別如下列表丨所示,但各元件可應用之材質仍不以表 1所不之内容為限。 發光二極體之 各元件 基板 導熱層 可運用之材質 ΑΙΑ、Si、SiGe、Gap、Sic、GaAs、InP、〇1It should be noted that the components (4) and (4) of the light-emitting diode 2 constituting the first embodiment of the present invention are not lightly made of the foregoing materials, and the material of the base is not limited to the aluminum halide, and the material thereof may also be 矽,矽锗 compound, phosphating carbon cut, _ gallium or Wei _. As for the materials that can be applied to each component, they are shown in the following list, but the materials that can be applied to each component are not limited to the contents of Table 1. Each component of the light-emitting diode substrate Thermal conductive layer Available materials ΑΙΑ, Si, SiGe, Gap, Sic, GaAs, InP, 〇1

Sn、Diamond/Meta卜 ZnO/Meta卜 GaN/Metal ---~-:~--- _ N-typelnP、N-typeAlAs、N-typeAlGaAs、N-type 13 200840081Sn, Diamond/Meta ZnO/Meta GaN/Metal ---~-:~--- _ N-typelnP, N-typeAlAs, N-typeAlGaAs, N-type 13 200840081

GaAs、N-type GalnP、N-type GaN、N-type AlGalnP 活性層 InGaN/GaN、InGaAsP、InP、InGaAs、AlInP、SiGe、 Si、GalnP、AlGalnP 第二半導體層 P-type InP、P-type AlAs、P-type AlGaAs、P-type GaAs、P-type GalnP、P-type GaN、P-type AlGalnP 絕緣層 Si〇x、A1203、Si3N4 表1 如前所述,本發明第一實施例之發光二極體2之散熱膜 層26依據不同的應用,可為「電子共振穿遂式熱電薄膜」 5 或「半導體式熱電薄膜」’而這兩種熱電薄膜可應用的材 質則分別如下表2所示: 熱電薄膜之'種類 可運用之材質 電子共振穿隧式 熱電薄膜 Diamond thin film、Zn〇、SiC、GaN、Si〇2/Si/Si〇2 super-lattice 半導體式熱電薄 膜 ZnSb、PbTe、Bi2Te3、(Bi · Sb)2Te3、Bi2(Te · Se)3 表2 10 以下,將配合圖3及圖4,分別敘述這兩種熱電薄膜之 詳細結構,其中,圖3為一電子共振穿遂式熱電薄膜的示意 圖,而圖4則為一半導體式熱電薄膜的示意圖。 14 200840081 〇圖3所示,電子共振穿遂式熱電薄膜3包括一第一金 屬層31、一第二今Μ爲 —孟屬層32、-位於第-金屬層31之上表面 層33、—位於第二金屬層32之下表面的第二膜声 3二及複數個支標層35。其中’這些支撐層⑸系分別設‘ 於弟一膜層33與第二膜層34之間並形成一真空腔%於第一 膜層33與第:膜層34之間。此外,在本發明第—實施例之 發光二極體2之散熱膜層26中,第—金屬層31即為前述之導 心層22 $以第—金屬層31為—由鑽石膜與金屬膜相互疊 10 15 20 成之膜層另-方面,第二金屬層32之材質為錫紹合 金,第一膜層33及第二膜層34均為鑽石膜(Diam〇ndfiim), 支撐層35之材質則為氧化矽。 因此,萄本發明第一實施例之發光二極體2運作時,苴 =產生=熱能便藉由導熱層22而自發光二極體2的内部被 ,出至第一金屬層31,而第一金屬層31的溫度便因而升 高。此時,第-金屬層31所具有《r熱電子」便以共振穿 逐的方式而自第一金屬層31脫離,通過第一膜層”而進入 真空腔36中。接著,這些「熱電子」再通過第二膜層34而 進入第二金屬層32中,而產生前述之「熱電流」。如此, 此電子共振穿遂式熱電薄膜3便可將「熱能」轉換為前述之 厂熱電流」。 如圖4所示,半導體式熱電薄膜4包括複數個第一金屬 層41及複數個第二金屬層42,且這些第一金屬層4ι及第二 金屬層42係互相電連接並交替地排列。其中,第一金屬層 41及第一金屬層42係由相同種類的材質構成,但兩者所摻 15 200840081 -入之雜質的種類並不相同。例如,若第一金屬層4iap型碲 化鉍(P-type B^TeJ時,第二金屬層42便為N型碲化鉍 (N-type BhTe3)。此外,半導體式熱電薄膜4係設置於一熱 源(Heatsource)43與一熱庫(Heatsink)44之間,且半導體式 5熱電薄膜4之兩端分別電連接於一導線(圖中未示),以將半 V體式熱電薄膜4由熱能轉換而得到的電流導出。 因此,若使用半導體式熱電薄膜4做為本發明第一實施 例之發光二極體2之散熱膜層26時,本發明第一實施例之發 光一極體2運作時所產生的熱能便藉由導熱層^而自發光 1〇二極體2的内部被導出至外界,如熱源43。此時,熱源43的 溫度便+因而升高,使得第一金屬層41及第二金屬層U之間 產生「電流」,即派提耶赫效應(peltierEffect)的反向反應。 如此,此半導體式熱電薄膜4便可將「熱能」轉換為前述之 「熱電流」。 月,閱圖5A及圖5B,其中圖5A係顯示本發明第一實施 例之务光一極體的溫度隨著其發光時間之變化的示意圖, j圖5B則為顯示本發明第一實施例之發光二極體的亮度隨 著,、卷光日守間之交化的示意圖。此外,在圖5 A及圖π中, 曲線A係代表白知之發光二極體的量測結果(溫度及亮 2〇度),曲線B則代表本發明第一實施例之發光二極體的量測 結果(溫度及亮度)。 如圖5A所示,在經過一段時間u的持續運作後,習知 之發光二極體的溫度(曲線A)仍然持續地增加,且其並沒有 上限值(upper llrmt)。相反地,即使經過一較長時間η的 16 200840081 持續運作後,本發明第—實施例之發光二 B)仍然維持在一相對較 h皿度(曲線 穩定的數值(上限值)::=且其溫度逐漸地趨向-㈣楚一 Λ· / , 相較於習知之發光二極體,本 \ , η ^之發光二極體的溫度可在長時間的運作 後’仍然保持在一相對較低 、, &上L ^ 低的數值亚處於一較為穩定的狀 恶。Π此,本發明第一實施例之發二 ^ T ^ „ 一極體的奄光結構便 了持繽正“運作亚因而延長其發光壽命。 另„方面’如圖5Β所示’在經過-段時間t3的持續運 < ’習知之發光二極體的亮度(曲線A)會在到達一最高點 後反而持續地降低,且其並沒有—下限值。此 15 20 -現象的成因在於’在經過這一段時間的持續運作後,習 知之發光二極體的發光結構便因為熱能的累積而逐漸地被 破壞’使得習知之發光二極體的亮度逐漸地降低。相反地, 本發明第-實施例之發光二極體在經過相同—段時間⑽ 運作後,本發明第-實施例之發光二極體的亮度(曲線_ 然持續地增加,且在操作達另一較長時間_,其亮度便 趨向一穩定值。因此,相較於習知之發光二極體,本發明 第一貫施例之發光二極體的亮度可在長時間的運作後,依 然保持在一較高的數值及處於一較為穩定的狀態,使得本 發明第一實施例之發光二極體的亮度更加穩定,且其發光GaAs, N-type GalnP, N-type GaN, N-type AlGalnP active layer InGaN/GaN, InGaAsP, InP, InGaAs, AlInP, SiGe, Si, GalnP, AlGalnP Second semiconductor layer P-type InP, P-type AlAs , P-type AlGaAs, P-type GaAs, P-type GalnP, P-type GaN, P-type AlGalnP insulating layer Si〇x, A1203, Si3N4 Table 1 As described above, the first embodiment of the present invention The heat dissipating film layer 26 of the polar body 2 may be an "electron resonance through-type thermoelectric film" 5 or a "semiconductor thermoelectric film" according to different applications, and the materials applicable to the two kinds of thermoelectric films are as shown in Table 2 below. : Thermoelectric Thin Films' Types of Materials: Electron Resonant Tunneling Thermoelectric Thin Films, Diamond Thin Film, Zn, SiC, GaN, Si〇2/Si/Si〇2 super-lattice Semiconductor Thermoelectric Thin Films ZnSb, PbTe, Bi2Te3, (Bi · Sb) 2Te3, Bi2 (Te · Se) 3 Table 2 10 Hereinafter, the detailed structure of the two kinds of thermoelectric thin films will be described with reference to FIG. 3 and FIG. 4 , wherein FIG. 3 is an electron resonance through-type thermoelectric device. A schematic view of the film, and FIG. 4 is a schematic view of a semiconductor thermoelectric film. 14 200840081 As shown in FIG. 3, the electron resonance through-type thermoelectric film 3 includes a first metal layer 31, a second metal layer, and a surface layer 33 on the first metal layer 31. A second film sound 3 2 and a plurality of branch layers 35 are located on the lower surface of the second metal layer 32. Wherein the support layers (5) are respectively disposed between the first film layer 33 and the second film layer 34 and form a vacuum chamber between the first film layer 33 and the first film layer 34. In addition, in the heat dissipation film layer 26 of the light-emitting diode 2 of the first embodiment of the present invention, the first metal layer 31 is the aforementioned core layer 22, and the first metal layer 31 is made of a diamond film and a metal film. The first metal layer 32 is made of a