JP2008052988A - Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it - Google Patents

Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it Download PDF

Info

Publication number
JP2008052988A
JP2008052988A JP2006226663A JP2006226663A JP2008052988A JP 2008052988 A JP2008052988 A JP 2008052988A JP 2006226663 A JP2006226663 A JP 2006226663A JP 2006226663 A JP2006226663 A JP 2006226663A JP 2008052988 A JP2008052988 A JP 2008052988A
Authority
JP
Japan
Prior art keywords
battery
group
aqueous electrolyte
general formula
difluorophosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006226663A
Other languages
Japanese (ja)
Inventor
Yasuo Horikawa
泰郎 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006226663A priority Critical patent/JP2008052988A/en
Publication of JP2008052988A publication Critical patent/JP2008052988A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution for a battery having high flame resistance and high reduction resistance. <P>SOLUTION: This nonaqueous electrolytic solution contains a nonaqueous solvent containing a cyclic phosphazene compound expressed by a general formula (I): (NPR<SP>1</SP><SB>2</SB>)n [in the formula, R<SP>1</SP>respectively and independently expresses a halogen element, an alkoxy group or an aryloxy group; n expresses 3 to 4], a difluoro phosphate compound expressed by a general formula (II): [in the formula, R<SP>2</SP>is an alkyl group, a cycloalkyl group, an alkenyl group, an alkoxy substituted alkyl group, or an aryl group], at least one kind of polycyclic compounds selected from a group consisting of 1,2-dihydronaphthalene, 1,2,3,4-tetrahydronaphthalene, indene, fluorene, and 9,10-dihydroanthracene, and a supporting salt. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電池用非水電解液及びそれを備えた非水電解液電池に関し、特に高い難燃性を有する電池用非水電解液及び優れた電池特性と高い安全性を有する非水電解液電池に関するものである。   The present invention relates to a non-aqueous electrolyte for a battery and a non-aqueous electrolyte battery including the same, and particularly a non-aqueous electrolyte for a battery having high flame retardancy and a non-aqueous electrolyte having excellent battery characteristics and high safety. It relates to batteries.

非水電解液は、リチウム電池やリチウムイオン2次電池、電気二重層キャパシタ等の電解質として使用されており、これらデバイスは、高電圧、高エネルギー密度を有することから、パソコン及び携帯電話等の駆動電源として広く用いられている。そして、これら非水電解液としては、一般にエステル化合物及びエーテル化合物等の非プロトン性有機溶媒に、LiPF6等の支持塩を溶解させたものが用いられている。しかしながら、非プロトン性有機溶媒は、可燃性であるため、上記デバイスから漏液した際に引火・燃焼する可能性があり、安全面での問題を有している。 Non-aqueous electrolytes are used as electrolytes for lithium batteries, lithium ion secondary batteries, electric double layer capacitors, etc., and these devices have high voltage and high energy density. Widely used as a power source. As these nonaqueous electrolytic solutions, generally used are solutions in which a supporting salt such as LiPF 6 is dissolved in an aprotic organic solvent such as an ester compound and an ether compound. However, since the aprotic organic solvent is flammable, it may ignite and burn when it leaks from the device, and has a safety problem.

この問題に対して、非水電解液を難燃化する方法が検討されており、例えば、非水電解液にリン酸トリメチル等のリン酸エステル類を用いたり、非プロトン性有機溶媒にリン酸エステル類を添加したりする方法が提案されている(特許文献1〜3参照)。しかしながら、これらリン酸エステル類は、充放電を繰り返すことで、徐々に負極で還元分解され、充放電効率及びサイクル特性等の電池特性が大きく劣化するという問題がある。   To solve this problem, methods for making non-aqueous electrolytes flame-retardant have been studied. For example, phosphoric acid esters such as trimethyl phosphate are used for non-aqueous electrolytes, or phosphoric acid is used for aprotic organic solvents. Methods for adding esters have been proposed (see Patent Documents 1 to 3). However, these phosphate esters have a problem in that they are gradually reduced and decomposed at the negative electrode by repeating charge and discharge, and battery characteristics such as charge and discharge efficiency and cycle characteristics are greatly deteriorated.

この問題に対して、非水電解液にリン酸エステルの分解を抑制する化合物を更に添加したり、リン酸エステルそのものの分子構造を工夫する等の方法も試みられている(特許文献4〜6参照)。しかしながら、この場合も、添加量に制限があり、また、リン酸エステル自体の難燃性の低下等の理由から、電解液が自己消火性になる程度で、電解液の安全性を十分に確保することができない。   In order to solve this problem, methods such as further adding a compound that suppresses the decomposition of the phosphate ester to the nonaqueous electrolytic solution or devising the molecular structure of the phosphate ester itself have been tried (Patent Documents 4 to 6). reference). However, in this case as well, there is a limit to the amount of addition, and the safety of the electrolyte is sufficiently ensured to the extent that the electrolyte is self-extinguishing due to a decrease in the flame retardancy of the phosphate ester itself. Can not do it.

また、特開平6−13108号公報(特許文献7)には、非水電解液に難燃性を付与するために、非水電解液にホスファゼン化合物を添加する方法が開示されている。該ホスファゼン化合物は、その種類によっては高い不燃性を示し、非水電解液への添加量を増量するに従い、非水電解液の難燃性が向上する傾向がある。しかしながら、高い不燃性を示すホスファゼン化合物は、概して支持塩の溶解性や誘電率が低いため、添加量を多くすると、支持塩の析出や導電性の低下を招き、電池の放電容量が低下したり、充放電特性に支障をきたすことがある。そのため、高い不燃性を示すホスファゼン化合物を添加する場合、添加量が制限されるという問題がある。   Japanese Patent Application Laid-Open No. 6-13108 (Patent Document 7) discloses a method of adding a phosphazene compound to a nonaqueous electrolytic solution in order to impart flame retardancy to the nonaqueous electrolytic solution. The phosphazene compound exhibits high nonflammability depending on the type, and the flame retardancy of the nonaqueous electrolyte tends to improve as the amount added to the nonaqueous electrolyte increases. However, phosphazene compounds exhibiting high incombustibility generally have low solubility and dielectric constant of the supporting salt, so increasing the amount added causes precipitation of the supporting salt and a decrease in conductivity, resulting in a decrease in battery discharge capacity. The charging / discharging characteristics may be hindered. Therefore, when adding the phosphazene compound which shows high nonflammability, there exists a problem that the addition amount is restrict | limited.

更に、特開2006−107910号公報(特許文献8)には、高い難燃性と電池性能を両立した技術として、フッ素化リン酸エステルとホスファゼン化合物を組み合わせた非水電解液が提案されている。該非水電解液は、難燃性が高く、電池性能も優れているものの、電池の作動電圧が高くなればなるほど、やはり分解が起こる傾向にある。   Furthermore, Japanese Patent Application Laid-Open No. 2006-107910 (Patent Document 8) proposes a nonaqueous electrolytic solution in which a fluorinated phosphate ester and a phosphazene compound are combined as a technique that achieves both high flame retardancy and battery performance. . Although the non-aqueous electrolyte has high flame retardancy and excellent battery performance, the higher the battery operating voltage, the more the decomposition tends to occur.

近年、電池デバイスはより高容量化が求められており、その有効な手段の一つとして作動電圧の高電圧化が挙げられている。そのため、昨今、電解液としては耐分解性(耐還元性)の向上と安全性(不燃性)の確保がより重要な課題になりつつあるが、この点で従来技術は十分に満足できるレベルとはいえない。   In recent years, battery devices have been required to have higher capacities, and one of effective means is to increase the operating voltage. Therefore, in recent years, improvement of decomposition resistance (reduction resistance) and ensuring safety (nonflammability) are becoming more important issues for electrolytes. However, in this respect, the prior art is sufficiently satisfactory. I can't say that.

特開平4−184870号公報JP-A-4-184870 特開平8−22839号公報JP-A-8-22839 特開2000−182669号公報JP 2000-182669 A 特開平11−67267号公報Japanese Patent Laid-Open No. 11-67267 特開平10−189040号公報JP-A-10-189040 特開2003−109659号公報JP 2003-109659 A 特開平6−13108号公報JP-A-6-13108 特開2006−107910号公報JP 2006-107910 A

そこで、本発明の目的は、上記従来技術の問題を解決し、高い難燃性、すなわち不燃性と高い耐還元性を有する電池用非水電解液と、該電池用非水電解液を備え、高電圧条件下でも安定した電池性能と高い安全性を有する非水電解液電池を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, comprising a non-aqueous electrolyte for a battery having high flame retardancy, that is, non-flammability and high reduction resistance, and the non-aqueous electrolyte for the battery, The object is to provide a non-aqueous electrolyte battery having stable battery performance and high safety even under high voltage conditions.

