JP2006286277A - Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having it - Google Patents

Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having it Download PDF

Info

Publication number
JP2006286277A
JP2006286277A JP2005102046A JP2005102046A JP2006286277A JP 2006286277 A JP2006286277 A JP 2006286277A JP 2005102046 A JP2005102046 A JP 2005102046A JP 2005102046 A JP2005102046 A JP 2005102046A JP 2006286277 A JP2006286277 A JP 2006286277A
Authority
JP
Japan
Prior art keywords
battery
group
aqueous electrolyte
fluorine atom
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005102046A
Other languages
Japanese (ja)
Inventor
Yasuo Horikawa
泰郎 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005102046A priority Critical patent/JP2006286277A/en
Priority to PCT/JP2006/305541 priority patent/WO2006109443A1/en
Priority to US11/910,022 priority patent/US20080254361A1/en
Publication of JP2006286277A publication Critical patent/JP2006286277A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte for a battery combining high fire retardancy and high battery performance and to provide a nonaqueous electrolyte secondary battery having the nonaqueous electrolyte. <P>SOLUTION: In the nonaqueous electrolyte for the battery containing a nonaqueous solvent and a supporting salt, the nonaqueous electrolyte for the battery contains a fluorophosphate compound represented by general formula (1), and the nonaqueous electrolyte secondary battery is equipped with the nonaqueous electrolyte, a positive electrode, and a negative electrode. [In the formula, R<SP>1</SP>independently represents fluorine, an alkoxy group, an aryloxy group, a fluorine atom-substituted alkoxy group, or a fluorine atom-substituted aryloxy group, and at least one of two R<SP>1</SP>s is the fluorine atom-substituted alkoxy group or the fluorine atom-substituted aryloxy group, and two R<SP>1</SP>s may form a ring by joining each other.]. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電池用非水電解液及びそれを備えた非水電解液二次電池に関し、特に高い難燃性と耐還元性とを有した電池用非水電解液及び安全性とサイクル特性とに優れた非水電解液二次電池に関するものである。   The present invention relates to a battery non-aqueous electrolyte and a non-aqueous electrolyte secondary battery including the same, and particularly to a battery non-aqueous electrolyte having high flame retardancy and reduction resistance, and safety and cycle characteristics. The present invention relates to a non-aqueous electrolyte secondary battery excellent in.

非水電解液は、リチウム電池やリチウムイオン2次電池、電気二重層キャパシタ等の電解質として使用されており、これらデバイスは、高電圧、高エネルギー密度を有することから、パソコン及び携帯電話等の駆動電源として広く用いられている。そして、これら非水電解液としては、一般にエステル化合物及びエーテル化合物等の非プロトン性有機溶媒に、LiPF6等の支持塩を溶解させたものが用いられている。しかしながら、非プロトン性有機溶媒は、可燃性であるため、上記デバイスから漏液した際に引火・燃焼する可能性があり、安全面での問題を有している。 Non-aqueous electrolytes are used as electrolytes for lithium batteries, lithium ion secondary batteries, electric double layer capacitors, etc., and these devices have high voltage and high energy density. Widely used as a power source. As these nonaqueous electrolytic solutions, generally used are solutions in which a supporting salt such as LiPF 6 is dissolved in an aprotic organic solvent such as an ester compound and an ether compound. However, since the aprotic organic solvent is flammable, it may ignite and burn when it leaks from the device, and has a safety problem.

この問題に対して、非水電解液を難燃化する方法が検討されており、例えば、非水電解液にリン酸トリメチル等のリン酸エステル類を用いたり、非プロトン性有機溶媒にリン酸エステル類を添加したりする方法が提案されている(特許文献1〜3参照)。しかしながら、これらリン酸エステル類は、充放電を繰り返すことで、徐々に負極で還元分解され、充放電効率及びサイクル特性等の電池特性が大きく劣化するという問題がある。   To solve this problem, methods for making non-aqueous electrolytes flame-retardant have been studied. For example, phosphoric acid esters such as trimethyl phosphate are used for non-aqueous electrolytes, or phosphoric acid is used for aprotic organic solvents. Methods for adding esters have been proposed (see Patent Documents 1 to 3). However, these phosphate esters have a problem in that they are gradually reduced and decomposed at the negative electrode by repeating charge and discharge, and battery characteristics such as charge and discharge efficiency and cycle characteristics are greatly deteriorated.

この問題に対して、非水電解液にリン酸エステルの分解を抑制する化合物を更に添加したり、リン酸エステルそのものの分子構造を工夫する等の方法も試みられている(特許文献4〜7参照)。しかしながら、この場合、リン酸エステルの添加量が増加するにつれて、その分解抑制効果が十分なものでなくなるため、リン酸エステルの添加量に制限があるのが現状である。また、これらリン酸トリエステル類は、高粘度で且つ低導電率であることから、たとえ低配合量であっても導電率の低下をきたし、高負荷条件や低温条件では充放電効率の低下を招いてしまう。特に高負荷条件である高い電流密度(ハイレート)での充放電においては、リン酸トリエステルの還元分解が進行しやすく、低配合量であっても電池のサイクル特性が大きく低下してしまう。   In order to solve this problem, methods such as further adding a compound that suppresses the decomposition of the phosphate ester to the nonaqueous electrolytic solution or devising the molecular structure of the phosphate ester itself have been tried (Patent Documents 4 to 7). reference). However, in this case, as the addition amount of the phosphate ester is increased, the decomposition suppressing effect is not sufficient, so that the addition amount of the phosphate ester is currently limited. In addition, these phosphate triesters have high viscosity and low electrical conductivity, so that even if the blending amount is low, the electrical conductivity is reduced, and charge / discharge efficiency is reduced under high load conditions and low temperature conditions. I will invite you. In particular, in charge and discharge at a high current density (high rate) which is a high load condition, the reductive decomposition of the phosphoric acid triester easily proceeds, and the cycle characteristics of the battery are greatly deteriorated even at a low blending amount.

このように、これまでのリン酸トリエステル類を用いた技術では、電解液の安全性と電池性能の確保という点で必ずしも十分とはいえず、リン酸エステルの構造自体を根本から検討しなおす必要がある。   As described above, the technology using the phosphoric acid triesters so far is not necessarily sufficient in terms of ensuring the safety of the electrolytic solution and the battery performance, and fundamentally reexamines the structure of the phosphoric ester. There is a need.

特開平4−184870号公報JP-A-4-184870 特開平8−22839号公報JP-A-8-22839 特開2000−182669号公報JP 2000-182669 A 特開平11−67267号公報Japanese Patent Laid-Open No. 11-67267 特開平10−189040号公報JP-A-10-189040 特開2003−109659号公報JP 2003-109659 A 特開平11−260401号公報JP-A-11-260401

そこで、本発明の目的は、上記従来技術の問題を解決し、高い難燃性と優れた電池性能とを両立できる電池用非水電解液及び該非水電解液を備えた非水電解液二次電池を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems of the prior art and to provide a non-aqueous electrolyte for a battery that can achieve both high flame retardancy and excellent battery performance, and a non-aqueous electrolyte secondary comprising the non-aqueous electrolyte. To provide a battery.