tin-sand alloy, and the first film layer 33 and the second film layer 34 are both diamond films (Diam〇ndfiim), and the support layer 35 is laminated on the other side. The material is yttrium oxide. Therefore, when the light-emitting diode 2 of the first embodiment of the present invention operates, 苴=generation=thermal energy is emitted from the inside of the light-emitting diode 2 through the heat-conducting layer 22 to the first metal layer 31, and The temperature of a metal layer 31 is thus increased. At this time, the "r hot electron" of the first metal layer 31 is detached from the first metal layer 31 by the resonance passage, and enters the vacuum chamber 36 through the first film layer. Then, these "hot electrons" Then, the second film layer 34 is passed through the second film layer 34 to generate the aforementioned "thermal current". Thus, the electronic resonance through-type thermoelectric film 3 can convert "thermal energy" into the aforementioned factory thermal current. As shown in Fig. 4, the semiconductor thermoelectric film 4 includes a plurality of first metal layers 41 and a plurality of second metal layers 42, and the first metal layers 4 and 42 are electrically connected to each other and alternately arranged. The first metal layer 41 and the first metal layer 42 are made of the same type of material, but the types of impurities do not differ. For example, in the case of the first metal layer 4iap type germanium telluride (P-type B^TeJ, the second metal layer 42 is N-type BhTe3). Further, the semiconductor type thermoelectric film 4 is provided in A heat source 43 and a heatsink 44 are disposed, and two ends of the semiconductor 5 thermoelectric film 4 are electrically connected to a wire (not shown) to heat the half V bulk thermoelectric film 4 from heat. The current obtained by the conversion is derived. Therefore, when the semiconductor type thermoelectric film 4 is used as the heat dissipation film layer 26 of the light-emitting diode 2 of the first embodiment of the present invention, the light-emitting diode 2 of the first embodiment of the present invention operates. The heat generated by the heat conduction layer is led out from the inside of the light-emitting diode 2 to the outside, such as the heat source 43. At this time, the temperature of the heat source 43 is thus increased, so that the first metal layer 41 A "current", that is, a reverse reaction of the peltier effect, is generated between the second metal layer U. Thus, the semiconductor thermoelectric film 4 can convert "thermal energy" into the aforementioned "thermal current". 5A and 5B, wherein FIG. 5A shows the first embodiment of the present invention FIG. 5B is a schematic view showing the brightness of the light-emitting diode according to the first embodiment of the present invention, and the intersection of the light-keeping time of the light-emitting diode according to the first embodiment of the present invention. In addition, in FIG. 5A and FIG. π, the curve A represents the measurement result (temperature and brightness 2) of the light-emitting diode of Baizhi, and the curve B represents the light-emitting diode of the first embodiment of the present invention. The measurement results (temperature and brightness). As shown in Fig. 5A, after a period of time u, the temperature of the conventional light-emitting diode (curve A) continues to increase, and there is no upper limit. (upper llrmt). Conversely, even after a long period of time η16 200840081 continues to operate, the illuminating two B) of the first embodiment of the present invention is maintained at a relatively high degree (the curve is stable (the upper limit) Value)::= and its temperature gradually tends to - (4) Chu Yizhen · /, compared to the conventional light-emitting diode, the temperature of the \, η ^ light-emitting diode can be used after a long period of operation Keeping at a relatively low, & L ^ low value is in one The relatively stable appearance of the first embodiment of the present invention, the dimming structure of the two-electrode body of the first embodiment of the present invention maintains its luminescence lifetime. The brightness of the luminous diode (curve A) of the conventional light-emitting diode shown in the above-mentioned period of time t3 is continuously lowered after reaching a highest point, and it has no lower limit value. 20 - The cause of the phenomenon is that 'after the continuous operation of this period of time, the light-emitting structure of the conventional light-emitting diode is gradually destroyed by the accumulation of heat energy', so that the brightness of the conventional light-emitting diode is gradually lowered. In contrast, the luminance of the light-emitting diode of the first embodiment of the present invention is continuously increased after the same period of time (10) operation of the light-emitting diode of the first embodiment of the present invention, and the operation is up to another For a long time, the brightness tends to a stable value. Therefore, compared with the conventional light-emitting diode, the brightness of the light-emitting diode of the first embodiment of the present invention can be maintained after a long period of operation. At a relatively high value and in a relatively stable state, the brightness of the light-emitting diode of the first embodiment of the present invention is more stable and the light is emitted.