本発明者は、上記目的を達成するために鋭意検討した結果、特定の環状ホスファゼン化合物と特定のジフルオロリン酸エステル化合物からなる非水溶媒に、さらに特定の多環式化合物を組み合わせて非水電解液を構成することにより、電解液に高い難燃性を付与することができ、また、該電解液を用いた非水電解液電池が高電圧条件下でも優れた電池性能を維持できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventor has made nonaqueous electrolysis by further combining a specific polycyclic compound with a nonaqueous solvent comprising a specific cyclic phosphazene compound and a specific difluorophosphate ester compound. By configuring the liquid, it can be found that high flame retardancy can be imparted to the electrolyte, and that the nonaqueous electrolyte battery using the electrolyte can maintain excellent battery performance even under high voltage conditions, The present invention has been completed.

即ち、本発明の電池用非水電解液は、下記一般式(I):
(NPR1 2)n ・・・ (I)
[式中、R1は、それぞれ独立してハロゲン元素、アルコキシ基又はアリールオキシ基を表し;nは3〜4を表す]で表される環状ホスファゼン化合物及び下記一般式(II):

Figure 2008052988
[式中、R2は、アルキル基、シクロアルキル基、アルケニル基、アルコキシ置換アルキル基又はアリール基である]で表されるジフルオロリン酸エステル化合物を含む非水溶媒と、1,2-ジヒドロナフタレン、1,2,3,4-テトラヒドロナフタレン、インデン、フルオレン、及び9,10-ジヒドロアントラセンからなる群から選択される少なくとも1種の多環式化合物と、支持塩とを含むことを特徴とする。 That is, the nonaqueous electrolyte for a battery of the present invention has the following general formula (I):
(NPR 1 2 ) n ... (I)
[Wherein R 1 independently represents a halogen element, an alkoxy group or an aryloxy group; n represents 3 to 4] and the following general formula (II):
Figure 2008052988
[Wherein R 2 represents an alkyl group, a cycloalkyl group, an alkenyl group, an alkoxy-substituted alkyl group or an aryl group] and a 1,2-dihydronaphthalene containing a difluorophosphate compound represented by the formula: It includes at least one polycyclic compound selected from the group consisting of 1,2,3,4-tetrahydronaphthalene, indene, fluorene, and 9,10-dihydroanthracene, and a supporting salt. .

本発明の電池用非水電解液において、前記環状ホスファゼン化合物としては、前記一般式(I)において、R1のうち少なくとも3つがフッ素である化合物が好ましい。 In the nonaqueous electrolytic solution for a battery of the present invention, the cyclic phosphazene compound is preferably a compound in which at least three of R 1 in the general formula (I) are fluorine.

本発明の電池用非水電解液の好適例においては、前記一般式(I)で表される環状ホスファゼン化合物と前記一般式(II)で表されるジフルオロリン酸エステル化合物との体積比が10/90〜80/20の範囲である。   In a preferred example of the battery non-aqueous electrolyte of the present invention, the volume ratio of the cyclic phosphazene compound represented by the general formula (I) and the difluorophosphate compound represented by the general formula (II) is 10 / 90 to 80/20.

本発明の電池用非水電解液の他の好適例においては、前記多環式化合物の含有量が前記電池用非水電解液全体の1〜10質量%である。   In another preferable example of the battery non-aqueous electrolyte of the present invention, the content of the polycyclic compound is 1 to 10% by mass of the whole battery non-aqueous electrolyte.

本発明の電池用非水電解液の他の好適例においては、前記非水溶媒が、更に非プロトン性有機溶媒を含む。   In another preferred embodiment of the battery non-aqueous electrolyte of the present invention, the non-aqueous solvent further contains an aprotic organic solvent.

本発明の電池用非水電解液は、前記非水溶媒における前記一般式(I)で表される環状ホスファゼン化合物と前記一般式(II)で表されるジフルオロリン酸エステル化合物との総含有量が30体積%以上であることが好ましい。   The non-aqueous electrolyte for a battery of the present invention is a total content of the cyclic phosphazene compound represented by the general formula (I) and the difluorophosphate compound represented by the general formula (II) in the non-aqueous solvent. Is preferably 30% by volume or more.

また、本発明の非水電解液電池は、上記電池用非水電解液と、正極と、負極とを備えることを特徴とする。   Moreover, the non-aqueous electrolyte battery of the present invention comprises the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode.

本発明によれば、特定の環状ホスファゼン化合物及び特定のジフルオロリン酸エステル化合物を含む非水溶媒を用いることにより高い難燃性と耐還元性を有し、さらに特定の多環式化合物を組み合わせて用いることにより、非水電解液電池に使用した際に高電圧条件下でも電池特性を十分に維持することが可能な非水電解液を提供することができる。また、該非水電解液を備えた、高い安全性と優れた電池特性を有する非水電解液電池を提供することができる。   According to the present invention, by using a non-aqueous solvent containing a specific cyclic phosphazene compound and a specific difluorophosphate ester compound, it has high flame retardancy and reduction resistance, and further a specific polycyclic compound is combined. By using it, it is possible to provide a non-aqueous electrolyte capable of sufficiently maintaining battery characteristics even under high voltage conditions when used in a non-aqueous electrolyte battery. Moreover, the nonaqueous electrolyte battery provided with this nonaqueous electrolyte and having high safety and excellent battery characteristics can be provided.

本発明の電池用非水電解液においては、環状ホスファゼン化合物とジフルオロリン酸エステル化合物の反応、熱分解により生じる高不燃性ガス成分が、高い難燃性を発現するものと考えられる。また、理由は必ずしも明らかではないが、上記環状ホスファゼン化合物と上記ジフルオロリン酸エステル化合物と多環式化合物の3つの化合物の相乗効果により生じる電極表面の皮膜が、該電解液の分解を効果的に抑制するため、安定した充放電特性が実現でき、また、この皮膜は4.5V以上の高電圧であっても分解することなく機能するため、高電圧条件下でも充放電性能を維持できるものと考えられる。   In the battery non-aqueous electrolyte of the present invention, it is considered that a highly incombustible gas component generated by the reaction and thermal decomposition of a cyclic phosphazene compound and a difluorophosphate compound exhibits high flame retardancy. Moreover, although the reason is not necessarily clear, the film on the electrode surface generated by the synergistic effect of the three compounds of the cyclic phosphazene compound, the difluorophosphate ester compound and the polycyclic compound effectively decomposes the electrolytic solution. Stable charge / discharge characteristics can be realized due to suppression, and this film functions without being decomposed even at a high voltage of 4.5 V or higher, so it is considered that charge / discharge performance can be maintained even under high voltage conditions. It is done.

<電池用非水電解液>
以下に、本発明の電池用非水電解液を詳細に説明する。本発明に係る電池用非水電解液は、上記一般式(I)で表される環状ホスファゼン化合物と上記一般式(II)で表されるジフルオロリン酸エステル化合物を含む非水溶媒と、1,2-ジヒドロナフタレン、1,2,3,4-テトラヒドロナフタレン、インデン、フルオレン、及び9,10-ジヒドロアントラセンからなる群から選択される少なくとも1種の多環式化合物と、支持塩とを含むことを特徴とし、更に、非水溶媒として、非プロトン性有機溶媒を含有してもよい。
<Non-aqueous electrolyte for batteries>
Below, the non-aqueous electrolyte for batteries of the present invention will be described in detail. A non-aqueous electrolyte for a battery according to the present invention includes a non-aqueous solvent containing a cyclic phosphazene compound represented by the general formula (I) and a difluorophosphate ester compound represented by the general formula (II), Containing at least one polycyclic compound selected from the group consisting of 2-dihydronaphthalene, 1,2,3,4-tetrahydronaphthalene, indene, fluorene, and 9,10-dihydroanthracene, and a supporting salt. Further, an aprotic organic solvent may be contained as a non-aqueous solvent.

