JP2004031945A - Nitride semiconductor light emitting chip - Google Patents

Nitride semiconductor light emitting chip Download PDF

Info

Publication number
JP2004031945A
JP2004031945A JP2003156350A JP2003156350A JP2004031945A JP 2004031945 A JP2004031945 A JP 2004031945A JP 2003156350 A JP2003156350 A JP 2003156350A JP 2003156350 A JP2003156350 A JP 2003156350A JP 2004031945 A JP2004031945 A JP 2004031945A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor layer
negative electrode
type nitride
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003156350A
Other languages
Japanese (ja)
Inventor
Tatsunori Toyoda
豊田 達憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2003156350A priority Critical patent/JP2004031945A/en
Publication of JP2004031945A publication Critical patent/JP2004031945A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitride semiconductor light emitting chip, which permits uniformly injecting electric current into a light emitting layer and which improves a light emitting efficiency. <P>SOLUTION: In the nitride semiconductor light emitting chip, having an n-type nitride semiconductor layer and a p-type nitride semiconductor layer, which are formed sequentially on a substrate, and which are employed in a packaging method wherein the chip is connected to the supporting part at an upper part of a lead electrode through a conductive material while keeping the side of the substrate at a lower side, a first negative electrode is continuously formed so as to form an enclosure from the outer peripheral side wall of the n-type nitride semiconductor layer 12 to the rear surface of the substrate 11 to conduct a current from the lead electrode to the n-type nitride semiconductor layer 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は窒化物半導体発光チップに係り、より詳しくは基板がリードフレーム等の金属製支持体に導電性材料を介して接合される実装方法に用いられる窒化物半導体発光チップに関する。
【0002】
【従来の技術】
近年、窒化物半導体を用いた発光チップが青色系の発光が可能な発光チップとして注目されている。例えば、特開平9−298313号公報において、リードフレーム等の支持体に窒化物半導体からなる発光チップを固定したLEDが提案されている。従来のLEDでは、例えば、図22に示すように、窒化物半導体発光チップ101が、サファイヤ基板102上に順次形成されたn型窒化物半導体層103とp型窒化物半導体層104と、一端が露出したn型窒化物半導体層103の上面に形成された負電極108と、p型窒化物半導体層104の上面に形成された透明な第1正電極105と、第1正電極105の上面の一部に形成されたボンディング用の透明な第2正電極106と、ボンディング面以外の第1正電極105、第2正電極106そして負電極108の上面に連続して形成され、第1正電極と負電極108とを分離する絶縁層107とからなっている。
【0003】
さらに、上記の窒化物半導体発光チップ101は、図23に示すように、基板102の裏面がマウントリード111の上部に設けられた支持部111a上に導電性材料113を介して接合され、マウントリード111と負電極108、そしてインナーリード112と第2正電極106とがワイヤボンディングにより接続されている。p型窒化物半導体層104とn型窒化物半導体層103との接合部の発光層から発光した光は半導体層側から出力される。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の窒化物半導体発光チップでは、p型窒化物半導体の抵抗がn型窒化物半導体に比べ大きいため、第1正電極105の面積を負電極108より大きくする必要がある。さらに、半導体層側からの光の出力を大きくするために第1正電極105の面積をより大きくする必要があるため、負電極108の面積は小さくならざるを得ず、負電極108の面積の確保が困難であった。そのため、発光層全体に均一に電流を注入することが困難となり、窒化物半導体発光チップの高い発光効率を十分に引き出すことができないという問題があった。
【0005】
そこで、本発明は上記の課題を解決し、発光層に均一に電流を注入することができ、発光効率を向上させることの可能な窒化物半導体発光チップを提供することを目的とした。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明の窒化物半導体発光チップは、基板上にn型窒化物半導体層とp型窒化物半導体層とを積層して形成される窒化物半導体発光チップを、基板側を下側にし導電性材料を介してリード電極上部の支持部に接合する実装方法に用いる窒化物半導体発光チップにおいて、上記窒化物半導体発光チップが、上記n型窒化物半導体層の外周側壁のヘキ開面から上記基板の裏面に渡って囲むように連続して形成され、上記n型窒化物半導体層とオーミック接触する第1負電極を有し、上記リード電極から上記n型窒化物半導体層に通電可能なことを特徴とする。
【0007】
本発明の窒化物半導体発光チップは、n型窒化物半導体層の外周側壁のヘキ開面から基板の裏面に渡って囲むように連続して形成され、n型窒化物半導体層とオーミック接触する第1負電極を有しているため、従来に比べn型窒化物半導体層と負電極との接触面積を増大させることができる。そのため、発光層に均一に電流を注入することが可能となり、発光効率が向上する。
【0008】
また、本発明の窒化物半導体発光チップは、p型窒化物半導体層の周囲に露出させた所定幅のn型窒化物半導体層の上面に形成された第2負電極を有することが好ましい。露出させたn型窒化物半導体層の上面にも負電極を設けることにより、n型窒化物半導体層と負電極との接触面積をより増大させることができ、発光効率の一層の向上が可能となる。
【0009】
また、本発明の窒化物半導体発光チップは、p型窒化物半導体層の周囲に露出させた所定幅のn型窒化物半導体層の上面端部及びn型窒化物半導体層の周囲に露出させた所定幅の基板上面に形成された第2負電極を有することが好ましい。n型窒化物半導体層と負電極との接触面積をさらに増大させることができ、発光効率の一層の向上が可能となる。
【0010】
また、本発明の窒化物半導体発光チップは、第2負電極が第1負電極に接触するように形成されていることが好ましい。第2負電極と第1負電極とを分離する絶縁層が不要となり、n型窒化物半導体層と負電極との接触面積をさらに増大させることができ、発光効率の一層の向上が可能となる。
【0011】
また、本発明の窒化物半導体発光チップは、第2負電極がリード電極に接続されていることが好ましい。リード電極からn型窒化物半導体層へ直接通電することが可能なため、第2負電極とリード電極間の抵抗を低減でき、順方向電圧Vfを下げることができる。
【0012】
【発明の実施の形態】
以下、図面を参照して、本発明に係る実施の形態について説明する。
実施の形態1.
図1は、実施の形態1に係る窒化物半導体発光チップ1の構造を示す模式断面図、そして図2は電極形状を示す模式平面図である。窒化物半導体発光チップ1は、基板11の表面に順次形成されたn型窒化物半導体層12とp型窒化物半導体層13と、p型窒化物半導体層13の上面に形成された透明な第1正電極14と、第1正電極の上面の一部に形成されたボンディング用の第2正電極15と、絶縁層16と、n型窒化物半導体層12の外周側壁から上記基板11の裏面に渡って囲むように連続して形成された第1負電極17とを有している。ここで、絶縁層16は、ボンディング面以外の第2正電極15の上面と、第1正電極14の上面と、露出したp型窒化物半導体層13の上面と露出したn型窒化物半導体層12の上面とに渡って連続して形成され、第1負電極17と第1正電極14とを分離している。
【0013】
次に、図3は、リードに実装した窒化物半導体発光チップ1の構造を示す模式断面図であり、リード電極としてはマウントリードを用いている。窒化物半導体発光チップ1は、基板11を下側にし、導電性材料33を介して、マウントリード31の上部の支持部31aに接合されている。そのため、マウントリード31とn型窒化物半導体層12とが、導電性材料33と第1負電極17を介して電気的に接続されているため、マウントリード31から支持部31aを介してn型窒化物半導体層12に通電することが可能となっている。一方、第2正電極15は、インナーリード32とワイヤボンディングにより接続されている。
【0014】
本実施の形態1では、第1負電極17がn型窒化物半導体層12の外周側壁から上記基板11の裏面に渡って囲むように連続して形成されているため、従来の発光チップに比べn型窒化物半導体層と負電極との接触面積を大きくすることができる。そのため、発光層により均一に電流を注入することが可能となり、発光効率が向上する。また、第1負電極17が第1正電極15の周囲に設けられているため、第1正電極15の周囲から電流を注入でき、このことも発光層への均一な電流の注入に寄与する。
【0015】
また、n型窒化物半導体層との接触面積の増加に伴い、接触抵抗が低減され、Vfが低下する効果も得られる。また、従来の発光チップのように露出させたn型窒化物半導体層の上面にマウントリードとの接続用のボンディング用電極を設ける必要がないため、発光チップをより小型化することできる。
【0016】
ここで、第1負電極には、n型窒化物半導体層とオーミック接触可能な電極材料を用いる必要がある。例えば、Ti,Al,Ni,Au,W,V等の金属材料の1種以上を用いることができるが、Ti,W,VをそれぞれベースとするTi/Al,W/Al/W/Au,W/Al/W/Pt/Au,V/Al等の多層構造とすることが好ましい。n型窒化物半導体層3とオーミック接触可能な電極材料を用いることによりVfを低減することができる。また、電極に金属材料を用いることにより、発光層から基板の裏面方向に進んだ光を第1負電極で反射させることができる。そのため、基板の裏面及び側壁からの光の漏れを防止でき、半導体層側からの光の出力を大きくすることができ、発光効率を向上させることが可能となる。
【0017】
また、n型窒化物半導体層の端面はヘキ開面であることが好ましい。第1負電極層との良好なオーミック接触が得られる。
【0018】
また、導電性材料には、導電性ペーストや金属ろう材等の従来公知の金属含有の接合材料を用いることが好ましい。熱伝導率が高いため、発光チップからの発熱を効率良くマウントリードに伝えることができ、発光チップの放熱性を向上させることができる効果が得られる。
【0019】
本実施の形態1に係る窒化物半導体発光チップは、例えば、以下に述べる方法で製造することができる。
図4,5は、窒化物半導体発光チップ1の製造工程を示す模式断面図であり、基板上に順次形成されたn型窒化物半導体層とp型窒化物半導体層を備えた半導体ウエハーに対する分割溝形成工程(図4(a)〜(f))と、正電極形成工程(図4(g),(h))と、絶縁層形成工程(図5(a))と、半導体ウエハーの分割工程(図5(b))と、負電極形成工程(図5(c),(d))と転写工程(図5(e))とからなる。
【0020】
以下、各工程について説明する。半導体ウエハー40は、例えばサファイヤ等からなる基板11上に、例えば、SiがドープされたGaNからなるn型窒化物半導体層12と例えばMgがドープされたGaNからなるp型窒化物半導体層13とが順次形成されている(図4(a))。半導体ウエハー40に対する分割溝形成工程では、例えばSiOからなる絶縁層41を形成し(図4(b))、所定パターンのレジスト膜42を絶縁層41上に形成し(図4(c))、絶縁層41を所定パターンにエッチングする(図4(d))。さらにエッチングしてn型窒化物半導体層12に達する分割溝43と基板11の両端部にn型窒化物半導体層12を露出させた第1段部44を形成し(図4(e))、次いで、絶縁層41をエッチングにより除去する(図4(f))。
【0021】
正電極形成工程では、まず、露出したp型窒化物半導体層13上に第1正電極14を例えばスパッタリングにより形成する(図4(g))。次いで、第1正電極14の上面の一部に第2正電極15を例えば蒸着により形成する(図4(h))。ここで、第2正電極の厚さは10μm以上であることが好ましい。第2正電極をチップ表面から突出させることにより、チップ表面を粘着シートに接着し易くできる。
【0022】
絶縁層形成工程では、ボンディング面以外の第2正電極15の上面と、第1正電極14の上面と、露出したp型窒化物半導体層13の上面と、分割溝43及び第1段部44の表面とを連続して覆う電極分離用の絶縁層16を形成する(図5(a))。
【0023】
分割工程では、半導体ウエハー40を絶縁層16側を下側にし、粘着シート62に接着させる。次いで、基板11の裏面側から分割溝43の中央を例えばスクライバー61によりスクライブラインを形成し(図5(b))、ローラ等により外力を加えて半導体ウエハー40を分割する。スクライバーを用いるこの方法によれば、n型窒化物半導体層12の端面がヘキ開面となるため、次工程で形成される第1負電極との間に良好なオーミック接触が得られる。
【0024】
負電極形成工程では、粘着シート62を各チップが離間する方向に伸張させ(図5(c))、次いで、第1負電極17を、例えばスパッタリングにより基板11の裏面からn型窒化物半導体層12の外周側壁に渡って囲むように連続して形成する(図5(d))。次いで、転写工程により、基板11の裏面側に別の粘着シート63を接着させ、発光チップの向きを反転させて、粘着シートに固定し、発光チップ1を製造する(図5(e))。
【0025】
実施の形態2.
図6は、本実施の形態2に係る窒化物半導体発光チップ2の構造を示す模式断面図である。p型窒化物半導体層13の周囲に所定幅で露出させたn型窒化物半導体層12の上面端部に第1負電極17と接触する第2負電極18を設けた以外は、実施の形態1の窒化物半導体発光チップ1の構造と同様である。
【0026】
図7は、リードに実装した窒化物半導体発光チップ2の構造を示す模式断面図である。実施の形態1の場合と同様に、発光チップ2は、基板11の裏面側を下側にして導電性材料33を介して支持部31aに接合され、第2正電極15は、インナーリード32にワイヤボンディングにより接続されている。
【0027】
ここで、第2負電極18は第1負電極17と接触し、さらに、いずれの負電極もn型窒化物半導体層12と接触している。したがって、第2負電極18及び第1負電極17の少なくとも一方が、n型窒化物半導体層12とオーミック接触可能な電極材料であれば良く、実施の形態1で述べた電極材料を用いることができる。
【0028】
図8,9は、本実施の形態2に係る窒化物半導体発光素子11の製造工程を示す模式図である。正電極形成工程(図8(g),(h))と絶縁層形成工程(図9(b))との間に、第2負電極形成工程を設けた(図9(a))以外は、実施の形態1における製造工程と同様である。分割溝の中央部のn型窒化物半導体層上面に第2負電極45を形成し、露出したn型窒化物半導体層上面端部には所定幅の第2負電極18を形成する。分割溝43の中央付近に設けられた第2負電極45は、分割工程において、発光チップの分割時に均等に分割される。
【0029】
本実施の形態2によれば、露出したn型窒化物半導体層の上面に第1負電極と接触するように第2負電極が設けられているため、第1負電極と第2負電極とを分離する絶縁層が不要となり、n型窒化物半導体層と負電極との接触面積をより増加させることができる。そのため、発光層により均一に電流を注入することが可能となり、発光効率をより向上させることができる。
【0030】
実施の形態3.
図10は、本実施の形態3に係る窒化物半導体発光チップ3の構造を示す模式断面図である。窒化物半導体発光チップ3は、p型窒化物半導体層13の周囲に露出させた所定幅のn型窒化物半導体層12の上面端部及びn型窒化物半導体層12の周囲に露出させた所定幅の基板11の上面に連続して形成され、第1負電極17と接触した第2負電極19を設けた以外は、実施の形態1と同様の構造を有する。
【0031】
図11は、リードに実装した窒化物半導体発光チップ3の構造を示す模式断面図である。実施の形態1の場合と同様に、発光チップ3は、基板11の裏面側を下側にして導電性材料33を介して支持部31aに接合され、第2正電極15は、インナーリード32にワイヤボンディングにより接続されている。