效率也更佳。 ^ X 圖6係本發明第二實施例之發光二極體的剖面示意 圖,其中本發明第二實施例之發光二極體6包括:一基板 61 ; —設置於基板61之表面的導熱層62,其並具有一二口 17 200840081 - (圖中未示);一設置於導熱層62之部分表面的第一半導體層 63,且第一半導體層63藉由開口(圖中未示)而與基板^^ 接,。又置於弟一半導體層63之表面的活性層μ ; 一設置 於活性層64之表面的第二半導體層65,且第二半導體層μ 5與第一半導體層63將活性層64夾置於兩者之間;一設置於 導熱層62之未被第一半導體層63覆蓋之部分表面的散熱膜 層66; —形成於導熱層62之未被第一半導體層幻與散熱膜 層66覆蓋之部分表面的絕緣層67 ; —電連接於基板61的第 一電接觸部681 ;以及一電連接於第二半導體層。的第二電 10 接觸部682。 此外,本發明第二實施例之發光二極體6更設置有一電 子收集迴路691,其係電連接於散熱膜層66及第一電接觸2 681並為一銅導線,以將散熱膜層66從熱能轉換而得到的電 流(熱電流)傳遞至第一電接觸部68丨。需注意的是,雖然在 15本實施例中,電子收集迴路691係電連接於第一電接觸部 681,但在不同的應用中,電子收集迴路69丨亦可電連接於 〇 第二電接觸部6δ2,以將散熱膜層66從熱能轉換而得到的電 級傳遞至第二電接觸部682。另一方面,本發明第二實施例 之發光二極體6亦設置有一外部迴路692,其係電連接於第 20 一電接觸部68丨及第二電接觸部682並為一銅導線,以將一 來自外界的驅動電流經由第一電接觸部68丨及第二電接觸 部682輸入至本發明第二實施例之發光二極體6,供得本發 明第二實施例之發光二極體6運作所需。 a 18 200840081 一 ^除此=外,本發明第二實施例之發光二極體ό更設置有 帝二子電谷693,其係電連接於電子收集迴路691,且儲存 、包谷693適用於將散熱膜層以之從熱能轉換而得到的「熱電 流」儲存於其中。 5 田本發明第二實施例之發光二極體6運作時,其活性層 64產生光線並同時產生可觀的熱能。此時,導熱層62便將 此一熱能從此發光二極體6的「内部」導引出來並傳導至外 界^傳導至散熱膜層66。而在本實施例中,散熱膜層% 二、電子,、振牙遂式熱電薄膜」,且其並具有一真空腔(圖 ::不)亚利用夏子力學之「電子穿遂效應」將熱能轉換為 ,流’即產生所謂的「熱電流」。接著,此「熱電流」便 藉由分別與散熱膜層66與第一電接觸部681電連接之電子 收集迴路691而被傳導至儲存電容693或第一電接觸部⑻。 口此,本發明第二貫施例之發光二極體6除了具有與本 t月第μ施例之發光二極體2相同的優點以外,其儲存電 令693更使侍本發明第二實施例之發光二極體6可在不需要 卜"驅動私*的’丨月況下,利用儲存於儲存電容中的電流 持續地運作。也就是說,即使在外界驅動電流不穩定的情 況下,本發明第二實施例之發光二極體6仍可以持續且穩定 20 地運作。 如圖7Α及圖7Β所示,其中圖7八係本發明第三實施例之 發光二極體的剖面示意圖,圖7Β係同一發光二極體的立體 示意圖。本發明第三實施例之發光二極體7包括:一基板 71 ; —設置於基板71之表面的第—半導體層72; 一設置於 19 200840081 第-半導體層72之表面並具有一開口⑶的 73 置於導熱心之部分表面的活性層74,且活性層Μ藉由開 5 二31而契帛半導體層72連接;一設置於活性層%之表面 導體層75 ’且第二半導體層75與第-半導體層72 二性層74夾置於兩者之間;一設置於導熱層73之未被活 性^覆蓋之部分表面的散熱膜層76; 一形成於導熱層Μ 之被::生層74與散熱膜層76覆蓋之部分表面的絕緣層 Γ 77 料於第—半導體層72的第一電接觸部I以及 10 電連接於弟:半導體層75的第:電接觸部782。 丰導:Γ在本貫施例中,基板71之材質為氧化鋁,第- 之材質物氮化鎵。另-方面,導熱層73為- =曝屬膜相互疊合而成之膜層,且開 可依據實際需要而為具古W ^ _ 狀 狀。第11^心' 形或其他任何適當的形 15 75呈材質為Ρ型氮化鎵,且第二半導體層 75具有一金屬反射鏡結構於其中。另-方面,夾置於第— r:體二72與第二半導體層75之間的活性層 ㈣具有複數個量子井(quantumwell)結構。成❹ 至於設置於導執爲 20 的散熱膜層76, Μ :未破活性層74覆蓋之部分表面 電子共振穿遂式熱電薄膜」,且 中,散熱膜層76亦可為-「半㈣式熱電薄膜」, 限=—“電子共振穿遂式熱電薄膜」。此外,、由於此 熱甩祕之坪細結構已詳細敘述於前,在此便不再費述。 20 200840081 最後,在此發光二極體7中,形成於導熱層73之未被活 性層74與散熱膜層76覆蓋之部分表面的絕緣層了了之材質為 氧化矽,且第一電接觸部781為鉈鋁合金之薄膜電極,而第 二電接觸部782為氧化銦錫薄膜電極。 5 f丨 10 15 20 一再如圖7Α及圖7Β所示,本發明第三實施例之發光二極 體7更設置有—電子收集迴路791,其係電連接於散熱膜層 ^及第一電接觸部781並為一銅導線,以將散熱膜層%從熱 月b轉換而付到的電流(熱電流)傳遞至第一電接觸部π 1。需 庄:的疋,雖然在本貫施例中,電子收集迴路791係電連接 於第一電接觸部781,但在不同的應用中,電子收集迴路79ι 亦可电連接於第—電接觸部782,以將散熱膜層%從熱能轉 換而:到的電流傳遞至第二電接觸部782。另一方面,本發 明第三實施例之發光二極體7亦設置有一外部迴路792, ^ 係電連接於第—電接觸部781及第二電接觸部—並為一銅 々導線’以將一來自外界的驅動電流經由第-電接觸部781及 弟二電接觸部782輸人至本發明第三實施例之發光二極體 7’供本發明第三實施例之發光二極體7運作所需。 當本發明第三實施例之發光二極體7運作時,其活性層 :谨:光線並同時產生可觀的熱能。此時,導熱層職 發光二極體7的「内部」導引出來並傳導至外 傳導至散熱膜層76。而在本實施例中,散熱膜層% ;電子共振穿遂式熱電薄膜」’且其具有一真空 帝治卩丈 電子牙逐效應」將熱能轉換為 兒/’IL ’即產生所謂的「執雪 熱電极」。接著,此「熱電流」便 21 200840081 - 藉由分別與散熱膜層76與第一電接觸部78丨電連接之電子 收集迴路791而被傳導至第一電接觸部mi。 因此,本發明第三實施例之發光二極體7運作時所產生 的熱能便可回收利用並再次.應用於驅動本發明第三實施例 5之發光二極體7。也就是說,在本發明第三實施例之發光二 極體7中,那些原本無法再次利用而飄散於空間中的「熱能」 可藉由散熱膜層76之轉換而變成電流的形式,而再次應用 於驅動本發明第三實施例之發光二極體7。如此,即使在長 期運作後,本發明第三實施例之發光二極體7的溫度仍可保 10持於一正常的範圍内,而不會發生過熱現象。也就是說, 即使在長期運作後,本發明第三實施例之發光二極體7的發 光結構並不會因為過熱現象的發生而被破壞,使得其發光 哥命可進一步延長,其發光效率亦可進一步提升,而其發 光亮度也更佳穩定。 15 圖8係本發明第四實施例之發光二極體的剖面示意 圖’其中本發明第四實施例之發光二極體8包括:一基板 L) 81,一設置於基板81之表面的第一半導體層82; —設置於 第一半導體層82之表面並具有一開口(圖中未示)的導熱層 83 ; —設置於導熱層83之部分表面的活性層84,且活性層 20 84藉由開口(圖中未示)而與第一半導體層82連接;一設置於 活性層84之表面的第二半導體層μ,且第二半導體層μ與 第一半導體層82將活性層84夾置於兩者之間;一設置於導 熱層83之未被活性層84覆蓋之部分表面的散熱膜層86 ; 一 形成於導熱層83之未被活性層84與散熱膜層86覆蓋之部分 22 200840081 表面的絕緣層87 觸部881 ;以及— 882 〇 ;一電連接於第一半導體層82的第一電接 電連接於第二半導體層85的第二電接觸部 10 15The efficiency is also better. Figure 6 is a schematic cross-sectional view of a light-emitting diode according to a second embodiment of the present invention, wherein the light-emitting diode 6 of the second embodiment of the present invention comprises: a substrate 61; a heat conducting layer 62 disposed on the surface of the substrate 61. And having a first port 17 200840081 - (not shown); a first semiconductor layer 63 disposed on a portion of the surface of the heat conducting layer 62, and the first semiconductor layer 63 is opened by an opening (not shown) The substrate is connected. An active layer μ placed on the surface of the semiconductor layer 63; a second semiconductor layer 65 disposed on the surface of the active layer 64, and the second semiconductor layer 51 and the first semiconductor layer 63 sandwich the active layer 64 Between the two; a heat dissipating film layer 66 disposed on a portion of the heat conducting layer 62 that is not covered by the first semiconductor layer 63; being formed on the heat conducting layer 62 without being covered by the first semiconductor layer and the heat dissipating film layer 66 a portion of the surface of the insulating layer 67; - a first electrical contact 681 electrically connected to the substrate 61; and an electrical connection to the second semiconductor layer. The second electric 10 contact portion 682. In addition, the LED 6 of the second embodiment of the present invention is further provided with an electron collecting circuit 691 electrically connected to the heat dissipation film layer 66 and the first electrical contact 2 681 and being a copper wire to heat the film layer 66. The current (thermal current) obtained from the thermal energy conversion is transmitted to the first electrical contact portion 68A. It should be noted that although in the present embodiment, the electron collecting circuit 691 is electrically connected to the first electrical contact portion 681, in different applications, the electron collecting circuit 69 can also be electrically connected to the second electrical contact. The portion 6δ2 transmits the electric level obtained by converting the heat dissipation film layer 66 from the thermal energy to the second electrical contact portion 682. On the other hand, the LED 6 of the second embodiment of the present invention is also provided with an external circuit 692 electrically connected to the 20th electrical contact portion 68 and the second electrical contact portion 682 and is a copper wire. A driving current from the outside is input to the light emitting diode 6 of the second embodiment of the present invention via the first electrical contact portion 68 and the second electrical contact portion 682, and the light emitting diode of the second embodiment of the present invention is provided. 6 required for operation. A 18 200840081 In addition to the above, the light-emitting diode of the second embodiment of the present invention is further provided with an electric two-pole valley 693, which is electrically connected to the electron collecting circuit 691, and the storage and the valley 693 are suitable for dissipating heat. The "thermal current" obtained by converting the film from thermal energy is stored therein. 5 When the light-emitting diode 6 of the second embodiment of the present invention operates, the active layer 64 generates light while generating considerable thermal energy. At this time, the heat conducting layer 62 guides the heat energy from the "inside" of the light emitting diode 6 and conducts it to the outside to be conducted to the heat radiating film layer 66. In the present embodiment, the heat dissipating film layer is 2%, the electron, and the vibrating 热 type thermoelectric film, and it has a vacuum cavity (Fig.: No). The thermal energy is utilized by the "electron piercing effect" of Xia Zi mechanics. Converting to , stream 'is a so-called "thermal current". Then, the "thermal current" is conducted to the storage capacitor 693 or the first electrical contact portion (8) by the electron collecting circuit 691 which is electrically connected to the heat-dissipating film layer 66 and the first electrical contact portion 681, respectively. In addition, the light-emitting diode 6 of the second embodiment of the present invention has the same advantages as the light-emitting diode 2 of the present embodiment of the present invention, and the storage device 693 further enables the second embodiment of the invention. For example, the light-emitting diode 6 can continuously operate using the current stored in the storage capacitor without the need to drive the private*. That is, the light-emitting diode 6 of the second embodiment of the present invention can be operated continuously and stably 20 even in the case where the external driving current is unstable. 