本発明者は、上記目的を達成するために鋭意検討した結果、従来のリン酸エステル類の欠点を解決できる構造を有したリン酸エステル化合物を見出すことに成功し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventor succeeded in finding a phosphate ester compound having a structure capable of solving the drawbacks of conventional phosphate esters, and completed the present invention. It was.

即ち、本発明の電池用非水電解液は、非水溶媒及び支持塩を含む電池用非水電解液において、該電池用非水電解液が下記一般式(I):

Figure 2006286277
[式中、R1は、それぞれ独立してフッ素、アルコキシ基、アリールオキシ基、フッ素原子置換アルコキシ基又はフッ素原子置換アリールオキシ基であって、2つのR1のうち少なくとも一つはフッ素原子置換アルコキシ基又はフッ素原子置換アリールオキシ基であり、但し、2つのR1は互いに結合して環を形成してもよい]で表されるフルオロリン酸エステル化合物を含むことを特徴とする。 That is, the battery non-aqueous electrolyte of the present invention is a battery non-aqueous electrolyte containing a non-aqueous solvent and a supporting salt, and the battery non-aqueous electrolyte is represented by the following general formula (I):
Figure 2006286277
[Wherein R 1 is independently fluorine, alkoxy group, aryloxy group, fluorine atom-substituted alkoxy group or fluorine atom-substituted aryloxy group, and at least one of the two R 1 is fluorine atom-substituted. It is an alkoxy group or a fluorine atom-substituted aryloxy group, provided that two R 1 may be bonded to each other to form a ring].

本発明の電池用非水電解液の好適例においては、前記一般式(I)において、2つのR1のうち1つがフッ素であり、他の1つがフッ素原子置換アルコキシ基又はフッ素原子置換アリールオキシ基である。この場合、電池用非水電解液が、特に低粘度で且つ安全性に優れる。 In a preferred example of the battery non-aqueous electrolyte of the present invention, in the general formula (I), one of two R 1 is fluorine, and the other is a fluorine atom-substituted alkoxy group or a fluorine atom-substituted aryloxy. It is a group. In this case, the battery non-aqueous electrolyte is particularly low in viscosity and excellent in safety.

本発明の電池用非水電解液の他の好適例においては、前記非水溶媒が、更に非プロトン性有機溶媒を含む。   In another preferred embodiment of the battery non-aqueous electrolyte of the present invention, the non-aqueous solvent further contains an aprotic organic solvent.

本発明の電池用非水電解液は、前記一般式(I)で表されるフルオロリン酸エステル化合物の含有量が前記電池用非水電解液全体の5体積%以上であることが好ましく、10体積%以上であることが更に好ましい。   In the nonaqueous electrolytic solution for a battery of the present invention, the content of the fluorophosphate compound represented by the general formula (I) is preferably 5% by volume or more of the whole nonaqueous electrolytic solution for a battery, 10 More preferably, it is at least volume%.

また、本発明の非水電解液二次電池は、上記の電池用非水電解液と、正極と、負極とを備えることを特徴とする。   Moreover, the non-aqueous electrolyte secondary battery of the present invention includes the above-described non-aqueous electrolyte for batteries, a positive electrode, and a negative electrode.

本発明によれば、電池用非水電解液に上記式(I)で表されるフルオロリン酸エステル化合物を用いることにより、導電率及び耐還元性に優れ、かつ低配合量でも高い難燃性を発現する電解液が得られる。また、これにより高負荷条件でのサイクル特性に優れ、かつ破裂、発火、引火の危険性が大幅に抑制された、すなわち安全性が著しく改善された非水電解液二次電池を提供することができる。   According to the present invention, by using the fluorophosphate ester compound represented by the above formula (I) for the non-aqueous electrolyte for a battery, excellent electrical conductivity and reduction resistance, and high flame retardancy even at a low blending amount. Is obtained. Further, it is possible to provide a non-aqueous electrolyte secondary battery that has excellent cycle characteristics under high load conditions and has greatly reduced risk of rupture, ignition, and ignition, that is, significantly improved safety. it can.

理由としては必ずしも明らかではないが、式(I)の化合物は、リン−フッ素結合を含むフルオロリン酸エステルであるので通常のリン酸トリエステルより分子サイズが小さく低粘度であるため、非水電解液の導電率の低下を抑制することができ、さらに式(I)の化合物のリン−フッ素結合とフッ素原子置換基を含む特有の構造が非水電解液の耐還元性を高めている、または電極表面に安定で還元分解抑制に効果のある皮膜を形成するものと考えられる。また、高い難燃効果も同様に、式(I)の化合物に含まれる炭素−フッ素結合とリン−フッ素結合の相乗効果により、熱分解時により高い不燃ガス成分を生じるためと考えられる。   The reason for this is not necessarily clear, but the compound of formula (I) is a fluorophosphate ester containing a phosphorus-fluorine bond, and therefore has a smaller molecular size and lower viscosity than a normal phosphate triester. Decrease in the electrical conductivity of the liquid, and the specific structure containing a phosphorus-fluorine bond and a fluorine atom substituent of the compound of formula (I) enhances the reduction resistance of the non-aqueous electrolyte, or It is considered that a film which is stable and effective in suppressing reductive decomposition is formed on the electrode surface. Similarly, the high flame retardant effect is also considered to be due to a higher non-flammable gas component during pyrolysis due to the synergistic effect of the carbon-fluorine bond and phosphorus-fluorine bond contained in the compound of formula (I).

<電池用非水電解液>
以下に、本発明の電池用非水電解液を詳細に説明する。本発明の電池用非水電解液は、上記式(I)で表されるフルオロリン酸エステル化合物を含む非水溶媒と支持塩とからなり、更に非水溶媒として非プロトン性有機溶媒を含んでもよい。
<Non-aqueous electrolyte for batteries>
Below, the non-aqueous electrolyte for batteries of the present invention will be described in detail. The non-aqueous electrolyte for a battery of the present invention comprises a non-aqueous solvent containing a fluorophosphate ester compound represented by the above formula (I) and a supporting salt, and may further contain an aprotic organic solvent as a non-aqueous solvent. Good.

本発明の電池用非水電解液に含まれるフルオロリン酸エステル化合物は、上記式(I)で表される。式(I)において、R1は、それぞれ独立してフッ素、アルコキシ基、アリールオキシ基、フッ素原子置換アルコキシ基又はフッ素原子置換アリールオキシ基であって、2つのR1のうち少なくとも一つは、フッ素原子置換アルコキシ基又はフッ素原子置換アリールオキシ基である。式(I)のR1におけるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等や、二重結合を含むアリルオキシ基等、更にはメトキシエトキシ基、メトキシエトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられ、アリールオキシ基としては、フェノキシ基、メチルフェノキシ基、メトキシフェノキシ基等が挙げられる。 The fluorophosphate ester compound contained in the battery non-aqueous electrolyte of the present invention is represented by the above formula (I). In the formula (I), each R 1 is independently a fluorine, an alkoxy group, an aryloxy group, a fluorine atom-substituted alkoxy group or a fluorine atom-substituted aryloxy group, and at least one of the two R 1 is A fluorine atom-substituted alkoxy group or a fluorine atom-substituted aryloxy group. Examples of the alkoxy group in R 1 of the formula (I) include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an allyloxy group containing a double bond, and the like, and an alkoxy substitution such as a methoxyethoxy group and a methoxyethoxyethoxy group Examples include an alkoxy group, and examples of the aryloxy group include a phenoxy group, a methylphenoxy group, and a methoxyphenoxy group.