【0032】
ここで、第2負電極19は第1負電極17と接触しているが、第2負電極19のみがn型窒化物半導体層12と接触している。したがって、第2負電極19は、実施の形態1で述べたn型窒化物半導体層12とオーミック接触可能な電極材料で形成されている必要がある。
【0033】
図12,13,14は、本実施の形態3に係る窒化物半導体発光チップ3の製造工程の一例を示す模式断面図である。分割溝形成工程において(図12(a)〜(f))、基板11に達する分割溝46と、n型窒化物半導体層12の周囲に露出させた所定幅の基板11の端部からなる第1段部47を形成し(図12(e))、次いで、p型窒化物半導体層13の周囲に所定幅のn型窒化物半導体層を露出させ、第2段部50を形成する工程を設け(図12(g),(h)〜図13(a),(b),(c))、さらに正電極形成工程後、第2負電極19,51を形成する第2負極形成工程を設けた以外は実施の形態1における製造工程と同様である。ここで、第2負電極51は分割溝46の内面からn型窒化物半導体層12の露出した端部上面に渡って連続して形成され、第2負電極19は基板11の露出した端部の上面からn型窒化物半導体層12の露出した上面の端部に渡って連続して形成されている。第2負電極51は、分割工程において、発光チップの分割時に均等に分割される。
【0034】
本実施の形態3によれば、n型窒化物半導体層の周囲に所定幅の基板上面を露出させ、露出した基板上面から露出したn型窒化物半導体層上面の端部に渡って連続して形成され、第1負電極と接触した第2負電極が設けられているため、n型窒化物半導体層と負電極との接触面積をさらに増加させることができる。そのため、発光層により均一に電流を注入することが可能となり、発光効率をさらに向上させることができる。
【0035】
実施の形態4.
図15は実施の形態4に係る窒化物半導体発光チップ1の構造を示す模式断面図、そして図16は電極形状を示す模式平面図である。窒化物半導体発光チップ4では、露出させたn型窒化物半導体層12の上面の一部にマウントリードとの接続用のボンディング面を有する第2負電極20が第2正電極15より所定距離離間して形成され、第2負電極20が第1負電極層17と絶縁層16で分離されている。
【0036】
図17は、リードに実装した窒化物半導体発光チップ4の構造を示す模式断面図である。発光チップ4は、基板11の裏面側を下側にして導電性材料33を介して支持部31aに接合され、第2正電極15は、インナーリード32にワイヤボンディングにより接続されている。さらに、第2負電極20はマウントリード31にワイヤボンディングにより接続されており、マウントリードからn型窒化物半導体層12へ直接通電することが可能となっている。
【0037】
ここで、第1負電極17と第2負電極20は、それぞれn型窒化物半導体層12と接触しているため、n型窒化物半導体層とオーミック接触可能な電極材料で形成する必要があり、実施の形態1で述べた電極材料を用いることができる。
【0038】
本実施の形態4によれば、露出させたn型窒化物半導体層の上面にマウントリードからのボンディング可能に第2負電極層を形成し、マウントリードと接続し、マウントリードから直接n型窒化物半導体層へ通電可能としたので、n型窒化物半導体層と負電極との接触面積を増加できるとともに、リードと電極間の抵抗を低減できる。そのため、発光層へ均一に電流を注入でき、発光効率を向上させることができ、またVfの低下にも寄与する。なお、n型窒化物半導体層と負電極との接触面積の増加に伴い、接触抵抗が低減されVfを低下させることができ、また、第1負電極の存在により基板の裏面及び側壁からの光の漏れを防止できるため、半導体層側からの光の出力を大きくすることができ、さらに、導電性材料の存在により発光チップの放熱性を向上できる効果を有することは言うまでもない。
【0039】
実施の形態5.
図18は、本実施の形態5に係る窒化物半導体発光チップ5の構造を示す模式断面図である。窒化物半導体発光チップ5は、第2負電極20を第1負電極17と接触するように形成し、さらにp型窒化物半導体層13の周囲に露出した所定幅のn型窒化物半導体層12の端部上面に第2負電極20及び第1負電極17と接触する第2負電極21を形成した以外は、実施の形態4の発光チップと同様の構造を有する。また、図19に示すように、実施の形態4の場合と同様に、基板11の裏面側を下側にして導電性材料33を介して支持部31aに接合され、第2正電極15は、インナーリード32にワイヤボンディングにより接続されている。
【0040】
ここで、第1負電極17と第2負電極20,21は、それぞれn型窒化物半導体層12と接触しているため、n型窒化物半導体層とオーミック接触可能な電極材料で形成する必要があり、実施の形態1で述べた電極材料を用いることができる。
【0041】
本実施の形態5によれば、第2負電極を第1負電極に接触させ、さらにn型窒化物半導体層の端部上面を連続して覆うように第2負電極を設けたので、n型窒化物半導体層と負電極との接触面積をより増加させることができる。そのため、発光層へより均一に電流を注入でき、発光効率をより向上させることができる。
【0042】
実施の形態6.
図20は、本実施の形態6に係る窒化物半導体発光チップ6の構造を示す模式断面図である。窒化物半導体発光チップ6は、第2負電極をp型窒化物半導体層13の周囲に露出させた所定幅のn型窒化物半導体層12の上面端部とn型窒化物半導体層12の周囲に露出させた所定幅の基板11の上面とに連続して形成し、第1負電極17と接触させた以外は、実施の形態4の窒化物半導体発光チップ4と同様の構造である。また、図21に示すように、実施の形態4の場合と同様に、基板11の裏面側を下側にして導電性材料33を介して支持部31aに接合され、第2正電極15は、インナーリード32にワイヤボンディングにより接続されている。
【0043】
ここで、第2負電極22は、n型窒化物半導体層12と接触しているため、n型窒化物半導体層とオーミック接触可能な電極材料で形成する必要があり、実施の形態1で述べた電極材料を用いることができる。
【0044】
本実施の形態6によれば、第2負電極が、n型窒化物半導体層の周囲に露出させた所定幅の基板の上面にまで連続して形成されているので、n型窒化物半導体層と負電極との接触面積をさらに増加させることができる。そのため、発光層へより均一に電流を注入でき、発光効率をさらに向上させることができる。
【0045】
【発明の効果】
以上述べたように、本発明の窒化物半導体発光チップは、n型窒化物半導体層の外周側壁から基板の裏面に渡って囲むように第1負電極が連続して形成され、リード電極からn型窒化物半導体層に通電可能であるため、n型窒化物半導体層と負電極との接触面積を増加させることができる。そのため発光層に均一に電流を注入することが可能となり、発光効率を向上できる。
【0046】
また、本発明の窒化物半導体発光チップは、p型窒化物半導体層の周囲に露出させた所定幅のn型窒化物半導体層の上面に第2負電極を形成したので、さらにn型窒化物半導体層と負電極との接触面積を増加させることができ、発光効率をさらに向上できる。
【0047】
また、本発明の窒化物半導体発光チップは、p型窒化物半導体層の周囲に露出させた所定幅のn型窒化物半導体層の上面端部からn型窒化物半導体層の周囲に露出させた所定幅の基板上面に渡って連続して第2負電極を形成したので、さらにn型窒化物半導体層と負電極との接触面積を増加させることができ、発光効率をさらに向上できる。
【0048】
また、本発明の窒化物半導体発光チップは、第2負電極を第1負電極に接触するように形成したので、第2負電極と第1負電極とを分離する絶縁層が不要となり、n型窒化物半導体層と負電極との接触面積をさらに増大させることができ、発光効率を一層向上させることができる。
【0049】
また、本発明の窒化物半導体発光チップは、第2負電極をリード電極に接続するようにしたので、リード電極からn型窒化物半導体層へ直接通電することが可能となり、第2負電極とリード電極間の抵抗を低減でき、順方向電圧Vfを下げることができる。
【図面の簡単な説明】
【図1】本発明に係る実施の形態1の窒化物半導体チップの構造を示す模式断面図である。
【図2】本発明に係る実施の形態1の窒化物半導体チップの電極形状を示す模式平面図である。
【図3】本発明に係る実施の形態1の窒化物半導体チップをリードに実装した状態の構造を示す模式断面図である。
【図4】本発明に係る実施の形態1の窒化物半導体チップの製造工程を示す模式断面図(その1)である。
【図5】本発明に係る実施の形態1の窒化物半導体チップの製造工程を示す模式断面図(その2)である。
【図6】本発明に係る実施の形態2の窒化物半導体チップの構造を示す模式断面図である。
【図7】本発明に係る実施の形態2の窒化物半導体チップをリードに実装した状態の構造を示す模式断面図である。
【図8】本発明に係る実施の形態2の窒化物半導体チップの製造工程を示す模式断面図(その1)である。
【図9】本発明に係る実施の形態2の窒化物半導体チップの製造工程を示す模式断面図(その2)である。
【図10】本発明に係る実施の形態3の窒化物半導体チップの構造を示す模式断面図である。
【図11】本発明に係る実施の形態3の窒化物半導体チップをリードに実装した状態の構造を示す模式断面図である。
【図12】本発明に係る実施の形態3の窒化物半導体チップの製造工程を示す模式断面図(その1)である。
【図13】本発明に係る実施の形態3の窒化物半導体チップの製造工程を示す模式断面図(その2)である。
【図14】本発明に係る実施の形態3の窒化物半導体チップの製造工程を示す模式断面図(その3)である。
【図15】本発明に係る実施の形態4の窒化物半導体チップの構造を示す模式断面図である。
【図16】本発明に係る実施の形態4の窒化物半導体チップの電極形状を示す模式平面図である。
【図17】本発明に係る実施の形態4の窒化物半導体チップをリードに実装した状態の構造を示す模式断面図である。
【図18】本発明に係る実施の形態5の窒化物半導体チップの構造を示す模式断面図である。
【図19】本発明に係る実施の形態5の窒化物半導体チップをリードに実装した状態の構造を示す模式断面図である。
【図20】本発明に係る実施の形態6の窒化物半導体チップの構造を示す模式断面図である。
【図21】本発明に係る実施の形態6の窒化物半導体チップをリードに実装した状態の構造を示す模式断面図である。
【図22】従来の窒化物半導体チップの構造を示す模式断面図である。
【図23】従来の窒化物半導体チップをリードに実装した状態の構造を示す模式断面図である。
【符号の説明】
1,2,3,4,5,6 窒化物半導体発光チップ、11 基板、12 n型窒化物半導体層、13 p型窒化物半導体層、14 第1正電極、15 第2正電極、16,41,48 絶縁層、17 第1負電極、18,19,20,21,22,45,51 第2負電極、31 マウントリード、31a マウントリード上の支持部、32 インナーリード、42,49 レジスト膜、43,46 分離溝、44,47 第1段部、50 第2段部、61 スクライバー、62,63 粘着シート。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nitride semiconductor light emitting chip, and more particularly to a nitride semiconductor light emitting chip used in a mounting method in which a substrate is bonded to a metal support such as a lead frame via a conductive material.
[0002]
[Prior art]
In recent years, a light-emitting chip using a nitride semiconductor has attracted attention as a light-emitting chip capable of emitting blue light. For example, Japanese Patent Application Laid-Open No. 9-298313 proposes an LED in which a light emitting chip made of a nitride semiconductor is fixed to a support such as a lead frame. In a conventional LED, for example, as shown in FIG. 22, a nitride semiconductor light emitting chip 101 has an n-type nitride semiconductor layer 103 and a p-type nitride semiconductor layer 104 sequentially formed on a sapphire substrate 102, and one end thereof. The negative electrode 108 formed on the exposed upper surface of the n-type nitride semiconductor layer 103, the transparent first positive electrode 105 formed on the upper surface of the p-type nitride semiconductor layer 104, and the upper surface of the first positive electrode 105 The first transparent positive electrode 106 is formed continuously on the second transparent positive electrode 106 for bonding formed partially and on the upper surfaces of the first positive electrode 105, the second positive electrode 106, and the negative electrode 108 other than the bonding surface. And an insulating layer 107 for separating the negative electrode 108 from the negative electrode 108.
[0003]
Further, in the nitride semiconductor light emitting chip 101, as shown in FIG. 23, the back surface of the substrate 102 is bonded via a conductive material 113 to a support portion 111a provided above the mount lead 111, and the mount lead 111 and the negative electrode 108, and the inner lead 112 and the second positive electrode 106 are connected by wire bonding. Light emitted from the light emitting layer at the junction between the p-type nitride semiconductor layer 104 and the n-type nitride semiconductor layer 103 is output from the semiconductor layer side.
[0004]
[Problems to be solved by the invention]
However, in the conventional nitride semiconductor light emitting chip, the resistance of the p-type nitride semiconductor is larger than that of the n-type nitride semiconductor, so that the area of the first positive electrode 105 needs to be larger than that of the negative electrode. Further, in order to increase the output of light from the semiconductor layer side, it is necessary to increase the area of the first positive electrode 105. Therefore, the area of the negative electrode 108 must be reduced. It was difficult to secure. Therefore, it is difficult to uniformly inject a current into the entire light emitting layer, and there has been a problem that the high luminous efficiency of the nitride semiconductor light emitting chip cannot be sufficiently obtained.
[0005]
