TW200903187A - Exposure device - Google Patents

Exposure device Download PDF

Info

Publication number
TW200903187A
TW200903187A TW097116652A TW97116652A TW200903187A TW 200903187 A TW200903187 A TW 200903187A TW 097116652 A TW097116652 A TW 097116652A TW 97116652 A TW97116652 A TW 97116652A TW 200903187 A TW200903187 A TW 200903187A
Authority
TW
Taiwan
Prior art keywords
reflecting surface
concave reflecting
optical system
projection optical
concave
Prior art date
Application number
TW097116652A
Other languages
Chinese (zh)
Other versions
TWI440988B (en
Inventor
Ryousuke Fukuoka
Original Assignee
Canon Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kk filed Critical Canon Kk
Publication of TW200903187A publication Critical patent/TW200903187A/en
Application granted granted Critical
Publication of TWI440988B publication Critical patent/TWI440988B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70325Resolution enhancement techniques not otherwise provided for, e.g. darkfield imaging, interfering beams, spatial frequency multiplication, nearfield lenses or solid immersion lenses
    • G03F7/70333Focus drilling, i.e. increase in depth of focus for exposure by modulating focus during exposure [FLEX]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

To provide an exposure device which makes high performance and high throughput compatible with low cost. The exposure device is equipped with a projection optical system where a first concave reflection surface M1, a convex reflection surface M2 and a second concave reflection surface M3 are arranged in order in an optical path leading to an image surface I from an object surface O. The projection optical system includes dioptric members L1 to L4 having power between the object surface O and the first concave reflection surface M1, between the first concave reflection surface M1 and the convex reflection surface M2, between the convex reflection surface M2 and the second concave reflection surface M3, and between the second concave reflection surface M3 and the image surface I respectively, and has an annular good image area in a finite range in an off-axis state.; When the sum total of the power of the reflection optical members M1 to M3 included in the projection optical system is defined as [phi]1 and the sum total of the power of the dioptric members L1 to L4 is defined as [phi]2, [phi]1 and [phi]2 satisfy 0.001<= 3/4 [phi]2/[phi]1 3/4 <=0.1.

Description

200903187 九、發明說明 【發明所屬之技術領域】 本發明係關於用來將物體像投影在像面上之投影光學 系統,以及具有該投影光學系統之曝光裝置。 【先前技術】 近年來’隨著電視系統之HD (高解析度)的進展, 作爲顯不兀件已開始大量使用平面顯示號(以下稱FPD) 。且有畫面更大但更低成本的要求。關於FPD的製造, 係使用和積體電路產業界的光微影手法相同的手法,將包 含電路圖案的光罩像經由投影光學系統投影於玻璃基板( 塗布有光阻)上’而在玻璃基板上形成圖案。 爲了對應於近年來之玻璃基板的大型化,投影光學系 統本身也必須大型化,而發生反射光學元件或折射光學元 件變得大型化、裝置大型化、成本明顯增加等的問題。 日本特開平7-57986號公報、日本特開2006-78592 號公報揭示用來解決上述問題的技術。 日本特開平7 - 5 7 9 8 6號公報所揭不的技術,係將等倍 率的小型投影光學系統複數個並排而構成多透鏡光學系統 ’以各個投影光學系統的曝光區域在玻璃基板面上重疊的 方式進行曝光,以確保大型的曝光區域。 日本特開2006-7 8 5 92號公報所揭示的技術,係將反 射面非球面化,並將投影光學系統的成像倍率增大成比等 倍率更局,藉此降低光罩成本。 -4- 200903187 【發明內容】 然而,在日本特開平7-57986號公報所揭 爲了使相鄰投影光學系統所形成的像之接合部 將曝光量、成像性能控制成讓接合部不顯眼, 難度變高的問題。又在日本特開2006-78592 示的技術,藉由使用反射面之全面放大光學系 因玻璃基板之大型化而造成光罩尺寸的大型化 於反射光學元件變得大型化且爲了確保光路 光學元件切成二半,又爲了校正像差必須使反 球面形,因此會產生製造上的困難。 本發明的目的’是爲了提供一種能兼具高 能及低成本之投影光學系統及曝光裝置。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection optical system for projecting an image of an object on an image plane, and an exposure apparatus having the projection optical system. [Prior Art] In recent years, with the progress of HD (high resolution) of television systems, a flat display number (hereinafter referred to as FPD) has been widely used as a display. And there is a larger but lower cost requirement. The FPD is manufactured by projecting a mask image including a circuit pattern onto a glass substrate (coated with a photoresist) via a projection optical system using the same method as the photolithography method of the integrated circuit industry. Form a pattern on it. In order to increase the size of the glass substrate in recent years, the projection optical system itself must be enlarged, and the reflective optical element or the refractive optical element is increased in size, the size of the device is increased, and the cost is significantly increased. Japanese Laid-Open Patent Publication No. Hei 7-57986, No. 2006-78592 discloses a technique for solving the above problems. The technique disclosed in Japanese Laid-Open Patent Publication No. Hei 7-57-9866, which is a plurality of small projection optical systems of equal magnification, is arranged side by side to form a multi-lens optical system' with an exposure area of each projection optical system on a glass substrate surface. Exposure is done in an overlapping manner to ensure a large exposure area. The technique disclosed in Japanese Laid-Open Patent Publication No. 2006-7 8 5 92 asphericalizes the reflecting surface and increases the imaging magnification of the projection optical system to be more uniform than the equal magnification, thereby reducing the cost of the mask. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The problem of getting higher. Further, in the technique disclosed in Japanese Laid-Open Patent Publication No. 2006-78592, the size of the reticle is increased by the enlargement of the glass substrate by the use of the entire surface of the optical system, and the size of the reticle is increased, and the optical path element is secured. Cut in half, and in order to correct the aberrations must make the anti-spherical shape, so it will create manufacturing difficulties. The object of the present invention is to provide a projection optical system and an exposure apparatus which are capable of both high energy and low cost.