本発明の電池用非水電解液に含まれる環状ホスファゼン化合物は、上記一般式(I)で表される。式(I)中のR1は、それぞれ独立してハロゲン元素、アルコキシ基又はアリールオキシ基を表し、nは3〜4を表す。 The cyclic phosphazene compound contained in the nonaqueous electrolytic solution for batteries of the present invention is represented by the above general formula (I). R 1 in formula (I), a halogen element independently, an alkoxy group or an aryloxy radical, n represents 3-4.

式(I)のRにおけるハロゲン元素としては、フッ素、塩素、臭素等が挙げられる。また、R1におけるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等や、二重結合を含むアリルオキシ基等、またはメトキシエトキシ基、メトキシエトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられる。更に、R1におけるアリールオキシ基としては、フェノキシ基、メチルフェノキシ基、キシレノキシ基(即ち、キシリルオキシ基)、メトキシフェノキシ基等が挙げられる。上記アルコキシ基及びアリールオキシ基中の水素元素は、ハロゲン元素で置換されていてもよく、フッ素で置換されていることが好ましい。また、式(I)中のR1は他のR1と連結していてもよく、この場合、2つのR1は、互いに結合して、アルキレンジオキシ基、アリーレンジオキシ基又はオキシアルキレンアリーレンオキシ基を形成し、かかる二価の基としては、エチレンジオキシ基、プロピレンジオキシ基、フェニレンジオキシ基等が挙げられる。 Examples of the halogen element in R 1 of the formula (I) include fluorine, chlorine, bromine and the like. Examples of the alkoxy group in R 1 include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an allyloxy group containing a double bond, or an alkoxy-substituted alkoxy group such as a methoxyethoxy group or a methoxyethoxyethoxy group. Can be mentioned. Furthermore, examples of the aryloxy group in R 1 include a phenoxy group, a methylphenoxy group, a xylenoxy group (that is, a xylyloxy group), a methoxyphenoxy group, and the like. The hydrogen element in the alkoxy group and aryloxy group may be substituted with a halogen element, and is preferably substituted with fluorine. R 1 in formula (I) may be linked to other R 1, and in this case, two R 1 are bonded to each other to form an alkylenedioxy group, an aryleneoxy group or an oxyalkylene arylene. Examples of the divalent group that forms an oxy group include an ethylenedioxy group, a propylenedioxy group, and a phenylenedioxy group.

上記一般式(I)中のR1は、同一でも異なってもよい。また、式(I)のR1は、安全性が向上する点で、ハロゲン元素であることが好ましく、更に、低粘度である点で、フッ素であることがより好ましい。また、安全性及び低粘性の両立の点で、R1のうち3つ以上がフッ素であることが好ましい。 R 1 in the general formula (I) may be the same or different. Further, R 1 in the formula (I) is preferably a halogen element from the viewpoint of improving safety, and more preferably fluorine from the viewpoint of low viscosity. Moreover, it is preferable that 3 or more of R < 1 > is a fluorine from the point of coexistence of safety | security and low viscosity.

また、式(I)のnは、3〜4であり、上記環状ホスファゼン化合物は、1種単独で使用してもよいし、2種以上を混合して用いてもよい。   Moreover, n of Formula (I) is 3-4, The said cyclic phosphazene compound may be used individually by 1 type, and may mix and use 2 or more types.

本発明の電池用非水電解液に含まれるジフルオロリン酸エステル化合物は、上記一般式(II)で表される。式(II)において、R2は、アルキル基、シクロアルキル基、アルケニル基、アルコキシ置換アルキル基又はアリール基である。式(II)のR2におけるアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基等が挙げられ、シクロアルキル基としては、シクロプロピル基、シクロヘキシル基等が挙げられ、アルケニル基としては、アリル基、メタリル基等が挙げられ、アルコキシ置換アルキル基としては、メトキシエチル基、メトキシエトキシエチル基等が挙げられ、アリール基としては、フェニル基、メチルフェニル基、メトキシフェニル基等が挙げられる。上記置換基中の水素元素は、ハロゲン元素で置換されていてもよく、フッ素で置換されていることが好ましい。これらの中でも、難燃性に優れ且つ低粘度である点で、メチル基、エチル基、プロピル基、トルフルオロエチル基、フェニル基、3-フルオロフェニル基が好ましい。 The difluorophosphate compound contained in the nonaqueous electrolytic solution for batteries of the present invention is represented by the above general formula (II). In the formula (II), R 2 is an alkyl group, a cycloalkyl group, an alkenyl group, an alkoxy-substituted alkyl group or an aryl group. Examples of the alkyl group in R 2 of the formula (II) include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Examples of the cycloalkyl group include a cyclopropyl group and a cyclohexyl group. Examples of the alkenyl group include an allyl group and a methallyl group. Examples of the alkoxy-substituted alkyl group include a methoxyethyl group and a methoxyethoxyethyl group. Examples of the aryl group include a phenyl group, a methylphenyl group, A methoxyphenyl group etc. are mentioned. The hydrogen element in the substituent may be substituted with a halogen element, and is preferably substituted with fluorine. Among these, a methyl group, an ethyl group, a propyl group, a trifluoroethyl group, a phenyl group, and a 3-fluorophenyl group are preferable in terms of excellent flame retardancy and low viscosity.

式(II)のジフルオロリン酸エステル化合物の具体例としては、ジフルオロリン酸メチル、ジフルオロリン酸エチル、ジフルオロリン酸トリフルオロエチル、ジフルオロリン酸プロピル、ジフルオロリン酸トリフルオロプロピル、ジフルオロリン酸アリル、ジフルオロリン酸ブチル、ジフルオロリン酸ペンチル、ジフルオロリン酸ヘキシル、ジフルオロリン酸シクロヘキシル、ジフルオロリン酸メトキシエチル、ジフルオロリン酸メトキシエトキシエチル、ジフルオロリン酸フェニル、ジフルオロリン酸フルオロフェニル等が挙げられる。これらジフルオロリン酸エステル化合物は、1種単独で使用してもよく、2種以上を混合して使用してもよい。   Specific examples of the difluorophosphate compound of formula (II) include methyl difluorophosphate, ethyl difluorophosphate, trifluoroethyl difluorophosphate, propyl difluorophosphate, trifluoropropyl difluorophosphate, allyl difluorophosphate, Examples include butyl difluorophosphate, pentyl difluorophosphate, hexyl difluorophosphate, cyclohexyl difluorophosphate, methoxyethyl difluorophosphate, methoxyethoxyethyl difluorophosphate, phenyl difluorophosphate, fluorophenyl difluorophosphate, and the like. These difluorophosphate ester compounds may be used singly or in combination of two or more.

本発明の非水電解液において、上記環状ホスファゼン化合物と上記ジフルオロリン酸エステル化合物との体積比は、5/95〜95/5の範囲が好ましく、電池性能のバランスの観点から、10/90〜80/20の範囲が更に好ましい。また、高電圧満充電状態での非水電解液電池の安全性を十分に確保する観点から、非水溶媒中の上記環状ホスファゼン化合物と上記ジフルオロリン酸エステル化合物との総含有量は、30体積%以上であることが好ましい。   In the nonaqueous electrolytic solution of the present invention, the volume ratio of the cyclic phosphazene compound to the difluorophosphate ester compound is preferably in the range of 5/95 to 95/5, and from the viewpoint of balance of battery performance, 10/90 to A range of 80/20 is more preferred. In addition, from the viewpoint of sufficiently ensuring the safety of the nonaqueous electrolyte battery in a fully charged state, the total content of the cyclic phosphazene compound and the difluorophosphate compound in the nonaqueous solvent is 30 volumes. % Or more is preferable.

本発明の電池用非水電解液は、更に特定の多環式化合物を含むことを特徴とする。該多環式化合物としては、1,2-ジヒドロナフタレン、1,2,3,4-テトラヒドロナフタレン(即ち、テトラリン)、インデン、フルオレン、及び9,10-ジヒドロアントラセンが挙げられる。これら多環式化合物は、1種単独で使用してもよく、2種以上を混合して使用してもよい。   The non-aqueous electrolyte for a battery according to the present invention further includes a specific polycyclic compound. Such polycyclic compounds include 1,2-dihydronaphthalene, 1,2,3,4-tetrahydronaphthalene (ie, tetralin), indene, fluorene, and 9,10-dihydroanthracene. These polycyclic compounds may be used individually by 1 type, and 2 or more types may be mixed and used for them.