Therefore, an object of the present invention is to solve the above problems and to provide a nitride semiconductor light emitting chip capable of uniformly injecting current into a light emitting layer and improving luminous efficiency.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a nitride semiconductor light emitting chip according to the present invention includes a nitride semiconductor light emitting chip formed by laminating an n-type nitride semiconductor layer and a p-type nitride semiconductor layer on a substrate. Semiconductor light-emitting chip used in a mounting method in which the semiconductor device is bonded to a support portion above a lead electrode via a conductive material with the surface of the n-type nitride semiconductor layer facing down, A first negative electrode formed continuously from the open surface to surround the back surface of the substrate and in ohmic contact with the n-type nitride semiconductor layer; and a first negative electrode formed from the lead electrode to the n-type nitride semiconductor layer. It can be energized.
[0007]
The nitride semiconductor light emitting chip of the present invention is formed continuously so as to surround from the cleavage surface of the outer peripheral side wall of the n-type nitride semiconductor layer to the back surface of the substrate, and is in ohmic contact with the n-type nitride semiconductor layer. Since it has one negative electrode, the contact area between the n-type nitride semiconductor layer and the negative electrode can be increased as compared with the related art. Therefore, current can be uniformly injected into the light emitting layer, and the light emission efficiency is improved.
[0008]
Further, the nitride semiconductor light emitting chip of the present invention preferably has a second negative electrode formed on the upper surface of the n-type nitride semiconductor layer having a predetermined width exposed around the p-type nitride semiconductor layer. By providing the negative electrode also on the exposed upper surface of the n-type nitride semiconductor layer, the contact area between the n-type nitride semiconductor layer and the negative electrode can be further increased, and the luminous efficiency can be further improved. Become.
[0009]
Further, in the nitride semiconductor light emitting chip of the present invention, the upper end of the n-type nitride semiconductor layer having a predetermined width exposed around the p-type nitride semiconductor layer and the periphery of the n-type nitride semiconductor layer are exposed. It is preferable to have a second negative electrode formed on the upper surface of the substrate having a predetermined width. The contact area between the n-type nitride semiconductor layer and the negative electrode can be further increased, and the luminous efficiency can be further improved.
[0010]
Further, the nitride semiconductor light emitting chip of the present invention is preferably formed so that the second negative electrode is in contact with the first negative electrode. An insulating layer for separating the second negative electrode and the first negative electrode is not required, the contact area between the n-type nitride semiconductor layer and the negative electrode can be further increased, and the luminous efficiency can be further improved. .
[0011]
Further, in the nitride semiconductor light emitting chip of the present invention, it is preferable that the second negative electrode is connected to the lead electrode. Since it is possible to directly conduct electricity from the lead electrode to the n-type nitride semiconductor layer, the resistance between the second negative electrode and the lead electrode can be reduced, and the forward voltage Vf can be reduced.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a schematic sectional view showing a structure of a nitride semiconductor light emitting chip 1 according to the first embodiment, and FIG. 2 is a schematic plan view showing an electrode shape. The nitride semiconductor light emitting chip 1 includes an n-type nitride semiconductor layer 12, a p-type nitride semiconductor layer 13 formed sequentially on a surface of a substrate 11, and a transparent first semiconductor layer formed on an upper surface of the p-type nitride semiconductor layer 13. A first positive electrode 14, a second positive electrode 15 for bonding formed on a part of an upper surface of the first positive electrode, an insulating layer 16, and a rear surface of the substrate 11 from an outer peripheral side wall of the n-type nitride semiconductor layer 12; And a first negative electrode 17 formed continuously to surround the first negative electrode 17. Here, the insulating layer 16 includes an upper surface of the second positive electrode 15 other than the bonding surface, an upper surface of the first positive electrode 14, an upper surface of the exposed p-type nitride semiconductor layer 13, and an exposed n-type nitride semiconductor layer. The first negative electrode 17 and the first positive electrode 14 are formed continuously over the upper surface of the second electrode 12.
[0013]
Next, FIG. 3 is a schematic sectional view showing the structure of the nitride semiconductor light emitting chip 1 mounted on a lead, and a mount lead is used as a lead electrode. The nitride semiconductor light emitting chip 1 is joined to a support portion 31 a above the mount lead 31 via a conductive material 33 with the substrate 11 facing down. Therefore, the mount lead 31 and the n-type nitride semiconductor layer 12 are electrically connected to each other via the conductive material 33 and the first negative electrode 17. Electricity can be applied to the nitride semiconductor layer 12. On the other hand, the second positive electrode 15 is connected to the inner lead 32 by wire bonding.
[0014]
In the first embodiment, the first negative electrode 17 is formed continuously so as to surround from the outer peripheral side wall of the n-type nitride semiconductor layer 12 to the back surface of the substrate 11, so that the first negative electrode 17 is The contact area between the n-type nitride semiconductor layer and the negative electrode can be increased. Therefore, current can be more uniformly injected into the light emitting layer, and luminous efficiency is improved. Further, since the first negative electrode 17 is provided around the first positive electrode 15, a current can be injected from around the first positive electrode 15, and this also contributes to uniform injection of the current into the light emitting layer. .
[0015]
Further, with an increase in the contact area with the n-type nitride semiconductor layer, the effect of reducing the contact resistance and lowering Vf can be obtained. Further, since there is no need to provide a bonding electrode for connection with a mount lead on the exposed upper surface of the n-type nitride semiconductor layer as in a conventional light emitting chip, the light emitting chip can be further miniaturized.
[0016]
Here, it is necessary to use an electrode material capable of ohmic contact with the n-type nitride semiconductor layer for the first negative electrode. For example, one or more kinds of metal materials such as Ti, Al, Ni, Au, W, and V can be used, and Ti / Al, W / Al / W / Au, It is preferable to have a multilayer structure such as W / Al / W / Pt / Au and V / Al. By using an electrode material that can make ohmic contact with the n-type nitride semiconductor layer 3, Vf can be reduced. Further, by using a metal material for the electrode, light traveling from the light emitting layer toward the back surface of the substrate can be reflected by the first negative electrode. Therefore, leakage of light from the back surface and the side wall of the substrate can be prevented, light output from the semiconductor layer side can be increased, and luminous efficiency can be improved.
[0017]
Further, the end face of the n-type nitride semiconductor layer is preferably an open face. Good ohmic contact with the first negative electrode layer is obtained.
[0018]