7A and 7B, FIG. 7 is a schematic cross-sectional view of a light-emitting diode according to a third embodiment of the present invention, and FIG. 7 is a perspective view of the same light-emitting diode. The light-emitting diode 7 of the third embodiment of the present invention comprises: a substrate 71; a first semiconductor layer 72 disposed on the surface of the substrate 71; a surface disposed on the surface of the first semiconductor layer 72 of 19 200840081 and having an opening (3) 73 an active layer 74 disposed on a portion of the surface of the heat conductive core, and the active layer 连接 is connected by the semiconductor layer 72 by opening 5 2 31; a surface conductor layer 75 ′ disposed on the active layer % and the second semiconductor layer 75 The first semiconductor layer 72 is sandwiched between the two layers; a heat dissipating film layer 76 disposed on a portion of the heat conducting layer 73 that is not covered by the active layer; and a thermal layer formed on the heat conducting layer: The insulating layer 74 77 of the surface covered by the heat dissipation film layer 76 is electrically connected to the first electrical contact portions I and 10 of the first semiconductor layer 72 to be electrically connected to the first: electrical contact portion 782 of the semiconductor layer 75. Feng guide: In the present embodiment, the material of the substrate 71 is alumina, and the material of the first material is gallium nitride. On the other hand, the heat-conducting layer 73 is a film layer in which - = exposed films are superposed on each other, and the opening can be an ancient W ^ _ shape according to actual needs. The 11th core shape or any other suitable shape 15 75 is made of germanium-type gallium nitride, and the second semiconductor layer 75 has a metal mirror structure therein. On the other hand, the active layer (4) sandwiched between the -r:body 2 72 and the second semiconductor layer 75 has a plurality of quantum well structures. As for the heat dissipation film layer 76 disposed on the guide 20, Μ: a portion of the surface electron resonance through-type thermoelectric film covered by the unbreakable active layer 74, and the heat dissipation film layer 76 may also be - "half (four) type Thermoelectric film", limited = "electron resonance through-type thermoelectric film". In addition, since the fine structure of this hot and secret has been described in detail, it will not be described here. 20 200840081 Finally, in the light-emitting diode 7, the insulating layer formed on the surface of the heat-conducting layer 73 which is not covered by the active layer 74 and the heat-dissipating film layer 76 is made of yttrium oxide, and the first electrical contact portion 781 is a thin film electrode of tantalum aluminum alloy, and second electrical contact portion 782 is an indium tin oxide thin film electrode. 5 f丨10 15 20 As shown in FIG. 7A and FIG. 7B, the LED 6 of the third embodiment of the present invention is further provided with an electron collecting circuit 791 electrically connected to the heat dissipation film layer and the first electricity. The contact portion 781 is a copper wire, and the current (thermal current) to which the heat radiation film layer % is converted from the heat month b is transmitted to the first electrical contact portion π 1 . In the present embodiment, the electron collecting circuit 791 is electrically connected to the first electrical contact portion 781, but in different applications, the electron collecting circuit 791 may be electrically connected to the first electrical contact portion. 782. The current that is converted from the thermal energy of the heat dissipation film layer is transferred to the second electrical contact portion 782. On the other hand, the LED 6 of the third embodiment of the present invention is also provided with an external circuit 792, which is electrically connected to the first electrical contact portion 781 and the second electrical contact portion, and is a copper wire conductor. A driving current from the outside is input to the light-emitting diode 7' of the third embodiment of the present invention via the first-electrode contact portion 781 and the second electrical contact portion 782 for operation of the light-emitting diode 7 of the third embodiment of the present invention. Required. When the light-emitting diode 7 of the third embodiment of the present invention operates, its active layer: light: and at the same time produces considerable thermal energy. At this time, the "inner" of the thermal conductive layer LED 7 is guided out and conducted to the outside to the heat dissipation film layer 76. In the present embodiment, the heat-dissipating film layer %; the electron resonance through-type thermoelectric film "and has a vacuum emperor's electronic tooth-to-effect" converts thermal energy into children's 'IL', which is the so-called "execution" Snow hot electrode." Then, the "thermal current" 21 200840081 is conducted to the first electrical contact portion mi by an electron collecting circuit 791 electrically connected to the first heat contact portion 76 and the first electrical contact portion 78, respectively. Therefore, the heat energy generated by the operation of the light-emitting diode 7 of the third embodiment of the present invention can be recycled and used again to drive the light-emitting diode 7 of the third embodiment of the present invention. That is, in the light-emitting diode 7 of the third embodiment of the present invention, the "thermal energy" which is originally unable to be reused and floats in the space can be converted into a current by the conversion of the heat-dissipating film layer 76, and again It is applied to the light-emitting diode 7 of the third embodiment of the present invention. Thus, even after a long period of operation, the temperature of the light-emitting diode 7 of the third embodiment of the present invention can be maintained within a normal range without overheating. That is to say, even after long-term operation, the light-emitting structure of the light-emitting diode 7 of the third embodiment of the present invention is not destroyed by the occurrence of overheating, so that the luminous life of the light-emitting diode can be further extended, and the luminous efficiency thereof is also improved. It can be further improved, and its illuminance is also better and more stable. 15 is a schematic cross-sectional view of a light-emitting diode according to a fourth embodiment of the present invention. The light-emitting diode 8 of the fourth embodiment of the present invention includes: a substrate L) 81, a first surface disposed on the surface of the substrate 81. a semiconductor layer 82; a heat conductive layer 83 disposed on a surface of the first semiconductor layer 82 and having an opening (not shown); an active layer 84 disposed on a portion of the surface of the heat conductive layer 83, and the active layer 20 84 An opening (not shown) is connected to the first semiconductor layer 82; a second semiconductor layer μ disposed on the surface of the active layer 84, and the second semiconductor layer μ and the first semiconductor layer 82 sandwich the active layer 84 Between the two; a heat dissipating film layer 86 disposed on a portion of the heat conducting layer 83 not covered by the active layer 84; a portion 22 of the heat conducting layer 83 not covered by the active layer 84 and the heat dissipating film layer 82 200840081 surface The insulating layer 87 has a contact portion 881; and - 882 〇; a first electrical contact electrically connected to the first semiconductor layer 82 is electrically connected to the second electrical contact portion 10 15 of the second semiconductor layer 85