上記多環式化合物の含有量は、電池用非水電解液全体の1〜10質量%の範囲が好ましく、電池性能のバランスの観点から、2〜7質量%の範囲が更に好ましい。   The content of the polycyclic compound is preferably in the range of 1 to 10% by mass, and more preferably in the range of 2 to 7% by mass, based on the balance of battery performance.

本発明の電池用非水電解液に用いる支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiBC48、LiPF6、LiCF3SO3、LiAsF6、LiC49SO3、Li(CF3SO2)2N及びLi(C25SO2)2N等のリチウム塩が好適に挙げられる。これらの中でも、不燃性に優れる点で、LiPF6が更に好ましい。これら支持塩は、1種単独で使用してもよく、2種以上を組み合わせて用いてもよい。 As the supporting salt used in the non-aqueous electrolyte for a battery of the present invention, a supporting salt serving as a lithium ion source is preferable. The supporting salt is not particularly limited. For example, LiClO 4 , LiBF 4 , LiBC 4 O 8 , LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) Preferable examples include lithium salts such as 2 N and Li (C 2 F 5 SO 2 ) 2 N. Among these, LiPF 6 is more preferable in terms of excellent nonflammability. These supporting salts may be used alone or in combination of two or more.

上記非水電解液中の支持塩の濃度としては、0.2〜1.5mol/L(M)が好ましく、0.5〜1.2mol/L(M)が更に好ましい。支持塩の濃度が0.2mol/L未満では、電解液の導電性を充分に確保することができず、電池の放電特性及び充電特性に支障をきたすことがあり、1.5mol/Lを超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電特性及び充電特性に支障をきたすことがある。   The concentration of the supporting salt in the non-aqueous electrolyte is preferably 0.2 to 1.5 mol / L (M), more preferably 0.5 to 1.2 mol / L (M). If the concentration of the supporting salt is less than 0.2 mol / L, the conductivity of the electrolyte cannot be sufficiently ensured, and the discharge characteristics and charging characteristics of the battery may be hindered. Since the viscosity of the electrolytic solution increases and the mobility of lithium ions cannot be ensured sufficiently, the conductivity of the electrolytic solution cannot be sufficiently ensured in the same manner as described above, which may hinder battery discharge characteristics and charge characteristics. .

また、上記非水溶媒には、本発明の目的を損なわない範囲で従来より電池用非水電解液に使用されている種々の非プロトン性有機溶媒を添加することができる。該非プロトン性有機溶媒の添加量としては、電池の高い安全性を確保するために非水溶媒中70体積%以下とすることが好ましい。該非プロトン性有機溶媒として具体的には、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジフェニルカーボネート、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)等の炭酸エステル類、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、ジエチルエーテル(DEE)等のエーテル類、γ-ブチロラクトン(GBL)、γ-バレロラクトン、メチルフォルメート(MF)等のカルボン酸エステル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホン類、エチレンスルフィド等のスルフィド類等が挙げられる。これら非プロトン性有機溶媒は、1種単独で使用してもよく、2種以上を混合して用いてもよい。   In addition, various aprotic organic solvents conventionally used in battery non-aqueous electrolytes can be added to the non-aqueous solvent as long as the object of the present invention is not impaired. The addition amount of the aprotic organic solvent is preferably 70% by volume or less in the non-aqueous solvent in order to ensure high battery safety. Specific examples of the aprotic organic solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), diphenyl carbonate, ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC). Carbonates such as 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), ethers such as diethyl ether (DEE), γ-butyrolactone (GBL), γ-valerolactone, methyl formate (MF), etc. Carboxylic acid esters, nitriles such as acetonitrile, amides such as dimethylformamide, sulfones such as dimethyl sulfoxide, sulfides such as ethylene sulfide, and the like. These aprotic organic solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.

また、非水電解液電池の形成に際して、本発明の非水電解液は、そのまま用いることも可能であるが、例えば、適当なポリマーや多孔性支持体、或いはゲル状物質に含浸させる等して保持させる方法等で用いることもできる。   In forming a non-aqueous electrolyte battery, the non-aqueous electrolyte of the present invention can be used as it is. For example, an appropriate polymer, a porous support, or a gel material is impregnated. It can also be used in a holding method or the like.

<非水電解液電池>
次に、本発明の非水電解液電池を詳細に説明する。本発明の非水電解液電池は、上述の電池用非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の非水電解液電池の技術分野で通常使用されている他の部材を備える。この場合、本発明の非水電解液電池は、1次電池としても、2次電池としても構成することができる。
<Nonaqueous electrolyte battery>
Next, the nonaqueous electrolyte battery of the present invention will be described in detail. The non-aqueous electrolyte battery of the present invention includes the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode, and is usually used in the technical field of non-aqueous electrolyte batteries such as a separator as necessary. Other members are provided. In this case, the non-aqueous electrolyte battery of the present invention can be configured as a primary battery or a secondary battery.

本発明の非水電解液電池の正極活物質としては、V25、V613、MnO2、MnO3等の金属酸化物、LiCoO2、LiNiO2、LiMn24、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー等が好適に挙げられる。上記リチウム含有複合酸化物は、Fe、Mn、Co、Al及びNiからなる群から選択される2種又は3種の遷移金属を含む複合酸化物であってもよく、この場合、該複合酸化物は、LiMnxCoyNi(1-x-y)2[式中、0≦x<1、0≦y<1、0<x+y≦1]、LiMnxNi(1-x)2[式中、0≦x<1]、LiMnxCo(1-x)2[式中、0≦x<1]、LiCoxNi(1-x)2[式中、0≦x<1]、LiCoxNiyAl(1-x-y)2[式中、0≦x<1、0≦y<1、0<x+y≦1]、LiFexCoyNi(1-x-y)2[式中、0≦x<1、0≦y<1、0<x+y≦1]、或いはLiMnxFey2-x-y等で表される。これらの中でも、高容量で安全性が高く、高電圧に安定な点で、複合酸化物が好適である。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 As the positive electrode active material of the non-aqueous electrolyte battery of the present invention, metal oxides such as V 2 O 5 , V 6 O 13 , MnO 2 , MnO 3 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2 and Preferable examples include lithium-containing composite oxides such as LiFePO 4 , metal sulfides such as TiS 2 and MoS 2 , and conductive polymers such as polyaniline. The lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, Al, and Ni. In this case, the composite oxide LiMn x Co y Ni (1-xy) O 2 [where 0 ≦ x <1, 0 ≦ y <1, 0 <x + y ≦ 1], LiMn x Ni (1-x) O 2 [wherein , 0 ≦ x <1], LiMn x Co (1-x) O 2 [where 0 ≦ x <1], LiCo x Ni (1-x) O 2 [where 0 ≦ x <1], LiCo x Ni y Al [wherein, 0 ≦ x <1,0 ≦ y <1,0 <x + y ≦ 1] (1-xy) O 2, LiFe x Co y Ni (1-xy) O 2 [ wherein , 0 ≦ x <1, 0 ≦ y <1, 0 <x + y ≦ 1], or LiMn x Fe y O 2 -xy . Among these, composite oxides are preferable in terms of high capacity, high safety, and stability at high voltages. These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.

本発明の非水電解液電池の負極活物質としては、リチウム金属自体、リチウムとAl、In、Sn、Si、Pb又はZn等との合金、リチウムイオンをドープしたTiO2等の金属酸化物およびTiO2−P24等の金属酸化物複合材料、黒鉛等の炭素材料等が好適に挙げられる。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 As the negative electrode active material of the nonaqueous electrolyte battery of the present invention, lithium metal itself, an alloy of lithium and Al, In, Sn, Si, Pb or Zn, a metal oxide such as TiO 2 doped with lithium ions, and Preferable examples include metal oxide composite materials such as TiO 2 —P 2 O 4 and carbon materials such as graphite. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.

上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。   The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary. Examples of the conductive agent include acetylene black. Examples of the binder include polyvinylidene fluoride (PVDF) and polytetrafluoro. Examples include ethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used at a blending ratio similar to the conventional one.