Further, as the conductive material, it is preferable to use a conventionally known bonding material containing a metal such as a conductive paste or a brazing metal. Since the thermal conductivity is high, heat generated from the light emitting chip can be efficiently transmitted to the mount lead, and an effect of improving heat dissipation of the light emitting chip can be obtained.
[0019]
The nitride semiconductor light emitting chip according to the first embodiment can be manufactured by, for example, a method described below.
FIGS. 4 and 5 are schematic cross-sectional views showing a manufacturing process of the nitride semiconductor light-emitting chip 1, in which a semiconductor wafer having an n-type nitride semiconductor layer and a p-type nitride semiconductor layer sequentially formed on a substrate is divided. A groove forming step (FIGS. 4A to 4F), a positive electrode forming step (FIGS. 4G and 4H), an insulating layer forming step (FIG. 5A), and division of the semiconductor wafer It comprises a step (FIG. 5B), a negative electrode forming step (FIGS. 5C and 5D), and a transfer step (FIG. 5E).
[0020]
Hereinafter, each step will be described. The semiconductor wafer 40 has, for example, an n-type nitride semiconductor layer 12 made of GaN doped with Si and a p-type nitride semiconductor layer 13 made of GaN doped with Mg on a substrate 11 made of, for example, sapphire. Are sequentially formed (FIG. 4A). In the dividing groove forming step for the semiconductor wafer 40, an insulating layer 41 made of, for example, SiO is formed (FIG. 4B), and a resist film 42 having a predetermined pattern is formed on the insulating layer 41 (FIG. 4C). The insulating layer 41 is etched into a predetermined pattern (FIG. 4D). Further etching is performed to form a dividing groove 43 reaching the n-type nitride semiconductor layer 12 and first step portions 44 exposing the n-type nitride semiconductor layer 12 at both ends of the substrate 11 (FIG. 4E). Next, the insulating layer 41 is removed by etching (FIG. 4F).
[0021]
In the positive electrode forming step, first, the first positive electrode 14 is formed on the exposed p-type nitride semiconductor layer 13 by, for example, sputtering (FIG. 4G). Next, the second positive electrode 15 is formed on a part of the upper surface of the first positive electrode 14 by, for example, vapor deposition (FIG. 4H). Here, the thickness of the second positive electrode is preferably 10 μm or more. By projecting the second positive electrode from the chip surface, the chip surface can be easily adhered to the adhesive sheet.
[0022]
In the insulating layer forming step, the upper surface of the second positive electrode 15 other than the bonding surface, the upper surface of the first positive electrode 14, the upper surface of the exposed p-type nitride semiconductor layer 13, the dividing groove 43 and the first step portion 44 (FIG. 5A) is formed an insulating layer 16 for electrode separation continuously covering the surface of FIG.
[0023]
In the dividing step, the semiconductor wafer 40 is bonded to the adhesive sheet 62 with the insulating layer 16 side down. Next, a scribe line is formed in the center of the dividing groove 43 from the back side of the substrate 11 by, for example, a scriber 61 (FIG. 5B), and the semiconductor wafer 40 is divided by applying an external force using a roller or the like. According to this method using a scriber, since the end face of the n-type nitride semiconductor layer 12 is an open face, good ohmic contact with the first negative electrode formed in the next step can be obtained.
[0024]
In the negative electrode forming step, the pressure-sensitive adhesive sheet 62 is extended in a direction in which each chip is separated (FIG. 5C), and then the first negative electrode 17 is formed from the back surface of the substrate 11 by, for example, sputtering. 12 is continuously formed so as to surround the outer peripheral side wall 12 (FIG. 5D). Next, in a transfer step, another adhesive sheet 63 is adhered to the back surface of the substrate 11, the direction of the light emitting chip is reversed, and the light emitting chip is fixed to the adhesive sheet, thereby manufacturing the light emitting chip 1 (FIG. 5E).
[0025]
Embodiment 2 FIG.
FIG. 6 is a schematic sectional view showing the structure of the nitride semiconductor light emitting chip 2 according to the second embodiment. Embodiments except that a second negative electrode 18 that is in contact with the first negative electrode 17 is provided at an end of the upper surface of the n-type nitride semiconductor layer 12 exposed at a predetermined width around the p-type nitride semiconductor layer 13. The structure is the same as the structure of the nitride semiconductor light emitting chip 1.
[0026]
FIG. 7 is a schematic sectional view showing the structure of the nitride semiconductor light emitting chip 2 mounted on a lead. As in the case of the first embodiment, the light emitting chip 2 is joined to the support portion 31 a via the conductive material 33 with the back surface of the substrate 11 facing down, and the second positive electrode 15 is connected to the inner lead 32. They are connected by wire bonding.
[0027]
Here, the second negative electrode 18 is in contact with the first negative electrode 17, and all the negative electrodes are in contact with the n-type nitride semiconductor layer 12. Therefore, at least one of the second negative electrode 18 and the first negative electrode 17 only needs to be an electrode material that can make ohmic contact with the n-type nitride semiconductor layer 12, and the electrode material described in Embodiment 1 may be used. it can.
[0028]
8 and 9 are schematic views showing the steps of manufacturing the nitride semiconductor light emitting device 11 according to the second embodiment. Except for a second negative electrode forming step (FIG. 9A) between the positive electrode forming step (FIGS. 8G and 8H) and the insulating layer forming step (FIG. 9B). This is the same as the manufacturing process in the first embodiment. A second negative electrode 45 is formed on the upper surface of the n-type nitride semiconductor layer at the center of the division groove, and a second negative electrode 18 having a predetermined width is formed on the exposed end of the upper surface of the n-type nitride semiconductor layer. The second negative electrode 45 provided near the center of the division groove 43 is equally divided when the light emitting chip is divided in the division step.
[0029]
According to the second embodiment, since the second negative electrode is provided on the exposed upper surface of the n-type nitride semiconductor layer so as to be in contact with the first negative electrode, the first negative electrode and the second negative electrode This eliminates the need for an insulating layer that separates the semiconductor layer, and can further increase the contact area between the n-type nitride semiconductor layer and the negative electrode. Therefore, current can be more uniformly injected into the light emitting layer, and the light emitting efficiency can be further improved.
[0030]
Embodiment 3 FIG.
FIG. 10 is a schematic sectional view showing the structure of the nitride semiconductor light emitting chip 3 according to the third embodiment. The nitride semiconductor light-emitting chip 3 has a predetermined width exposed on the periphery of the n-type nitride semiconductor layer 12 and a predetermined width exposed on the periphery of the p-type nitride semiconductor layer 13. The second embodiment has the same structure as that of the first embodiment except that a second negative electrode 19 formed continuously on the upper surface of the substrate 11 having a width and in contact with the first negative electrode 17 is provided.
[0031]
FIG. 11 is a schematic sectional view showing the structure of the nitride semiconductor light emitting chip 3 mounted on the lead. As in the case of the first embodiment, the light emitting chip 3 is bonded to the support portion 31 a via the conductive material 33 with the back surface of the substrate 11 facing down, and the second positive electrode 15 is connected to the inner lead 32. They are connected by wire bonding.