20 此外本务明第四實施例之發光二極體8更設置有一電 子收本迎路89卜其係電連接於散熱膜層%及第一電接觸部 881亚為-銅導線,以將散熱膜層%從熱能轉換而得到的電 流淡電流)傳遞至第一電接觸部881。需ί主意的A,雖然在 本實施例中,電子收集迴路891係電連接於第一電接觸部 =1仁在不同的應用中,電子收集迴路891亦可電連接於 第一電接觸部882,以將散熱膜層86從熱能轉換而得到的電 流傳遞至第二電接觸部882。另—方面,本發明第四實施例 之發光二極體8亦設置有一外部迴路892,其係電連接於第 -電接_81及第二電接觸部882並為一銅導線,以將一 來自外界的驅動電流經由第一電接觸部881及第二電接觸 部882輸入至本發明第四實施例之發光二極體8,供得本發 明第四實施例之發光二極體8運作所需。除此之外,本發; 第四實施例之發光二極體8更設置有一儲存電容893,^係 電連接於電子收集迴路891,且儲存電容893適用於將散熱 膜層86之從熱能轉換而得到的「熱電流」儲存於其中。 當本發明第四實施例之發光二極體8運作時,其活性層 84產生光線並同時產生可觀的熱能。此時,導熱層μ便將 此一熱能從此發光二極體8的「内部」導引出來並傳導至外 界’如傳導至散熱艇層86。而在本實施例中,散熱膜層% 為一「電子共振穿遂式熱電薄膜」,且其並具有一真空腔(圖 23 200840081 .2示)並利用量子力學之「電子穿遂效應」將熱能轉換為 !流,即產生所謂的「熱電流」。接著,此「熱電流」J 稭由分別與散熱膜層86與第一電接觸部88ι電連接之電 收集迴路891而被傳導至儲存電容893或第—電接觸部:。 5 因此,本發明第四實施例之發光二極體8除了具有與本 ,明第三實施例之發光二極體7相同的優點以外,其儲存電 容893更使得本發明第四實施例之發光二極體8可在不需要 〇 外界驅動電流的情況下,利用儲存於儲存電容893中的電流 持績地運作。也就是說,即使在外界驅動電流不穩定的情 10況下,本發明第四實施例之發光二極體8仍可以持續且穩定 地運作。 〜 綜上所述,當本發明之發光二極體運作時,將本發明 之發光二極體可將其活性層所產生的熱能利用其導熱^從 其「内部」導引出來並傳導至外界,再藉由其散熱膜層將 15 ,熱能轉換為所謂的「熱電流」。最後,此「熱電流」便 f 藉=分別與本發明之發光二極體之散熱膜層與第一電接觸 ^ 部電連接之電子收集迴路被傳導至其第一電接觸部。如 此,本發明之發光二極體可將其運作時所產生的熱能回收 再利用而再次應用於驅動本發明之發光二極體發光。所 以即使在長期運作後,本發明之發光二極體的溫度仍可 保持於一正常的範圍内而不會發生過熱現象,其發光結構 便不會因為過熱現象的發生而被破壞,使得其發光壽命可 進一步延長,其發光效率亦可進一步提升,而其發光亮度 也更佳穩定。此外,由於本發明之發光二極體可藉由目前 24 200840081 • 業界所使用之各種製程機台製作而成,所以本發明之發光 二極體的製程與現有發光二極體之製程具有極大的=容 生,且可廣泛地應用於各種無機或有機之發光二極體中。 上述實施例僅係為了方便說明而舉例而已,本發明所 5主張之權利範圍自應以申請專利範圍所述為準,而非僅限 於上述貫施例。 【圖式簡單說明】 圖1係習知之發光二極體的示意圖。 10圖2A係本發明第一實施例之發光二極體的剖面示意圖。 圖2B係本發明第一實施例之發光二極體的立體示意圖。 圖3係一電子共振穿遂式熱電薄膜的示意圖。 圖4係一半導體式熱電薄膜的示意圖。 圖5A係顯示本發明第一實施例之發光二極體的溫度隨著其 15 舍光日守間之變化的示意圖。 圖5B係顯示本發明第一實施例之發光二極體的亮度隨著其 ^光日守間之變化的示意圖。 圖6係本發明第二實施例之發光二極體的剖面示意圖。 圖7A係本發明第三實施例之發光二極體的剖面示意圖。 2〇圖7B係本發明第三實施例之發光二極體的立體示意圖。 圖8係本發明第四實施例之發光二極體的剖面示意圖。 【主要元件符號說明】 12第一半導體層 發光二極體 11基板 25 200840081 13活性層 16第二電接觸部 21基板 23第一半導體層 26散熱膜層In addition, the light-emitting diode 8 of the fourth embodiment of the present invention is further provided with an electronic receiving circuit 89, which is electrically connected to the heat-dissipating film layer % and the first electrical contact portion 881 is a copper wire to dissipate heat. The current of the film layer % from the thermal energy conversion is transferred to the first electrical contact portion 881. In the present embodiment, the electron collecting circuit 891 is electrically connected to the first electrical contact portion =1. In different applications, the electron collecting circuit 891 can also be electrically connected to the first electrical contact portion 882. The current obtained by converting the heat dissipation film layer 86 from the thermal energy is transmitted to the second electrical contact portion 882. On the other hand, the LED 8 of the fourth embodiment of the present invention is also provided with an external circuit 892 electrically connected to the first electrical connection _81 and the second electrical contact 882 and is a copper wire to The driving current from the outside is input to the light-emitting diode 8 of the fourth embodiment of the present invention via the first electrical contact portion 881 and the second electrical contact portion 882, and the light-emitting diode 8 of the fourth embodiment of the present invention is operated. need. In addition, the light-emitting diode 8 of the fourth embodiment is further provided with a storage capacitor 893 electrically connected to the electron collecting circuit 891, and the storage capacitor 893 is adapted to convert the heat-dissipating film layer 86 from thermal energy. The resulting "thermal current" is stored therein. When the light-emitting diode 8 of the fourth embodiment of the present invention operates, the active layer 84 generates light while generating considerable heat energy. At this time, the heat conducting layer μ guides the heat energy from the "inside" of the light emitting diode 8 and conducts it to the outer side as conducted to the heat sink layer 86. In the present embodiment, the % of the heat dissipation film layer is an "electron resonance through-type thermoelectric film", and it has a vacuum chamber (shown in FIG. 23 200840081 .2) and utilizes the "electron piercing effect" of quantum mechanics. The conversion of thermal energy into a ! stream produces a so-called "thermal current". Then, the "thermal current" J is conducted to the storage capacitor 893 or the first electrical contact portion by the electric collection circuit 891 electrically connected to the heat dissipation film layer 86 and the first electrical contact portion 88, respectively. Therefore, the light-emitting diode 8 of the fourth embodiment of the present invention has the same advantages as the light-emitting diode 7 of the third embodiment, and the storage capacitor 893 further illuminates the fourth embodiment of the present invention. The diode 8 can operate with the current stored in the storage capacitor 893 without the need for external drive current. That is, the light-emitting diode 8 of the fourth embodiment of the present invention can operate continuously and stably even in the case where the external driving current is unstable. ~ In summary, when the light-emitting diode of the present invention is operated, the light-emitting diode of the present invention can guide the heat energy generated by the active layer from its "inside" by its heat conduction and conduct it to the outside world. Then, by its heat dissipation film layer, 15 heat energy is converted into a so-called "thermal current". Finally, the "thermal current" is transferred to the first electrical contact portion of the electron collecting circuit electrically connected to the first electrical contact portion of the heat-dissipating film layer of the light-emitting diode of the present invention. Thus, the light-emitting diode of the present invention can be reused for recycling the heat energy generated during its operation to drive the light-emitting diode of the present invention. Therefore, even after long-term operation, the temperature of the light-emitting diode of the present invention can be maintained within a normal range without overheating, and the light-emitting structure is not destroyed by the occurrence of overheating, so that the light is emitted. The lifetime can be further extended, the luminous efficiency can be further improved, and the luminance of the light is also better and more stable. In addition, since the light-emitting diode of the present invention can be fabricated by various processing machines used in the industry, the process of the light-emitting diode of the present invention and the process of the existing light-emitting diode are extremely large. = Resident, and can be widely used in various inorganic or organic light-emitting diodes. The above-described embodiments are merely examples for convenience of description, and the scope of the claims of the present invention is determined by the scope of the claims, and is not limited to the above embodiments. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of a conventional light-emitting diode. FIG. 2A is a schematic cross-sectional view of a light-emitting diode according to a first embodiment of the present invention. 2B is a perspective view of a light emitting diode according to a first embodiment of the present invention. 3 is a schematic view of an electron resonance through-type thermoelectric film. Figure 4 is a schematic illustration of a semiconductor thermoelectric film. Fig. 5A is a view showing the change of the temperature of the light-emitting diode according to the first embodiment of the present invention as a function of its compliance. Fig. 5B is a view showing the change of the luminance of the light-emitting diode according to the first embodiment of the present invention as it follows. Fig. 6 is a schematic cross-sectional view showing a light-emitting diode according to a second embodiment of the present invention. Fig. 7A is a schematic cross-sectional view showing a light-emitting diode according to a third embodiment of the present invention. 2A is a perspective view of a light-emitting diode according to a third embodiment of the present invention. Figure 8 is a cross-sectional view showing a light emitting diode according to a fourth embodiment of the present invention. [Description of main component symbols] 12 first semiconductor layer light-emitting diode 11 substrate 25 200840081 13 active layer 16 second electrical contact portion 21 substrate 23 first semiconductor layer 26 heat-dissipating film layer