本發明的一態樣之投影光學系統,係在從 面的光路上依序配置第一凹反射面、凸反射面 反射面且在軸外具有有限範圍的環帶狀良好成 光學系統,其特徵在於:在物體面和第一凹反 第一凹反射面和凸反射面之間、凸反射面和第 之間、以及第二凹反射面和像面之間,分別配 度(power )之折射光學元件;設投影光學系 射光學元件的光焦度總和爲Φ 1、折射光學元件 和爲φ2時’ φΐ及Φ2符合0.001S丨φ2/φ1 I 本發明的另一態樣之曝光裝置,其特徵在 :用來將光罩圖案投影在塗布有光阻的基板上 示的技術, 重疊,必須 而有調整困 號公報所揭 統,可避免 。然而,由 必須將反射 射面形成非 性能、筒產 物體面至像 以及第二凹 像區之投影 射面之間、 二凹反射面 置具有光焦 統所含之反 的光焦度總 於:係具備 之上述投影 -5- 200903187 光學系統’藉由使前述光罩和前述基板進行同步掃描以將 前述圖案轉印至前述基板上。 依據本發明’可提供一種能兼具高性能、高產能及低 成本之投影光學系統及曝光裝置。 本發明之其他特徵及態樣,參照圖式並根據以下的說 明將更爲明瞭。又在圖式中,對於相同或是同樣的構造是 賦予相同的符號。 【實施方式】 〔曝光裝置之實施形態〕 以下說明本發明的曝光裝置之一例。本實施形態之曝 光裝置,係使用軸外的環帶狀良好成像區進行曝光照明, 將形成於光罩之圖案投影曝光於塗布有光阻之基板上,並 使光罩和基板進行同步掃描,藉此將圖案轉印於基板上。 在以下的說明,將形成有圖案之光罩稱爲「物體」,將塗 布有光阻之基板表面稱爲「修面」。本實施形態之曝光裝 置,如第1、3、5、7圖所示,係具備投影光學系統,其 在從物體面〇至像面I的光路上依序配置第一凹反射面 Ml、凸反射面M2以及第二凹反射面M3。投影光學系統 ,在物體〇和第一凹反射面Μ 1之間具有折射光學元件 L 1,在第一凹反射面Μ 1和凸反射面M2之間具有折射光 學元件L2。此外,投影光學系統,在凸反射面M2和第二 凹反射面M3之間具有折射光學元件L3,在第二凹反射面 M3和像面I之間具有折射光學元件L4。折射光學元件L 1 -6- 200903187 〜L4,係具有光焦度之折射光學元件。投影光學系統,係 在軸外具有有限範圍的良好成像區。設投影光學系統所含 之反射光學元件Ml〜M3的光焦度總和爲φΐ、折射光學元 件L 1〜L4的光焦度總和爲φ2時,φ 1及φ2符合以下的條 件式(1 )。 0.001 ^ I φ2/φ 1 I ^0.1··· ( 1 ) 此Φ 1及Φ2的條件式’是投影光學系統能維持良好的 成像性能且能使光學系統變小之條件式。 可符合珀茲代(Petzval )條件式及兩側遠心條件之最 小的光學系統,係由正折射力的第一群、負折射力的第二 群、正折射力的第三群所構成之三合透鏡配置。整個系統 的珀茲代和P用Ρ = Σ(φη/Νη)表示。在反射面之Nn=_ 1 。因此’若| Σφί I越接近0,亦即| φ2/φ1丨越大,像面 會越平坦,像面彎曲、像散差(astigmatic difference)越 小而能獲得良好的光學性能。然而,僅使用反射鏡系統, 良好成像區變小而要提昇產率會有困難,因此必須配置校 正透鏡來擴大良好成像區。若該折射光學元件的光焦度越 小,亦即| φ2/φ 1 |越小,越能抑制色像差的發生。另一 方面’若該折射光學元件的光焦度越大,朝凹面反射鏡之 入射位置越低,而能縮小光學系統整體的大小。 因此’上述φ 1及φ2的條件式,係能同時滿足光學性 能和光學系統大小的條件式。若| φ 2 / φ 1 |未達0 · 0 0 1,雖 可獲得良好的像差,但光學系統會變大。又若I φ2/φ i I 超過ο · 1 ’難以將色像差等的像差進行良好的校正。 200903187 設第一凹反射面Ml的近軸曲率半徑爲R,第一凹反 射面Μ 1之近軸曲率中心和凸反射面的近軸曲率中心之差 爲Δ S時,Δ S宜符合以下的條件式(2 )。 0.002&lt; | AS/R | S 0.2 …(2 ) 若| AS/R|爲0.2以下,能在更廣的畫面區域對像散 差進行良好的校正。 第一凹反射面Ml和第二凹反射面M3具有相同的光 學特性及設計値。第一凹反射面Ml及第二凹反射面M3 之非球面凹陷量ΔΑ,能用其與參照球面(將近軸曲率中 心和最大光線有效徑位置連結)在光軸平行方向上的差來 定義。這時,△ Α宜符合以下的條件式(3 )。 lxl〇-6S | ΔΑ/R I s 1x10-3…(3 ) 若AA位於此範圍,藉由將凹面反射鏡非球面化,在 整體畫面可進行良好的像差校正,且能達成反射鏡的小型 化。若| ΔΑ/R丨超過上限値,非球面量會變大,會發生 加工成本高、加工時間長、計測困難等的影響。又若丨 △ A/R |未達下限値,作爲非球面的作用變小,其校正像 差及小型化的效果減少。 以下’列舉4個本實施形態的曝光裝置所使用之投影 光學系統的數値實施例,來補足本實施形態的說明。 〔數値實施例1〕 第1圖係顯示數値實施例1之投影光學系統之截面圖 。在第1圖中,Ml代表具有正光焦度之第一反射面(凹 -8- 200903187 面反射鏡),M2代表具有負光焦度之第二反射面(凸面 反射鏡),M3代表具有正光焦度之第三反射面(凹面反 射鏡),光束,係從物體面◦依序通過透鏡L1、第一凹 反射面Ml、透鏡L2、凸反射面M2、透鏡L3、第二凹反 射面Μ 3、透鏡L 4,而在像面I進行成像。本數値實施例 1之投影光學系統爲等倍光學系統,第一凹反射面Μ 1、 第二凹反射面M3分別爲單一光學元件的一部分。透鏡L1 和透鏡L4是相同形狀的光學元件,透鏡L2和透鏡L3是 相同形狀的光學元件。也能在物體面Ο和透鏡L 1之間、 透鏡L4和像面I之間等導入無光焦度(no power)的透 鏡’而對像面像差等進行更良好的校正。第2圖係顯示本 數値實施例1之縱像差圖。數値實施例1之透鏡資料如表 1所示。 200903187 〔表1〕 面編號 R 0 N(435.84nm) N(404.66nm) N(365.01nm) 1 0.000 130.951 2 0.000 38.628 1.466807 1.469608 1.474531 A 3 0.000 1239.854 A 4 -1360.274 '530.805 A 5 -455.185 -41.215 -1.466807 -1.469608 -1.474531 A 6 -421.617 -59.456 A 7 -690.384 59.456 A 8 -421,617 41.215 1.466807 1.469608 t.474531 A 9 -455.185 530.805 A 10 -1360.274 -1239.854 A 11 0.000 -38.628 H.466807 H.469608 -1.474531 12 0.000 -130.951 非球面資料 面編號 k A B C D 3 -2.500E+19 -1.002ΕΌ9 5.477EH5 -1.26 IE-20 1.128E-26 4 -U40E-01 8.246E-13 -1.461E-17 1.150E-23 -3.260E-29 5 -1.913E+00 -3.641 E-09 4492E-14 -6.197E-19 -5.649E-23 6 -1.282E-01 -1.466E-09 9.654E-14 -3.400E-18 -1.985E-22 7 -3.629E+00 -1.348E-09 -5.070E-15 -7.863E—18 5.492E-21 a -1.282E - 01 -1.466E-09 9.654E-14 -3.400E-18 -1.985E-22 9 -1.913E+00 -3.641 E-09 4.492E-14 -6.197E-19 -5.649E-23 10 -1.14OE-01 8.246E-13 -1.461 E-l 7 1.150E-23 -3.260E-29 11 -2.500E+19 -1.002E-09 5.477E-15 -1.261E-20 1.128E-26 面編號 E F G 3 1.065E-32 -9.7t4E-39 -5.591 E-44 4 1.099E-34 -2.030E-40 1.865E-46 5 3_647E - 27 -1.206E-31 9.488E-37 6 3.286E-26 -2.036E-30 3.609E-35 7 -2.130E-24 4.273E-28 -3.338E-32 8 3.286E-26 -2Ό36Ε-30 3.609E-35 9 3.647E-27 -1.206E-31 9.488E-37 10 1.099E-34 -2.030E-40 1.865E-46 11 1.065E-32 -9.714E-39 -5.591 E-44 在此, R代表近 軸曲率半徑,D 代表光軸上的空氣間 隔或玻璃材厚’ N代表玻璃材對於3波長各個的折射率。 在面編號旁加註A代表非球面。在本說明書’ “ E-XX、 E + X X ”代表“ X 1 〇 — x x、X 1 〇 + X X ” 。以下的數値實施例也 都相同。 數値實施例1的非球面式是用:z = rh2/ ( 1+ ( 1_ ( 1+k) r2h2 ) 1/2 ) +Ah4 + Bh6 + Ch8 + Dh10 + Eh12 + Fh14 + Gh16 代 表。 數値實施例1是構成等倍投影光學系統,就作爲光瞳 -10- 200903187 面(第二反射面)之凸面反射鏡而Η是形成對稱系統,因 此不會發生屬於非對稱性像差之彗形像差、畸變。又由於 是使用軸外的有限範圍的環帶狀成像區來進行曝光,軸上 球面像差的校正變得不太重要。因此只要校正像面彎曲和 像散差即可。從第2圖的像差圖可明顯看出,在軸外環帶 狀成像區,能將像面彎曲及像散差進行良好的校正。又讓 第一反射面、第三反射面形成非球面形且具有大的光焦度 ,藉此能使光學系統整體變得緊致,又在物體面和第一反 射面、第三反射面和像面之間配置非球面透鏡,可獲得經 實施良好像差校正之光學系統。表2顯示數値實施例1對 各條件式的數値。如表2所示,數値實施例1是符合各條 件式(1 )〜(3 )。 〔表2〕 數値實施例1對各條件式的數値 I Φ2/Φ1 I 0.011497 I AS/R I 0.028239 ΔΑ/R I 0.000040 β 1.0 將數値實施例1的投影光學系統組裝於曝光裝置時, 可在透鏡L1和第一凹反射面Ml之間、第二凹反射面M3 和透鏡L4之間’以對光軸呈45度的方式配置彎折反射鏡 ,並將物體面〇、透鏡L1、像面I及透鏡L4呈水平配置 〔數値實施例2〕 -11 - 200903187 第3圖係顯示數値實施例2之投影光學系 。在第3圖中,Ml代表具有正光焦度之第一 面反射鏡),M2代表具有負光焦度之第二反 反射鏡),M3代表具有正光焦度之第三反射 射鏡),LI、L2、L3、L4代表透鏡。光束, 〇依序通過透鏡L1、第一凹反射面Ml、透鏡 面M2、透鏡L3、第二凹反射面M3、透鏡L4 I進行成像。本數値實施例2之投影光學系統 系統,第一凹反射面Ml、第二凹反射面M3 光學兀件的一部分。透鏡L 1和透鏡L 4是相 學元件,透鏡L2和透鏡L3是相同形狀的光學 圖係顯示本數値實施例2之縱像差圖。數値實 鏡資料如表3所示。 統之截面圖 反射面(凹 射面(凸面 面(凹面反 係從物體面 L2、凸反射 ,而在像面 爲等倍光學 分別爲單一 同形狀的光 元件。第4 施例2之透 -12- 200903187 〔表3〕 面編號 R D N(435.83nm) N(404_66nm) N(365.01nm) 1 0.000 231.876 2 0.000 4.000 1.466807 1.469608 1.474531 3 0.000 58.276 A 4 14651.629 36.722 1.466807 1.469608 1.474531 5 -17041.975 1924.114 A 6 -2235.191 -992.882 A 7 -1098.684 -98.185 -1.466807 -1.469608 -1.474531 8 -1010.490 -3.830 9 -1122.563 3.830 10 -1010.490 98.185 1.466807 1.469608 1.474531 A 11 -1098.684 992.882 A 12 -2235.191 -1924.114 13 -17041.975 -36.722 -1.466807 -1.469608 -1.474531 A 14 14651.629 -58.276 15 0.000 -4.000 -1.466807 -1.469608 -1.474531 16 0.000 -231.876 非球面資料 面編號 k A B C D 4 -3.073E+01 8.156E-11 9.099E-16 -3.759E-21 1.756E-26 6 2.810E-03 6.619E-14 1.941E-19 -1.662E-24 7.082E-30 7 -6.041E-01 -5.858E-11 -2.971 E-16 7.590E-20 -9.454E-24 11 —6.041 ΕΌ1 -5-858E-11 -2.971E-16 7.590E-20 -9.454E-24 12 2.810E-03 6.619E-14 1.941E-19 - 1.662E-24 7.082E-30 14 -3.073E+01 8.156E-11 9.099E-16 -3.759E-21 1.756E-26 面編號 E F Q 4 -5.418E-32 8.041 E-38 1.774E-44 6 -1.700E-35 2.176E-41 -1.151E-47 7 6.033E-28 -1.933E-32 2.460E-37 11 6.033E-28 -1.933E-32 2.460E-37 12 -1.700E-35 2.176E-41 -1.151E-47 14 -5.418E - 32 8.041 E-38 1.774E-44 面編號 A, Β· C, D, Ef 4 -3.936E-08 -5.534Ε -13 5.843E-19 -1.480E-24 -1.381E-30 14 -3.936E-08 -5.534Ε-13 5.843E-19 -1.480E-24 -1.381E-30 面編號 F G, 4 3.003E-35 -8.991 Ε-41 14 3.003E-35 -8.991 Ε-41 數値實施例3 的非球面式是用’· z = rh2/ ( 1 + (1- ( 1+k) r2h2) 1/2) +Ah4 + Bh6 + Ch8 + Dh10 + Eh12+Fh14 + Gh16 + A’h3 + B’h5 + C’h7 + D’y + E’hH + F’hh + G’h15 代表。 數値實施例2是構成等倍投影光學系統,就作爲光瞳 面(第二反射面M2 )之凸面反射鏡而言是形成對稱系統 ,因此不會發生屬於非對稱性像差之彗形像差、畸變。又 由於是使用軸外的有限範圍的環帶狀成像區來進行曝光’ -13- 200903187 軸上球面像差的校正變得不太重要。因此只要校正像面彎 曲和像散差即可。從第4圖的像差圖可明顯看出,在軸外 環帶狀成像區,能將像面彎曲及像散差進行良好的校正。 又第一反射面、第三反射面雖是形成非球面形,但相對於 數値實施例1的形態其屬於微小非球面。另一方面,L 1、 L4爲非球面透鏡且具有大的光焦度,藉此能使光學系統 整體變得緊致,可獲得經實施良好像差校正之光學系統。 如表4所示,數値實施例2是符合各條件式(1 )〜 (3 )。 〔表4〕 數値實施例2對各條件式的數値 I Φ2/Φ1 | 0.031539 | AS/R I 0.007933 | ΔΑ/R I 0.000001 β 1.0 〔數値實施例3〕 第5圖係顯示數値實施例3之投影光學系統之截面圖 。在第5圖中’ Ml代表具有正光焦度之第一反射面(凹 面反射鏡)’ M2代表具有負光焦度之第二反射面(凸面 反射鏡)’M3代表具有正光焦度之第三反射面(凹面反 射鏡)’ L1、L 2、L 3、L 4代表透鏡。光束,係從物體面 0依序通過透鏡L1、第一凹反射面Ml、透鏡L2、凸反射 面M2、透鏡L3、第二凹反射面M3、透鏡L4,而在像面 I進行成像。本數値實施例3之投影光學系統爲等倍光學 -14- 200903187 系統,第一凹反射面Ml、第二凹反射面M3分別爲單一 光學元件的一部分。透鏡L 1和透鏡L 4是相同形狀的光 學元件,透鏡L2和透鏡L 3是相同形狀的光學元件。也 能在物體面〇和透鏡L1之間、透鏡L 4和像面I之間等 導入無光焦度(no power )的透鏡’而對像面像差等進行 更良好的校正。第6圖係顯示本數値實施例3之縱像差圖 。數値實施例3之非球面式’是和數値實施例1的非球面 式相同。數値實施例3之透鏡資料如表5所示。 〔表5〕 面編號 R D N(435.83nm) N(404.66nm) N(365.01nm) 1 ΟΌΟΟ 138.746 2 0.000 55.654 1.466807 1.469608 1.474531 A 3 -2747.635 1244.750 A 4 -1348.891 -437.761 A 5 -480.154 -56.250 -1.466807 -1.469608 -1.474531 A 6 -430.854 -85.875 A 7 -699.850 85.875 A 8 -430.854 56.250 1.466807 1.469608 1.474531 A 9 -480.154 437.761 A 10 -1348.891 -1244.750 A 11 -2747.635 -55.654 -1.466807 -1.469608 -1.474531 12 0.000 -138.746 非球面資料 面編號 k A B C D 3 -6.951 Ε+01 -4.993Ε-10 2.607E-15 -8.336E-21 1.567E-26 4 -1.576Ε-01 2.657Ε-12 -1.347E-17 1.070E-23 -2.031 E-29 5 -2.493Ε+Ό0 -3.254ΕΌ9 1.421E-14 4.12JE-19 -3.010E-23 6 -3.659Ε-01 一1.011Ε-09 2.450E-14 1.356E-18 -1.645E-22 7 -3.990Ε+00 -1.343Ε-09 Ϊ.301Ε-14 -2.023E-17 1.062E-20 8 -3.659Ε-01 -1.011Ε-09 2.450E-14 1.356E-18 -1.645E-22 9 -2.493Ε+00 -3.254Ε-09 1.421 E-14 4.121 E-19 -3.010E- 23 10 -1.576Ε-01 2.657Ε-12 -1.347E-17 1.070E-23 —2.031 E-29 11 -6.951 E-KJ1 -4.993Ε-10 2.607E-15 -8.336E-21 1.567E - 26 面編號 Ε F G 3 -1.281Ε-33 -5.211Ε-38 6.038E-44 4 -2.735Ε-35 2.220Ε-40 -2.948E-46 5 1.402Ε-27 -3.395Ε-32 3.368E-37 6 1.306Ε-26 -5.274Ε - 31 8.611E-36 7 -3.073Ε-24 4.586E-28 -2.760E-32 8 1.306Ε-26 -5.274E-31 8.61 IE-36 9 1.402Ε-27 -3.395E-32 3.368E-37 10 -2.735Ε-35 2.220E-40 -2.948E - 4S 11 -t.281 Ε-33 -5.21 IE-38 6.038E - 44 -15- 200903187 數値實施例3是構成等倍投影光學系統,就作爲光瞳 面(第二反射面M2 )之凸面反射鏡而言是形成對稱系統 ,因此不會發生屬於非對稱性像差之彗形像差、畸變。又 由於是使用軸外的有限範圍的環帶狀成像區來進行曝光, 軸上球面像差的校正變得不太重要。因此只要校正像面彎 曲和像散差即可。從第6圖的像差圖可明顯看出,在軸外 環帶狀成像區,能將像面彎曲及像散差進行良好的校正。 又第一反射面、第三反射面是形成非_球面形,且L1、L4 爲非球面透鏡,其相對於前述數値實施例1的形態具有更 強的光焦度,藉此能使光學系統整體變得緊致,可獲得經 實施良好像差校正之光學系統。 如表6所示,數値實施例3是符合各條件式(1 )〜 (3 )。 〔表6〕 數値實施例3對各條件式的數値 φ2/φ1 | 0.056284 | AS/R 0.051268 | ΔΑ/R | 0.000099 β 1.0 在數値實施例1〜3的投影光學系統,第一凹反射面 Ml和第二反射面M3爲同一個光學元件。然而,爲了構 成等倍光學系統,第一凹反射面Ml和第二凹反射面M3 也可以是,例如將單一光學元件分割所形成之具有相同設 計値及相同光學特性之獨立的光學元件。 -16- 200903187 〔數値實施例4〕 圖 凹 面 反 物 、 透 投 凹 L3 値 數 如 第7圖係顯示數値實施例4之投影光學系統之截面 。在第7圖中,Ml代表具有正光焦度之第一反射面( 面反射鏡),M2代表具有負光焦度之第二反射面(凸 反射鏡),M3代表具有正光焦度之第三反射面(凹面 射鏡),LI、L2、L3、L4、L5代表透鏡。光束,係從 體面〇依序通過透鏡L1、透鏡L2、第一凹反射面Ml 透鏡L3、凸反射面M2、透鏡L4、第二凹反射面M3、 鏡L5,而在像面I進行成像。由於本數値實施例4之 影光學系統爲放大光學系統,第一凹反射面Ml和第二 反射面Μ 3具有不同的放大倍率或縮小倍率。僅透鏡 和透鏡L4是相同形狀的光學元件。第8圖係顯示本數 實施例4之縱像差圖。數値實施例4之非球面式,是和 値實施例1的非球面式相同。數値實施例4之透鏡資料 表7所示。 -17- 200903187 〔表7〕 面編號 R D N(435.83nm) N(404.66nm) N(365.01nm) 1 0.000 50.000 2 0.000 5.000 1.466807 1.469608 1.474531 3 0.000 5.000 4 0.000 5.000 1.466807 1.469608 1.474531 5 0.000 24.000 6 0.000 29.930 1.466807 1.469608 1.474531 A 7 -134.383 12.075 A 8 -162.661 9.600 1,466807 1.469608 1.474531 9 0.000 658.070 A 10 -909.667 -451.940 A 11 -1638.829 »12.000 -1.466807 -1.469608 -1,474531 A 12 -1813.455 -15.000 15.000 A 13 -610.136 A 14 -1813.455 12.000 1.466807 1.469608 1.474531 A 15 -1638.829 749.540 A 16 -1613.256 -1778.455 A 17 -4343.855 -21.000 -1.466807 -1.469608 -1.474531 18 0.000 -24.000 19 0.000 -5.000 -1.466807 -1.469608 -1.474531 20 0.000 -5.000 21 0.000 -5.000 -1.466807 -1.469608 -1.474531 22 0.000 -50.088 非球面資料 面編號 k A B C D 7 -3.345Ε·Κ)1 5.371 E-09 1.847E-14 -1.540E-20 -5.548E-24 8 -5.504E^)1 5.848E-09 -1.627E-14 -4.993E-20 1.587E-24 10 6.110E-03 -2.021 E-11 -1.734E-16 2.611E-21 -3.736E-26 11 -1.605E+01 3.091E-08 2.104E-13 -1.102E-16 2.355E-20 12 -2.769E-KX) 3.227E-08 4.286E-13 -2.351 E-16 5.8Θ2Ε-20 13 -3.078E400 -1.325E-09 -1.679E-13 8.668E-17 -2.814E-20 14 -2.769E-KJ0 3.227E-08 4.286E-13 -2.351 E-16 5.882E-20 15 -1.605E+01 3.09 IE-08 2.104E-13 -1.102E-16 2.355E-20 16 -1.631Ε-0Ί 4.963E-13 -7.216E-18 3.855E-23 -1.984E-28 17 -1.000E+02 5.388E-10 -1.626E-15 -1.866E-21 1.184E-26 面編號 E F G 7 -4.087E-29 1.241 E-33 -6.827E-39 8 -5.235E-30 -9.060E-34 8,821 E-39 10 3.071 E-31 -1.395E-36 2.665E-42 11 -3.723E-24 3.357E-28 -1.246E-32 12 -9.880E-24 9.341E-28 -3.660E-32 13 5.666E-24 -6.323E-28 2.929E-32 14 -9.880E - 24 9.341 E-28 -3.660E-32 15 -3.723E-24 3.357E-28 -1.246E-32 16 6.197E-34 -1.135E-39 9.164E-46 17 1.400E-31 -1.018E-36 1.883E-42 面( 系統 數値實施例4是構成放大投影光學系統,就作爲光瞳 第二反射面M2 )之凸面反射鏡而言並不是形成對稱 ,因此不同於數値實施例1〜3之等倍光學系統,而 會發生屬於非對稱性像差之彗形像差、畸變。然而,由於 -18- 200903187 將第一凹面反射鏡、第三凹面反射鏡予以非球面化,因此 能抑制前述像差的產生量。又只要在曝光所使用之軸外成 像區內具有同樣的像差,能以同樣的曝光倍率成分進行補 償而校正。又由於是使用軸外的有限範圍的環帶狀成像區 來進行曝光,軸上球面像差的校正變得不太重要。因此只 要校正像面彎曲和像散差即可。從第8圖的像差圖可明顯 看出,在軸外環帶狀成像區,能將像面彎曲及像散差進行 良好的校正。爲了校正構成放大系統所產生之像差,係將 包含反射面、折射面等幾乎所有的光學元件都形成非球面 ,且各個都具有大的光焦度,藉此能使光學系統整體變得 緊致,可獲得經實施良好像差校正之光學系統。也能相對 於光軸將光學系統整體上下翻轉而構成縮小光學系統,此 形態也包含於本發明中。如表8所示,數値實施例4是符 合各條件式(1 )〜(3 )。 〔表8〕 數値實施例4對各條件式的數値 | Φ2/Φ1 丨 0.070905 | AS/R | 0.197225 ΔΑ/R | 0.000125 β 2.0 經由:使用上述實施形態的曝光裝置將基板(塗布有 感光劑)進行曝光之曝光步驟、將在曝光步驟曝光後的基 板上的感光劑進行顯影之顯影步驟、其他周知的步驟,即 可製造出顯示元件(液晶顯示元件等)。 本發明並不限於上述實施形態,在不脫離本發明的精 -19- 200903187 神及範圍內可進行各種的變更及變形。 【圖式簡單說明】 第1圖係數値實施例1的投影光學系統之截面圖。 第2圖係數値實施例1的縱像差圖。 第3圖係數値實施例2的投影光學系統之截面圖。 第4圖係數値實施例2的縱像差圖。 第5圖係數値實施例3的投影光學系統之截面圖。 第6圖係數値實施例3的縱像差圖。 第7圖係數値實施例4的投影光學系統之截面圖。 第8圖係數値實施例4的縱像差圖。 [主要元件符號說明】 I :像面 L1〜L5 :折射光學元件 · Μ1 :第一凹反射面 M2 :凸反射面 M3 :第二凹反射面 〇 :物體面 -20-A projection optical system according to an aspect of the present invention is characterized in that a first concave reflecting surface and a convex reflecting surface reflecting surface are arranged in sequence from the optical path of the surface, and a ring-shaped good optical system having a limited range outside the shaft is characterized. Between the object surface and the first concave anti-first concave reflecting surface and the convex reflecting surface, between the convex reflecting surface and the first, and between the second concave reflecting surface and the image surface, respectively, the refractive power of the power The optical element; the total optical power of the projection optical system optical element is Φ 1, the refractive optical element, and the φ2 when φ ΐ and Φ 2 meet 0.001 S 丨 φ 2 / φ 1 I, another aspect of the exposure apparatus of the present invention, The feature is: the technique used to project the reticle pattern on the substrate coated with the photoresist, and the overlap, which must be corrected by the adjustment bulletin, can be avoided. However, it is necessary to form the non-performing surface of the reflective surface, the surface of the product to the image and the projection surface of the second concave image area, and the concave surface of the concave surface has a refractive power which is opposite to that of the optical system: The above-described projection-5-200903187 optical system is provided to transfer the aforementioned pattern onto the substrate by synchronously scanning the photomask and the substrate. According to the present invention, it is possible to provide a projection optical system and an exposure apparatus which can achieve high performance, high productivity, and low cost. Other features and aspects of the present invention will become apparent from the following description. In the drawings, the same symbols are given to the same or the same construction. [Embodiment] [Embodiment of Exposure Apparatus] An example of an exposure apparatus of the present invention will be described below. In the exposure apparatus of the present embodiment, exposure and illumination are performed using a ring-shaped good imaging area outside the shaft, and the pattern formed on the mask is projected and exposed on the substrate coated with the photoresist, and the mask and the substrate are synchronously scanned. Thereby the pattern is transferred onto the substrate. In the following description, a mask formed with a pattern is referred to as an "object", and a surface of a substrate coated with a photoresist is referred to as a "face". As shown in the first, third, fifth, and seventh embodiments, the exposure apparatus of the present embodiment includes a projection optical system in which the first concave reflecting surface M1 and the convex surface are sequentially arranged on the optical path from the object surface to the image surface I. The reflecting surface M2 and the second concave reflecting surface M3. The projection optical system has a refracting optical element L1 between the object 〇 and the first concave reflecting surface Μ1, and a refracting optical element L2 between the first concave reflecting surface Μ1 and the convex reflecting surface M2. Further, the projection optical system has a refracting optical element L3 between the convex reflecting surface M2 and the second concave reflecting surface M3, and a refracting optical element L4 between the second concave reflecting surface M3 and the image plane I. The refractive optical element L 1 -6- 200903187 to L4 is a refractive optical element having a power. Projection optics, with a limited range of good imaging areas off-axis. When the sum of the refractive powers of the reflective optical elements M1 to M3 included in the projection optical system is φ ΐ and the sum of the refractive powers of the refracting optical elements L 1 to L4 is φ 2 , φ 1 and φ 2 satisfy the following conditional expression (1). 0.001 ^ I φ2 / φ 1 I ^ 0.1 · (1) The conditional expressions of Φ 1 and Φ 2 are conditional expressions in which the projection optical system can maintain good imaging performance and can make the optical system small. The smallest optical system that conforms to the Petzval condition and the telecentric conditions on both sides. It consists of the first group of positive refractive power, the second group of negative refractive power, and the third group of positive refractive power. Lens configuration. The Poz generation and P of the entire system are represented by Ρ = Σ (φη / Νη). Nn=_ 1 on the reflecting surface. Therefore, the closer öφί I is to 0, that is, the larger | φ2/φ1丨, the flatter the image plane, and the smaller the image curvature and the astigmatic difference, the better the optical performance can be obtained. However, with only the mirror system, a good imaging area becomes small and it is difficult to increase the yield, so a correction lens must be provided to enlarge the good imaging area. If the refractive power of the refracting optical element is smaller, that is, the smaller the | φ2 / φ 1 |, the more the occurrence of chromatic aberration can be suppressed. On the other hand, if the refractive power of the refracting optical element is larger, the incident position toward the concave mirror is lower, and the size of the entire optical system can be reduced. Therefore, the conditional expressions of φ 1 and φ 2 described above are conditional expressions capable of satisfying both the optical performance and the size of the optical system. If | φ 2 / φ 1 | is less than 0 · 0 0 1, although good aberrations are obtained, the optical system becomes large. Further, if I φ2 / φ i I exceeds ο · 1 ', it is difficult to correct aberrations such as chromatic aberration. 200903187 Let the paraxial radius of curvature of the first concave reflecting surface M1 be R, and the difference between the center of curvature of the paraxial curvature of the first concave reflecting surface Μ 1 and the center of curvature of the paraxial surface of the convex reflecting surface is Δ S , and Δ S should satisfy the following Conditional formula (2). 0.002&lt; | AS/R | S 0.2 (2) If |AS/R| is 0.2 or less, the astigmatism can be well corrected in a wider screen area. The first concave reflecting surface M1 and the second concave reflecting surface M3 have the same optical characteristics and design flaws. The aspherical recessed amount ΔΑ of the first concave reflecting surface M1 and the second concave reflecting surface M3 can be defined by the difference in the direction parallel to the optical axis with respect to the reference spherical surface (connecting the paraxial curvature center and the maximum ray effective diameter position). At this time, Δ Α should meet the following conditional expression (3). Lxl〇-6S | ΔΑ/RI s 1x10-3...(3) If AA is in this range, by asphericalizing the concave mirror, good aberration correction can be performed on the entire screen, and a small mirror can be achieved. Chemical. If | ΔΑ/R丨 exceeds the upper limit 値, the amount of aspherical surface becomes large, which may affect the processing cost, processing time, and measurement difficulty. Further, if Δ A / R | does not reach the lower limit 値, the effect as an aspherical surface becomes small, and the effect of correcting the aberration and miniaturization is reduced. The following description of the embodiments of the projection optical system used in the exposure apparatus of the four embodiments will be described. [Embodiment 1] Fig. 1 is a cross-sectional view showing a projection optical system of the first embodiment. In Fig. 1, M1 represents a first reflecting surface having a positive power (concave -8-200903187 surface mirror), M2 represents a second reflecting surface having a negative refractive power (convex mirror), and M3 represents a positive light. The third reflecting surface of the power (concave mirror), the light beam passes through the lens L1, the first concave reflecting surface M1, the lens L2, the convex reflecting surface M2, the lens L3, and the second concave reflecting surface from the object surface. 3. Lens L 4 and imaged on image plane I. The projection optical system of the first embodiment is an equal-magnification optical system, and the first concave reflecting surface Μ 1 and the second concave reflecting surface M3 are each a part of a single optical element. The lens L1 and the lens L4 are optical elements of the same shape, and the lens L2 and the lens L3 are optical elements of the same shape. It is also possible to introduce a lens having no power between the object surface Ο and the lens L 1 , between the lens L4 and the image surface I, and to better correct the image plane aberration or the like. Fig. 2 is a longitudinal aberration diagram showing the first embodiment. The lens data of Example 1 is shown in Table 1. 200903187 [Table 1] No. R 0 N (435.84 nm) N (404.66 nm) N (365.01 nm) 1 0.000 130.951 2 0.000 38.628 1.466807 1.469608 1.474531 A 3 0.000 1239.854 A 4 -1360.274 '530.805 A 5 -455.185 -41.215 - 1.466807 -1.469608 -1.474531 A 6 -421.617 -59.456 A 7 -690.384 59.456 A 8 -421,617 41.215 1.466807 1.469608 t.474531 A 9 -455.185 530.805 A 10 -1360.274 -1239.854 A 11 0.000 -38.628 H.466807 H.469608 -1.474531 12 0.000 -130.951 Aspheric data face number k ABCD 3 -2.500E+19 -1.002ΕΌ9 5.477EH5 -1.26 IE-20 1.128E-26 4 -U40E-01 8.246E-13 -1.461E-17 1.150E-23 - 3.260E-29 5 -1.913E+00 -3.641 E-09 4492E-14 -6.197E-19 -5.649E-23 6 -1.282E-01 -1.466E-09 9.654E-14 -3.400E-18 -1.985 E-22 7 -3.629E+00 -1.348E-09 -5.070E-15 -7.863E—18 5.492E-21 a -1.282E - 01 -1.466E-09 9.654E-14 -3.400E-18 -1.985 E-22 9 -1.913E+00 -3.641 E-09 4.492E-14 -6.197E-19 -5.649E-23 10 -1.14OE-01 8.246E-13 -1.461 El 7 1.150E-23 -3.260E- 29 11 -2.500E+19 -1.002E-09 5.477E-15 -1.26 1E-20 1.128E-26 No. EFG 3 1.065E-32 -9.7t4E-39 -5.591 E-44 4 1.099E-34 -2.030E-40 1.865E-46 5 3_647E - 27 -1.206E-31 9.488E -37 6 3.286E-26 -2.036E-30 3.609E-35 7 -2.130E-24 4.273E-28 -3.338E-32 8 3.286E-26 -2Ό36Ε-30 3.609E-35 9 3.647E-27 - 1.206E-31 9.488E-37 10 1.099E-34 -2.030E-40 1.865E-46 11 1.065E-32 -9.714E-39 -5.591 E-44 Here, R represents the paraxial radius of curvature and D represents light. The air gap on the shaft or the thickness of the glass 'N represents the refractive index of the glass for each of the three wavelengths. Add A to the face number to represent an aspheric surface. In this specification '“E-XX, E + X X ” stands for “X 1 〇 — x x, X 1 〇 + X X ”. The following embodiments are also the same. The aspherical pattern of the numerical example 1 is represented by: z = rh2/(1+(1+(1+k) r2h2) 1/2 ) +Ah4 + Bh6 + Ch8 + Dh10 + Eh12 + Fh14 + Gh16. The first embodiment is an equal-fold projection optical system, and is used as a convex mirror of the pupil -10-200903187 plane (second reflecting surface), and Η is a symmetric system, so that asymmetric aberration does not occur. Owl aberration, distortion. Since the exposure is performed using a limited range of annular strip-shaped imaging regions outside the axis, the correction of the on-axis spherical aberration becomes less important. Therefore, it is only necessary to correct the curvature of field and the astigmatism difference. As is apparent from the aberration diagram of Fig. 2, in the out-of-axis annular imaging region, the image plane curvature and the astigmatism difference can be well corrected. Further, the first reflective surface and the third reflective surface are aspherical and have a large optical power, thereby making the optical system as a whole compact, and on the object surface and the first reflective surface, the third reflective surface, and By arranging an aspherical lens between the image planes, an optical system that performs good aberration correction can be obtained. Table 2 shows the number of the respective conditional expressions of Example 1. As shown in Table 2, the number of the first embodiment is in accordance with the respective formulas (1) to (3). [Table 2] Numerical Example 1 The number of each conditional expression 値I Φ2/Φ1 I 0.011497 I AS/RI 0.028239 ΔΑ/RI 0.000040 β 1.0 When the projection optical system of Example 1 is assembled in an exposure apparatus, The bending mirror is disposed between the lens L1 and the first concave reflecting surface M1, between the second concave reflecting surface M3 and the lens L4 so as to be 45 degrees to the optical axis, and the object surface, the lens L1, and the image The surface I and the lens L4 are arranged horizontally. [Example 2] -11 - 200903187 The third drawing shows the projection optical system of the second embodiment. In Fig. 3, M1 represents a first-sided mirror with positive power, M2 represents a second retroreflector with negative power, and M3 represents a third mirror with positive power, LI L2, L3, and L4 represent lenses. The light beam is sequentially imaged by the lens L1, the first concave reflecting surface M1, the lens surface M2, the lens L3, the second concave reflecting surface M3, and the lens L4 I. In the projection optical system of the second embodiment, the first concave reflecting surface M1 and the second concave reflecting surface M3 are part of the optical element. The lens L 1 and the lens L 4 are phase elements, and the lens L2 and the lens L3 are optical images of the same shape. The longitudinal aberration diagram of the present embodiment 2 is shown. The number of real mirror data is shown in Table 3. The cross-sectional reflection surface (concave surface (concave surface (concave surface is reflected from the object surface L2, convex reflection, and the image plane is a single-optical optical element with equal magnification optics. The fourth embodiment 2 is transparent - 12- 200903187 [Table 3] No. RDN (435.83 nm) N (404_66 nm) N (365.01 nm) 1 0.000 231.876 2 0.000 4.000 1.466807 1.469608 1.474531 3 0.000 58.276 A 4 14651.629 36.722 1.466807 1.469608 1.474531 5 -17041.975 1924.114 A 6 -2235.191 -992.882 A 7 -1098.684 -98.185 -1.466807 -1.469608 -1.474531 8 -1010.490 -3.830 9 -1122.563 3.830 10 -1010.490 98.185 1.466807 1.469608 1.474531 A 11 -1098.684 992.882 A 12 -2235.191 -1924.114 13 -17041.975 -36.722 -1.466807 -1.469608 -1.474531 A 14 14651.629 -58.276 15 0.000 -4.000 -1.466807 -1.469608 -1.474531 16 0.000 -231.876 Aspheric data face number k ABCD 4 -3.073E+01 8.156E-11 9.099E-16 -3.759E-21 1.756E- 26 6 2.810E-03 6.619E-14 1.941E-19 -1.662E-24 7.082E-30 7 -6.041E-01 -5.858E-11 -2.971 E-16 7.590E-20 -9.45 4E-24 11 —6.041 ΕΌ1 -5-858E-11 -2.971E-16 7.590E-20 -9.454E-24 12 2.810E-03 6.619E-14 1.941E-19 - 1.662E-24 7.082E-30 14 -3.073E+01 8.156E-11 9.099E-16 -3.759E-21 1.756E-26 Face No. EFQ 4 -5.418E-32 8.041 E-38 1.774E-44 6 -1.700E-35 2.176E-41 - 1.151E-47 7 6.033E-28 -1.933E-32 2.460E-37 11 6.033E-28 -1.933E-32 2.460E-37 12 -1.700E-35 2.176E-41 -1.151E-47 14 -5.418 E - 32 8.041 E-38 1.774E-44 Face No. A, Β· C, D, Ef 4 -3.936E-08 -5.534Ε -13 5.843E-19 -1.480E-24 -1.381E-30 14 -3.936 E-08 -5.534Ε-13 5.843E-19 -1.480E-24 -1.381E-30 Face No. FG, 4 3.003E-35 -8.991 Ε-41 14 3.003E-35 -8.991 Ε-41 Number Example The aspherical form of 3 is '· z = rh2/ ( 1 + (1 - ( 1+k) r2h2) 1/2) +Ah4 + Bh6 + Ch8 + Dh10 + Eh12 + Fh14 + Gh16 + A'h3 + B 'h5 + C'h7 + D'y + E'hH + F'hh + G'h15 stands for. The second embodiment is an equal-magnification projection optical system, and a convex mirror is formed as a convex mirror of the pupil plane (second reflection surface M2), so that a 彗 image belonging to an asymmetrical aberration does not occur. Poor and distorted. Also, since the exposure is performed using a limited range of annular strip-shaped imaging regions outside the shaft. -13-200903187 The correction of the spherical aberration on the axis becomes less important. Therefore, it is only necessary to correct the curvature of the image plane and the astigmatism difference. As is apparent from the aberration diagram of Fig. 4, the image plane curvature and the astigmatism difference can be well corrected in the axially outer band-shaped imaging region. Further, although the first reflecting surface and the third reflecting surface are formed in an aspherical shape, they are microscopic aspherical surfaces with respect to the embodiment of the first embodiment. On the other hand, L 1 and L4 are aspherical lenses and have a large power, whereby the optical system as a whole can be tightened, and an optical system that performs good aberration correction can be obtained. As shown in Table 4, the number of the second embodiment is in accordance with the conditional expressions (1) to (3). [Table 4] Numerical Example 2 The number of each conditional expression 値I Φ2 / Φ1 | 0.031539 | AS / RI 0.007933 | ΔΑ / RI 0.000001 β 1.0 [Digital Example 3] Figure 5 shows the number of examples 3 is a cross-sectional view of the projection optical system. In Fig. 5, 'M1 represents a first reflecting surface having a positive power (concave mirror)' M2 represents a second reflecting surface having a negative refractive power (convex mirror) 'M3 represents a third having positive power The reflecting surface (concave mirror) 'L1, L2, L3, L4 represents a lens. The light beam is imaged on the image plane I from the object plane 0 through the lens L1, the first concave reflecting surface M1, the lens L2, the convex reflecting surface M2, the lens L3, the second concave reflecting surface M3, and the lens L4. The projection optical system of the third embodiment is an equal magnification optical -14-200903187 system, and the first concave reflecting surface M1 and the second concave reflecting surface M3 are each part of a single optical element. The lens L 1 and the lens L 4 are optical elements of the same shape, and the lens L2 and the lens L 3 are optical elements of the same shape. It is also possible to introduce a lens "with no power" between the object surface 〇 and the lens L1, between the lens L 4 and the image surface I, and to better correct the image plane aberration or the like. Fig. 6 is a view showing the longitudinal aberration of the third embodiment. The aspherical pattern of the third embodiment is the same as the aspherical pattern of the first embodiment. The lens data of Example 3 is shown in Table 5. [Table 5] No. RDN (435.83 nm) N (404.66 nm) N (365.01 nm) 1 ΟΌΟΟ 138.746 2 0.000 55.654 1.466807 1.469608 1.474531 A 3 -2747.635 1244.750 A 4 -1348.891 -437.761 A 5 -480.154 -56.250 -1.466807 - 1.469608 -1.474531 A 6 -430.854 -85.875 A 7 -699.850 85.875 A 8 -430.854 56.250 1.466807 1.469608 1.474531 A 9 -480.154 437.761 A 10 -1348.891 -1244.750 A 11 -2747.635 -55.654 -1.466807 -1.469608 -1.474531 12 0.000 -138.746 Spherical data No. k ABCD 3 -6.951 Ε+01 -4.993Ε-10 2.607E-15 -8.336E-21 1.567E-26 4 -1.576Ε-01 2.657Ε-12 -1.347E-17 1.070E-23 - 2.031 E-29 5 -2.493Ε+Ό0 -3.254ΕΌ9 1.421E-14 4.12JE-19 -3.010E-23 6 -3.659Ε-01 A 1.011Ε-09 2.450E-14 1.356E-18 -1.645E-22 7 -3.990Ε+00 -1.343Ε-09 Ϊ.301Ε-14 -2.023E-17 1.062E-20 8 -3.659Ε-01 -1.011Ε-09 2.450E-14 1.356E-18 -1.645E-22 9 -2.493Ε+00 -3.254Ε-09 1.421 E-14 4.121 E-19 -3.010E- 23 10 -1.576Ε-01 2.657Ε-12 -1.347E-17 1.070E-23 —2.031 E-29 11 -6 . 951 E-KJ1 -4.993Ε-10 2.607E-15 -8.336E-21 1.567E - 26 Face No. Ε FG 3 -1.281Ε-33 -5.211Ε-38 6.038E-44 4 -2.735Ε-35 2.220Ε- 40 -2.948E-46 5 1.402Ε-27 -3.395Ε-32 3.368E-37 6 1.306Ε-26 -5.274Ε - 31 8.611E-36 7 -3.073Ε-24 4.586E-28 -2.760E-32 8 1.306Ε-26 -5.274E-31 8.61 IE-36 9 1.402Ε-27 -3.395E-32 3.368E-37 10 -2.735Ε-35 2.220E-40 -2.948E - 4S 11 -t.281 Ε-33 -5.21 IE-38 6.038E - 44 -15- 200903187 The third embodiment is an equal-projection optical system, and forms a symmetrical system as a convex mirror of the pupil plane (second reflecting surface M2). The coma aberration and distortion which are asymmetrical aberrations do not occur. Since the exposure is performed using a limited range of annular strip-shaped imaging regions outside the axis, the correction of the on-axis spherical aberration becomes less important. Therefore, it is only necessary to correct the curvature of the image plane and the astigmatism difference. It is apparent from the aberration diagram of Fig. 6 that the image plane curvature and the astigmatism difference can be well corrected in the axially outer band-shaped imaging region. Further, the first reflecting surface and the third reflecting surface are formed in a non-spherical shape, and L1 and L4 are aspherical lenses, which have stronger optical power with respect to the form of the first embodiment, thereby enabling optical The system as a whole becomes compact, and an optical system that performs good aberration correction can be obtained. As shown in Table 6, the number of the third embodiment is in accordance with the conditional expressions (1) to (3). [Table 6] Numerical Example 3 for each conditional formula 値φ2/φ1 | 0.056284 | AS/R 0.051268 | ΔΑ/R | 0.000099 β 1.0 In the projection optical system of the first to third embodiments, the first concave The reflecting surface M1 and the second reflecting surface M3 are the same optical element. However, in order to constitute an equal-magnification optical system, the first concave reflecting surface M1 and the second concave reflecting surface M3 may be, for example, separate optical elements having the same design and the same optical characteristics formed by dividing a single optical element. -16- 200903187 [Digital Example 4] Fig. Concave object, transparent projection L3 如 Number As shown in Fig. 7, the cross section of the projection optical system of Example 4 is shown. In Fig. 7, M1 represents a first reflecting surface (face mirror) having positive power, M2 represents a second reflecting surface (concave mirror) having negative power, and M3 represents third having positive power. Reflecting surface (concave mirror), LI, L2, L3, L4, L5 represent lenses. The light beam passes through the lens L1, the lens L2, the first concave reflecting surface M1, the lens L3, the convex reflecting surface M2, the lens L4, the second concave reflecting surface M3, and the mirror L5 from the body surface to form an image on the image plane I. Since the optical system of the present embodiment 4 is an amplifying optical system, the first concave reflecting surface M1 and the second reflecting surface Μ 3 have different magnifications or reduction ratios. Only the lens and lens L4 are optical elements of the same shape. Fig. 8 is a view showing the longitudinal aberration of the fourth embodiment. The aspherical surface of the fourth embodiment is the same as the aspherical surface of the first embodiment. The lens data of Example 4 is shown in Table 7. -17- 200903187 [Table 7] No. RDN (435.83 nm) N (404.66 nm) N (365.01 nm) 1 0.000 50.000 2 0.000 5.000 1.466807 1.469608 1.474531 3 0.000 5.000 4 0.000 5.000 1.466807 1.469608 1.474531 5 0.000 24.000 6 0.000 29.930 1.466807 1.469608 1.474531 A 7 -134.383 12.075 A 8 -162.661 9.600 1,466807 1.469608 1.474531 9 0.000 658.070 A 10 -909.667 -451.940 A 11 -1638.829 »12.000 -1.466807 -1.469608 -1,474531 A 12 -1813.455 -15.000 15.000 A 13 - 610.136 A 14 -1813.455 12.000 1.466807 1.469608 1.474531 A 15 -1638.829 749.540 A 16 -1613.256 -1778.455 A 17 -4343.855 -21.000 -1.466807 -1.469608 -1.474531 18 0.000 -24.000 19 0.000 -5.000 -1.466807 -1.469608 -1.474531 20 0.000 -5.000 21 0.000 -5.000 -1.466807 -1.469608 -1.474531 22 0.000 -50.088 Aspheric data surface number k ABCD 7 -3.345Ε·Κ)1 5.371 E-09 1.847E-14 -1.540E-20 -5.548E-24 8 -5.504 E^)1 5.848E-09 -1.627E-14 -4.993E-20 1.587E-24 10 6.110E-03 -2.021 E-11 -1.734E-16 2.611E-21 -3.736E-26 11 -1.605E+01 3.091E-08 2.104E-13 -1.102E-16 2.355E-20 12 -2.769E-KX) 3.227E-08 4.286E -13 -2.351 E-16 5.8Θ2Ε-20 13 -3.078E400 -1.325E-09 -1.679E-13 8.668E-17 -2.814E-20 14 -2.769E-KJ0 3.227E-08 4.286E-13 -2.351 E-16 5.882E-20 15 -1.605E+01 3.09 IE-08 2.104E-13 -1.102E-16 2.355E-20 16 -1.631Ε-0Ί 4.963E-13 -7.216E-18 3.855E-23 - 1.984E-28 17 -1.000E+02 5.388E-10 -1.626E-15 -1.866E-21 1.184E-26 Face No. EFG 7 -4.087E-29 1.241 E-33 -6.827E-39 8 -5.235E -30 -9.060E-34 8,821 E-39 10 3.071 E-31 -1.395E-36 2.665E-42 11 -3.723E-24 3.357E-28 -1.246E-32 12 -9.880E-24 9.341E-28 -3.660E-32 13 5.666E-24 -6.323E-28 2.929E-32 14 -9.880E - 24 9.341 E-28 -3.660E-32 15 -3.723E-24 3.357E-28 -1.246E-32 16 6.197E-34 -1.135E-39 9.164E-46 17 1.400E-31 -1.018E-36 1.883E-42 Surface (System Number 値 Example 4 is an enlarged projection optical system that acts as a second reflecting surface of the pupil M2) convex mirror is not symmetrical Example 1~3 Zhi therefore different from the number of optical systems other embodiments, but will occur belonging to asymmetrical aberrations of coma aberration, distortion. However, since -18-200903187 asphericalizes the first concave mirror and the third concave mirror, the amount of occurrence of the aforementioned aberration can be suppressed. Further, as long as the same aberration occurs in the off-axis imaging area used for exposure, it can be corrected by the same exposure magnification component. Since the exposure is performed using a limited range of annular strip-shaped imaging regions outside the axis, the correction of the on-axis spherical aberration becomes less important. Therefore, it is only necessary to correct the curvature of field and astigmatism. It can be clearly seen from the aberration diagram of Fig. 8 that the image plane curvature and the astigmatism difference can be well corrected in the axially outer band-shaped imaging region. In order to correct the aberration generated by the amplifying system, almost all optical elements including a reflecting surface, a refractive surface, and the like are formed into an aspherical surface, and each has a large refractive power, thereby making the optical system as a whole tight. Thus, an optical system that performs good aberration correction can be obtained. The optical system can also be turned upside down with respect to the optical axis to form a reduced optical system. This form is also included in the present invention. As shown in Table 8, the numerical example 4 conforms to the conditional expressions (1) to (3). [Table 8] Numerical Example 4 for each conditional expression | Φ2 / Φ1 丨 0.070905 | AS / R | 0.197225 ΔΑ / R | 0.000125 β 2.0 Pass: The substrate is coated with the photosensitive device using the exposure apparatus of the above embodiment The exposure step of performing exposure, the development step of developing the sensitizer on the substrate after exposure in the exposure step, and other well-known steps can produce a display element (liquid crystal display element or the like). The present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing the projection optical system of the first embodiment. Fig. 2 is a longitudinal aberration diagram of the first embodiment. Fig. 3 is a cross-sectional view showing the projection optical system of the second embodiment. Fig. 4 is a graph showing the longitudinal aberration of the second embodiment. Fig. 5 is a cross-sectional view showing the projection optical system of the third embodiment. Fig. 6 is a graph showing the longitudinal aberration of the third embodiment. Fig. 7 is a cross-sectional view showing the projection optical system of the fourth embodiment. Fig. 8 is a graph showing the longitudinal aberration of the fourth embodiment. [Description of main component symbols] I : Image plane L1 to L5 : Refractive optical component · Μ1 : First concave reflecting surface M2 : convex reflecting surface M3 : Second concave reflecting surface 〇 : Object surface -20-