本発明の非水電解液電池に使用できる他の部材としては、非水電解液電池において、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレーターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらは、単体でも、混合物でも、共重合体でもよい。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明では、上述のセパレーターの他にも、通常電池に使用されている公知の各部材が好適に使用できる。   Other members that can be used in the non-aqueous electrolyte battery of the present invention include a separator that is interposed between positive and negative electrodes in a role of preventing current short-circuit due to contact between both electrodes. As the material of the separator, it is possible to reliably prevent contact between the two electrodes and to allow the electrolyte to pass through or to contain, for example, synthesis of polytetrafluoroethylene, polypropylene, polyethylene, cellulose, polybutylene terephthalate, polyethylene terephthalate, etc. Preferred examples include resin non-woven fabrics and thin layer films. These may be a single substance, a mixture or a copolymer. Among these, a polypropylene or polyethylene microporous film having a thickness of about 20 to 50 μm, a film made of cellulose, polybutylene terephthalate, polyethylene terephthalate, or the like is particularly suitable. In the present invention, in addition to the separators described above, known members that are normally used in batteries can be suitably used.

以上に説明した本発明の非水電解液電池の形態としては、特に制限はなく、コインタイブ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液電池を作製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製して集電体を挟み、これにシート状の負極を重ね合わせて巻き上げる等して、非水電解液電池を作製することができる。   The form of the non-aqueous electrolyte battery of the present invention described above is not particularly limited, and various known forms such as a coin-type, button type, paper type, prismatic or spiral structure cylindrical battery are preferably mentioned. It is done. In the case of the button type, a non-aqueous electrolyte battery can be produced by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode. In the case of the spiral structure, for example, a non-aqueous electrolyte battery can be manufactured by preparing a sheet-like positive electrode, sandwiching a current collector, and stacking and winding up the sheet-like negative electrode on the current collector. .

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
ジフルオロリン酸トリフルオロエチル 50体積%と、上記一般式(I)においてnが4であって、全R1のうち1つがプロポキシ基で、7つがフッ素である環状ホスファゼン化合物 50体積%からなる混合溶媒に、LiPF6を1mol/Lになるように溶解させて、これに1,2-ジヒドロナフタレン 5質量%を添加して非水電解液を調製した。次に、得られた非水電解液の難燃性を下記の方法で評価し、表1に示す結果を得た。
(Example 1)
A mixture comprising 50% by volume of trifluoroethyl difluorophosphate and 50% by volume of a cyclic phosphazene compound in which n is 4 in the above general formula (I), one of all R 1 is a propoxy group and seven is fluorine. LiPF 6 was dissolved in a solvent so as to be 1 mol / L, and 5 mass% of 1,2-dihydronaphthalene was added thereto to prepare a nonaqueous electrolytic solution. Next, the flame retardancy of the obtained non-aqueous electrolyte was evaluated by the following method, and the results shown in Table 1 were obtained.

(1)難燃性の評価
UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法で、大気環境下において着火した炎の燃焼長及び燃焼時間を測定・評価した。具体的には、UL試験基準に基づき、127mm×12.7mmのSiO2シートに上記電解液1.0mLを染み込ませて試験片を作製して評価を行った。以下に不燃性・難燃性・自己消火性・燃焼性の評価基準を示す。
<不燃性の評価>試験炎を点火しても全く着火しなかった場合(燃焼長:0mm)を不燃性ありと評価した。
<難燃性の評価>着火した炎が、装置の25mmラインまで到達せず且つ網からの落下物にも着火が認められなかった場合を難燃性ありと評価した。
<自己消火性の評価>着火した炎が25〜100mmラインで消火し且つ網からの落下物にも着火が認められなかった場合を自己消火性ありと評価した。
<燃焼性の評価>着火した炎が、100mmラインを超えた場合を燃焼性と評価した。
(1) Flame Retardancy Evaluation The combustion length and combustion time of a flame ignited in an atmospheric environment were measured and evaluated by a method in which the UL94HB method of UL (Underwriting Laboratory) standard was arranged. Specifically, based on the UL test standard, a test piece was prepared by impregnating a 127 mm × 12.7 mm SiO 2 sheet with the above electrolytic solution 1.0 mL, and evaluated. The evaluation criteria for nonflammability, flame retardancy, self-extinguishing properties, and flammability are shown below.
<Evaluation of Nonflammability> A case where the test flame did not ignite at all (ignition length: 0 mm) was evaluated as nonflammable.
<Evaluation of Flame Retardancy> The case where the ignited flame did not reach the 25 mm line of the apparatus and the fallen object from the net was not ignited was evaluated as flame retardant.
<Evaluation of self-extinguishing property> When the ignited flame was extinguished in the 25 to 100 mm line and no ignition was observed on the falling object from the net, it was evaluated as having self-extinguishing property.
<Evaluation of combustibility> The case where the ignited flame exceeded the 100 mm line was evaluated as combustible.

(2)電池の作製
正極活物質としてLiMn0.9Co0.12を用い、該酸化物と、導電剤であるアセチレンブラックと、結着剤であるポリフッ化ビニリデンとを、質量比94:3:3で混合し、これをN-メチルピロリドンに分散させてスラリーとしたものを、正極集電体としてのアルミニウム箔に塗布した後、乾燥・プレスを施すことで、厚さ70μmの正極シートを得た。これを矩形(4cm×50cm)に切り取り、アルミニウム箔の集電タブを溶接して正極を作製した。また、負極活物質として人造グラファイトを用い、該人造グラファイトと、結着剤であるポリフッ化ビニリデンとを質量比90:10で混合し、これを有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)に分散させてスラリーとしたものを、負極集電体としての銅箔に塗布した後、乾燥・プレスを施すことで、厚さ50μmの負極シートを得た。これを矩形(4cm×50cm)に切り取り、ニッケル箔の集電タブを溶接して負極を作製した。次いで、セパレーター(微孔性フィルム:ポリエチレン製)を矩形(4cm×50cm)に切り取り、これを正極と負極とを介して挟み込み、4cm×3cmのスペーサーをベースに平巻きにした後、熱融着アルミラミネートフィルム(ポリエチレンテレフタレート/アルミニウム/ポリプロピレン)からなる外装材の中に挿入し、電解液を注入後、真空にしてすばやくヒートシールすることにより平板状ラミネート電池を作製した。
(2) Production of Battery Using LiMn 0.9 Co 0.1 O 2 as a positive electrode active material, the oxide, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are in a mass ratio of 94: 3: 3 The slurry was dispersed in N-methylpyrrolidone and applied to an aluminum foil as a positive electrode current collector, followed by drying and pressing to obtain a positive electrode sheet having a thickness of 70 μm. . This was cut into a rectangle (4 cm × 50 cm), and an aluminum foil current collecting tab was welded to produce a positive electrode. Further, artificial graphite is used as the negative electrode active material, and the artificial graphite and polyvinylidene fluoride as a binder are mixed at a mass ratio of 90:10, and this is mixed with an organic solvent (50/50 mass of ethyl acetate and ethanol). % Mixed solvent) was applied to a copper foil as a negative electrode current collector, followed by drying and pressing to obtain a negative electrode sheet having a thickness of 50 μm. This was cut into a rectangle (4 cm × 50 cm), and a nickel foil current collecting tab was welded to produce a negative electrode. Next, the separator (microporous film: polyethylene) is cut into a rectangle (4 cm x 50 cm), sandwiched between the positive electrode and the negative electrode, flattened with a 4 cm x 3 cm spacer as the base, and heat-sealed It inserted in the exterior material which consists of an aluminum laminate film (polyethylene terephthalate / aluminum / polypropylene), inject | poured electrolyte solution, and vacuum-heated quickly and produced the flat laminated battery.