弟一電接觸部291 3電子妓办 包千收集题超 私子共振穿遂式熱電薄膜 32第二金屬層 ® 旬增 33弟一膜層 35支撐層 κ亩+ 36真空腔 4半導體式熱電薄膜43熱源 ^血 44熱庫 61基板Brother-Electric Contact 291 3 Electronic 妓 包 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千 千43 heat source ^ blood 44 heat reservoir 61 substrate

64活性層 6 7絕緣層 691電子收集迴路 7發光二極體 73導熱層 75第二半導體層 781第一電接觸部 792外部迴路 82第一半導體層 8 4活性層 87絕緣層 891電子收集迴路 62導熱層 65第二半導體層 681第—電接觸部 692外部迴路 71基板 731 開口 14第二半導體層 17外部迴路 22導熱層 24活性層 27絕緣層 15 第- 電接觸部 2發光 —^極體 221 開 π 25 第二 二半導體層 281 第 —電接觸部 292 外部迴路 31 第- 、金屬層 34 第二 、膜層 41 第- •金屬層 42 第二 、金屬層 6發光, 一極體 63 第一 '半導體層 66 散熱膜層 682 第. 一電接觸部 693 儲存電容 72 第- '半導體層 74 活性層 77 絕絲 :層 782第—電接觸部791電子收隹 —極體 81基板 83導熱層 卜 曰 831開口 85第-半導體㉟86散熱膜層 881第一電接觸部882第-外部趣路卩882 #一電接觸 、略 S93儲存電容 2664 active layer 6 7 insulating layer 691 electron collecting circuit 7 light emitting diode 73 heat conducting layer 75 second semiconductor layer 781 first electrical contact portion 792 outer circuit 82 first semiconductor layer 8 4 active layer 87 insulating layer 891 electron collecting circuit 62 Thermal Conductive Layer 65 Second Semiconductor Layer 681 First Electrical Contact 692 External Circuit 71 Substrate 731 Opening 14 Second Semiconductor Layer 17 External Circuit 22 Thermal Conductive Layer 24 Active Layer 27 Insulating Layer 15 First - Electrical Contact 2 Illumination - Body 221 π 25 second two semiconductor layer 281 first-electrode contact portion 292 outer circuit 31 first, metal layer 34 second, film layer 41 first - metal layer 42 second, metal layer 6 emits light, one pole body 63 first 'Semiconductor layer 66 heat-dissipating film layer 682. First electrical contact portion 693 Storage capacitor 72 First - 'Semiconductor layer 74 Active layer 77 Absolute wire: Layer 782 - Electrical contact portion 791 Electronic shrinkage - Polar body 81 Substrate 83 Thermal conduction layer曰831 opening 85-semiconductor 3586 heat-dissipating film layer 881 first electrical contact portion 882 first-external fun path 882 #一电接触, slightly S93 storage capacitor 26