[0032]
Here, the second negative electrode 19 is in contact with the first negative electrode 17, but only the second negative electrode 19 is in contact with the n-type nitride semiconductor layer 12. Therefore, second negative electrode 19 needs to be formed of an electrode material capable of ohmic contact with n-type nitride semiconductor layer 12 described in the first embodiment.
[0033]
12, 13, and 14 are schematic sectional views illustrating an example of a manufacturing process of the nitride semiconductor light emitting chip 3 according to the third embodiment. In the division groove forming step (FIGS. 12A to 12F), a division groove 46 reaching the substrate 11 and an end portion of the substrate 11 having a predetermined width exposed around the n-type nitride semiconductor layer 12 are formed. The step of forming the first step portion 47 (FIG. 12E) and exposing the n-type nitride semiconductor layer having a predetermined width around the p-type nitride semiconductor layer 13 to form the second step portion 50 is performed. (FIGS. 12 (g) and 12 (h) to 13 (a), (b) and (c)). After the positive electrode forming step, a second negative electrode forming step of forming the second negative electrodes 19 and 51 is performed. Except for providing, the manufacturing process is the same as in the first embodiment. Here, the second negative electrode 51 is formed continuously from the inner surface of the dividing groove 46 to the upper surface of the exposed end of the n-type nitride semiconductor layer 12, and the second negative electrode 19 is formed at the exposed end of the substrate 11. Is formed continuously from the upper surface to the end of the exposed upper surface of the n-type nitride semiconductor layer 12. In the dividing step, the second negative electrode 51 is equally divided when the light emitting chip is divided.
[0034]
According to the third embodiment, the upper surface of the substrate having a predetermined width is exposed around the n-type nitride semiconductor layer, and continuously from the exposed upper surface of the substrate to the end of the exposed upper surface of the n-type nitride semiconductor layer. Since the second negative electrode formed and in contact with the first negative electrode is provided, the contact area between the n-type nitride semiconductor layer and the negative electrode can be further increased. Therefore, the current can be more uniformly injected into the light emitting layer, and the luminous efficiency can be further improved.
[0035]
Embodiment 4 FIG.
FIG. 15 is a schematic sectional view showing the structure of the nitride semiconductor light emitting chip 1 according to the fourth embodiment, and FIG. 16 is a schematic plan view showing the shape of an electrode. In the nitride semiconductor light emitting chip 4, the second negative electrode 20 having a bonding surface for connection with a mount lead on a part of the exposed upper surface of the n-type nitride semiconductor layer 12 is separated from the second positive electrode 15 by a predetermined distance. The second negative electrode 20 is separated by the first negative electrode layer 17 and the insulating layer 16.
[0036]
FIG. 17 is a schematic sectional view showing the structure of the nitride semiconductor light emitting chip 4 mounted on a lead. The light emitting chip 4 is joined to the support portion 31a via the conductive material 33 with the back side of the substrate 11 facing down, and the second positive electrode 15 is connected to the inner lead 32 by wire bonding. Further, the second negative electrode 20 is connected to the mount lead 31 by wire bonding, so that the current can be directly supplied to the n-type nitride semiconductor layer 12 from the mount lead.
[0037]
Here, since the first negative electrode 17 and the second negative electrode 20 are in contact with the n-type nitride semiconductor layer 12, respectively, the first negative electrode 17 and the second negative electrode 20 need to be formed of an electrode material capable of ohmic contact with the n-type nitride semiconductor layer. The electrode materials described in Embodiment 1 can be used.
[0038]
According to the fourth embodiment, the second negative electrode layer is formed on the exposed upper surface of the n-type nitride semiconductor layer so as to be capable of bonding from the mount lead, connected to the mount lead, and directly connected to the mount lead. Since current can be supplied to the semiconductor layer, the contact area between the n-type nitride semiconductor layer and the negative electrode can be increased, and the resistance between the lead and the electrode can be reduced. Therefore, current can be uniformly injected into the light emitting layer, the luminous efficiency can be improved, and the Vf can be reduced. Note that, with an increase in the contact area between the n-type nitride semiconductor layer and the negative electrode, the contact resistance is reduced and Vf can be reduced, and the light from the back surface and the side wall of the substrate can be reduced due to the presence of the first negative electrode. It is needless to say that leakage of light can be prevented, the output of light from the semiconductor layer side can be increased, and the heat dissipation of the light emitting chip can be improved by the presence of the conductive material.
[0039]
Embodiment 5 FIG.
FIG. 18 is a schematic sectional view showing the structure of the nitride semiconductor light emitting chip 5 according to the fifth embodiment. The nitride semiconductor light emitting chip 5 has a second negative electrode 20 formed so as to be in contact with the first negative electrode 17, and further has a predetermined width of the n-type nitride semiconductor layer 12 exposed around the p-type nitride semiconductor layer 13. The light emitting chip has the same structure as that of the light emitting chip of the fourth embodiment except that a second negative electrode 21 that is in contact with the second negative electrode 20 and the first negative electrode 17 is formed on the upper surface of the end of the light emitting chip. As shown in FIG. 19, similarly to the case of the fourth embodiment, the back surface side of the substrate 11 is joined to the support portion 31a via the conductive material 33 with the back surface side down, and the second positive electrode 15 It is connected to the inner lead 32 by wire bonding.
[0040]
Here, since the first negative electrode 17 and the second negative electrodes 20 and 21 are in contact with the n-type nitride semiconductor layer 12, respectively, the first negative electrode 17 and the second negative electrodes 20 and 21 need to be formed of an electrode material capable of ohmic contact with the n-type nitride semiconductor layer. Therefore, the electrode material described in Embodiment 1 can be used.
[0041]
According to the fifth embodiment, since the second negative electrode is brought into contact with the first negative electrode and the second negative electrode is provided so as to continuously cover the upper surface of the end of the n-type nitride semiconductor layer, n The contact area between the type nitride semiconductor layer and the negative electrode can be further increased. Therefore, a current can be more uniformly injected into the light emitting layer, and the luminous efficiency can be further improved.
[0042]
Embodiment 6 FIG.
FIG. 20 is a schematic sectional view showing the structure of the nitride semiconductor light emitting chip 6 according to the sixth embodiment. The nitride semiconductor light emitting chip 6 has an upper surface edge of the n-type nitride semiconductor layer 12 having a predetermined width in which the second negative electrode is exposed around the p-type nitride semiconductor layer 13 and the periphery of the n-type nitride semiconductor layer 12. The structure is the same as that of the nitride semiconductor light emitting chip 4 of the fourth embodiment, except that it is formed continuously on the upper surface of the substrate 11 having a predetermined width and exposed to the first negative electrode 17. Further, as shown in FIG. 21, similarly to the case of the fourth embodiment, the back surface side of the substrate 11 is connected to the support portion 31a via the conductive material 33 with the back surface side down, and the second positive electrode 15 It is connected to the inner lead 32 by wire bonding.
[0043]
Here, since the second negative electrode 22 is in contact with the n-type nitride semiconductor layer 12, it is necessary to form the second negative electrode 22 with an electrode material capable of ohmic contact with the n-type nitride semiconductor layer. Electrode material can be used.
[0044]
According to the sixth embodiment, since the second negative electrode is formed continuously up to the upper surface of the substrate having a predetermined width exposed around the n-type nitride semiconductor layer, the n-type nitride semiconductor layer Contact area between the electrode and the negative electrode can be further increased. Therefore, current can be more uniformly injected into the light emitting layer, and the luminous efficiency can be further improved.
[0045]
【The invention's effect】
As described above, in the nitride semiconductor light emitting chip of the present invention, the first negative electrode is continuously formed so as to surround from the outer peripheral side wall of the n-type nitride semiconductor layer to the back surface of the substrate. Since the current can flow through the n-type nitride semiconductor layer, the contact area between the n-type nitride semiconductor layer and the negative electrode can be increased. Therefore, current can be uniformly injected into the light emitting layer, and the light emission efficiency can be improved.
[0046]
Also, in the nitride semiconductor light emitting chip of the present invention, the second negative electrode is formed on the upper surface of the n-type nitride semiconductor layer having a predetermined width exposed around the p-type nitride semiconductor layer. The contact area between the semiconductor layer and the negative electrode can be increased, and the luminous efficiency can be further improved.
[0047]
Further, in the nitride semiconductor light-emitting chip of the present invention, a predetermined width of the n-type nitride semiconductor layer exposed around the p-type nitride semiconductor layer is exposed to the periphery of the n-type nitride semiconductor layer from an upper end. Since the second negative electrode is formed continuously over the upper surface of the substrate having a predetermined width, the contact area between the n-type nitride semiconductor layer and the negative electrode can be further increased, and the luminous efficiency can be further improved.
[0048]
Further, in the nitride semiconductor light emitting chip of the present invention, since the second negative electrode is formed so as to be in contact with the first negative electrode, an insulating layer for separating the second negative electrode from the first negative electrode becomes unnecessary, and n The contact area between the type nitride semiconductor layer and the negative electrode can be further increased, and the luminous efficiency can be further improved.
[0049]
Further, in the nitride semiconductor light emitting chip of the present invention, since the second negative electrode is connected to the lead electrode, it is possible to directly supply electricity from the lead electrode to the n-type nitride semiconductor layer, and the second negative electrode is connected to the second negative electrode. The resistance between the lead electrodes can be reduced, and the forward voltage Vf can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a structure of a nitride semiconductor chip according to a first embodiment of the present invention.
FIG. 2 is a schematic plan view showing an electrode shape of the nitride semiconductor chip according to the first embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view showing a structure in which the nitride semiconductor chip according to the first embodiment of the present invention is mounted on leads.
FIG. 4 is a schematic cross-sectional view (1) showing a step of manufacturing the nitride semiconductor chip according to the first embodiment of the present invention.
FIG. 5 is a schematic cross-sectional view (No. 2) showing a step of manufacturing the nitride semiconductor chip according to the first embodiment of the present invention.
FIG. 6 is a schematic sectional view showing a structure of a nitride semiconductor chip according to a second embodiment of the present invention.
FIG. 7 is a schematic sectional view showing a structure in a state where a nitride semiconductor chip according to a second embodiment of the present invention is mounted on leads.
FIG. 8 is a schematic cross-sectional view (1) showing a step of manufacturing a nitride semiconductor chip according to the second embodiment of the present invention.
FIG. 9 is a schematic cross-sectional view (No. 2) showing a step of manufacturing the nitride semiconductor chip according to the second embodiment of the present invention.
FIG. 10 is a schematic sectional view showing a structure of a nitride semiconductor chip according to a third embodiment of the present invention.
FIG. 11 is a schematic sectional view showing a structure in a state where a nitride semiconductor chip according to a third embodiment of the present invention is mounted on leads.
FIG. 12 is a schematic cross-sectional view (1) showing a step for manufacturing a nitride semiconductor chip according to the third embodiment of the present invention.
FIG. 13 is a schematic cross-sectional view (2) showing a step of manufacturing the nitride semiconductor chip according to the third embodiment of the present invention.
FIG. 14 is a schematic cross-sectional view (3) showing a step of manufacturing a nitride semiconductor chip according to the third embodiment of the present invention.
FIG. 15 is a schematic sectional view showing a structure of a nitride semiconductor chip according to a fourth embodiment of the present invention.
FIG. 16 is a schematic plan view showing an electrode shape of a nitride semiconductor chip according to a fourth embodiment of the present invention.
FIG. 17 is a schematic cross-sectional view showing a structure in a state where a nitride semiconductor chip according to a fourth embodiment of the present invention is mounted on leads.
FIG. 18 is a schematic sectional view showing a structure of a nitride semiconductor chip according to a fifth embodiment of the present invention.
FIG. 19 is a schematic sectional view showing a structure in a state where a nitride semiconductor chip according to a fifth embodiment of the present invention is mounted on leads.
FIG. 20 is a schematic sectional view showing a structure of a nitride semiconductor chip according to a sixth embodiment of the present invention.
FIG. 21 is a schematic cross-sectional view showing a structure in a state where a nitride semiconductor chip according to a sixth embodiment of the present invention is mounted on leads.
FIG. 22 is a schematic sectional view showing the structure of a conventional nitride semiconductor chip.
FIG. 23 is a schematic sectional view showing a structure in a state where a conventional nitride semiconductor chip is mounted on a lead.
[Explanation of symbols]
1, 2, 3, 4, 5, 6 nitride semiconductor light emitting chip, 11 substrate, 12 n-type nitride semiconductor layer, 13 p-type nitride semiconductor layer, 14 first positive electrode, 15 second positive electrode, 16, 41, 48 insulating layer, 17 first negative electrode, 18, 19, 20, 21, 22, 45, 51 second negative electrode, 31 mount lead, 31a support on mount lead, 32 inner lead, 42, 49 resist Membrane, 43, 46 Separation groove, 44, 47 First step, 50 Second step, 61 Scriber, 62, 63 Adhesive sheet.

Claims (5)

基板上にn型窒化物半導体層とp型窒化物半導体層とを積層して形成される窒化物半導体発光チップを、基板側を下側にし導電性材料を介してリード電極上部の支持部に接合する実装方法に用いる窒化物半導体発光チップにおいて、
上記窒化物半導体発光チップが、上記n型窒化物半導体層の外周側壁のヘキ開面から上記基板の裏面に渡って囲むように連続して形成され、上記n型窒化物半導体層とオーミック接触する第1負電極を有し、上記リード電極から上記n型窒化物半導体層に通電可能な窒化物半導体発光チップ。
A nitride semiconductor light-emitting chip formed by laminating an n-type nitride semiconductor layer and a p-type nitride semiconductor layer on a substrate is placed on a support portion above a lead electrode via a conductive material with the substrate side down. In the nitride semiconductor light emitting chip used for the mounting method for bonding,
The nitride semiconductor light-emitting chip is continuously formed so as to surround from the cleavage surface of the outer peripheral side wall of the n-type nitride semiconductor layer to the back surface of the substrate, and makes ohmic contact with the n-type nitride semiconductor layer. A nitride semiconductor light emitting chip having a first negative electrode and capable of conducting electricity from the lead electrode to the n-type nitride semiconductor layer.
上記p型窒化物半導体層の周囲に露出させた所定幅の上記n型窒化物半導体層の上面に形成された第2負電極を有する請求項1記載の窒化物半導体発光チップ。2. The nitride semiconductor light emitting chip according to claim 1, further comprising a second negative electrode formed on an upper surface of said n-type nitride semiconductor layer having a predetermined width exposed around said p-type nitride semiconductor layer. 第2負電極が、上記p型窒化物半導体層の周囲に露出させた所定幅のn型窒化物半導体層の上面端部から上記n型窒化物半導体層の周囲に露出させた所定幅の基板上面に渡って連続して形成された請求項2記載の窒化物半導体発光チップ。A substrate having a predetermined width in which a second negative electrode is exposed around the n-type nitride semiconductor layer from an upper end of the n-type nitride semiconductor layer having a predetermined width exposed around the p-type nitride semiconductor layer 3. The nitride semiconductor light-emitting chip according to claim 2, which is formed continuously over the upper surface. 第2負電極が第1負電極に接触するように形成された請求項2又は3に記載の窒化物半導体発光チップ。4. The nitride semiconductor light emitting chip according to claim 2, wherein the second negative electrode is formed so as to contact the first negative electrode. 第2負電極が上記リード電極に接続された請求項2〜4のいずれか一つに記載の窒化物半導体発光チップ。The nitride semiconductor light emitting chip according to claim 2, wherein a second negative electrode is connected to the lead electrode.
JP2003156350A 2003-06-02 2003-06-02 Nitride semiconductor light emitting chip Pending JP2004031945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156350A JP2004031945A (en) 2003-06-02 2003-06-02 Nitride semiconductor light emitting chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156350A JP2004031945A (en) 2003-06-02 2003-06-02 Nitride semiconductor light emitting chip

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26193899A Division JP3460638B2 (en) 1999-09-16 1999-09-16 Method for manufacturing nitride semiconductor light emitting chip

Publications (1)

Publication Number Publication Date
JP2004031945A true JP2004031945A (en) 2004-01-29

Family

ID=31185388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156350A Pending JP2004031945A (en) 2003-06-02 2003-06-02 Nitride semiconductor light emitting chip

Country Status (1)

Country Link
JP (1) JP2004031945A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135539A (en) * 2009-03-16 2009-06-18 Toyoda Gosei Co Ltd Method of manufacturing solid-state element device
KR100999733B1 (en) 2010-02-18 2010-12-08 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package
US8541807B2 (en) 2007-08-09 2013-09-24 Lg Innotek Co., Ltd. Semiconductor light emitting device and light emitting apparatus having the same
US9537056B2 (en) 2010-02-18 2017-01-03 Lg Innotek Co., Ltd. Light emitting device
JP2017073562A (en) * 2011-07-15 2017-04-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method of bonding semiconductor device to support substrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541807B2 (en) 2007-08-09 2013-09-24 Lg Innotek Co., Ltd. Semiconductor light emitting device and light emitting apparatus having the same
KR101327106B1 (en) * 2007-08-09 2013-11-07 엘지이노텍 주식회사 Semiconductor light emitting device
JP2009135539A (en) * 2009-03-16 2009-06-18 Toyoda Gosei Co Ltd Method of manufacturing solid-state element device
KR100999733B1 (en) 2010-02-18 2010-12-08 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package
US8723213B2 (en) 2010-02-18 2014-05-13 Lg Innotek Co., Ltd. Light emitting device and light emitting device package
US9537056B2 (en) 2010-02-18 2017-01-03 Lg Innotek Co., Ltd. Light emitting device
JP2017073562A (en) * 2011-07-15 2017-04-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method of bonding semiconductor device to support substrate
US11721788B2 (en) 2011-07-15 2023-08-08 Lumileds Llc Method of bonding a semiconductor device to a support substrate

Similar Documents

Publication Publication Date Title
TWI482309B (en) Thin-film led with p and n contacts electrically isolated from the substrate
JP3693468B2 (en) Semiconductor light emitting device
US8785958B2 (en) Light emitting element
US7728340B2 (en) Semiconductor light-emitting device
TWI300277B (en) Method for manufacturing gallium nitride light emitting diode devices
TW201208107A (en) Light emitting diode chip, package structure of the same, and fabricating method thereof
KR20100074352A (en) Light emitting device having plurality of light emitting cells and method of fabricating the same
TW201251109A (en) Semiconductor light emitting device and method for manufacturing same
JP3068914U (en) Flip-chip light emitting device
JP4179866B2 (en) Semiconductor composite device and LED head
KR20100108906A (en) Light emitting device having plurality of light emitting cells and method of fabricating the same
KR101281081B1 (en) Vertical Light emitting diode cell array and method of manufacturing the same
JP2004207325A (en) Semiconductor device
JP3460638B2 (en) Method for manufacturing nitride semiconductor light emitting chip
JP6551245B2 (en) Method of manufacturing light emitting device
JP3303154B2 (en) Semiconductor light emitting device
WO2020210945A1 (en) Light-emitting device and manufacture method therefor
JP2004311677A (en) Semiconductor light emitting device
JP3916726B2 (en) Compound semiconductor light emitting device
JP4277583B2 (en) Semiconductor light emitting device
JP2004031945A (en) Nitride semiconductor light emitting chip
JP2005051233A (en) Light emitting semiconductor device and manufacturing method therefor
JP2941743B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
JP2003023180A (en) Compound semiconductor light emitting element and its manufacturing method
JP2000077726A (en) Semiconductor element and manufacture thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060524

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060524

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060526