(3)高電圧サイクル特性評価
上記のようにして作製したラミネート電池を用い、20℃の環境下で、上限電圧4.5V、下限電圧2.5V、0.1mA/cm2の電流密度による充放電サイクルを2回繰り返し、この時の放電容量を既知の正極重量で除することにより初期放電容量(mAh/g)を求めた。さらに同様の充放電条件で50サイクルまで充放電を繰り返し、50サイクル後の放電容量を求め、下記の式:
容量残存率S=50サイクル後の放電容量/初期放電容量×100(%)
に従って容量残存率を算出し、高電圧条件による電池のサイクル特性の指標とした。
(3) High voltage cycle characteristic evaluation Using the laminated battery produced as described above, a charge / discharge cycle with an upper limit voltage of 4.5 V, a lower limit voltage of 2.5 V, and a current density of 0.1 mA / cm 2 is performed in an environment of 20 ° C. The initial discharge capacity (mAh / g) was determined by repeating twice and dividing the discharge capacity at this time by the known positive electrode weight. Furthermore, charging / discharging was repeated up to 50 cycles under the same charging / discharging conditions, and the discharge capacity after 50 cycles was obtained, and the following formula:
Capacity remaining rate S = discharge capacity after 50 cycles / initial discharge capacity × 100 (%)
The capacity remaining rate was calculated according to the above and used as an index of the cycle characteristics of the battery under high voltage conditions.

(4)釘刺し安全性試験
上記と同じラミネート電池を作製し、釘刺しによる安全性試験を行った。釘刺し試験の方法は、20℃の環境下で、4.5〜2.5Vの電圧範囲で、0.1mA/cm2の電流密度による充放電サイクルを2回繰り返し、さらに4.5Vまで充電を行なった後、該電池を温度調節機能つき電池ホルダー(ステンレス製)上に置き、30℃の電池温度条件で、軸部の直径が3mmのステンレス鋼製の釘を用いて、速度0.5cm/sで電池の側面中心に直角に突き刺し、破裂の際の発火の有無を調べた。結果を表1に示す。
(4) Nail penetration safety test The same laminated battery as described above was produced, and a safety test using a nail penetration was performed. The method of nail penetration test is to repeat the charge / discharge cycle at a current density of 0.1 mA / cm 2 in a voltage range of 4.5 to 2.5 V in an environment of 20 ° C. twice, and further charge to 4.5 V. Place the battery on a battery holder (stainless steel) with a temperature control function, and use a stainless steel nail with a shaft diameter of 3 mm at a battery temperature of 30 ° C. The center was pierced at a right angle, and the presence or absence of ignition at the time of rupture was examined. The results are shown in Table 1.

(実施例2)
ジフルオロリン酸エチル 40体積%と、上記一般式(I)においてnが3であって、全R1のうち1つがメトキシエトキシエトキシ基で、5つがフッ素である環状ホスファゼン化合物 10体積%と、上記一般式(I)においてnが3であって、全R1のうち1つがメトキシ基で、5つがフッ素である環状ホスファゼン化合物 50体積%からなる混合溶媒に、LiPF6を1.2mol/Lになるように溶解させて、これに無水1,2,3,4-テトラヒドロナフタレン 7質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液2次電池を作製し、高電圧条件でのサイクル特性および安全性をそれぞれ評価した。結果を表1に示す。
(Example 2)
40% by volume of ethyl difluorophosphate, 10% by volume of the cyclic phosphazene compound in which n is 3 in the above general formula (I), one of the R 1 groups is methoxyethoxyethoxy group, and 5 is fluorine, LiPF 6 is 1.2 mol / L in a mixed solvent composed of 50% by volume of a cyclic phosphazene compound in which n is 3 in the general formula (I), and one of all R 1 is a methoxy group and five are fluorine. Then, 7% by mass of anhydrous 1,2,3,4-tetrahydronaphthalene was added thereto to prepare a nonaqueous electrolytic solution, and the flame retardancy of the obtained nonaqueous electrolytic solution was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and the cycle characteristics and safety under high voltage conditions were evaluated. The results are shown in Table 1.

(実施例3)
ジフルオロリン酸プロピル 35体積%と、上記一般式(I)においてnが3であって、全R1のうち3つがエトキシ基で、3つがフッ素である環状ホスファゼン化合物 15体積%と、プロピレンカーボネート 5体積%と、ジメチルカーボネート 45体積%からなる混合溶媒に、LiPF6を1mol/Lになるように溶解させて、これにインデン 5質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液2次電池を作製し、高電圧条件でのサイクル特性および安全性をそれぞれ評価した。結果を表1に示す。
(Example 3)
35% by volume of propyl difluorophosphate, 15% by volume of a cyclic phosphazene compound in which n is 3 in the above general formula (I), 3 of the total R 1 are ethoxy groups and 3 are fluorine, propylene carbonate 5 LiPF 6 was dissolved in a mixed solvent consisting of 45% by volume and 45% by volume of dimethyl carbonate so as to be 1 mol / L, and 5% by mass of indene was added thereto to prepare a nonaqueous electrolytic solution. The flame retardancy of the non-aqueous electrolyte was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and the cycle characteristics and safety under high voltage conditions were evaluated. The results are shown in Table 1.

(実施例4)
ジフルオロリン酸フェニル 15体積%と、上記一般式(I)においてnが3であって、全R1のうち1つがシクロヘキシルオキシ基で、5つがフッ素である環状ホスファゼン化合物 35体積%と、プロピレンカーボネート 10体積%と、ジエチルカーボネート 40体積%からなる混合溶媒に、LiPF6を1mol/Lになるように溶解させて、これにフルオレン 5質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。次に、実施例1で用いたLiMn0.9Co0.12正極に代えて、LiNi1/3Co1/3Mn1/32を用いた以外は実施例1と同様にして非水電解液2次電池を作製し、高電圧条件でのサイクル特性および安全性をそれぞれ評価した。結果を表1に示す。
Example 4
15% by volume of phenyl difluorophosphate, 35% by volume of cyclic phosphazene compound in which n is 3 in the above general formula (I), one of R 1 is cyclohexyloxy group and 5 is fluorine, propylene carbonate LiPF 6 was dissolved in a mixed solvent consisting of 10% by volume and 40% by volume of diethyl carbonate so as to be 1 mol / L, and 5% by mass of fluorene was added thereto to prepare a non-aqueous electrolyte. The non-aqueous electrolyte was evaluated for flame retardancy. Next, in place of the LiMn 0.9 Co 0.1 O 2 positive electrode used in Example 1, a nonaqueous electrolyte solution was used in the same manner as in Example 1 except that LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used. Secondary batteries were fabricated and evaluated for cycle characteristics and safety under high voltage conditions. The results are shown in Table 1.

(実施例5)
ジフルオロリン酸メチル 27体積%と、上記一般式(I)においてnが3であって、全R1のうち2つが塩素で、4つがフッ素である環状ホスファゼン化合物 3体積%と、エチレンカーボネート 23体積%と、ジメチルカーボネート 47体積%からなる混合溶媒に、LiPF6を1mol/Lになるように溶解させて、これに9,10-ジヒドロアントラセン 2質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液2次電池を作製し、高電圧条件でのサイクル特性および安全性をそれぞれ評価した。結果を表1に示す。
(Example 5)
27% by volume of methyl difluorophosphate, 3% by volume of cyclic phosphazene compound in which n is 3 in the above general formula (I), 2 of the total R 1 are chlorine and 4 are fluorine, and 23% of ethylene carbonate LiPF 6 is dissolved in a mixed solvent consisting of 2% by weight and 47% by volume of dimethyl carbonate so as to be 1 mol / L, and 2% by mass of 9,10-dihydroanthracene is added thereto to prepare a non-aqueous electrolyte. The flame retardancy of the obtained non-aqueous electrolyte was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and the cycle characteristics and safety under high voltage conditions were evaluated. The results are shown in Table 1.

(実施例6)
ジフルオロリン酸ヘキシル 6体積%と、上記一般式(I)においてnが4であって、全R1がフッ素である環状ホスファゼン化合物 24体積%と、γ-ブチロラクトン 21体積%と、ジエチルカーボネート 49体積%からなる混合溶媒に、LiPF6を1mol/Lになるように溶解させて、これに1,2,3,4-テトラヒドロナフタレン 1質量%と、フルオレン 1質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液2次電池を作製し、高電圧条件でのサイクル特性および安全性をそれぞれ評価した。結果を表1に示す。
(Example 6)
6% by volume of hexyl difluorophosphate, 24% by volume of cyclic phosphazene compound in which n is 4 in the above general formula (I) and all R 1 is fluorine, 21% by volume of γ-butyrolactone, 49% of diethyl carbonate In a non-aqueous electrolyte solution, LiPF 6 is dissolved to 1 mol / L in 1% by weight, and 1,2,3,4-tetrahydronaphthalene 1% by mass and fluorene 1% by mass are added thereto. Were prepared, and the flame retardancy of the obtained non-aqueous electrolyte was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and the cycle characteristics and safety under high voltage conditions were evaluated. The results are shown in Table 1.

(比較例1)
リン酸トリエチル 50体積%と、上記一般式(I)においてnが4であって、全R1のうち1つがプロポキシ基で、7つがフッ素である環状ホスファゼン化合物 50体積%からなる混合溶媒に、LiPF6を1mol/Lになるように溶解させて、これに1,2-ジヒドロナフタレン 5質量%を添加して非水電解液を調製した。次に、得られた非水電解液の難燃性を下記の方法で評価し、表1に示す結果を得た。
(Comparative Example 1)
To a mixed solvent consisting of 50% by volume of triethyl phosphate and 50% by volume of a cyclic phosphazene compound in which n is 4 in the above general formula (I), one of the total R 1 is a propoxy group and seven is fluorine, LiPF 6 was dissolved at 1 mol / L, and 1,2-dihydronaphthalene 5 mass% was added thereto to prepare a non-aqueous electrolyte. Next, the flame retardancy of the obtained non-aqueous electrolyte was evaluated by the following method, and the results shown in Table 1 were obtained.

(比較例2)
リン酸トリメチル 27体積%と、上記一般式(I)においてnが3であって、全R1のうち2つが塩素で、4つがフッ素である環状ホスファゼン化合物 3体積%と、エチレンカーボネート 23体積%、ジメチルカーボネート47体積%からなる混合溶媒に、LiPF6を1mol/Lになるように溶解させて、これに9,10-ジヒドロアントラセン 2質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液2次電池を作製し、高電圧条件でのサイクル特性および安全性をそれぞれ評価した。結果を表1に示す。
(Comparative Example 2)
3% by volume of trimethyl phosphate, 3% by volume of a cyclic phosphazene compound in which n is 3 in the above general formula (I), 2 of the total R 1 is chlorine and 4 is fluorine, and 23% by volume of ethylene carbonate LiPF 6 was dissolved in a mixed solvent consisting of 47% by volume of dimethyl carbonate so as to be 1 mol / L, and 2% by mass of 9,10-dihydroanthracene was added thereto to prepare a nonaqueous electrolytic solution. The non-aqueous electrolyte obtained was evaluated for flame retardancy. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and the cycle characteristics and safety under high voltage conditions were evaluated. The results are shown in Table 1.

(比較例3)
ジフルオロリン酸トリフルオロエチル 50体積%と、上記一般式(I)においてnが4であって、全R1のうち1つがプロポキシ基で、7つがフッ素である環状ホスファゼン化合物 50体積%からなる混合溶媒に、LiPF6を1mol/Lになるように溶解させて非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液2次電池を作製し、高電圧条件でのサイクル特性および安全性をそれぞれ評価した。結果を表1に示す。
(Comparative Example 3)
A mixture comprising 50% by volume of trifluoroethyl difluorophosphate and 50% by volume of a cyclic phosphazene compound in which n is 4 in the above general formula (I), one of all R 1 is a propoxy group and seven is fluorine. LiPF 6 was dissolved in a solvent so as to be 1 mol / L to prepare a nonaqueous electrolytic solution, and the flame retardancy of the obtained nonaqueous electrolytic solution was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and the cycle characteristics and safety under high voltage conditions were evaluated. The results are shown in Table 1.

(比較例4)
ジフルオロリン酸フェニル 15体積%と、上記一般式(I)においてnが3であって、全R1のうち1つがシクロヘキシルオキシ基で、5つがフッ素である環状ホスファゼン化合物 35体積%と、プロピレンカーボネート 10体積%と、ジエチルカーボネート 40体積%からなる混合溶媒に、LiPF6を1mol/Lになるように溶解させて非水電解液を調製し、得られた非水電解液の難燃性を評価した。次に、実施例1で用いたLiMn0.9Co0.12正極に代えて、LiNi1/3Co1/3Mn1/32を用いた以外は実施例1と同様にして非水電解液2次電池を作製し、高電圧条件でのサイクル特性および安全性をそれぞれ評価した。結果を表1に示す。
(Comparative Example 4)
15% by volume of phenyl difluorophosphate, 35% by volume of cyclic phosphazene compound in which n is 3 in the above general formula (I), one of R 1 is cyclohexyloxy group and 5 is fluorine, propylene carbonate A non-aqueous electrolyte was prepared by dissolving LiPF 6 at 1 mol / L in a mixed solvent consisting of 10% by volume and 40% by volume of diethyl carbonate, and the flame resistance of the obtained non-aqueous electrolyte was evaluated. did. Next, in place of the LiMn 0.9 Co 0.1 O 2 positive electrode used in Example 1, a nonaqueous electrolyte solution was used in the same manner as in Example 1 except that LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used. Secondary batteries were fabricated and evaluated for cycle characteristics and safety under high voltage conditions. The results are shown in Table 1.

(比較例5)
上記一般式(I)においてnが3であって、全R1のうち3つがエトキシ基で、3つがフッ素である環状ホスファゼン化合物 15体積%と、プロピレンカーボネート 9体積%と、ジメチルカーボネート 76体積%からなる混合溶媒に、LiPF6を1mol/Lになるように溶解させて、これにインデン 5質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液2次電池を作製し、高電圧条件でのサイクル特性および安全性をそれぞれ評価した。結果を表1に示す。
(Comparative Example 5)
In the above general formula (I), n is 3, cyclic phosphazene compound in which 3 out of all R 1 are ethoxy groups and 3 are fluorine 15 volume%, propylene carbonate 9 volume%, dimethyl carbonate 76 volume% LiPF 6 is dissolved in a mixed solvent consisting of 1 to 1 mol / L, and 5% by mass of indene is added thereto to prepare a non-aqueous electrolyte. The resulting non-aqueous electrolyte has flame retardancy. evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and the cycle characteristics and safety under high voltage conditions were evaluated. The results are shown in Table 1.

(比較例6)
ジフルオロリン酸プロピル 50体積%と、プロピレンカーボネート 5体積%と、ジメチルカーボネート 45体積%からなる混合溶媒に、LiPF6を1mol/Lになるように溶解させて、これにインデン 5質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液2次電池を作製し、高電圧条件でのサイクル特性および安全性をそれぞれ評価した。結果を表1に示す。
(Comparative Example 6)
In a mixed solvent consisting of 50% by volume of propyl difluorophosphate, 5% by volume of propylene carbonate, and 45% by volume of dimethyl carbonate, LiPF 6 is dissolved to 1 mol / L, and 5% by mass of indene is added thereto. A non-aqueous electrolyte solution was prepared, and the flame retardancy of the obtained non-aqueous electrolyte solution was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and the cycle characteristics and safety under high voltage conditions were evaluated. The results are shown in Table 1.

(実施例7)
ジフルオロリン酸メチル 18体積%と、上記一般式(I)においてnが3であって、全R1のうち2つが塩素で、4つがフッ素である環状ホスファゼン化合物 2体積%と、エチレンカーボネート 27体積%と、ジメチルカーボネート 53体積%からなる混合溶媒に、LiPF6を1mol/Lになるように溶解させて、これに9,10-ジヒドロアントラセン 2質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液2次電池を作製し、高電圧条件でのサイクル特性および安全性をそれぞれ評価した。結果を表1に示す。
(Example 7)
18% by volume of methyl difluorophosphate, 2% by volume of cyclic phosphazene compound in which n is 3 in the above general formula (I), 2 of the total R 1 are chlorine and 4 are fluorine, and 27% of ethylene carbonate % And dimethyl carbonate 53% by volume LiPF 6 was dissolved to 1 mol / L, and 9,10-dihydroanthracene 2% by mass was added thereto to prepare a non-aqueous electrolyte. The flame retardancy of the obtained non-aqueous electrolyte was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and the cycle characteristics and safety under high voltage conditions were evaluated. The results are shown in Table 1.