Claims (1)

200840081 十、申請專利範圍: 1· 一種發光二極體,係包括: 一基板; 一導熱層,係設置於該基板之表面並具有一開口; 5 一第一半導體層,係設置於該導熱層之部分表面,該 第一半導體層並藉由該開口而與該基板連接; 一活性層,係設置於該第一半導體層之表面; C 一第二半導體層,係設置於該活性層之表面,且該第 一半^體層與该第一半導體層將該活性層夾置於兩者之 10 間; 一散熱膜層,係設置於該導熱層之未被該第一半導體 層覆蓋之部分的表面; 、、、巴緣層,係形成於導熱層之未被該第一半導體層與 該散熱膜層覆蓋之部分的表面; 15 一第一電接觸部,係電連接於該基板;以及 < 一第二電接觸部,係電連接於該第二半導體層。 2<·如申明專利範圍第1項所述之發光二極體,更設置 有一電子收集迴路,且該電子收集迴路電連接於該散熱膜 層及該第一電接觸部。 2〇 3·如申5月專利範圍第1項所述之發光二極體,其中該 基板之材質為N型砷化鎵。 \如申請專利範圍第i項所述之發光二極體,更包括 =型氮化鎵蟲晶層於該基板之表面,⑽则氮化嫁蟲晶 d係位於該基板與該導熱層之間。 27 200840081 5 15 20 5·如申請專利範圍第1項所述之發光二極體,其中該 導熱層為金鈹合金。 八 Μ 6.如申請專利範圍第1項所述之發光 第一半導體層之材質為Ν型鋁鎵銦磷。 7·如申請專利範圍第1項所述之發光 導熱層具有一金屬反射鏡結構於其中。 、8·如申請專利範圍第1項所述之發光二極體 活性層之材質為I型鋁鎵銦磷。 .9·如申請專利範圍第1項所述之發光二極體 活性層具有複數個量子井結構。 〜1〇·、如申請專利範圍第1項所述之發光二極體 第一半$體層之材質為Ρ型石申化鎵。 二1 ·如申請專利範圍第1項所述之發光二極體 月,、、、膜層為—電子共振穿遂式熱電薄膜。 ^ 12 ·如申請專利範圍第丨項所述之發光 弟一電接觸部為金鎳合金之薄膜電極。 ^ 13 ·如申請專利範圍第1項所述之發光 第二電接觸部為氧化銦錫薄膜電極。 7如申請專鄉㈣i項所述之發光_ 、、'巴緣層之材質為氧化矽。 15 ·如申請專利範圍第工項所 有一外部迴路,3 ^光一極體,更設置 、絡,且该外部迴路電連 該第二電#4接於5亥弟—電接觸部及 .極體,其中該 ‘極體,其中該 其中該 其中該 其中該 其中該 1極體,其中該 •極體,其中該 極體,其中該 ‘極體,更設置 28 200840081 •如申睛專利範圍第2 _ 有一外部迴踗兮从 貝尸Μ之各先一極體,更設置 該第二電接::/亥外部迴路係電連接於該第-電接觸部及 路。 和且该外部迴路並電連接於該電子收集迴 有存如Λ請專利範圍第2項所述之發光二極體,更設置 ^ ’且_存電容電連接於該電子收集迴路。 •一種發光二極體,係包括·· 一基板; 10 15 導熱層,係設置於該第一半導體層之表面並具有 弟-半導體層,係設置於該基板之表面; 開口; 並葬由:性層’係設置於該導熱層之部分表面,該活性層 料f開口而與該第-半導體層連接; 二主I第二半導體層’似置於該活性層之表面,且該第 間;導體層與该第_半導體層將該活性層夾置於兩者之 之部層’係設置於該導熱層之未被該活性層覆蓋 活性層與該散熱 ”二分:::於導熱層之未被該 =一電接觸部,係電連接於該第一半導體層;以及 第一電接觸部,係電連接於該第二半導體層。 29 200840081200840081 X. Patent application scope: 1. A light-emitting diode comprising: a substrate; a heat conducting layer disposed on a surface of the substrate and having an opening; 5 a first semiconductor layer disposed on the heat conducting layer a portion of the surface, the first semiconductor layer is connected to the substrate by the opening; an active layer is disposed on the surface of the first semiconductor layer; C a second semiconductor layer is disposed on the surface of the active layer And the first semiconductor layer and the first semiconductor layer sandwich the active layer between 10; a heat dissipation film layer is disposed on a portion of the heat conduction layer that is not covered by the first semiconductor layer a surface; a pad layer formed on a surface of the heat conductive layer that is not covered by the first semiconductor layer and the heat dissipation film layer; 15 a first electrical contact portion electrically connected to the substrate; and < A second electrical contact is electrically connected to the second semiconductor layer. The light-emitting diode according to claim 1 is further provided with an electron collecting circuit, and the electron collecting circuit is electrically connected to the heat-dissipating film layer and the first electrical contact portion. The light-emitting diode according to the first aspect of the invention, wherein the substrate is made of N-type gallium arsenide. The light-emitting diode according to claim i, further comprising a =-type gallium nitride crystal layer on the surface of the substrate, and (10) the nitrided crystal d-layer is located between the substrate and the heat-conducting layer . The light-emitting diode of claim 1, wherein the heat-conducting layer is a gold-bismuth alloy. 8. The light-emitting first semiconductor layer according to claim 1 is made of bismuth-type aluminum gallium indium phosphorus. 7. The luminescent thermally conductive layer of claim 1 having a metal mirror structure therein. 8. The material of the active layer of the light-emitting diode as described in claim 1 is type I aluminum gallium indium phosphorus. .9. The light-emitting diode active layer according to claim 1 has a plurality of quantum well structures. ~1〇·, as disclosed in the scope of claim 1 of the light-emitting diode, the first half of the body layer material is Ρ-type stone Shenhua gallium. 2. The light-emitting diode according to item 1 of the patent application scope, the film layer is an electron resonance through-type thermoelectric film. ^ 12 · The light-emitting part described in the scope of the patent application is an optical electrode of a gold-nickel alloy. ^ 13 · Illumination as described in claim 1 The second electrical contact is an indium tin oxide thin film electrode. 7 If you apply for the illuminating _, and the material of the marginal layer is the yttrium oxide. 15 ·If the application of the patent scope of the project is all external circuit, 3 ^ light one pole, more set, network, and the external circuit is electrically connected to the second electricity #4 connected to 5 Haidi - electrical contact and polar body , wherein the 'polar body, wherein the one of the one of the one of the first pole body, wherein the pole body, wherein the pole body, wherein the 'pole body, is more set 28 200840081 • such as the scope of the patent scope 2 _ There is an external return from each of the first poles of the shell corpse, and the second electrical connection is further provided: the / outer circuit is electrically connected to the first electrical contact and the road. And the external circuit is electrically connected to the electron collection back. The light-emitting diode according to the second aspect of the patent application is further provided with a ^' and a storage capacitor is electrically connected to the electron collecting circuit. A light-emitting diode comprising: a substrate; 10 15 a heat-conducting layer disposed on a surface of the first semiconductor layer and having a di-semiconductor layer disposed on a surface of the substrate; an opening; a layer is disposed on a portion of the surface of the thermally conductive layer, the active layer f is open to be connected to the first semiconductor layer; the second main I second semiconductor layer 'like to be placed on the surface of the active layer, and the first; The conductor layer and the first semiconductor layer sandwich the active layer between the two layers of the heat conducting layer, and the active layer is not covered by the active layer and the heat dissipation"::: in the heat conducting layer The electrical contact portion is electrically connected to the first semiconductor layer; and the first electrical contact portion is electrically connected to the second semiconductor layer. 29 200840081 LΜ述之發光二極體,更設置 且該電子收集迴路電連接於該散熱膜 •如申請專利範圍第1 8項所述之發光二極體, 層及該第一電接觸部。 20.如申請專利範圍第18項所述之發光二極體,其中該 5 基板之材質為氧化鋁。The light-emitting diode of the above description is further provided, and the electron collecting circuit is electrically connected to the heat-dissipating film. The light-emitting diode according to claim 18, and the first electrical contact portion. 20. The light-emitting diode of claim 18, wherein the material of the 5 substrate is alumina. 第一半導體層之材質型氮化鎵。Material type gallium nitride of the first semiconductor layer. 、24·如申請專利範圍第18項所述之發光二極體,宜中該 =性層係由複數個氮化鎵銦膜層與複數個氮化鎵 堆疊而成。 ' 、、,25·如中請專利範圍第18項所述之發光二極體,其中該 活性層具有複數個量子井結構。 ^ 26.如申請專利範圍第Μ項所述之發光二極體,其中該 第二半導體層之材質為Ρ型氮化鎵。 ’ 27·如申請專利範圍第18項所述之發光二極體,其中該 20散熱膜層為一電子共振穿遂式熱電薄膜。 —2δ·如申請專利範圍第18項所述之發光二極體,其中該 第笔接觸部為銘链合金之薄膜電極。 ^ 29·如申請專利範圍第is項所述之發光二極體,其中該 第二電接觸部為氧化銦錫薄膜電極。 30 200840081 3 〇 如由 絕緣層之二專利範圍第18項所述之發光二極體,其"亥 #質為氧化夸7。 有-外部如/請專利範圍第18項所述之發光二極體,更設置 該第-路,且該外部迴路電連接於該第-電接觸部及24) The light-emitting diode according to claim 18, wherein the layer is formed by stacking a plurality of gallium indium nitride layers and a plurality of gallium nitride layers. The light-emitting diode of claim 18, wherein the active layer has a plurality of quantum well structures. The light-emitting diode of claim 2, wherein the material of the second semiconductor layer is germanium-type gallium nitride. The light-emitting diode according to claim 18, wherein the 20 heat-dissipating film layer is an electron resonance through-type thermoelectric film. The light-emitting diode according to claim 18, wherein the first contact portion is a thin film electrode of an alloy of the name chain. The light-emitting diode of claim 1, wherein the second electrical contact is an indium tin oxide film electrode. 30 200840081 3 〇 The light-emitting diode according to item 18 of the second patent of Insulation Layer, whose mass is oxidized. The light-emitting diode according to item 18 of the above-mentioned patent scope is further provided with the first path, and the external circuit is electrically connected to the first electrical contact portion and 有一外邻、口月專利範圍第19項所述之發光二極體,更設置 該第-’該外部迴路係電連接於該第—電接觸部及 路弟觸部,且該外部迴路並電連接於該電子收集迴 *^·如申請專利範 "厂丨地无二極體,更設 有储存笔容,且該儲存電容電連接於該電子收集趣路 31There is a light-emitting diode according to item 19 of the foreign patent, the monthly patent range, and the first--the external circuit is electrically connected to the first electrical contact portion and the road contact portion, and the external circuit is electrically connected. Connected to the electronic collection back *^· If the patent application is patented, there is no diode in the factory, and the storage pen is further provided, and the storage capacitor is electrically connected to the electronic collection fun circuit 31.
TW96109861A 2007-03-22 2007-03-22 Led TW200840081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96109861A TW200840081A (en) 2007-03-22 2007-03-22 Led