Claims (1)

200903187 十、申請專利範圍 1. 一種投影光學系統,係在從物體面至像面的光路上 依序配置第一凹反射面、凸反射面以及第二凹反射面且在 軸外具有有限範圍的環帶狀良好成像區之投影光學系統, 其特徵在於: 在前述物體面和前述第一凹反射面之間、前述第一凹 反射面和前述凸反射面之間、前述凸反射面和前述第二凹 反射面之間、以及前述第二凹反射面和前述像面之間,分 別配置具有光焦度之折射光學元件: 設前述投影光學系統所含之反射光學元件的光焦度總 和爲Φ1、前述折射光學元件的光焦度總和爲Φ 2時,φ 1及 φ2 符合 0.001 $ | φ2/φ1 | $ 0.1。 2 ·如申請專利範圍第1項記載之投影光學系統,其中 ’設前述第一凹反射面的近軸曲率半徑爲R,前述第一凹 反射面之近軸曲率中心和前述凸反射面的近軸曲率中心之 差爲 AS 時,AS 符合 0.002&lt;| AS/R| $0.2。 3 ·如申請專利範圍第1項記載之投影光學系統,其中 ’前述第一凹反射面和前述第二凹反射面具有相同的光學 特性, 前述第一凹反射面及前述第二凹反射面之非球面凹陷 量ΔΑ,用其與參照球面(將近軸曲率中心和最大光線有 效徑位置連結)在光軸平行方向上的差來定義時,ΔΑ符 合 1 xl 0·6 S | ΔΑ/R | S 1 xl 〇·3。 4 ·如申請專利範圍第1項記載之投影光學系統,其中 -21 - 200903187 ,前述第一凹反射面和前述第二凹反射面,分別爲單一光 學元件的一部分。 5 .如申請專利範圍第1項記載之投影光學系統,其中 ,前述第一凹反射面和前述第二凹反射面,是具有相同光 學特性之獨立的光學元件。 6 .如申請專利範圍第1項記載之投影光學系統,其中 ,前述第一凹反射面和前述第二凹反射面,是具有不同的 放大倍率或縮小倍率。 7.—種曝光裝置,其特徵在於:係具備:用來將光罩 圖案投影在塗布有光阻的基板上之申請專利範圍第1至6 項中任一項記載之投影光學系統; 藉由使前述光罩和前述基板進行同步掃描,以將前述 圖案轉印至前述基板上。 8 . —種顯示元件製造方法,其特徵在於:係具備: 使用申請專利範圍第7項的曝光裝置將基板進行曝光 之步驟、 將前述曝光後的基板進行顯影的步驟。 -22 -200903187 X. Patent Application Range 1. A projection optical system in which a first concave reflecting surface, a convex reflecting surface and a second concave reflecting surface are sequentially arranged on an optical path from an object surface to an image surface and have a limited range outside the shaft. a projection optical system of a ring-shaped good imaging region, characterized in that: between the object surface and the first concave reflecting surface, between the first concave reflecting surface and the convex reflecting surface, the convex reflecting surface and the foregoing Between the two concave reflecting surfaces, and between the second concave reflecting surface and the image surface, respectively, a refractive optical element having a refractive power is disposed: the sum of the refractive powers of the reflective optical elements included in the projection optical system is Φ1 When the sum of the powers of the refracting optical elements is Φ 2 , φ 1 and φ 2 satisfy 0.001 $ | φ2 / φ1 | $ 0.1. The projection optical system according to claim 1, wherein the first concave reflecting surface has a paraxial radius of curvature R, and the first concave reflecting surface has a paraxial curvature center and the convex reflecting surface When the difference between the center of curvature of the axis is AS, the AS meets 0.002&lt;| AS/R| $0.2. The projection optical system according to claim 1, wherein the first concave reflecting surface and the second concave reflecting surface have the same optical characteristics, and the first concave reflecting surface and the second concave reflecting surface The aspherical depression amount ΔΑ is defined by the difference between the reference spherical surface (the near-axis curvature center and the maximum ray effective diameter position) in the parallel direction of the optical axis, and ΔΑ corresponds to 1 xl 0·6 S | ΔΑ/R | S 1 xl 〇·3. 4. The projection optical system according to claim 1, wherein -21 - 200903187, the first concave reflecting surface and the second concave reflecting surface are each part of a single optical element. The projection optical system according to claim 1, wherein the first concave reflecting surface and the second concave reflecting surface are independent optical elements having the same optical characteristics. 6. The projection optical system according to claim 1, wherein the first concave reflecting surface and the second concave reflecting surface have different magnifications or reduction ratios. An exposure apparatus comprising: a projection optical system according to any one of claims 1 to 6 for projecting a mask pattern onto a substrate coated with a photoresist; The photomask and the substrate are synchronously scanned to transfer the pattern onto the substrate. A method of producing a display device, comprising: a step of exposing a substrate using an exposure apparatus of the seventh application of the patent application, and a step of developing the exposed substrate. -twenty two -
TW097116652A 2007-05-15 2008-05-06 Projection optical systems and exposure devices TWI440988B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007129797A JP5196869B2 (en) 2007-05-15 2007-05-15 Projection optical system, exposure apparatus, and device manufacturing method

Publications (2)

Publication Number Publication Date
TW200903187A true TW200903187A (en) 2009-01-16
TWI440988B TWI440988B (en) 2014-06-11

Family

ID=40146698

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097116652A TWI440988B (en) 2007-05-15 2008-05-06 Projection optical systems and exposure devices

Country Status (3)

Country Link
JP (1) JP5196869B2 (en)
KR (1) KR100966190B1 (en)
TW (1) TWI440988B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI639063B (en) 2016-10-14 2018-10-21 日商佳能股份有限公司 Projection optical system, exposure apparatus, and article manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6882053B2 (en) * 2016-12-05 2021-06-02 キヤノン株式会社 Catadioptric optics, illumination optics, exposure equipment and article manufacturing methods
JP7167417B2 (en) * 2017-03-30 2022-11-09 株式会社ニデック Fundus imaging device and ophthalmic device
JP7357488B2 (en) 2019-09-04 2023-10-06 キヤノン株式会社 Exposure device and article manufacturing method
JP7332415B2 (en) * 2019-10-01 2023-08-23 キヤノン株式会社 Projection optical system, scanning exposure apparatus and article manufacturing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1103498A (en) * 1977-02-11 1981-06-23 Abe Offner Wide annulus unit power optical system
JPS5890610A (en) * 1981-11-24 1983-05-30 Matsushita Electric Ind Co Ltd Catadioptric optical system
JPS60168116A (en) * 1984-02-13 1985-08-31 Canon Inc Reflecting optical system
JPS60201316A (en) * 1984-03-26 1985-10-11 Canon Inc Reflection optical system
JPH0553057A (en) * 1991-08-26 1993-03-05 Nikon Corp Reflection optical system
US6229595B1 (en) * 1995-05-12 2001-05-08 The B. F. Goodrich Company Lithography system and method with mask image enlargement
JPH09180985A (en) * 1995-12-25 1997-07-11 Nikon Corp Projection exposure system
US7158215B2 (en) 2003-06-30 2007-01-02 Asml Holding N.V. Large field of view protection optical system with aberration correctability for flat panel displays
JP2006078592A (en) * 2004-09-07 2006-03-23 Canon Inc Projection optical system and exposure apparatus having same
JP2008089832A (en) * 2006-09-29 2008-04-17 Canon Inc Lithography device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI639063B (en) 2016-10-14 2018-10-21 日商佳能股份有限公司 Projection optical system, exposure apparatus, and article manufacturing method
CN111665688A (en) * 2016-10-14 2020-09-15 佳能株式会社 Projection optical system, exposure apparatus, and article manufacturing method

Also Published As

Publication number Publication date
TWI440988B (en) 2014-06-11
KR20080101695A (en) 2008-11-21
JP2008286888A (en) 2008-11-27
JP5196869B2 (en) 2013-05-15
KR100966190B1 (en) 2010-06-25

Similar Documents

Publication Publication Date Title
US7712905B2 (en) Imaging system with mirror group
TWI470269B (en) Catadioptric projection objective
US7573655B2 (en) Unit magnification projection objective
US6863403B2 (en) Deep ultraviolet unit-magnification projection optical system and projection exposure apparatus
JP4951063B2 (en) Large field of view projection optical system
US20060056064A1 (en) Projection optical system and method
JPH08211294A (en) Projection exposing device
TWI695232B (en) Projection optical system, exposure apparatus, and article manufacturing method
US6081382A (en) Catadioptric reduction projection optical system
KR101432822B1 (en) Imaging systems in particular for a microlithographic projection illumination unit
US20150055214A1 (en) Catadioptric projection objective
JP5067674B2 (en) Projection optical system, exposure apparatus, and device manufacturing method
JP2004258218A (en) Oblique projection optical system
TW200903187A (en) Exposure device
TW200425273A (en) Optical projection system, light exposing apparatus and light exposing method
TW200401336A (en) Optical integrator, optical illumination device, exposure device and exposure method
TWI705279B (en) Projection objective lens and exposure system
TW536735B (en) Optical condenser system, optical illumination system provided with the same, and exposure system
EP1959289A1 (en) Unit magnification projection objective
TWI425245B (en) Projection objective of a microlithographic projection exposure apparatus
JPH08255746A (en) Aligner
CN109375480A (en) A kind of photoetching projection objective lens and litho machine
TW530335B (en) Image-forming optical system and exposure device equipped therewith
JP2004295042A (en) Image projector
JP2022129160A (en) Exposure device and method for manufacturing the same, design method for projection optical system, and article manufacturing method