また、式(I)のR1におけるフッ素原子置換アルコキシ基としては、2-フルオロエトキシ基、2,2-ジフルオロエトキシ基、2,2,2-トリフルオロエトキシ基、2,2,2-トリフルオロプロポキシ基、2,2,3,3-テトラフルオロプロポキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、2-フルオロイソプロポキシ基、2,2-ジフルオロイソプロポキシ基、2,2,2-トリフルオロイソプロポキシ基、テトラフルオロイソプロポキシ基、ペンタフルオロイソプロポキシ基、ヘキサフルオロイソプロポキシ基、ヘプタフルオロブトキシ基、ヘキサフルオロブトキシ基、オクタフルオロブトキシ基、パーフルオロ-t-ブトキシ基、ヘキサフルオロイソブトキシ基、オクタフルオロペンチルオキシ基等が挙げられる。 The fluorine atom-substituted alkoxy group for R 1 in formula (I) is a 2-fluoroethoxy group, a 2,2-difluoroethoxy group, a 2,2,2-trifluoroethoxy group, a 2,2,2-tri group. Fluoropropoxy group, 2,2,3,3-tetrafluoropropoxy group, 2,2,3,3,3-pentafluoropropoxy group, 2-fluoroisopropoxy group, 2,2-difluoroisopropoxy group, 2, 2,2-trifluoroisopropoxy group, tetrafluoroisopropoxy group, pentafluoroisopropoxy group, hexafluoroisopropoxy group, heptafluorobutoxy group, hexafluorobutoxy group, octafluorobutoxy group, perfluoro-t-butoxy group , Hexafluoroisobutoxy group, octafluoropentyloxy group and the like.

更に、式(I)のR1におけるフッ素原子置換アリールオキシ基としては、2-フルオロフェノキシ基、3-フルオロフェノキシ基、4-フルオロフェノキシ基、2,4-ジフルオロフェノキシ基、2-フルオロ-4-メチルフェノキシ基、トリフルオロフェノキシ基、テトラフルオロフェノキシ基、ペンタフルオロフェノキシ基、2-フルオロメチルフェノキシ基、4-フルオロメチルフェノキシ基、2-ジフルオロメチルフェノキシ基、3-ジフルオロメチルフェノキシ基、4-ジフルオロメチルフェノキシ基、2-トリフルオロメチルフェノキシ基、3-トリフルオロメチルフェノキシ基、4-トリフルオロメチルフェノキシ基、2-フルオロ-4-メトキシフェノキシ基等が挙げられる。 Further, the fluorine atom-substituted aryloxy group in R 1 of the formula (I) includes 2-fluorophenoxy group, 3-fluorophenoxy group, 4-fluorophenoxy group, 2,4-difluorophenoxy group, 2-fluoro-4 -Methylphenoxy group, trifluorophenoxy group, tetrafluorophenoxy group, pentafluorophenoxy group, 2-fluoromethylphenoxy group, 4-fluoromethylphenoxy group, 2-difluoromethylphenoxy group, 3-difluoromethylphenoxy group, 4- A difluoromethylphenoxy group, a 2-trifluoromethylphenoxy group, a 3-trifluoromethylphenoxy group, a 4-trifluoromethylphenoxy group, a 2-fluoro-4-methoxyphenoxy group, and the like can be given.

上記一般式(I)のフルオロリン酸エステル化合物は、2つのR1のうち少なくとも一つがフッ素原子置換アルコキシ基又はフッ素原子置換アリールオキシ基であればよく、2つのR1は同一でも異なってもよい。また、2つのR1は連結していてもよく、この場合、2つのR1は、互いに結合して、フッ素原子置換アルキレンジオキシ基、フッ素原子置換アリーレンジオキシ基又はフッ素原子置換されたオキシアルキレンアリーレンオキシ基を形成し、かかる二価の基としては、フルオロエチレンジオキシ基、ジフルオロエチレンジオキシ基、フルオロプロピレンジオキシ基、ジフルオロプロピレンジオキシ基、トリフルオロプロピレンジオキシ基等が挙げられる。特に、上記一般式(I)のフルオロリン酸エステル化合物の中でも、2つのR1のうち1つがフッ素であり、他の1つがフッ素原子置換アルコキシ基又はフッ素原子置換アリールオキシ基であるジフルオロリン酸エステルが、低粘度、難燃性の点で最も好ましい。 The general formula fluorophosphate ester compound (I) may be any two of the at least one fluorine atom substituted alkoxy group or a fluorine atom-substituted aryl group of R 1, the two R 1 may be the same or different Good. In addition, two R 1 may be linked, and in this case, the two R 1 are bonded to each other to form a fluorine atom-substituted alkylenedioxy group, a fluorine atom-substituted arylenedioxy group, or a fluorine atom-substituted oxy An alkylenearyleneoxy group is formed, and examples of the divalent group include a fluoroethylenedioxy group, a difluoroethylenedioxy group, a fluoropropylenedioxy group, a difluoropropylenedioxy group, and a trifluoropropylenedioxy group. . In particular, among the fluorophosphate compounds of the above general formula (I), difluorophosphoric acid in which one of two R 1 is fluorine and the other is a fluorine atom-substituted alkoxy group or a fluorine atom-substituted aryloxy group Esters are most preferred in terms of low viscosity and flame retardancy.

上記式(I)のフルオロリン酸エステル化合物の具体例としては、フルオロリン酸メチル(トリフルオロエチル)、フルオロリン酸エチル(トリフルオロエチル)、フルオロリン酸プロピル(トリフルオロエチル)、フルオロリン酸アリル(トリフルオロエチル)、フルオロリン酸ブチル(トリフルオロエチル)、フルオロリン酸フェニル(トリフルオロエチル)、フルオロリン酸ビス(トリフルオロエチル)、フルオロリン酸メチル(テトラフルオロプロピル)、フルオロリン酸エチル(テトラフルオロプロピル)、フルオロリン酸テトラフルオロプロピル(トリフルオロエチル)、フルオロリン酸フェニル(テトラフルオロプロピル)、フルオロリン酸ビス(テトラフルオロプロピル)、フルオロリン酸メチル(フルオロフェニル)、フルオロリン酸エチル(フルオロフェニル)、フルオロリン酸フルオロフェニル(トリフルオロエチル)、フルオロリン酸ジフルオロフェニル、フルオロリン酸フルオロフェニル(テトラフルオロプロピル)、フルオロリン酸メチル(ジフルオロフェニル)、フルオロリン酸エチル(ジフルオロフェニル)、フルオロリン酸ジフルオロフェニル(トリフルオロエチル)、フルオロリン酸ビス(ジフルオロフェニル)、フルオロリン酸ジフルオロフェニル(テトラフルオロプロピル)、フルオロリン酸フルオロエチレン、フルオロリン酸ジフルオロエチレン、フルオロリン酸フルオロプロピレン、フルオロリン酸ジフルオロプロピレン、フルオロリン酸トリフルオロプロピレン、ジフルオロリン酸フルオロエチル、ジフルオロリン酸ジフルオロエチル、ジフルオロリン酸フルオロプロピル、ジフルオロリン酸ジフルオロプロピル、ジフルオロリン酸トリフルオロプロピル、ジフルオロリン酸テトラフルオロプロピル、ジフルオロリン酸ペンタフルオロプロピル、ジフルオロリン酸フルオロイソプロピル、ジフルオロリン酸ジフルオロイソプロピル、ジフルオロリン酸トリフルオロイソプロピル、ジフルオロリン酸テトラフルオロイソプロピル、ジフルオロリン酸ペンタフルオロイソプロピル、ジフルオロリン酸ヘキサフルオロイソプロピル、ジフルオロリン酸ヘプタフルオロブチル、ジフルオロリン酸ヘキサフルオロブチル、ジフルオロリン酸オクタフルオロブチル、ジフルオロリン酸パーフルオロ-t-ブチル、ジフルオロリン酸へキサフルオロイソブチル、ジフルオロリン酸フルオロフェニル、ジフルオロリン酸ジフルオロフェニル、ジフルオロリン酸2-フルオロ-4-メチルフェニル、ジフルオロリン酸トリフルオロフェニル、ジフルオロリン酸テトラフルオロフェニル、ジフルオロリン酸ペンタフルオロフェニル、ジフルオロリン酸2-フルオロメチルフェニル、ジフルオロリン酸4-フルオロメチルフェニル、ジフルオロリン酸2-ジフルオロメチルフェニル、ジフルオロリン酸3-ジフルオロメチルフェニル、ジフルオロリン酸4-ジフルオロメチルフェニル、ジフルオロリン酸2-トリフルオロメチルフェニル、ジフルオロリン酸3-トリフルオロメチルフェニル、ジフルオロリン酸4-トリフルオロメチルフェニル、ジフルオロリン酸2-フルオロ-4-メトキシフェニル等が挙げられる。これらの中でも、フルオロリン酸フルオロエチレン、フルオロリン酸ビス(トリフルオロエチル)、ジフルオロリン酸フルオロエチル、ジフルオロリン酸トリフルオロエチル、ジフルオロリン酸プロピル、ジフルオロリン酸フェニルが好ましく、低粘度、難燃性の点でジフルオロリン酸フルオロエチル、ジフルオロリン酸テトラフルオロプロピル、ジフルオロリン酸フルオロフェニルがより好ましい。これらフルオロリン酸エステル化合物は、1種単独で用いても、2種以上を混合して用いてもよい。   Specific examples of the fluorophosphate ester compound of the formula (I) include methyl fluorophosphate (trifluoroethyl), ethyl fluorophosphate (trifluoroethyl), propyl fluorophosphate (trifluoroethyl), fluorophosphoric acid Allyl (trifluoroethyl), butyl fluorophosphate (trifluoroethyl), phenyl fluorophosphate (trifluoroethyl), bis (trifluoroethyl) fluorophosphate, methyl fluorophosphate (tetrafluoropropyl), fluorophosphoric acid Ethyl (tetrafluoropropyl), tetrafluoropropyl fluorophosphate (trifluoroethyl), phenyl fluorophosphate (tetrafluoropropyl), bis (tetrafluoropropyl) fluorophosphate, methyl fluorophosphate (fluorophenyl), fluorophosphate Ethyl acetate (fluorophenyl), Fluorophenyl fluorophosphate (trifluoroethyl), difluorophenyl fluorophosphate, fluorophenyl fluorophosphate (tetrafluoropropyl), methyl fluorophosphate (difluorophenyl), ethyl fluorophosphate (difluorophenyl), difluorophenyl fluorophosphate (Trifluoroethyl), bis (difluorophenyl) fluorophosphate, difluorophenyl fluorophosphate (tetrafluoropropyl), fluoroethylene fluorophosphate, difluoroethylene fluorophosphate, fluoropropylene fluorophosphate, difluoropropylene fluorophosphate, Trifluoropropylene fluorophosphate, fluoroethyl difluorophosphate, difluoroethyl difluorophosphate, fluoropropyl difluorophosphate, diphf difluorophosphate Oropropyl, trifluoropropyl difluorophosphate, tetrafluoropropyl difluorophosphate, pentafluoropropyl difluorophosphate, fluoroisopropyl difluorophosphate, difluoroisopropyl difluorophosphate, trifluoroisopropyl difluorophosphate, tetrafluoroisopropyl difluorophosphate, difluoro Pentafluoroisopropyl phosphate, hexafluoroisopropyl difluorophosphate, heptafluorobutyl difluorophosphate, hexafluorobutyl difluorophosphate, octafluorobutyl difluorophosphate, perfluoro-t-butyl difluorophosphate, hexafluorodifluorophosphate Isobutyl, fluorophenyl difluorophosphate, difluorophenyl difluorophosphate, difluorophosphoric acid -Fluoro-4-methylphenyl, trifluorophenyl difluorophosphate, tetrafluorophenyl difluorophosphate, pentafluorophenyl difluorophosphate, 2-fluoromethylphenyl difluorophosphate, 4-fluoromethylphenyl difluorophosphate, difluorophosphoric acid 2-difluoromethylphenyl, 3-difluoromethylphenyl difluorophosphate, 4-difluoromethylphenyl difluorophosphate, 2-trifluoromethylphenyl difluorophosphate, 3-trifluoromethylphenyl difluorophosphate, 4-trifluorophosphoric acid Examples thereof include fluoromethylphenyl and 2-fluoro-4-methoxyphenyl difluorophosphate. Among these, fluoroethylene fluorophosphate, bis (trifluoroethyl) fluorophosphate, fluoroethyl difluorophosphate, trifluoroethyl difluorophosphate, propyl difluorophosphate, and phenyl difluorophosphate are preferable, low viscosity, flame retardant From the viewpoint of properties, fluoroethyl difluorophosphate, tetrafluoropropyl difluorophosphate, and fluorophenyl difluorophosphate are more preferred. These fluorophosphate ester compounds may be used singly or in combination of two or more.

上記式(I)のフルオロリン酸エステル化合物の含有量は、電池用非水電解液全体の5体積%以上であることが好ましく、10体積%以上であることが更に好ましい。式(I)のフルオロリン酸エステル化合物の含有量が5体積%以上の場合、非水電解液が難燃性を発現できる傾向があり、10体積%以上の場合、非水電解液が不燃性を発現できる傾向がある。   The content of the fluorophosphate ester compound of the above formula (I) is preferably 5% by volume or more, more preferably 10% by volume or more of the whole battery non-aqueous electrolyte. When the content of the fluorophosphate ester compound of formula (I) is 5% by volume or more, the non-aqueous electrolyte tends to exhibit flame retardancy. When the content is 10% by volume or more, the non-aqueous electrolyte is non-flammable. There is a tendency to express.

また、上記非水電解液には、本発明の目的を損なわない範囲で、非プロトン性有機溶媒を添加することができる。上記式(I)のフルオロリン酸エステルは高い難燃性を有しているため、非プロトン性有機溶媒の添加量が95体積%以下であれば、非水電解液が難燃性を発現することができるが、非水電解液が不燃性を得るためには、非プロトン性有機溶媒の添加量を90体積%以下とすることがより好ましい。該非プロトン性有機溶媒として具体的には、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジフェニルカーボネート、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)等の炭酸エステル類、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、ジエチルエーテル(DEE)、フェニルメチルエーテル等のエーテル類、γ-ブチロラクトン(GBL)、γ-バレロラクトン、メチルフォルメート(MF)等のカルボン酸エステル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホン類が挙げられる。これら非プロトン性有機溶媒は、不飽和結合やハロゲン元素を含有していてもよい。これら非プロトン性有機溶媒の中でも、エチレンカーボネート(EC)、ビニレンカーボネート(VC)、プロピレンカーボネート(PC)が好ましい。また、これら非プロトン性有機溶媒は、1種単独で使用してもよく、2種以上を併用してもよい。   In addition, an aprotic organic solvent can be added to the nonaqueous electrolytic solution as long as the object of the present invention is not impaired. Since the fluorophosphate ester of the above formula (I) has high flame retardancy, the non-aqueous electrolyte exhibits flame retardancy when the amount of the aprotic organic solvent added is 95% by volume or less. However, in order for the nonaqueous electrolyte to obtain nonflammability, it is more preferable that the amount of the aprotic organic solvent added is 90% by volume or less. Specific examples of the aprotic organic solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), diphenyl carbonate, ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC). Carbonates such as 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), diethyl ether (DEE), ethers such as phenyl methyl ether, γ-butyrolactone (GBL), γ-valerolactone, methyl formate Carboxylic acid esters such as (MF), nitriles such as acetonitrile, amides such as dimethylformamide, and sulfones such as dimethyl sulfoxide. These aprotic organic solvents may contain an unsaturated bond or a halogen element. Among these aprotic organic solvents, ethylene carbonate (EC), vinylene carbonate (VC), and propylene carbonate (PC) are preferable. Moreover, these aprotic organic solvents may be used individually by 1 type, and may use 2 or more types together.

本発明の電池用非水電解液は、そのまま用いることも可能であるが、例えば適当なポリマーや多孔性支持体、あるいはゲル状物質に含浸させるなどして保持させて用いることもできる。   The nonaqueous electrolytic solution for a battery of the present invention can be used as it is, but it can also be used by, for example, impregnating it with a suitable polymer, a porous support, or a gel material.

本発明の電池用非水電解液に用いる支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiAsF6、LiC49SO3、Li(CF3SO2)2N及びLi(C25SO2)2N等のリチウム塩が好適に挙げられる。これらの中でも、不燃性に優れる点で、LiPF6が更に好ましい。これら支持塩は、1種単独で使用してもよく、2種以上を組み合わせて用いてもよい。 As the supporting salt used in the non-aqueous electrolyte for a battery of the present invention, a supporting salt serving as a lithium ion source is preferable. The supporting salt is not particularly limited, and for example, LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N and Li ( Preferable examples include lithium salts such as C 2 F 5 SO 2 ) 2 N. Among these, LiPF 6 is more preferable in terms of excellent nonflammability. These supporting salts may be used alone or in combination of two or more.

上記非水電解液中の支持塩の濃度としては、0.2〜1.5mol/L(M)が好ましく、0.5〜1mol/L(M)が更に好ましい。支持塩の濃度が0.2mol/L未満では、電解液の導電性を充分に確保することができず、電池の放電特性及び充電特性に支障をきたすことがあり、1.5mol/Lを超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電特性及び充電特性に支障をきたすことがある。   The concentration of the supporting salt in the non-aqueous electrolyte is preferably 0.2 to 1.5 mol / L (M), more preferably 0.5 to 1 mol / L (M). If the concentration of the supporting salt is less than 0.2 mol / L, the conductivity of the electrolyte cannot be sufficiently ensured, and the discharge characteristics and charging characteristics of the battery may be hindered. Since the viscosity of the electrolytic solution increases and the mobility of lithium ions cannot be ensured sufficiently, the conductivity of the electrolytic solution cannot be sufficiently ensured in the same manner as described above, which may hinder battery discharge characteristics and charge characteristics. .

<非水電解液2次電池>
次に、本発明の非水電解液2次電池を詳細に説明する。本発明の非水電解液2次電池は、上述の非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の非水電解液2次電池の技術分野で通常使用されている他の部材を備える。
<Nonaqueous electrolyte secondary battery>
Next, the nonaqueous electrolyte secondary battery of the present invention will be described in detail. The non-aqueous electrolyte secondary battery of the present invention includes the above-described non-aqueous electrolyte, a positive electrode, and a negative electrode, and is usually used in the technical field of non-aqueous electrolyte secondary batteries such as a separator as necessary. Other members are provided.

本発明の非水電解液2次電池の正極活物質としては、V25、V613、MnO2、MnO3等の金属酸化物、LiCoO2、LiNiO2、LiMn24、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー等が好適に挙げられる。上記リチウム含有複合酸化物は、Fe、Mn、Co及びNiからなる群から選択される2種又は3種の遷移金属を含む複合酸化物であってもよく、この場合、該複合酸化物は、LiFexCoyNi(1-x-y)2[式中、0≦x<1、0≦y<1、0<x+y≦1]、或いはLiMnxFey2-x-y等で表される。これらの中でも、高容量で安全性が高く、更には電解液の濡れ性に優れる点で、LiCoO2、LiNiO2、LiMn24が特に好適である。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 As the positive electrode active material of the non-aqueous electrolyte secondary battery of the present invention, metal oxides such as V 2 O 5 , V 6 O 13 , MnO 2 , MnO 3 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO Preferable examples include lithium-containing composite oxides such as 2 and LiFePO 4 , metal sulfides such as TiS 2 and MoS 2 , and conductive polymers such as polyaniline. The lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, and Ni. In this case, the composite oxide includes: LiFe x Co y Ni [wherein, 0 ≦ x <1,0 ≦ y <1,0 <x + y ≦ 1] (1-xy) O 2, or represented by LiMn x Fe y O 2-xy like. Among these, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are particularly preferable in terms of high capacity, high safety, and excellent electrolyte wettability. These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

本発明の非水電解液2次電池の負極活物質としては、リチウム金属自体、リチウムとAl、In、Sn、Si,Pb又はZn等との合金、リチウムをドープした黒鉛等の炭素材料等が好適に挙げられ、これらの中でも安全性がより高く、電解液の濡れ性に優れる点で、黒鉛等の炭素材料が好ましく、黒鉛が特に好ましい。ここで、黒鉛としては、天然黒鉛、人造黒鉛、メソフェーズカーボンマイクロビーズ(MCMB)等、広くは易黒鉛化カーボンや難黒鉛化カーボンが挙げられる。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。   As the negative electrode active material of the non-aqueous electrolyte secondary battery of the present invention, lithium metal itself, an alloy of lithium and Al, In, Sn, Si, Pb, Zn or the like, a carbon material such as graphite doped with lithium, etc. Among these, carbon materials such as graphite are preferable, and graphite is particularly preferable in view of higher safety and excellent wettability of the electrolyte. Here, examples of graphite include natural graphite, artificial graphite, mesophase carbon microbeads (MCMB), and the like, and widely include graphitizable carbon and non-graphitizable carbon. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.

上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。   The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary. Examples of the conductive agent include acetylene black, and the binder includes polyvinylidene fluoride (PVDF) and polytetrafluoro. Examples include ethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used at a blending ratio similar to the conventional one.

本発明の非水電解液2次電池に使用できる他の部材としては、非水電解液2次電池において、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレーターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらは、単体でも、混合物でも、共重合体でもよい。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明では、上述のセパレーターの他にも、通常電池に使用されている公知の各部材が好適に使用できる。   Other members that can be used in the non-aqueous electrolyte secondary battery of the present invention include a separator interposed in the non-aqueous electrolyte secondary battery between positive and negative electrodes to prevent current short-circuit due to contact between both electrodes. It is done. As the material of the separator, it is possible to reliably prevent contact between the two electrodes and to allow the electrolyte to pass through or to contain, for example, synthesis of polytetrafluoroethylene, polypropylene, polyethylene, cellulose, polybutylene terephthalate, polyethylene terephthalate, etc. Preferred examples include resin non-woven fabrics and thin layer films. These may be a single substance, a mixture or a copolymer. Of these, polypropylene or polyethylene microporous films having a thickness of about 20 to 50 μm, cellulose-based films, polybutylene terephthalate, polyethylene terephthalate, and the like are particularly suitable. In the present invention, in addition to the separators described above, known members that are normally used in batteries can be suitably used.

以上に説明した本発明の非水電解液2次電池の形態としては、特に制限はなく、コインタイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液2次電池を作製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製して集電体を挟み、これにシート状の負極を重ね合わせて巻き上げる等して、非水電解液2次電池を作製することができる。   The form of the non-aqueous electrolyte secondary battery of the present invention described above is not particularly limited, and various known forms such as a coin type, a button type, a paper type, a square type or a spiral type cylindrical battery are available. Preferably mentioned. In the case of the button type, a non-aqueous electrolyte secondary battery can be manufactured by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode. In the case of a spiral structure, for example, a non-aqueous electrolyte secondary battery is manufactured by preparing a sheet-like positive electrode, sandwiching a current collector, and stacking and winding up the sheet-like negative electrode on the current collector. Can do.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
ジフルオロリン酸フルオロフェニル 10体積%、エチレンカーボネート 45体積%、メチルエチルカーボネート 45体積%からなる混合溶媒にLiPF6を1mol/Lになるように溶解させて非水電解液を調製し、該非水電解液の難燃性評価を下記(1)の方法で行った。結果を表1に示す。
Example 1
A non-aqueous electrolyte solution was prepared by dissolving LiPF 6 in a mixed solvent of 10% by volume of fluorophenyl difluorophosphate, 45% by volume of ethylene carbonate, and 45% by volume of methyl ethyl carbonate so as to be 1 mol / L. The flame retardancy of the liquid was evaluated by the method (1) below. The results are shown in Table 1.

(1)難燃性の評価
UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法で、大気環境下において着火した炎の燃焼長及び燃焼時間を測定・評価した。具体的には、UL試験基準に基づき、127mm×12.7mmのSiO2シートに上記電解液1.0mLを染み込ませて試験片を作製して評価を行った。以下に不燃性・難燃性・自己消火性・燃焼性の評価基準を示す。
<不燃性の評価>試験炎を点火しても全く着火しなかった場合(燃焼長:0mm)を不燃性ありと評価した。
<難燃性の評価>着火した炎が、装置の25mmラインまで到達せず且つ網からの落下物にも着火が認められなかった場合を難燃性ありと評価した。
<自己消火性の評価>着火した炎が25〜100mmラインで消火し且つ網からの落下物にも着火が認められなかった場合を自己消火性ありと評価した。
<燃焼性の評価>着火した炎が、100mmラインを超えた場合を燃焼性と評価した。
(1) Flame Retardancy Evaluation The combustion length and combustion time of a flame ignited in an atmospheric environment were measured and evaluated by a method in which the UL94HB method of UL (Underwriting Laboratory) standard was arranged. Specifically, based on the UL test standard, a test piece was prepared by impregnating a 127 mm × 12.7 mm SiO 2 sheet with the above electrolytic solution 1.0 mL, and evaluated. The evaluation criteria for nonflammability, flame retardancy, self-extinguishing properties, and flammability are shown below.
<Evaluation of Nonflammability> A case where the test flame did not ignite at all (ignition length: 0 mm) was evaluated as nonflammable.
<Evaluation of Flame Retardancy> The case where the ignited flame did not reach the 25 mm line of the apparatus and the fallen object from the net was not ignited was evaluated as flame retardant.
<Evaluation of self-extinguishing property> When the ignited flame was extinguished in the 25 to 100 mm line and no ignition was observed on the falling object from the net, it was evaluated as having self-extinguishing property.
<Evaluation of combustibility> The case where the ignited flame exceeded the 100 mm line was evaluated as combustible.

次に、正極活物質としてリチウムコバルト複合酸化物[LiCoO2]を用い、該酸化物と、導電剤であるアセチレンブラックと、結着剤であるポリフッ化ビニリデンとを、質量比で94:3:3で混合し、これをN-メチルピロリドンに分散させてスラリーとしたものを、正極集電体としてのアルミニウム箔に塗布・乾燥した後、直径12.5mmの円板状に打ち抜いて、正極を作製した。また、負極活物質として人造グラファイトを用い、該人造グラファイトと、結着剤であるポリフッ化ビニリデンとを質量比で90:10で混合し、これを有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)に分散させてスラリーとしたものを、負極集電体としての銅箔に塗布・乾燥した後、直径12.5mmの円板状に打ち抜いて、負極を作製した。次いで、正極端子を兼ねたステンレスケース内に、正極と負極とを、電解液を含浸したセパレーター(微孔性フィルム:ポリプロピレン製)を介して重ねて収容し、ポリプロピレン製ガスケットを介して負極端子を兼ねるステンレス製封口板で密封して、直径20mm、厚さ1.6mmのコイン型電池(非水電解液二次電池)を作製した。また、得られたコイン型電池に対して、下記(2)の方法で充放電試験を行った。 Next, lithium cobalt composite oxide [LiCoO 2 ] is used as a positive electrode active material, and the oxide, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are in a weight ratio of 94: 3: After mixing in 3 and dispersing this in N-methylpyrrolidone and applying it to an aluminum foil as the positive electrode current collector and drying it, it was punched into a disk shape with a diameter of 12.5 mm to produce a positive electrode did. Further, artificial graphite is used as the negative electrode active material, and the artificial graphite and polyvinylidene fluoride as a binder are mixed at a mass ratio of 90:10, and this is mixed with an organic solvent (50/50 of ethyl acetate and ethanol). A slurry dispersed in (mass% mixed solvent) was applied to a copper foil as a negative electrode current collector and dried, and then punched into a disk shape having a diameter of 12.5 mm to produce a negative electrode. Next, the positive electrode and the negative electrode are stacked and accommodated in a stainless steel case that also serves as a positive electrode terminal via a separator (microporous film: made of polypropylene) impregnated with an electrolytic solution, and the negative electrode terminal is inserted through a polypropylene gasket. A coin-type battery (non-aqueous electrolyte secondary battery) having a diameter of 20 mm and a thickness of 1.6 mm was produced by sealing with a stainless sealing plate that also serves as a battery. Moreover, the charging / discharging test was done with the method of following (2) with respect to the obtained coin-type battery.

(2)コイン型電池による充放電試験
上記のようにして作製したコイン型電池を用い、20℃の環境下で、4.2〜3.0Vの電圧範囲で、2mA/cm2の電流密度による充放電サイクルを2回繰り返し、この時の放電容量を既知の電極質量で除することにより初期放電容量(mAh/g)を求めた。さらに同様の充放電条件で50サイクルまで充放電を繰り返し、50サイクル後の放電容量を求め、下記の式:
容量残存率S=50サイクル後の放電容量/初期放電容量×100(%)
に従って容量残存率Sを算出し、高負荷条件でのサイクル特性の指標とした。結果を表1に示す。
(2) Charging / discharging test using a coin-type battery Charging / discharging cycle with a current density of 2 mA / cm 2 in a voltage range of 4.2 to 3.0 V in a 20 ° C environment using the coin-type battery produced as described above. Was repeated twice and the initial discharge capacity (mAh / g) was determined by dividing the discharge capacity at this time by the known electrode mass. Furthermore, charging / discharging was repeated up to 50 cycles under the same charging / discharging conditions, and the discharge capacity after 50 cycles was determined.
Capacity remaining rate S = discharge capacity after 50 cycles / initial discharge capacity × 100 (%)
The capacity remaining rate S was calculated according to the above and used as an index of cycle characteristics under high load conditions. The results are shown in Table 1.

(実施例2)
実施例1の「非水電解液の調製」において、フルオロリン酸ビス(トリフルオロエチル) 50体積%、エチレンカーボネート 25体積%、メチルエチルカーボネート 25体積%としたほかは、実施例1と同様にして非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、充放電試験における初期放電容量および電池のサイクル特性をそれぞれ測定・評価した。結果を表1に示す。
(Example 2)
In the same manner as in Example 1 except that 50% by volume of bis (trifluoroethyl) fluorophosphate, 25% by volume of ethylene carbonate, and 25% by volume of methyl ethyl carbonate in “Preparation of non-aqueous electrolyte” in Example 1 A non-aqueous electrolyte solution was prepared, and the flame retardancy of the obtained non-aqueous electrolyte solution was evaluated. Further, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and the initial discharge capacity and the cycle characteristics of the battery in the charge / discharge test were measured and evaluated. The results are shown in Table 1.

(実施例3)
実施例1の「非水電解液の調製」において、ジフルオロリン酸テトラフルオロプロピル 100体積%としたほかは、実施例1と同様にして非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、負極をリチウムシートとしたほかは、実施例1と同様にして非水電解液二次電池を作製し、充放電試験における初期放電容量および電池のサイクル特性をそれぞれ測定・評価した。結果を表1に示す。
(Example 3)
A nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that tetrafluoropropyl difluorophosphate was 100% by volume in “Preparation of nonaqueous electrolytic solution” in Example 1. The flame retardancy of was evaluated. Further, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the negative electrode was a lithium sheet, and the initial discharge capacity and the battery cycle characteristics in the charge / discharge test were measured and evaluated. The results are shown in Table 1.

(比較例1)
実施例1の「非水電解液の調製」において、リン酸トリメチル 10体積%、エチレンカーボネート 45体積%、エチルメチルカーボネート 45体積%としたほかは、実施例1と同様にして非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、充放電試験における初期放電容量および電池のサイクル特性をそれぞれ測定・評価した。結果を表1に示す。
(Comparative Example 1)
A nonaqueous electrolyte solution was prepared in the same manner as in Example 1 except that in the “preparation of nonaqueous electrolyte solution” in Example 1, trimethyl phosphate was 10 vol%, ethylene carbonate 45 vol%, and ethyl methyl carbonate 45 vol%. The flame retardant properties of the prepared and obtained nonaqueous electrolytic solutions were evaluated. In addition, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1, and the initial discharge capacity and the cycle characteristics of the battery in the charge / discharge test were measured and evaluated. The results are shown in Table 1.

(比較例2)
実施例1の「非水電解液の調製」において、リン酸トリス(トリフルオロエチル) 50体積%、エチレンカーボネート 25体積%、エチルメチルカーボネート 25体積%としたほかは、実施例1と同様にして非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、充放電試験における初期放電容量および電池のサイクル特性をそれぞれ測定・評価した。結果を表1に示す。
(Comparative Example 2)
In the “Preparation of non-aqueous electrolyte solution” in Example 1, the same procedure as in Example 1 was conducted except that 50% by volume of tris (trifluoroethyl) phosphate, 25% by volume of ethylene carbonate, and 25% by volume of ethyl methyl carbonate were used. A nonaqueous electrolytic solution was prepared, and the flame retardancy of the obtained nonaqueous electrolytic solution was evaluated. In addition, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1, and the initial discharge capacity and the cycle characteristics of the battery in the charge / discharge test were measured and evaluated. The results are shown in Table 1.

Figure 2006286277
Figure 2006286277

表1の実施例1〜3に示すように、上記一般式(I)の化合物を10体積%以上含む非水電解液は不燃性を示すとともに、それを用いた二次電池が高負荷条件でも優れた初期放電容量及びサイクル特性を示すことから、上記一般式(I)の化合物は、非水電解液の導電率及び耐還元性の向上に効果があるものと判断される。このように本発明の非水電解液は、高い難燃性と耐還元性を有し、該非水電解液を二次電池に用いることで、安全性及びサイクル特性に優れた非水電解液二次電池が得られることが確認された。   As shown in Examples 1 to 3 of Table 1, a nonaqueous electrolyte containing 10% by volume or more of the compound of the general formula (I) exhibits nonflammability, and a secondary battery using the nonaqueous electrolyte is used even under high load conditions. Since the excellent initial discharge capacity and cycle characteristics are exhibited, it is determined that the compound of the general formula (I) is effective in improving the conductivity and reduction resistance of the nonaqueous electrolytic solution. As described above, the non-aqueous electrolyte of the present invention has high flame retardancy and reduction resistance. By using the non-aqueous electrolyte for a secondary battery, the non-aqueous electrolyte is excellent in safety and cycle characteristics. It was confirmed that the secondary battery was obtained.

一方、表1の比較例1及び2に示すように、リン酸トリエステル類は、置換基にフッ素原子置換アルコキシ基を含んでいても、非水電解液の導電率を低下させ、また、耐還元性も十分ではなく、二次電池の放電容量及びサイクル特性を大幅に低下させてしまうことがわかる。   On the other hand, as shown in Comparative Examples 1 and 2 in Table 1, the phosphoric acid triesters reduce the conductivity of the nonaqueous electrolytic solution even when the substituent contains a fluorine atom-substituted alkoxy group. It can be seen that the reducibility is not sufficient, and the discharge capacity and cycle characteristics of the secondary battery are significantly reduced.

以上の結果から、上記一般式(I)で表されるフルオロリン酸エステル化合物を含有することを特徴とする非水電解液を用いることにより、高い難燃性と電池性能を両立させた非水電解液二次電池を提供することができる。

From the above results, by using a non-aqueous electrolyte characterized by containing a fluorophosphate ester compound represented by the above general formula (I), a non-aqueous solution that achieves both high flame retardancy and battery performance. An electrolyte secondary battery can be provided.

Claims (6)

非水溶媒及び支持塩を含む電池用非水電解液において、該電池用非水電解液が下記一般式(I):
Figure 2006286277
[式中、R1は、それぞれ独立してフッ素、アルコキシ基、アリールオキシ基、フッ素原子置換アルコキシ基又はフッ素原子置換アリールオキシ基であって、2つのR1のうち少なくとも一つはフッ素原子置換アルコキシ基又はフッ素原子置換アリールオキシ基であり、但し、2つのR1は互いに結合して環を形成してもよい]で表されるフルオロリン酸エステル化合物を含むことを特徴とする電池用非水電解液。
In a non-aqueous electrolyte for a battery comprising a non-aqueous solvent and a supporting salt, the non-aqueous electrolyte for a battery is represented by the following general formula (I):
Figure 2006286277
[Wherein R 1 is independently fluorine, alkoxy group, aryloxy group, fluorine atom-substituted alkoxy group or fluorine atom-substituted aryloxy group, and at least one of the two R 1 is fluorine atom-substituted. An alkoxy group or a fluorine atom-substituted aryloxy group, wherein two R 1 may be bonded to each other to form a ring]. Water electrolyte.
前記一般式(I)において、2つのR1のうち1つがフッ素であり、他の1つがフッ素原子置換アルコキシ基又はフッ素原子置換アリールオキシ基であることを特徴とする請求項1に記載の電池用非水電解液。 2. The battery according to claim 1, wherein in the general formula (I), one of two R 1 is fluorine, and the other is a fluorine atom-substituted alkoxy group or a fluorine atom-substituted aryloxy group. Non-aqueous electrolyte for use. 前記非水溶媒が、更に非プロトン性有機溶媒を含むことを特徴とする請求項1又は2に記載の電池用非水電解液。   The battery nonaqueous electrolyte solution according to claim 1, wherein the nonaqueous solvent further contains an aprotic organic solvent. 前記一般式(I)で表されるフルオロリン酸エステル化合物の含有量が前記電池用非水電解液全体の5体積%以上であることを特徴とする請求項1〜3のいずれかに記載の電池用非水電解液。   The content of the fluorophosphate ester compound represented by the general formula (I) is 5% by volume or more of the whole battery non-aqueous electrolyte solution, according to any one of claims 1 to 3. Non-aqueous electrolyte for batteries. 前記一般式(I)で表されるフルオロリン酸エステル化合物の含有量が前記電池用非水電解液全体の10体積%以上であることを特徴とする請求項1〜4のいずれかに記載の電池用非水電解液。   The content of the fluorophosphate ester compound represented by the general formula (I) is 10% by volume or more of the whole non-aqueous electrolyte for a battery, according to any one of claims 1 to 4. Non-aqueous electrolyte for batteries. 請求項1〜5のいずれかに記載の電池用非水電解液と、正極と、負極とを備えた非水電解液二次電池。

A nonaqueous electrolyte secondary battery comprising the battery nonaqueous electrolyte solution according to any one of claims 1 to 5, a positive electrode, and a negative electrode.

JP2005102046A 2005-03-31 2005-03-31 Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having it Withdrawn JP2006286277A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005102046A JP2006286277A (en) 2005-03-31 2005-03-31 Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having it
PCT/JP2006/305541 WO2006109443A1 (en) 2005-03-31 2006-03-20 Nonaqueous electrolyte solution for battery and nonaqueous electrolyte secondary battery comprising same
US11/910,022 US20080254361A1 (en) 2005-03-31 2006-03-20 Non-Aqueous Electrolyte for Battery and Non-Aqueous Electrolyte Secondary Battery Comprising the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102046A JP2006286277A (en) 2005-03-31 2005-03-31 Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having it

Publications (1)

Publication Number Publication Date
JP2006286277A true JP2006286277A (en) 2006-10-19

Family

ID=37407986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102046A Withdrawn JP2006286277A (en) 2005-03-31 2005-03-31 Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having it

Country Status (1)

Country Link
JP (1) JP2006286277A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099580A1 (en) 2010-02-10 2011-08-18 Necエナジーデバイス株式会社 Nonaqueous electrolyte solution, and lithium ion secondary battery using same
WO2012118179A1 (en) 2011-03-03 2012-09-07 Necエナジーデバイス株式会社 Lithium ion battery
US9196926B2 (en) 2010-12-27 2015-11-24 Nec Energy Devices, Ltd. Gel electrolyte for lithium ion secondary battery, and lithium ion secondary battery
JP2017120780A (en) * 2015-12-25 2017-07-06 ステラケミファ株式会社 Nonaqueous electrolyte for secondary battery and secondary battery including the same
WO2020203148A1 (en) * 2019-03-29 2020-10-08 株式会社村田製作所 Electrolytic solution for secondary cell, and secondary cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099580A1 (en) 2010-02-10 2011-08-18 Necエナジーデバイス株式会社 Nonaqueous electrolyte solution, and lithium ion secondary battery using same
US9312073B2 (en) 2010-02-10 2016-04-12 Nec Energy Devices, Ltd. Nonaqueous electrolyte solution, and lithium ion secondary battery having the same
US9847180B2 (en) 2010-02-10 2017-12-19 Nec Energy Devices, Ltd. Nonaqueous electrolyte solution, and lithium ion secondary battery having the same
US9196926B2 (en) 2010-12-27 2015-11-24 Nec Energy Devices, Ltd. Gel electrolyte for lithium ion secondary battery, and lithium ion secondary battery
WO2012118179A1 (en) 2011-03-03 2012-09-07 Necエナジーデバイス株式会社 Lithium ion battery
US9620812B2 (en) 2011-03-03 2017-04-11 Nec Energy Devices, Ltd. Lithium ion battery
JP2017120780A (en) * 2015-12-25 2017-07-06 ステラケミファ株式会社 Nonaqueous electrolyte for secondary battery and secondary battery including the same
WO2020203148A1 (en) * 2019-03-29 2020-10-08 株式会社村田製作所 Electrolytic solution for secondary cell, and secondary cell
JPWO2020203148A1 (en) * 2019-03-29 2020-10-08
CN113632282A (en) * 2019-03-29 2021-11-09 株式会社村田制作所 Electrolyte for secondary battery and secondary battery
JP7201074B2 (en) 2019-03-29 2023-01-10 株式会社村田製作所 Electrolyte for secondary battery and secondary battery
CN113632282B (en) * 2019-03-29 2023-10-03 株式会社村田制作所 Electrolyte for secondary battery and secondary battery

Similar Documents

Publication Publication Date Title
JP5314885B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same
EP1798792B1 (en) Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same
US8257870B2 (en) Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same
JP5738011B2 (en) Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP5134770B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery including the same
US20080020276A1 (en) Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same
JP4911888B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
US20080254361A1 (en) Non-Aqueous Electrolyte for Battery and Non-Aqueous Electrolyte Secondary Battery Comprising the Same
JP2008300126A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2007200605A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it
JP2008041296A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
JP2008041413A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
EP2157656A1 (en) Nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery comprising the same
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP5093992B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
JP2010050021A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP5738010B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2006286277A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having it
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2006286570A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery having it
JP2008300125A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2008052988A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2010050026A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP2010015720A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091028