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96109861A TW200840081A (en) 2007-03-22 2007-03-22 Led

Publications (2)

Publication Number Publication Date
TW200840081A true TW200840081A (en) 2008-10-01
TWI345843B TWI345843B (en) 2011-07-21

Family

ID=44821053

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96109861A TW200840081A (en) 2007-03-22 2007-03-22 Led

Country Status (1)

Country Link
TW (1) TW200840081A (en)

Also Published As

Publication number Publication date
TWI345843B (en) 2011-07-21

Similar Documents

Publication Publication Date Title
KR101421761B1 (en) Led semiconductor body and use of an led semiconductor body
JP5722844B2 (en) Light emitting device and manufacturing method thereof
US9412926B2 (en) High power solid-state lamp
Xue et al. Thermally enhanced blue light-emitting diode
JP5876557B2 (en) Optoelectronic semiconductor body
TW201123539A (en) Light-emitting device and the manufacturing method thereof
JP2008160046A (en) Light emitting element package and its manufacturing method
TWI569407B (en) Solid state lights with thermal control elements
TW201218439A (en) LED package with contrasting face
TW200937610A (en) Radiation-emitting device
TW201017925A (en) Vertical AC LED
TW201126693A (en) Top view type of light emitting diode package structure and fabrication thereof
JP5124688B2 (en) Lighting device, display, and signal lamp
US9941443B2 (en) Semiconductor light emitting device
JP2011166145A (en) Light emitting device
TW201218433A (en) Light-emitting module and alternate current light-emitting device
TW201017929A (en) Semiconductor light emitting device including graded region
US20140211475A1 (en) Light bulb
CN101276861B (en) Led
JP5694575B2 (en) Light emitting semiconductor parts
TW200840081A (en) Led
JP3543809B2 (en) Nitride semiconductor device
JP2004112002A (en) Nitride semiconductor device
US10147855B2 (en) Illumination device
TWI379450B (en)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees