TW200901536A - Nonaqueous electrolyte for Li-secondary battery and Li secondary battery thereby - Google Patents
Nonaqueous electrolyte for Li-secondary battery and Li secondary battery thereby Download PDFInfo
- Publication number
- TW200901536A TW200901536A TW096150268A TW96150268A TW200901536A TW 200901536 A TW200901536 A TW 200901536A TW 096150268 A TW096150268 A TW 096150268A TW 96150268 A TW96150268 A TW 96150268A TW 200901536 A TW200901536 A TW 200901536A
- Authority
- TW
- Taiwan
- Prior art keywords
- carbonate
- secondary battery
- lithium
- aqueous electrolyte
- solvent
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/21—Combinations with auxiliary equipment, e.g. with clocks or memoranda pads
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45C—PURSES; LUGGAGE; HAND CARRIED BAGS
- A45C11/00—Receptacles for purposes not provided for in groups A45C1/00-A45C9/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
- H01M4/1315—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Signal Processing (AREA)
- Crystallography & Structural Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
Description
200901536 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種鐘-二次電池之非水性電解液與包 3此電解液之鐘次電池。更特別地,本發明關於改善鐘 --次電池之使用期限與老化特性之非水性電解液,當與使 用一般非水性電解液比較電池表現時,且關於一鋰—二次電 池包含上述之非水性電解液 【先前技術】 二次電池由於可再充電且可半永久使用而與一次電池 不同。攜帶型電子裝置,例如筆記型電腦、行動通訊終端 機(mobile communication terminals)與數位相機普及度 的增加已使二次電池市場大小之約呈指數增加。因此,在 二十一世紀二次電池已連結半導體與顯示器為一,此三項 領導元件工業並快速發展。 由負極或正極所使用之材料來分類,二次電池包括鉛 酸性電池(lead acid batteries)、鎳鎘電池、鎳氫電池 (nickel-metal hydride (Ni-MH) batteries)與鐘電池 等’二次電池之電位與能量密度可由電極材料之天然特性 所決定。在這些電池中’鋰-二次電池由於低氧化/還原電 位與低分子量具有高能量密度,且因此在一般攜帶型電子 莊自中做為能量來源。 尤其,使用非水性電解液之鋰-二次電池可包括一由由 正活性物質(例如鋰金屬之混和氧化物)所覆蓋之金屬所組 5142-9340-PF;Daphne 6 200901536 成的正極、-由負活性物質(例如含碳材料 蓋之金屬所組成的負極,電解洛於…屬)所覆 -電解液,於其中鋰鹽容於有 機溶劑中,且其位於正極於負極之間。 將在此簡單說明此種鋰-二次電池的操作機制。在鋰一 二次電池充電時’於電解液中之鐘離子(Li+)從正極移動至 負極相反地,在鋰-二次電池用電時,鋰離子(Li+)從負 極移動至正極以產生電力。在此時,電子以相對於鋰離子 之方性移動經由連接正極與負極之導線。 在鋰-二次電池充電時,從鋰金屬氧化物正極釋放之鋰 離子被轉移至碳負極且被置入負極中。在此時,鋰離子與 石厌負極反應,由於它們之高再反應性,以產生一化合物, ”如Li2C〇3、Li〇或LiOH,因此形成一由在負極表面上之 化合物所組成之薄膜。此薄膜稱為“固體電解質中間相 (solid electr〇iyte interface,SEI)膜”。此固體電解 質中間相膜做為一種保護膜,其使負極表面不易起化學變 化。 特別是,當電池充電/放電時,固體電解質中間相膜可 限制鋰離子與負極或其他材料間的反應,且也做為一離子 通道,只允許鋰離子通過。 此離子通道避免負極結構瓦解,負極結構瓦解可由在 電解液中具有高分子量之有機溶劑與溶劑中之鋰離子共嵌 入負極所引起。 一旦固體電解質中間相膜形成,其可避免鋰離子更進 一步與負極或其他材料反應。因此,可以可逆地維持鋰離 5142-9340-PF;Daphne 7 200901536 子之起始量。 在過量充電時,含碳材料纪成之負極 因此形成保護膜,^ ^ 7 /、電解液反應, …避免電解液:::^ 鮮|維持穩定充電與放電。 链-二次電池的平均 具有相較於其他二m電電壓為、約3·6-3.7V’因此其 _池。…人電池較高之電力,例如驗性、錄-金與200901536 IX. OBJECTS OF THE INVENTION: TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte solution of a clock-secondary battery and a clock battery of the electrolyte. More particularly, the present invention relates to a non-aqueous electrolyte for improving the lifespan and aging characteristics of a clock-sub-battery, when compared to the use of a general non-aqueous electrolyte, and relating to a lithium-secondary battery comprising the above-mentioned non-aqueous battery Aqueous Electrolyte [Prior Art] A secondary battery is different from a primary battery because it is rechargeable and can be used semi-permanently. The increased popularity of portable electronic devices, such as notebook computers, mobile communication terminals, and digital cameras, has led to an exponential increase in the size of the secondary battery market. Therefore, in the 21st century, secondary batteries have been linked to semiconductors and displays, and these three leading components have developed rapidly. Classified by the material used for the negative electrode or the positive electrode, the secondary battery includes lead acid batteries, nickel-cadmium batteries, nickel-metal hydride (Ni-MH) batteries, and clock batteries. The potential and energy density of the secondary battery can be determined by the natural characteristics of the electrode material. Among these batteries, lithium-secondary batteries have high energy density due to low oxidation/reduction potential and low molecular weight, and thus are used as energy sources in general portable electronic applications. In particular, a lithium-secondary battery using a non-aqueous electrolyte may include a group of 5142-9340-PF consisting of a metal covered with a positive active material (for example, a mixed oxide of lithium metal); a positive electrode of Daphne 6 200901536, - An electrolyte solution is coated with a negative active material (for example, a negative electrode composed of a metal covered with a carbonaceous material, and is electrolyzed), wherein the lithium salt is contained in an organic solvent, and it is located between the positive electrode and the negative electrode. The operation mechanism of such a lithium-secondary battery will be briefly explained here. When the lithium-secondary battery is charged, 'the clock ion (Li+) in the electrolyte moves from the positive electrode to the negative electrode. Conversely, when the lithium-secondary battery is powered, the lithium ion (Li+) moves from the negative electrode to the positive electrode to generate electricity. . At this time, electrons move through the wires connecting the positive electrode and the negative electrode with respect to the square of lithium ions. When the lithium-secondary battery is charged, lithium ions released from the lithium metal oxide positive electrode are transferred to the carbon negative electrode and placed in the negative electrode. At this time, lithium ions react with the stone negative electrode, and due to their high re-reactivity, a compound such as Li2C〇3, Li〇 or LiOH is formed, thereby forming a film composed of a compound on the surface of the negative electrode. This film is called a "solid electrile mesophase interface (SEI) film." This solid electrolyte mesophase film acts as a protective film that makes the surface of the negative electrode less susceptible to chemical changes. In particular, when the battery is charged / During discharge, the solid electrolyte mesophase film can limit the reaction between lithium ions and the negative electrode or other materials, and also acts as an ion channel, allowing only lithium ions to pass. This ion channel prevents the negative electrode structure from disintegrating, and the negative electrode structure can be disintegrated in the electrolyte. The organic solvent having a high molecular weight is co-inserted into the negative electrode with lithium ions in the solvent. Once the solid electrolyte intermediate phase film is formed, it can prevent lithium ions from further reacting with the negative electrode or other materials. Therefore, the lithium can be reversibly maintained 5142. -9340-PF; Daphne 7 200901536 The initial amount of the sub-carbon Forming a protective film, ^ ^ 7 /, electrolyte reaction, ... avoiding electrolyte::: ^ fresh | maintaining stable charging and discharging. The average of the chain-secondary battery is compared with the other two m electric voltage, about 3 · 6-3.7V' therefore its _ pool....the higher the battery power, such as the test, record-gold and
…妨予電池高驅動電壓’需要-電解質組成,其在 電電壓為0一4,時,電化學穩定。為了這些理由, 例如鋰鹽溶解於有機溶劑中之有機電解液,一般做為鋰— 一人電池之電解液。而有機溶劑則較佳使用具有高離子傳 導率同"電常數與低黏度之有機溶劑。 '… 75 ,一般沒有單一個非水性有機溶劑符合 迟二要I。因此可使用冑介電與低介電之有機溶劑的混合 物或可使用冋)|電有機溶劑與低黏度之有機溶劑的混合 物。最近,已發展高電壓(即4.2V或更高)電池,且這些電 池中電解液之穩定度也相應地更加顯著。 美國專利號6,114,〇7〇與6048637揭露改善有機溶 劑離子傳導度的方法,其藉由使用二乙基碳酸鹽(dimethyl carbonate)或碳酸二乙酯(diethyl carb〇nate)與碳酸乙 烯(ethylene carbonate)或丙醯碳酸龜(pr0Pylene carbonate)之混和物做為一鏈狀碳酸鹽或環狀碳酸鹽的混 合溶劑。 此種混和溶劑可用在12 0 °C或低於此溫度,但其並不 5142-9340-PF;Daphne 8 200901536 適合使用於超過12(rc ’因為由於蒸氣壓可產生氣體,所 以可能產生例如電池膨大之問題。 美國專利號 5, 352, 548、5, 712, 059 與 5, 714, 281 揭露 一電解液包括—有機溶劑其包含2Owt〇/0或更多之碳酸伸乙 烯酯(vinylene carb〇nate,vc)。 與石反酸乙烯(ethylene carbonate)、丙醯碳酸酯 (P pylene carbonate)與 7* -丁 内酉旨(γ _butyrolactone)...to the battery high drive voltage 'required-electrolyte composition, which is electrochemically stable when the electric voltage is 0-4. For these reasons, for example, an organic electrolyte in which a lithium salt is dissolved in an organic solvent is generally used as an electrolyte of a lithium-one battery. The organic solvent is preferably an organic solvent having a high ion conductivity and a "electric constant and low viscosity. '... 75, generally no single non-aqueous organic solvent meets the second. Therefore, a mixture of a ruthenium dielectric and a low dielectric organic solvent or a mixture of an oxime® organic solvent and a low viscosity organic solvent can be used. Recently, high voltage (i.e., 4.2V or higher) batteries have been developed, and the stability of the electrolyte in these batteries is correspondingly more significant. U.S. Patent Nos. 6,114, 〇7〇 and 6048637 disclose methods for improving the ionic conductivity of organic solvents by using dimethyl carbonate or diethyl carb〇nate with ethylene carbonate ( Ethylene carbonate) or a mixture of pr0Pylene carbonate is used as a mixed solvent of a chain carbonate or a cyclic carbonate. Such a mixed solvent can be used at or below 120 ° C, but it is not 5142-9340-PF; Daphne 8 200901536 is suitable for use over 12 (rc ' because gas can be generated due to vapor pressure, so it is possible to produce, for example, a battery U.S. Patent Nos. 5,352,548, 5, 712, 059 and 5, 714, 281 disclose an electrolyte comprising - an organic solvent comprising 2Owt 〇 / 0 or more of vinyl acetate carb Nate, vc). With ethylene carbonate, P pylene carbonate and 7* - butyl yum (γ _butyrolactone)
相較,碳酸伸乙燁冑具有一低彳電常S。因&於電池中之 石反I伸乙烯g曰最為一維持溶劑可能具有缺點,例如於充電/ 放電中之退化與失去功效。 上述所提到之美國專利建議藉由加入碳酸伸乙烯酯可 達到改善電池使用壽命。然❿,碳酸伸乙烯醋的含量增加 薄膜之電阻與電池之電阻也會增加。因此,在高功效與低 溫時可能降低電池之電容。更進一步而言,當碳酸伸乙烯 醋增加時,在高溫時可能產生氣體,而可能產生電池膨大 的問題。 形成一 中,如 了抑制於負極上之溶劑或鋰之還原分解,可加入可 固體電解質中間相膜於負極上之化合物於電解液 日本專利公開號2 〇 〇 1 - 6 7 2 9等所揭露。 然而由於薄膜添加劑的使用誘導—由於負極上之鐘離 :所組成之低傳導度、高電阻之固體電解質中間相膜的形 成,會顯著下降電池的放電特性。更進一步而t,在—例 子中,其中在電解液中薄膜添加劑過量,添加劑可忍受於 正極上之氧化分解依據在高溫…匕,且可因此產生氣 5142-9340-PF;Daphne 9 200901536 體。所以可能產生電池膨大的嚴重問題,由於内壓 (internal pressure)增力口 。 曰本專利公開號1992-087156揭露藉由加入碳酸乙烯 亞乙烯酯(vinyl ethylene carbonate, VEC)可改善電池的 使用壽命。然而當使用1%或更多之碳酸乙烯亞乙烯酯時, 由於薄膜電阻的增加,降低之電池電容可能成為一問題。 為了解決這些問題,日本專利公開1 992(04)-0871 56 建議使用碳酸乙烯亞乙烯酯與碳酸伸乙烯酯之混合物以改 善電池使用壽命。然而,當使用2%或更多之此混合物時, 由於薄膜電阻的增加,而降低之電池電容的問題仍未解決。 曰本專利公開號1 995-006786揭露一藉由使用氟代碳 酸乙烯酯(fluoroethylene carbonate, FEC)來改善電池使 用壽命的方法。然而’於高溫時此方法可能會減少電池之 使用壽命為遺缺點。 美國專利说6, 506, 524揭露使用由氟代碳酸乙烯酯與 丙醯碳酸酯組成之電解液可使形成穩定之保護膜,而此保 護膜與石墨負極材料之表面的電解液相關。 氟代碳酸乙烯酯與丙醯碳酸酯具有高介電常數,但也 具有高黏度。因此當使用此混合溶劑做為電解液時,電解 液之離子傳導度低(即約7mS/cffi)且電池效能可能因此下 降。 因此,研究與發展可改善使用I八你心 之用可命與老化特性且維持 電池效能之二次電池的電解液所需增加。 5142-9340-PF;Daphne 10 200901536 【發明内容】 ” 在方面本發明提供一種鋰-二次電池之非水性 電解液1改善使用壽命與老化特性,經由使欲適合的添 加劑。 另方面,本發明提供一種鋰—二次電池,其包含上 述之非水性電解液。 本發月提供-種鐘二次電池之非水性電解液,包括: 、-基礎電解液’係由下列所組成:一非水性有機溶劑 以及-鐘鹽溶解於該非水性有機溶劑中;以及 石厌酸乙稀亞乙醋之化合物,由式⑴所表示,以及一 碳酸函化乙醋之化合物,由式⑵所表示, 八/非水丨生有機溶劑係擇自由一碳酸溶劑、一酯類 溶劑、一醚類溶# 一. 诏以及一酮類溶劑所組成之群組的至少其In contrast, carbonic acid has a low S. The most maintenance solvent may have disadvantages, such as degradation and loss of efficacy in charging/discharging, due to & The above mentioned U.S. patents suggest that battery life can be improved by the addition of vinyl carbonate. Then, the content of the ethylene carbonate vinegar increases, and the resistance of the film and the resistance of the battery also increase. Therefore, the capacitance of the battery may be lowered at high efficiency and low temperature. Further, when the carbonic acid-extended ethylene vinegar is increased, gas may be generated at a high temperature, which may cause a problem of battery expansion. Forming one, such as a solvent or lithium reductive decomposition inhibited on the negative electrode, a compound capable of adding a solid electrolyte intermediate phase film to the negative electrode is disclosed in the electrolytic solution Japanese Patent Publication No. 2 〇〇1 - 6 7 2 9 . However, the induction of the use of the film additive - due to the clock on the negative electrode: the formation of a low conductivity, high resistance solid electrolyte mesophase film, can significantly reduce the discharge characteristics of the battery. Further, in the example, in which the film additive is excessive in the electrolyte, the additive can withstand the oxidative decomposition on the positive electrode at a high temperature... and can thus produce gas 5142-9340-PF; Daphne 9 200901536. Therefore, a serious problem of battery expansion may occur, due to an internal pressure increase. The publication of the patent publication No. 1992-087156 discloses that the battery life can be improved by the addition of vinyl ethylene carbonate (VEC). However, when 1% or more of ethylene vinylene carbonate is used, a reduced battery capacity may become a problem due to an increase in sheet resistance. In order to solve these problems, Japanese Patent Publication No. 992(04)-0871 56 proposes to use a mixture of vinylene vinyl carbonate and vinyl carbonate to improve battery life. However, when 2% or more of this mixture is used, the problem of reduced battery capacity is still unresolved due to an increase in sheet resistance. A method of improving battery life by using fluoroethylene carbonate (FEC) is disclosed in Japanese Patent Laid-Open Publication No. Hei. No. Hei. However, this method may reduce the life of the battery at high temperatures. U.S. Patent No. 6,506,524 discloses the use of an electrolyte consisting of fluoroethylene carbonate and propylene carbonate to form a stable protective film associated with the electrolyte on the surface of the graphite negative electrode material. Vinyl fluorocarbonate and propylene carbonate have a high dielectric constant, but also have a high viscosity. Therefore, when this mixed solvent is used as the electrolyte, the ion conductivity of the electrolyte is low (i.e., about 7 mS/cffi) and the battery performance may be lowered. Therefore, research and development can improve the electrolyte required for secondary batteries that use the life and aging characteristics of the heart and maintain battery performance. 5142-9340-PF; Daphne 10 200901536 SUMMARY OF THE INVENTION The present invention provides a non-aqueous electrolyte solution 1 for a lithium-secondary battery to improve service life and aging characteristics, via an additive to be suitable. Provided is a lithium-secondary battery comprising the above non-aqueous electrolyte solution. The non-aqueous electrolyte solution of the bell-type secondary battery is provided in the present month, and includes: - a base electrolyte solution consisting of the following: a non-aqueous battery The organic solvent and the - bell salt are dissolved in the non-aqueous organic solvent; and the compound of the ethylene sulfonate ethylene vinegar, represented by the formula (1), and the compound of the carbonic acid acetyl vinegar, represented by the formula (2), The non-aqueous organic solvent is selected from the group consisting of a free monocarbonic acid solvent, a monoester solvent, an ether solvent, and a ketone solvent.
(2) 發明實施例之鐘—一 電解液之鐘-二次電'、也,:'水性電解液與包含此 哥命與老化特性而維持電池效能。 文。使用 明頻ίΓ本”之上逑和其他目的、特徵、和優點能更 月一員易Μ,下文特舉較者 佳只施例並配合所附圖示,作詳 細说明如下: 5142-9340-PF;Daphne 11 200901536 【實施方式】 、在-方面,本發明針對—種鐘_二次電池 液,包括:一基礎電解液, 電解 係由下列所組成:— 機溶劑以及一鐘鹽溶解於 7 有 胖於口亥非水性有機溶劑中; 山 酸乙烯亞乙酯之化合物,由 、 一妷 飞、i )所表不’以及— 乙酯之化合物,由式(2)所 厌s夂齒化 Μ ό ,, 表不,其中該非水性有機溶劑俜 擇自由1酸溶劑、1類溶劑、—賴溶一= f. 溶劑所組成之群組的至少其中之—。 酮類 〇 0(2) The clock of the embodiment of the invention - an electrolyte clock - secondary electricity ', also: 'aqueous electrolyte and contains the gangs and aging characteristics to maintain battery efficiency. Text. The use of the Ming Γ Γ ” ” 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 逑 5 5 5 5 5 5 5 5 5 5 5 Daphne 11 200901536 [Embodiment] In the aspect, the present invention is directed to a clock-secondary battery liquid, comprising: a base electrolyte, the electrolysis system consisting of the following: - machine solvent and one salt dissolved in 7 Fat in the non-aqueous organic solvent of Kouhai; the compound of ethylene vinyl sorbate, which is represented by 、, fly, i) and the compound of ethyl ester, which is ridiculed by the formula (2) ό ,,表, wherein the non-aqueous organic solvent is selected from the group consisting of at least one acid solvent, one type of solvent, and one solvent.
iV λ2 Χ\3 /in , ⑴ n(X) (Y). (2) 在另一方面本發明,針對m電池 發明之非水性電解液,·-電極部分,係由—正極與_ = 所組成,其位於非水性電解液的相對側互相面對;以及一 隔離板將該正極與負極電性分離。 本發明之鋰-二次雷、冰+斗t 電池之非水性電解液不包含 ⑽),且只使用有機溶劑做為溶劑,從用詞之定義 性’可明確得知。此非水性電解液可包括添加劑以改盖鐘— 二次電池之使用壽命與老化特性’除基礎電解液外,於其 中之鋰鹽溶解於非水性有機溶劑中。 上述基礎電解液由非水性有機溶劑與鐘鹽所組成。 非水性有機溶劑做用如—基質,允許包含於電池電化 學反應中之離子遷移。為 …了藉由提升離子解離的程度而得 到適合之離子遷移,其較佳為使用具有高介電常數(極幻 5142-9340-PF;Daphne 12 200901536 與低黏度之溶劑。一般而言,使用由至少一具有高介電常 數與高黏度之溶劑與至少一具有低介電常數與低黏度之溶 劑所組成之混合物。 於本發明中使用之非水性有機溶劑包括擇自由一碳酸 溶劑、一酯類溶劑、一醚類溶劑以及一酮類溶劑所組成之 群組的至少其中之一。 碳酸溶劑可包括擇自碳酸乙烯(ethylene carbonate, EC)、丙醯碳酸酯(propylene carbonate, PC)、碳酸 1,2-丁烯(1,2-butylene carbonate)、碳酸 2, 3- 丁稀 (2,3-butylene carbonate)、碳酸 1,2-戊烯 (1, 2-pentylene carbonate)與碳酸 2,3-戊稀 (2, 3-pentylene carbonate)之至少一環狀碳酸有機溶 劑,以及擇自碳酸二甲酯(dimethyl carbonate,DMC)、碳 酸二乙酯(diethyl carbonate, DEC)、碳酸二丙酯 (dipropyl carbonate,DPC)、碳酸甲己醋(ethylmethyl 1 i carbonate,EMC)、碳酸甲丙 S旨(met hylpropyl carbonate, MPC)與碳酸乙丙酯(ethylpropyl carbonate,EPC)之至少 —鏈狀礙酸有機溶劑的混合物。 考慮到電池之使用壽命與老化特性,環狀碳酸有機溶 劑與鏈狀碳酸有機溶劑之混合體積比為11 -1: 9,較佳為 1:1·5-1:4 。 尤其在環狀碳酸有機溶劑之中,較佳為使用碳酸乙烯 與丙醯碳酸酯,其皆具有高介電常數。在一例子中,使用 人工石墨(artificial graphite)做為負極活性材料,較佳 5142-9340-PF;Daphne 13 200901536 為使用丙醯碳酸酯。於鏈狀碳酸有機溶劑中,較佳為使用 碳酸二甲酯、碳酸曱乙酯與碳酸二乙酯,其皆具有低黏度。 酯類溶劑可包括擇自由乙酸甲酯(methy 1 acetate)、 乙酸乙醋(ethyl acetate)、乙酸丙 δ旨(propyl acetate)、 丙酸曱酯(methyl propionate)、丙酸乙酯(ethyl propionate)、r -丁内酯(r -butyrolactone)、γ -戊内酯 (? —valerolactone)、己内 g旨(caprolactone)、 5 -戊内醋 (5 -valerolactone)與 ε -己内酉旨(ε -caprolactone)戶斤.组 成之群組的至少一個。醚類溶劑可包括擇自由四氫呋喃 (tetrahydrofuran) 、 2-甲基四 氫吱喃 (2-methy 1 tetrahy dr 〇 fur an)與二正丁醚(dibutyl ether) 所組成之群組的至少一個。酮類溶劑可包括聚甲基乙烯酮 (polymethylvinylketone) ° 該非水性有機溶劑更可包括一芳香碳氫(aromatic hydrocarbon-based)有機溶劑,由式(3)所表示: (3) 其中R為鹵素或烷基;且q為〇-6之整數。 特別地,芳香碳氫有機溶劑為可包括擇自苯 (benzene)、氟化苯(fiuor〇benzene)、漠化苯 (bromobenzene)、氣化苯(chl〇r〇benzene)、甲苯 (to 1 uene)、一甲苯(xy 1 ene)、三甲苯(mesi ty 1 ene)、氟代 甲苯(f luorotoluene)、二氟曱苯(dif luorotoluene)與三 5142-9340-PF;Daphne 14 200901536 氟甲苯(trifluorotoluene)之至少其中之—。 芳香碳氫溶劑與碳酸溶劑之混合體積比為1:丨_丨:3〇。 可藉由於非水性有機溶劑中溶解鋰鹽來製備基礎電解 液0 鋰鹽包括擇自 LiPF6、LiCl〇4、UASF6、UBF4、 LiN(C2F5S0〇2、LiN(C2F5S〇2)2、UN(CF3S〇2)2、以他、iV λ2 Χ\3 /in , (1) n(X) (Y). (2) In another aspect of the invention, the non-aqueous electrolyte for the m battery invention, the electrode portion, is composed of - the positive electrode and the _ = a composition that faces each other on opposite sides of the non-aqueous electrolyte; and a separator electrically separates the positive electrode from the negative electrode. The non-aqueous electrolyte solution of the lithium-secondary lightning, ice + bucket t battery of the present invention does not contain (10)), and only an organic solvent is used as a solvent, which is clearly known from the definition of the term. This non-aqueous electrolyte may include an additive to change the life and aging characteristics of the clock - secondary battery. In addition to the base electrolyte, the lithium salt therein is dissolved in the non-aqueous organic solvent. The above basic electrolyte consists of a non-aqueous organic solvent and a clock salt. Non-aqueous organic solvents are used, such as a matrix, to permit ion migration contained in the electrochemical reaction of the battery. A suitable ion transport is obtained by increasing the degree of ion dissociation, preferably using a solvent having a high dielectric constant (polarity 5142-9340-PF; Daphne 12 200901536 and low viscosity. Generally, use a mixture of at least one solvent having a high dielectric constant and a high viscosity and at least one solvent having a low dielectric constant and a low viscosity. The non-aqueous organic solvent used in the present invention comprises a free monocarbonic acid solvent and a monoester. At least one of a group consisting of a solvent-like solvent, an ether solvent, and a ketone solvent. The carbonic acid solvent may be selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), and carbonic acid. 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate and carbonic acid 2, At least one cyclic carbonic acid organic solvent of 2-pentylene carbonate, and selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (dipropyl carbonate, DP C), a mixture of ethyl methyl hydride (EMC), methyl propyl carbonate (MPC) and at least ethyl propyl carbonate (EPC) - a chain-like organic solvent Considering the service life and aging characteristics of the battery, the mixed volume ratio of the cyclic carbonate organic solvent to the chain carbonate organic solvent is 11 -1 : 9, preferably 1:1 · 5-1: 4 . Among the organic carbonated solvents, ethylene carbonate and propylene carbonate are preferably used, all of which have a high dielectric constant. In one example, artificial graphite is used as the negative electrode active material, preferably 5142-9340- PF; Daphne 13 200901536 is a propylene carbonate. In the chain carbonate organic solvent, it is preferred to use dimethyl carbonate, cesium carbonate and diethyl carbonate, all of which have low viscosity. The ester solvent may include Select methy 1 acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, r-butane Ester (r -butyro Lactone), γ-valerolactone (?-valerolactone), caprolactone, 5-valerolactone, and ε-caprolactone At least one of the groups. The ether solvent may include at least one selected from the group consisting of tetrahydrofuran, 2-methy 1 tetrahy dr 〇 fur an and dibutyl ether. The ketone solvent may include polymethylvinylketone. The non-aqueous organic solvent may further comprise an aromatic hydrocarbon-based organic solvent represented by the formula (3): wherein R is halogen or An alkyl group; and q is an integer of 〇-6. In particular, the aromatic hydrocarbon organic solvent may include benzene, fluorene benzene, bromobenzene, carbazine, toluene ), xy 1 ene, mes ty 1 ene, f luorotoluene, dif luorotoluene and three 5142-9340-PF; Daphne 14 200901536 fluorotoluene At least one of them -. The mixing volume ratio of the aromatic hydrocarbon solvent to the carbonic acid solvent is 1: 丨 丨: 3 〇. The base electrolyte can be prepared by dissolving the lithium salt in the non-aqueous organic solvent. The lithium salt is selected from LiPF6, LiCl〇4, UASF6, UBF4, LiN (C2F5S0〇2, LiN(C2F5S〇2)2, UN(CF3S〇). 2) 2, with him,
LiCF3S〇3、LiC4F9S〇3、LiA1〇4、UAlcl4、LiN(Cu2) (CyF2y+lS〇2)(其中乂與y各自獨立為—正整數)、Lic丨與[η 之至少一個。LiCF3S〇3, LiC4F9S〇3, LiA1〇4, UAlcl4, LiN(Cu2) (CyF2y+lS〇2) (wherein 乂 and y are each independently a positive integer), and at least one of Lic丨 and [η.
關之黏 更佳為 考慮到關於電解液之電傳導度及鋰離子移動相 度的特性,鋰鹽於電解液的濃度較佳為OH,, 〇_ 1· 6M。 在基礎電解液中,其中鐘鹽溶解於非水性溶劑中,可 加入-由式⑴所表示之碳酸乙稀亞乙醋之化合物,以及由 式⑵所表。示之—碳酸_化以旨之化合物做為添加劑:It is preferable that the concentration of the lithium salt in the electrolyte is preferably OH, 〇 _ 1·6M, in consideration of the electrical conductivity of the electrolyte and the mobility phase of the lithium ion. In the base electrolyte, in which the bell salt is dissolved in a non-aqueous solvent, a compound of ethylene carbonate-ethyl acetate represented by the formula (1), and a formula (2) can be added. Shown as a carbonic acid-based compound as an additive:
(1) 在式(1)中,L、R2、1?3與R4為各自獨立 的^碳氫化合物;且至少^與^之^具雙鍵 的c2-C6碳氫化合物,且 4具雙鍵 〇 „(X)(1) In the formula (1), L, R2, 1?3 and R4 are each independently a hydrocarbon; and at least a C2-C6 hydrocarbon having a double bond, and 4 pairs of Key 〇„(X)
(Y), 15 5142-9340-PF;Daphne (2) 200901536 在式(2)中,X為鹵素;γ為氫或鹵素;且η與各自 獨立為1或2。 石反酸乙烯亞乙酯之化合物被加入的量可為重量 份,以該基礎電解液為1 00重量份為基礎。碳酸齒化乙酯 之化合物被加入的量為〇.卜20重量份’以該基礎電解液為 100重量份為基礎。 為了確保電池所需的使用壽命與老化特性,需將碳酸 乙烯亞乙酯之化合物與碳酸齒化乙酯之化合物的量以上述 疋義之範圍内混合。在一例子中,其中碳酸乙烯亞乙酯之 化合物對基礎電解液獨自使用,在低溫下下降了電池老化 的特性。同時,在一例子中,碳酸鹵化乙酯之化合物對基 礎電解液獨自使用,在室溫下特別為高溫下,下降了電池 的使用壽命。 如果需要,本發明之非水性電解液可更包括乙酸丙酯 (propyl acetate)、乙酸甲 _(methyl acetate)、乙酸乙 酉曰(ethyl acetate)、乙酸丁酯(butyl acetate)、丙酸甲 酯(methyl propionate)、丙酸乙酯(ethyl pr〇pi〇nate) 等。 本發明之非水性電解液在_ 2 〇至6 〇。〇間可具有較優之 老化特性且長的使用壽命,因此改善了電池的穩定度與可 靠度。本發明之非水性電解液可應用於所有鋰—二次電池, 包括鋰離子電池與鋰聚合物電池(Hthiuin p〇lym打 batteries)等。 第1圖顯示一鋰-二次電池的示意圖,其中鋁(A1)做為 5142-9340-PF;Daphne 16 200901536 正極100之金屬,銅(Cu) .τ ^ ^ 政為負極110之金屬,LiCoOa做 為正極活性材料、碳(c)傲盘 為負極活性材料,且以本發明之 非水性電解液做為電解液130。 如第1圖所示,鐘—二攻雷 人電池包括正極100、負極110、 電解液130與隔離板14〇。 由於上述已說明了以非士 尤月丨μ非水性電解液作為鋰-二次電池 的電解液130,因此 1更進—步的敘述。(Y), 15 5142-9340-PF; Daphne (2) 200901536 In the formula (2), X is a halogen; γ is hydrogen or a halogen; and η is independently 1 or 2 each. The compound of the stone-reactive ethylene glycol may be added in an amount based on 100 parts by weight of the base electrolyte. The compound of ethyl carbonate ethyl carbonate was added in an amount of 20 parts by weight based on 100 parts by weight of the base electrolyte. In order to ensure the desired service life and aging characteristics of the battery, the amount of the ethylene carbonate ethylene compound and the ethyl carbonate ethyl ester compound is mixed within the above-mentioned range. In one example, a compound in which ethylene carbonate is used alone for the base electrolyte lowers the characteristics of battery aging at low temperatures. Meanwhile, in one example, the ethylenic acid carbonate compound is used alone for the base electrolyte, and the battery life is lowered at room temperature, particularly at a high temperature. If desired, the non-aqueous electrolyte of the present invention may further include propyl acetate, methyl acetate, ethyl acetate, butyl acetate, methyl propionate ( Methyl propionate), ethyl propionate (ethyl pr〇pi〇nate), etc. The non-aqueous electrolyte of the present invention is in the range of _ 2 〇 to 6 〇. The daytime can have better aging characteristics and a long service life, thus improving the stability and reliability of the battery. The non-aqueous electrolyte solution of the present invention can be applied to all lithium-secondary batteries, including lithium ion batteries and lithium polymer batteries (Hthiuin p〇lym). Figure 1 shows a schematic diagram of a lithium-secondary battery in which aluminum (A1) is used as 5142-9340-PF; Daphne 16 200901536 is a metal of positive electrode 100, copper (Cu). τ ^ ^ is a metal of negative electrode 110, LiCoOa As the positive electrode active material, carbon (c) is a negative electrode active material, and the non-aqueous electrolyte solution of the present invention is used as the electrolyte 130. As shown in Fig. 1, the clock-second lightning protection battery includes a positive electrode 100, a negative electrode 110, an electrolyte 130, and a separator 14 〇. Since the above-mentioned non-aqueous electrolyte solution of the non-slip sulphur electrolyte has been described as the electrolyte solution 130 of the lithium-secondary battery, the description will be further described.
將正極 1 〇 0 愈 g 極 η Π be J_A 、、 0 5又置於非水性電解液13 0的相 對兩側,並且使其互相面對。 正極100可由覆蓋正極活性材料之一金屬所組成。活 性材料包括擇自 LixMni—yMyA2、UxMn2G4 zXz、UxMn2 湯,zA4、 uxc〇 卜 yMyA2 、 LixC〇1”My〇2.zXz 、 UxNhm 、 LhNiwCo瓜丄、LixNi卜y_zC〇yMzAa、LixNiiTzC〇yMua、The positive electrode 1 〇 0 and the g electrode η Π be J_A , and 0 5 are again placed on opposite sides of the non-aqueous electrolyte solution 130, and are faced to each other. The positive electrode 100 may be composed of a metal covering one of the positive electrode active materials. Active materials include LixMni-yMyA2, UxMn2G4 zXz, UxMn2 soup, zA4, uxc〇 yMyA2, LixC〇1”My〇2.zXz, UxNhm, LhNiwCo melon, LixNi y_zC〇yMzAa, LixNiiTzC〇yMua,
LixNiH-zMruMzAa 與 LixNhuMruMl—aXa 之至少一個(其中 〇.9Sx^l.;l、〇$d5、〇$ζ$〇.5,〇$α$2;讨與『 為相同或不同且係擇自由Mg、A1、C〇、κ、Na、Ca、Si、LixNiH-zMruMzAa and at least one of LixNhuMruMl-aXa (where 〇.9Sx^l.;l, 〇$d5, 〇$ζ$〇.5, 〇$α$2; discuss the same or different and choose free Mg , A1, C〇, κ, Na, Ca, Si,
Ti 、 Sn 、 V 、 Ge 、 Ga 、 B 、 As 、 Zr 、 Μη 、 Cr 、 Fe 、 Sr 、 V 與 稀土元素所組成的群組;A係擇自由〇、F、s與p所組成 之群組;以及X係擇自由F、S與P所組成之群組)。 如第1圊所示’可使用可反轉地嵌入或去嵌入之碳(晶 體碳(crystalline carbon)、非晶質碳(amorphous carbon)) 作為負極110的活性材料。或者負極可以擇自碳複合物 (carbon composite)、碳纖維、鋰金屬、鋰合金與鋰複合 物之至少其中之一之活性材料來覆蓋。 5142-9340-PF;Daphne 17 200901536 非晶質奴的特疋例子包括硬碳(hard carbon)、焦煤 (cokes)、於1500 C或更低溫度锻燒(caicinated)之介穩 態球狀碳(mesocarbon microbeads, MCMBs)、介穩球狀瀝 青系碳纖(mesophase pitch-based carbon fibers, MPCFs) 等。 f k.. 晶體碳可包括’例如石墨之材料,其之特定例子包括 天然石墨、石墨化焦(graphi tized cokes)、石墨化之介穩 態球狀碳(§!^?。1:丨26(1於0^^3)、石墨化之介穩球狀瀝青系 碳纖(graphitized MPCFs)等。較佳為具有3 35_3 38之 d〇〇2晶面間距(interplanar distance)與由X光繞射儀 (X - ray diffract ion)所測量之2〇nm或更大之結晶大小 (Lc)(crystallite size)的碳材料。裡合金可包括鋰與擇 自銘(A1)、辞(Zn)、紐(Bi)、鎘(Cd)、銻⑽)、矽(si)、 鉛(Pb)、錫(Sn)、鎵(Ga)與銦(In)之金屬的合金。 可藉由製備一電極漿狀組合物與將此組合物塗佈至集 板電極(electrode collector)來製造正極與負極。組合物 之製備可藉由在溶劑中與電極活性材料、黏結劑與傳導劑 (conductive agent) 一起分散增稠劑(如咖 agent)(如果需要的話)來執行。 正集板電極(electrode c〇Uect〇r)可由鋁或含合金 來組成。負集板電極可由銅或含銅合金來組成。正負集板 電極的形狀可例如金屬薄M 、薄膜、薄板、穿孔金屬、孔 洞金屬與伸展金屬。 黏結劑提供活性材料之海報化、活性材料間之共吸 5142-934〇-PF;Daphne 18 200901536 附、活性材料與集板之吸附,且可補償活性材料之膨大與 收細。黏結劑的例子可包括聚偏氟乙稀(p〇 1 y v iny 1 idene fluoride)、聚六敦丙烯-聚偏氟乙烯 (polyhexafluoropropylene- polyvinyiidene fluoride, PCVdF/HFP))共聚物、聚乙酸乙烯酯 (poly(vinylacetate))、聚乙烯醇(p〇lyvinyl alc〇h〇1)、 聚環氧乙烷(polyethylene oxide)、聚乙烯吡咯烷酮a group consisting of Ti, Sn, V, Ge, Ga, B, As, Zr, Μη, Cr, Fe, Sr, V and rare earth elements; A is a group consisting of 〇, F, s, and p And the X system chooses the group consisting of F, S and P). As shown in Fig. 1, carbon (crystalline carbon, amorphous carbon) which is reversibly intercalated or deintercalated can be used as an active material of the negative electrode 110. Alternatively, the negative electrode may be covered with an active material selected from at least one of a carbon composite, carbon fiber, lithium metal, lithium alloy and a lithium composite. 5142-9340-PF; Daphne 17 200901536 Examples of amorphous slaves include hard carbon, cokes, and caicinated metastable spherical carbon at 1500 C or lower ( Mesocarbon microbeads, MCMBs), mesophase pitch-based carbon fibers (MPCFs). f k.. Crystal carbon may include 'materials such as graphite, and specific examples thereof include natural graphite, graphi tized cokes, graphitized metastable spherical carbon (§!^?. 1: 丨26) (1 at 0^^3), graphitized metastable spherical asphalt-based carbon fibers (graphitized MPCFs), etc. Preferably, there is a d〇〇2 interplanar distance of 3 35_3 38 and diffraction by X-rays. Carbon crystal size (Lc) (crystallite size) measured by X-ray diffract ion. Lithium alloy may include lithium and selected from (A1), (Zn), New Zealand An alloy of a metal of (Bi), cadmium (Cd), bismuth (10), bismuth (si), lead (Pb), tin (Sn), gallium (Ga), and indium (In). The positive electrode and the negative electrode can be produced by preparing an electrode slurry composition and applying the composition to an electrode collector. The preparation of the composition can be carried out by dispersing a thickener (e.g., a coffee agent) (if necessary) with an electrode active material, a binder, and a conductive agent in a solvent. The electrode plate electrode (electrode c〇Uect〇r) may be composed of aluminum or an alloy. The negative plate electrode may be composed of copper or a copper-containing alloy. The shape of the positive and negative collecting plates may be, for example, a thin metal M, a film, a thin plate, a perforated metal, a hole metal, and a stretched metal. The binder provides the posteriorization of the active material, the mutual absorption between the active materials 5142-934〇-PF; Daphne 18 200901536, the adsorption of the active material and the collecting plate, and can compensate for the expansion and thinning of the active material. Examples of the binder may include polyvinylidene fluoride (p〇1 yv iny 1 idene fluoride), polyhexafluoropropylene-polyvinyiidene fluoride (PCVdF/HFP) copolymer, polyvinyl acetate (polyvinyl acetate) Poly(vinylacetate)), polyvinyl alcohol (p〇lyvinyl alc〇h〇1), polyethylene oxide, polyvinylpyrrolidone
(polyvinyl pyrrolidone)、烷機基化聚環氧乙烷 (alkylated polyethylene oxide)、聚乙烯醚(polyvinyl 丙 烯 酸 甲 3旨 、 聚丙 烯 酸 乙酯 聚 四 氟 乙 浠 、 聚 氯 乙 浠 ether) 、聚 甲基 (poly(methylmethacrylate)) (poly(ethy1 aery late)) 、 (polytetrafluoroethylene) (polyvinylchloride)、聚丙烯腈(polyacryl〇nitrile)、 聚乙烯吡啶(p〇lyvinyl Pyridine) 、 丁苯橡膠 (styrene-butadiene rubbers) 、 丁腈橡膠膠 (a c r y 1 ο n i t r i 1 e b u t a d i e n e r u b b e r )等。 對於電極活性材料而言,黏結劑量的可為〇1_3〇%重 量。當黏結劑的量過低時,電極活性材料與集板之黏附會 變為不充分。相反地,當黏結劑的量過高日夺,黏附力會變 的很好,但相對的電極活性材料的量會減少,而其對於增 加電池之電容而言為一缺點。 傳導劑對於電傳導度有貢獻。傳導劑可包括擇自石墨 之傳導劑、*反黑(carb〇n black_based)之傳導劑與金屬戋 5142-9340-PF;Daphne 19 200901536 含金屬之傳導劑。石墨之傳導劑的例子包括人工石墨與天 然石墨。碳黑之傳導劑的例子包括乙炔黑(acetylene black)、科琴碳黑(ketjen black)、DENKA碳黑、熱碳黑 thermal black、槽法碳黑(channel black)等。屬或含金 屬之傳導劑的例子包括錫、氧化錫、磷酸錫(SnP〇4)、氧化 鈦、鈦酸鉀(potassium titanate)與詞鈦礦 (perovskite),例如 LaSrCo〇3 或 LaSrMnO” 本發明並不限於上述之傳導劑的例子。對於電極活性 材料而言,傳導劑的量較佳為〇· 1 —丨重量。當傳導劑的 量低於0. lwt%時,會減少電解液之電化學特性。相反地, 當傳導劑的量高於1 Owt%時,會減低每單位重量的能量密 度。可使用任何增稠劑而無特別限制,只要其可控制活性 材料漿狀液之黏度。增稠劑的特定例子包括叛曱基纖維 (carboxymethy1 cellulose) 、 羥 甲 基 纖 維 素 (hydroxymethyl cellulose) 、 羥 乙 基 纖 維 素 (hydroxyethy1 cellulose)與 羥 丙 基 纖 維 素 具有電極活性材料、黏結劑與傳導記分散於其中之溶 劑可為一非水性溶劑或水性溶劑。非水性溶劑的例子包括 (hydroxypropyl cellulose)。 N-甲基-2-環丙酿酮(N-methyl-2-pyrrolidone,NMP)、二 曱基甲醯胺(dimethylformamide)、二甲基乙酿胺 (dimethylacetamide) 、 二甲胺 基丙胺 (N,N-dimethylaminopropylamine)、環氧乙烷(ethylene oxide)、四氫°夫喃(tetrahydrofuran)等。 5142-9340-PF;Daphne 20 200901536 充電時接受一從外源來 。正極活性材料作為收 為收集負價之集板。 正極100與負極110的金屬在 的電壓且在放電時釋出電壓至外部 集正價之集板’而負極活性材料作 隔離板140使正極100與負極11〇維持電性分離以避 免發生短路而允許链離子通過。(polyvinyl pyrrolidone), alkylated polyethylene oxide, polyvinyl ether (polyvinyl acrylate, polyethyl acrylate polytetrafluoroethylene, polyvinyl chloride), polymethyl (poly(methylmethacrylate)), polytetrafluoroethylene (polyvinylchloride), polyacrylonitrile (nitrile) , nitrile rubber (acry 1 ο nitri 1 ebutadienerubber) and so on. For electrode active materials, the bonding dose can be 〇1_3〇% by weight. When the amount of the binder is too low, adhesion of the electrode active material to the plate may become insufficient. Conversely, when the amount of the binder is too high, the adhesion will become good, but the amount of the opposite electrode active material will decrease, which is a disadvantage for increasing the capacitance of the battery. Conducting agents contribute to electrical conductivity. The conductive agent may include a conductive agent selected from graphite, a carb〇n black-based conductive agent and a metal ruthenium 5142-9340-PF; Daphne 19 200901536 a metal-containing conductive agent. Examples of the conductive agent for graphite include artificial graphite and natural graphite. Examples of the carbon black conductive agent include acetylene black, ketjen black, DENKA carbon black, thermal black, and channel black. Examples of genus or metal-containing conductive agents include tin, tin oxide, tin phosphate (SnP〇4), titanium oxide, potassium titanate, and perovskite, such as LaSrCo〇3 or LaSrMnO. It is not limited to the above-mentioned examples of the conductive agent. For the electrode active material, the amount of the conductive agent is preferably 〇·1 - 丨. When the amount of the conductive agent is less than 0.1% by weight, the electrolysis of the electrolyte is reduced. Conversely, when the amount of the conductive agent is more than 1% by weight, the energy density per unit weight is reduced. Any thickener may be used without particular limitation as long as it can control the viscosity of the active material slurry. Specific examples of thickeners include carboxymethy1 cellulose, hydroxymethyl cellulose, hydroxyethy1 cellulose, and hydroxypropyl cellulose having electrode active materials, binders, and conduction. The solvent dispersed therein may be a non-aqueous solvent or an aqueous solvent. Examples of the non-aqueous solvent include (hydroxypropyl cellulose) N-methyl-2-cyclopropanone (N-me) Thyl-2-pyrrolidone, NMP), dimethylformamide, dimethylacetamide, N, N-dimethylaminopropylamine, ethylene oxide , tetrahydrofuran, etc. 5142-9340-PF; Daphne 20 200901536 Accepts an external source when charging. The positive active material is used as a collecting plate for collecting negative values. The metal of the positive electrode 100 and the negative electrode 110 is The voltage is discharged and discharged to the external collector of the positive collector price while the negative active material acts as the separator 140 to maintain the positive separation of the positive electrode 100 and the negative electrode 11 to prevent short-circuiting and allow the chain ions to pass.
隔離板140可為聚乙稀(p〇lyethylene)或聚丙烯 (polypropylene)單層隔離板、聚乙烯/聚丙烯雙層隔離 板、或聚乙烯/聚丙烯/聚乙烯或聚丙烯/聚乙烯/聚丙烯三 層隔離板。隔離板可具有多層薄膜、微孔薄膜、織物構造 或非織物構造。或者,可以一高穩定度樹脂覆蓋之多孔聚 烯烴(polyolef in)做為隔離板。 將如上所述配裝製造之電極與電解液注入一罐狀殼 中,之後密封此具有蓋配件之殼的上部,以完成鋰—二次電 池的製造。 蓋配件可包括一蓋板、一絕緣板、一接線板(terminai plate)與一電極端。 蓋配件可與絕緣殼結合,由此將罐密封。此外可插入 電極端之端點孔(terminal hole)可被設置於蓋板中央。當 將電極端插入端點孔時,提供於電極端外表面之一管狀襯 墊(gasket)也可被插入於端點孔中,以使電極端可與蓋板 絕緣。 在蓋配件結合至罐之頂部後,且經由電解液注入孔注 入電解液且只後以密封方法將電解液注入孔密封。在此 時’電極端可連接至負極之負極栓(tap)或正極之正極栓, 5142-9340-PF;Daphne 21 200901536 因此才呆作如負極或正極端。 根據本發明實施例之鐘-二次電池之非水性電解液可 改善鐘-二次電池之使用壽命與老化特性的事實可從以下 以下詳述之特定實施例與比較例中證實。為本技術領域所 熟知之結構與製程,為了簡化將進行省略。 【實施例】 實施例1 r: 將為正活性材料之”為黏結劑之聚偏二弗乙烯 (polyvinyl idene fiuoride,PVDF)與為傳導之碳以重量比 92.4.4進行此合。之後將此混合物分散於甲基—2_環丙 酿酮中以製備正極襞狀物。將此蒙狀物覆蓋於2〇"厚度 之鋁箔上,之後進行乾燥與壓緊,以製造一正極。 為負活f生材料之人工石墨、為黏結劑之丁苯橡膠與為 增稠劑之羧甲基纖維以重量比96 : 2 : 2進行混合。之後將此 犯合物为散於水中以製備負極漿狀物。將此漿狀物覆蓋於 ( 15//Π1厚度之銅箔上,之後進行乾燥與壓緊,以製造一負 極0 厚度為20#m之聚乙烯薄膜設置於正極與負極之間, 並將其纏繞與加Μ ’然⑨置入圓柱形罐中。冑f解液加入 此圓柱形罐中,由此製造一鋰—二次電池。 藉由溶解LiPh於體積比為1:1:1之碳酸乙烯、碳酸 甲乙S曰與碳酸一乙酯混合有機溶劑中以製備一基礎電解液 G辰度.1. 3M),且加入碳酸乙烯亞乙烯酯與氟代碳酸乙烯 酉曰於基礎電解液中。根據有機溶劑之重量,碳酸乙烯亞乙 22 5142-9340-PF;Daphne 200901536 烯酯與氟代碳酸乙烯酯加入的量分別為〇. 5%重量】 量。 實施例2 鋰-二次電池的製造與實施例1中之方法相同, 入碳酸乙烯亞乙烯酯與氟代碳酸乙烯酯的量分別為 量與10%重量外。 實施例3 鋰-二次電池的製造與實施例1中之方法相同, 入碳酸乙烯亞乙烯酯與氟代碳酸乙烯酯的量分別為 與3%重量外。 實施例4 鋰-二次電池的製造與實施例1中之方法相同, 入碳酸乙烯亞乙烯酯與氟代碳酸乙烯酯的量分別為 與5%重量外。 實施例5 鋰-二次電池的製造與實施例丨中之方法相同, 入碳酸乙烯亞乙烯酯與氟代碳酸乙烯酯的量分别為 與7%重量外。 ~ 實施例6 鋰-二次電池的製造與實施例1中之方法相同 入碳酸乙烯亞乙烯酯與氟代碳酸乙烯酯的量分别為 與3%重量外。 實施例7 鋰-二次電池的製造與實施例丨中之方法相同, 除了加 0. 5%重 除了加 1%重量 除了加 1%重量 除了加 1%重量 除了加 2%重量 除了加 5142-934O-PF;Daphne 23 200901536 入碳酸乙烯亞乙烯酯與氟代碳酸乙烯酯的量分 J為5 %重量 與5%重量外。 比較例1 鐘-二次電池的製造與實施例1中之方法相同,除了單 獨加入3 %重量之碳酸乙稀亞乙稀酯外。 比較例2 鐘-二次電池的製造與實施例1中之方法相同,除了單 獨加入3%重量之氟代碳酸乙烯酯外。 比較例3 鐘-二次電池的製造與實施例1中之方法相同,除了單 獨加入3%重量之碳酸伸乙烯酯外。 比較例4 鐘-二次電池的製造與實施例1中之方法相同,除了加 入碳酸伸乙烯酯與氟代碳酸乙烯酯的量分別為1%重量與 3%重量外。 標準電容 於實施例1 -7與比較例1 -4所製造的電池於〇. 5C/4. 2V 之固定電流固定電壓(constant current_c〇nstant volt age,CC-VC)的情況下充電3小時。各電池的標準電容 顯示於表1。 室溫使用壽命特性 於實施例1 -7與比較例1 -4所製造的電池於〇. 5C/4. 2V 之固疋電流固定電壓(c〇nstant current-constantThe separator 140 may be a p〇lyethylene or polypropylene single-layer separator, a polyethylene/polypropylene double-layer separator, or a polyethylene/polypropylene/polyethylene or polypropylene/polyethylene/ Polypropylene three-layer insulation board. The separator may have a multilayer film, a microporous film, a fabric construction or a non-woven construction. Alternatively, a porous polyolefin (polyolef in) covered with a high stability resin may be used as the separator. The electrode and the electrolyte prepared as described above were injected into a can-shaped case, and then the upper portion of the case having the cover member was sealed to complete the manufacture of the lithium-secondary battery. The cover fitting may include a cover plate, an insulating plate, a terminai plate and an electrode end. The cover fitting can be combined with the insulating case to thereby seal the can. Further, a terminal hole that can be inserted into the electrode end can be disposed in the center of the cover. When the electrode end is inserted into the end hole, a tubular gasket provided on the outer surface of the electrode end can also be inserted into the end hole so that the electrode end can be insulated from the cover. After the lid fitting is bonded to the top of the can, the electrolyte is injected through the electrolyte injection hole and only the electrolyte injection hole is sealed by a sealing method. At this time, the 'electrode end can be connected to the negative electrode tap of the negative electrode or the positive electrode plug of the positive electrode, 5142-9340-PF; Daphne 21 200901536 thus stays as the negative electrode or the positive electrode terminal. The fact that the non-aqueous electrolyte of the clock-secondary battery according to the embodiment of the present invention can improve the service life and aging characteristics of the clock-secondary battery can be confirmed from the specific examples and comparative examples detailed below. Structures and processes well known in the art will be omitted for simplicity. [Examples] Example 1 r: The combination of the "polyvinyl idene fiuoride (PVDF) which is a positive active material as a binder and the carbon for conduction is carried out at a weight ratio of 92.4.4. The mixture was dispersed in methyl-2-cyclopropanone to prepare a positive electrode. The cake was coated on a 2" thick aluminum foil, followed by drying and compacting to produce a positive electrode. The artificial graphite of the living material, the styrene-butadiene rubber as a binder and the carboxymethyl fiber as a thickener are mixed at a weight ratio of 96:2: 2. The compound is then dispersed in water to prepare a negative electrode slurry. The slurry is covered on a copper foil having a thickness of 15//1, and then dried and compacted to produce a negative electrode. A polyethylene film having a thickness of 20 #m is disposed between the positive electrode and the negative electrode. And entangled and twisted it into a cylindrical can. The 解f solution was added to the cylindrical can, thereby producing a lithium-secondary battery. By dissolving LiPh in a volume ratio of 1:1: 1 in the organic solvent mixed with ethylene carbonate, ethyl sulphate and ethyl carbonate to prepare a foundation Solution M Chen.1. 3M), and add ethylene vinylene carbonate and fluoroethylene carbonate in the base electrolyte. According to the weight of the organic solvent, ethylene carbonate 22 5142-9340-PF; Daphne 200901536 The amount of the enester and the fluoroethylene carbonate added was 5% by weight. Example 2 The lithium-secondary battery was produced in the same manner as in Example 1, and ethylene vinylene carbonate and fluorocarbonic acid were added. The amount of the vinyl ester was respectively 10% by weight. Example 3 Production of Lithium-Secondary Battery The same as the method of Example 1, the amounts of ethylene vinylene carbonate and vinyl fluorocarbonate were respectively 3 Example 4 Production of Lithium-Secondary Battery The same procedure as in Example 1 was carried out, and the amounts of ethylene vinylene carbonate and vinyl fluorocarbonate were respectively 5% by weight. Example 5 Lithium- The secondary battery was produced in the same manner as in the Example, and the amounts of ethylene vinylene carbonate and vinyl fluorocarbonate were respectively 7% by weight. ~ Example 6 Production and Example of Lithium-Secondary Battery The method of 1 is the same as ethylene vinylene carbonate and The amount of the ethylene carbonate was 3% by weight. Example 7 The lithium-second battery was produced in the same manner as in Example , except that 0.5% was added except 1% by weight except 1% by weight. In addition to adding 1% by weight, except adding 2% by weight, except for adding 5142-934O-PF; Daphne 23 200901536, the amount of ethylene vinylene carbonate and fluoroethylene carbonate is 5% by weight and 5% by weight. The manufacture of the clock-secondary battery was the same as in the method of Example 1, except that 3% by weight of ethylene ethoxide was added alone. Comparative Example 2 A secondary battery was fabricated in the same manner as in Example 1, except that 3% by weight of fluoroethylene carbonate was separately added. Comparative Example 3 A secondary battery was fabricated in the same manner as in Example 1, except that 3% by weight of a vinyl carbonate was added alone. Comparative Example 4 The production of the secondary battery was the same as that in Example 1, except that the amounts of the ethylene carbonate and the fluoroethylene carbonate added were 1% by weight and 3% by weight, respectively. Standard Capacitance The batteries fabricated in Examples 1-7 and Comparative Examples 1-4 were charged for 3 hours in the case of a fixed current fixed voltage (CC-VC) of 5C/4.2V. The standard capacitance of each battery is shown in Table 1. Room temperature service characteristics The batteries fabricated in Examples 1-7 and Comparative Examples 1-4 were fixed at 5 C/4. 2 V (c〇nstant current-constant)
voltage,CC-VC),25°C的情況下充電3小時,且在1C CC 5142-9340-PF;Daphne 24 200901536 • 下放電至截止電壓(cut of f voltage)為3V。一系列之充 電與放電重複300次。藉由以下公式來計算各電池在第3〇〇 次循環之電容維持比(%),且結果顯示於表i與表2。 *第300次循環之電容維持比(%)=(第300次循環之放 電電容)/(第1次循環之放電電容) 尚溫使用壽命特性Voltage, CC-VC), charging at 25 °C for 3 hours, and at 1C CC 5142-9340-PF; Daphne 24 200901536 • Discharge to cut-f voltage of 3V. A series of charging and discharging were repeated 300 times. The capacitance maintenance ratio (%) of each battery in the third cycle was calculated by the following formula, and the results are shown in Tables i and 2. * Capacitance maintenance ratio (%) of the 300th cycle = (discharge capacitance of the 300th cycle) / (discharge capacitance of the 1st cycle)
於實施例3與比較例3與4所製造的電池於〇. 5C/4. 2V f'' 之固疋電流固定電壓(constant current-constant voltage, CC-VC),6(TC的情況下充電3小時,且在lc cc 下放電至截止電壓(cut off v〇itage)為3V。一系列之充 電與放電重複300次。藉由以下公式來計算各電池在第goo 次循環且60°C下之電容維持比(%),且結果顯示於表2。 低溫老化特性 於實施例卜7與比較例1與2所製造的電池於 〇·5C/4·2V之固定電流固定電壓(constant currently 7 constant voltage, CC-VC),25t:的情況下充電 3 小時, 且之後將其至於0°C下4小時。在0 5C CC下放電至截止 電壓(cutoffvoltage)為3V。藉由以下公式來計算各電 池在低溫老化後之放電電容回復比(% ),且結果顯示於表!。 *在低溫老化後之放電電容回復比(%)=(在低溫老化 後之0. 5C放電電容)/(在低溫老化前之〇. 5C放電電 容)χ100 高溫老化特性 於實施例1 - 7與比較例1與2所製造的電池於 5142-9340-PF;Daphne 25 200901536 0.5C/4.2V 之固定電流固定電壓(constant current-constant voltage, CC-VC),25°C 的情況下充電 3 小時, 且之後將其至於85°C下24小時。在0. 5C CC下放電至截 止電壓(cut off voltage)為3V。藉由以下公式來計算各 電池在高溫老化後之放電電容回復比(%),且結果顯示於表 1 ° *在高溫老化後之放電電容回復比(%)=(在高溫老化 後之〇. 5C放電電容)/(在高溫老化前之〇· 5C放電電 容)χ100 表1 加入 VEC的量 (wt» 加入 FEC的量 (wt%) 標準電容 (wt%) 室溫下第300次循環 之電容維持比 (%) 在0°C,4小時老化後彳 之放電電容回復比 (%) 在85°C,24小時老化後 之放電電容回復比 (%) 實施例1 0.5 1 100 75 75 96 實施例2 0.5 10 100 92 50 93 實施例3 1 3 100 91 73 96 實施例4 1 5 100 91 70 96 實施例5 1 7 100 92 68 95 實施例6 2 3 99 91 65 95 實施例7 2 5 99 92 64 卜 95 比較例1 3 0 96 71 20 70 比較例2 0 3 100 49 75 96 比較例3 0.1 25 100 91 40 60 比較例4 6 0_ 1 92 72 25 广 96 表2 加入 VEC的量 (wt%) 加入 FEC的量 (wt%) 加入 VC的量 (wt%) 標準電容 (fft%) 室溫下第300次循 環 之電容維持比 (%) 在0C,4小時老化 後 之放電電容回復比 (%) 在85°C,24小時老化 後 之放電電容回復比 (%) 比較例5 0 0 3 98 91 41 ' - 比較例6 1 0 3 92 92 31 72 實施例3 (VW.:益 1 5 5 A祕碓 0 :ΡΡΓ :备 100 91 在胳· VP :说碰仙7 73 87The battery fabricated in Example 3 and Comparative Examples 3 and 4 was fixed at 5 C/4. 2 V f'' constant current-constant voltage (CC-VC), 6 (charged in the case of TC) 3 hours, and discharged at lc cc until the cutoff voltage (cut off v〇itage) is 3 V. A series of charging and discharging are repeated 300 times. The battery is calculated by the following formula in the first go cycle and at 60 ° C The capacitance was maintained at a ratio (%), and the results are shown in Table 2. The low-temperature aging characteristics of the batteries manufactured in Example 7 and Comparative Examples 1 and 2 were fixed at a fixed current of 〇·5C/4·2V (constant currently 7 Constant voltage, CC-VC), charging for 3 hours in the case of 25t: and then 4 hours at 0 ° C. Discharge at 0 5 C CC until the cutoff voltage is 3 V. Calculated by the following formula The discharge capacitance recovery ratio (%) of each battery after low temperature aging, and the results are shown in the table! * The discharge capacitance recovery ratio (%) after low temperature aging = (0C discharge capacitance after low temperature aging) / ( Before low temperature aging. 5C discharge capacitance) χ100 high temperature aging characteristics in Example 1 - 7 and the batteries manufactured in Comparative Examples 1 and 2 at 5142-9340-PF; Daphne 25 200901536 0.5C/4.2V fixed current-constant voltage (CC-VC), 25 ° C Charging for 3 hours, and then taking it for 24 hours at 85 ° C. Discharge at 0 C C CC to a cut off voltage of 3 V. Calculate the discharge capacitance of each battery after high temperature aging by the following formula Ratio (%), and the results are shown in Table 1 ° * The discharge capacitance recovery ratio (%) after high temperature aging = (5C discharge capacitance after high temperature aging) / (5C discharge capacitance before high temperature aging) Χ100 Table 1 The amount of VEC added (wt» The amount of FEC added (wt%) Standard capacitance (wt%) The capacity maintenance ratio (%) of the 300th cycle at room temperature is 0 ° C, after 4 hours of aging Discharge capacitance recovery ratio (%) at 85 ° C, discharge capacitance recovery ratio after 24 hours aging (%) Example 1 0.5 1 100 75 75 96 Example 2 0.5 10 100 92 50 93 Example 3 1 3 100 91 73 96 Example 4 1 5 100 91 70 96 Example 5 1 7 100 92 68 95 Example 6 2 3 99 91 65 95 Example 7 2 5 99 92 6 4 卜 95 Comparative Example 1 3 0 96 71 20 70 Comparative Example 2 0 3 100 49 75 96 Comparative Example 3 0.1 25 100 91 40 60 Comparative Example 4 6 0_ 1 92 72 25 Wide 96 Table 2 The amount of VEC added (wt% ) The amount of FEC added (wt%) The amount of added VC (wt%) Standard capacitance (fft%) The capacity maintenance ratio of the 300th cycle at room temperature (%) at 0C, the discharge capacitance recovery ratio after 4 hours of aging ( %) Discharge capacitance recovery ratio after 24 hours aging at 85 ° C (%) Comparative Example 5 0 0 3 98 91 41 ' - Comparative Example 6 1 0 3 92 92 31 72 Example 3 (VW.: benefit 1 5 5 A Tips 0: ΡΡΓ: Prepared for 100 91 in ·· VP: Say Touch 7 73 87
由表1與2所示之資料可看出,實施例1-7的電解液, 其包括0.1-5%重量之碳酸乙烯亞乙烯酯與〇.1 _2〇%重量之 氟代碳酸乙烯酯,提供電池好的使用壽命與老化特性。 26 5142-9340-PF;Daphne 200901536 比較例1的電解液,其只包括碳酸乙烯亞乙烯酯,顯 示出不好的老化特性。 比較例3與4的電解液,其包括過量之礙酸乙烯亞乙 烯酯或氟代碳酸乙烯酯,顯示下降之低溫或高溫之老化特 性0 與包含碳酸乙烯亞乙烯酯與氟代碳酸乙烯酯之比較例 3電解液相較,比較例6之電解液,其包括替換碳酸乙稀 亞乙稀S旨之碳酸伸乙稀g旨與氟代碳酸乙烯g旨,具有實質上 相同之室溫使用壽命特性’但顯示不好的低溫特性。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】As can be seen from the data shown in Tables 1 and 2, the electrolyte of Examples 1-7 comprises 0.1-5% by weight of vinylene vinylene carbonate and 0.11% by weight of fluoroethylene carbonate. Provides good battery life and aging characteristics. 26 5142-9340-PF; Daphne 200901536 The electrolyte of Comparative Example 1, which only includes vinylene carbonate, exhibits poor aging characteristics. The electrolytes of Comparative Examples 3 and 4, which comprise an excess of ethylene vinylene vinyllate or fluoroethylene carbonate, exhibiting a reduced low temperature or high temperature aging characteristic 0 and comprising ethylene vinylene carbonate and fluoroethylene carbonate. Comparing the electrolyte of Comparative Example 3, the electrolyte of Comparative Example 6 includes the replacement of ethylene carbonate, which is the same as the fluoroethylene carbonate, having substantially the same room temperature service life. Characteristics 'but showing poor low temperature properties. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. [Simple description of the map]
V 第1圖顯示-鋰-二次電池的示意圖,其中鋁做為正極 之金屬,銅做為負極之金屬,LiCo〇2做為正極活性材料、 碳做為負極活性材料,且以本發明之非水性電解液 細、为Λ W电 【主要元件符號說明】 100〜正極; 110〜負極; 130〜非水性電解液; 140〜隔離板。 5142-9340-PF;Daphne 27V Fig. 1 is a schematic view showing a lithium-secondary battery in which aluminum is used as a metal of a positive electrode, copper is used as a metal of a negative electrode, LiCo 2 is used as a positive electrode active material, and carbon is used as a negative electrode active material, and the present invention is used. Non-aqueous electrolyte is fine, Λ W electric [main component symbol description] 100~ positive electrode; 110~ negative electrode; 130~ non-aqueous electrolyte; 140~ isolation plate. 5142-9340-PF; Daphne 27
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070004125A KR20080067050A (en) | 2007-01-15 | 2007-01-15 | Nonaqueous electrolyte for li-secondary battery and li secondary battery thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200901536A true TW200901536A (en) | 2009-01-01 |
Family
ID=39588698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096150268A TW200901536A (en) | 2007-01-15 | 2007-12-26 | Nonaqueous electrolyte for Li-secondary battery and Li secondary battery thereby |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20080067050A (en) |
TW (1) | TW200901536A (en) |
WO (1) | WO2008082048A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5399188B2 (en) * | 2009-09-28 | 2014-01-29 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
CN113422110B (en) * | 2021-06-29 | 2022-03-29 | 华南理工大学 | Synthesis method of mixed zirconium salt electrolyte material and application of mixed zirconium salt electrolyte material in lithium metal battery |
WO2024168820A1 (en) * | 2023-02-17 | 2024-08-22 | 宁德时代新能源科技股份有限公司 | Electrode sheet and related battery cell, battery, and electric device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004063432A (en) * | 2002-06-05 | 2004-02-26 | Sony Corp | Battery |
KR100670448B1 (en) * | 2004-05-31 | 2007-01-16 | 삼성에스디아이 주식회사 | Electrolyte for lithium ion secondary battery and Lithium ion secondary battery comprising the same |
KR20060008204A (en) * | 2004-07-20 | 2006-01-26 | 삼성전기주식회사 | Laminated ceramic capacitor |
JP5067522B2 (en) * | 2005-04-08 | 2012-11-07 | ソニー株式会社 | Secondary battery electrolyte and secondary battery |
-
2007
- 2007-01-15 KR KR1020070004125A patent/KR20080067050A/en not_active Application Discontinuation
- 2007-06-15 WO PCT/KR2007/002918 patent/WO2008082048A1/en active Application Filing
- 2007-12-26 TW TW096150268A patent/TW200901536A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2008082048A1 (en) | 2008-07-10 |
KR20080067050A (en) | 2008-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI344712B (en) | ||
JP4407205B2 (en) | Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same | |
CN105074993B (en) | Electrolyte for lithium secondary battery and the lithium secondary battery comprising it | |
CN101165961A (en) | Electrolyte for high voltage lithium rechargeable battery and battery employing the same | |
KR20160133310A (en) | Electrolyte composite, and negative electrode and lithium second battery including the electrolyte composite | |
CN101587971A (en) | Electrolyte solution for lithium ion secondary battery and comprise the lithium rechargeable battery of this electrolyte | |
CN111048831B (en) | Electrolyte for secondary battery and lithium secondary battery comprising same | |
JP2004342607A (en) | Nonaqueous electrolytic solution for lithium battery and its manufacturing method, and lithium ion secondary battery | |
KR100816208B1 (en) | Electrolyte for lithium ion rechargeable battery and lithium ion rechargeable battery comprising the same | |
KR100767427B1 (en) | Nonaqueous electrolyte for li-secondary battery and li secondary battery thereby | |
JP2014127370A (en) | Lithium secondary battery | |
KR20080062671A (en) | Nonaqueous electrolyte for li-secondary battery and li secondary battery thereby | |
JP2024069330A (en) | Non-aqueous electrolyte, non-aqueous electrolyte power storage element, method for manufacturing non-aqueous electrolyte power storage element, and use of non-aqueous electrolyte power storage element | |
KR20150075495A (en) | Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same | |
WO2015147003A1 (en) | Electrolyte solution, electrochemical device, lithium ion secondary battery and module | |
CN105359325B (en) | Lithium secondary cell electrolyte and the lithium secondary battery for including it | |
JP4691775B2 (en) | Lithium secondary battery | |
CN108123173A (en) | A kind of electrolyte of low-temperature lithium ion battery and lithium ion battery | |
TW200901536A (en) | Nonaqueous electrolyte for Li-secondary battery and Li secondary battery thereby | |
KR101637383B1 (en) | lithium secondary battery employing a anode containing silicon quantum dot | |
KR20080061866A (en) | Nonaqueous electrolyte for li-secondary battery and li secondary battery thereby | |
KR101971295B1 (en) | Electrolyte for lithium secondary battery | |
JP2006286277A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having it | |
JP2022139980A (en) | Recovery agent, recovery method for non-aqueous electrolyte secondary battery, and manufacturing method for non-aqueous electrolyte secondary battery | |
KR20080057666A (en) | Nonaqueous electrolyte for li-secondary battery and li secondary battery thereby |