Figure 2008052988
Figure 2008052988

表1の実施例1〜6に示すように、式(I)の化合物と式(II)の化合物と特定の多環式化合物を30体積%以上含む非水電解液が不燃性を示すと共に、該非水電解液を用いた電池が高電圧条件下でも優れた電池性能と高い安全性を示すことが分る。このように、本発明の非水電解液により、不燃性を発現しつつ、高電圧条件下でのサイクル特性及び安全性に優れた非水電解液電池が得られることが確認された。   As shown in Examples 1 to 6 in Table 1, a non-aqueous electrolyte solution containing 30% by volume or more of the compound of formula (I), the compound of formula (II), and a specific polycyclic compound exhibits nonflammability, It can be seen that the battery using the non-aqueous electrolyte exhibits excellent battery performance and high safety even under high voltage conditions. As described above, it was confirmed that the nonaqueous electrolyte solution of the present invention can provide a nonaqueous electrolyte battery excellent in cycle characteristics and safety under high voltage conditions while exhibiting nonflammability.

一方、比較例1及び2に示すように、非水電解液に通常のリン酸トリエステルを含有する非水電解液は、式(I)の化合物や多環式化合物を添加しても、初期容量が小さく、また、サイクルを繰り返すことによる容量低下を抑制できないことがわかる。また、比較例3及び4に示すように、多環式化合物を添加しない場合においては、実施例1及び4と比較して、サイクル特性が徐々に低下してしまうことがわかる。   On the other hand, as shown in Comparative Examples 1 and 2, the non-aqueous electrolyte containing a normal phosphoric acid triester in the non-aqueous electrolyte can be prepared even if the compound of formula (I) or the polycyclic compound is added. It can be seen that the capacity is small and the capacity reduction due to repeated cycles cannot be suppressed. Further, as shown in Comparative Examples 3 and 4, it can be seen that in the case where no polycyclic compound is added, the cycle characteristics are gradually lowered as compared with Examples 1 and 4.

なお、比較例5のように式(II)のジフルオロリン酸エステルを用いない場合には、式(I)のホスファゼン化合物を多量に使用すると2層分離が起こってしまうため、式(I)のホスファゼン化合物を16体積%以上添加することができず、結果的に電池の安全性を確保できなかった。   In addition, when the difluorophosphate ester of the formula (II) is not used as in the comparative example 5, when a large amount of the phosphazene compound of the formula (I) is used, two-layer separation occurs. The phosphazene compound could not be added in an amount of 16% by volume or more, and as a result, the safety of the battery could not be ensured.

更に、比較例6のように多環式化合物を用いても、式(I)のホスファゼン化合物を加えなかった場合には、実施例3と比較して、初期放電容量、サイクル特性の面で劣っていることが分る。   Further, even when a polycyclic compound was used as in Comparative Example 6, when the phosphazene compound of the formula (I) was not added, the initial discharge capacity and cycle characteristics were inferior compared with Example 3. You can see that

なお、実施例7に示すように、式(I)で表される化合物と式(II)で表される化合物の総含有量が20体積%程度では、不燃性は発現されるものの、今回のような高電圧満充電状態での釘刺し安全性試験では発火を抑制することができなかった。従って、式(I)の環状ホスファゼン化合物と式(II)のジフルオロリン酸エステル化合物との総含有量は、30体積%以上が好ましいことが分る。   As shown in Example 7, when the total content of the compound represented by the formula (I) and the compound represented by the formula (II) is about 20% by volume, incombustibility is exhibited, In the nail penetration safety test in such a high voltage full charge state, ignition could not be suppressed. Therefore, it can be seen that the total content of the cyclic phosphazene compound of the formula (I) and the difluorophosphate compound of the formula (II) is preferably 30% by volume or more.

以上の結果から、式(I)で表される環状ホスファゼン化合物と式(II)で表されるジフルオロリン酸エステル化合物と特定の多環式化合物を含有することを特徴とする非水電解液を用いることにより、不燃性と優れた電池性能を両立させた非水電解液電池を提供できることが分る。

From the above results, a non-aqueous electrolyte characterized by containing a cyclic phosphazene compound represented by formula (I), a difluorophosphate compound represented by formula (II) and a specific polycyclic compound. It can be seen that by using this, a non-aqueous electrolyte battery having both nonflammability and excellent battery performance can be provided.

Claims (7)

下記一般式(I):
(NPR1 2)n ・・・ (I)
[式中、R1は、それぞれ独立してハロゲン元素、アルコキシ基又はアリールオキシ基を表し;nは3〜4を表す]で表される環状ホスファゼン化合物及び下記一般式(II):
Figure 2008052988
[式中、R2は、アルキル基、シクロアルキル基、アルケニル基、アルコキシ置換アルキル基又はアリール基である]で表されるジフルオロリン酸エステル化合物を含む非水溶媒と、1,2-ジヒドロナフタレン、1,2,3,4-テトラヒドロナフタレン、インデン、フルオレン、及び9,10-ジヒドロアントラセンからなる群から選択される少なくとも1種の多環式化合物と、支持塩とを含むことを特徴とする電池用非水電解液。
The following general formula (I):
(NPR 1 2 ) n ... (I)
[Wherein R 1 independently represents a halogen element, an alkoxy group or an aryloxy group; n represents 3 to 4] and the following general formula (II):
Figure 2008052988
[Wherein R 2 represents an alkyl group, a cycloalkyl group, an alkenyl group, an alkoxy-substituted alkyl group or an aryl group] and a 1,2-dihydronaphthalene containing a difluorophosphate compound represented by the formula: It includes at least one polycyclic compound selected from the group consisting of 1,2,3,4-tetrahydronaphthalene, indene, fluorene, and 9,10-dihydroanthracene, and a supporting salt. Non-aqueous electrolyte for batteries.
前記一般式(I)において、R1のうち少なくとも3つがフッ素であることを特徴とする請求項1に記載の電池用非水電解液。 2. The battery non-aqueous electrolyte according to claim 1, wherein in the general formula (I), at least three of R 1 are fluorine. 前記一般式(I)で表される環状ホスファゼン化合物と前記一般式(II)で表されるジフルオロリン酸エステル化合物との体積比が10/90〜80/20の範囲であることを特徴とする請求項1に記載の電池用非水電解液。   The volume ratio of the cyclic phosphazene compound represented by the general formula (I) and the difluorophosphate compound represented by the general formula (II) is in the range of 10/90 to 80/20. The nonaqueous electrolyte for batteries according to claim 1. 前記多環式化合物の含有量が前記電池用非水電解液全体の1〜10質量%であることを特徴とする請求項1に記載の電池用非水電解液。   The battery nonaqueous electrolyte solution according to claim 1, wherein the content of the polycyclic compound is 1 to 10% by mass of the whole battery nonaqueous electrolyte solution. 前記非水溶媒が、更に非プロトン性有機溶媒を含むことを特徴とする請求項1〜4のいずれかに記載の電池用非水電解液。   The non-aqueous electrolyte for a battery according to claim 1, wherein the non-aqueous solvent further contains an aprotic organic solvent. 前記非水溶媒における、前記一般式(I)で表される環状ホスファゼン化合物と前記一般式(II)で表されるジフルオロリン酸エステル化合物との総含有量が30体積%以上であることを特徴とする請求項1〜5のいずれかに記載の電池用非水電解液。   The total content of the cyclic phosphazene compound represented by the general formula (I) and the difluorophosphate compound represented by the general formula (II) in the non-aqueous solvent is 30% by volume or more. The nonaqueous electrolytic solution for a battery according to any one of claims 1 to 5. 請求項1〜6のいずれかに記載の電池用非水電解液と、正極と、負極とを備えた非水電解液電池。

A non-aqueous electrolyte battery comprising the battery non-aqueous electrolyte according to claim 1, a positive electrode, and a negative electrode.

JP2006226663A 2006-08-23 2006-08-23 Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it Withdrawn JP2008052988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006226663A JP2008052988A (en) 2006-08-23 2006-08-23 Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006226663A JP2008052988A (en) 2006-08-23 2006-08-23 Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it

Publications (1)

Publication Number Publication Date
JP2008052988A true JP2008052988A (en) 2008-03-06

Family

ID=39236851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006226663A Withdrawn JP2008052988A (en) 2006-08-23 2006-08-23 Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it

Country Status (1)

Country Link
JP (1) JP2008052988A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272170A (en) * 2008-05-08 2009-11-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2013037864A (en) * 2011-08-06 2013-02-21 Denso Corp Nonaqueous electrolyte secondary battery
JP2015099770A (en) * 2013-10-15 2015-05-28 Tdk株式会社 Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
US9590266B2 (en) 2011-09-22 2017-03-07 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272170A (en) * 2008-05-08 2009-11-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2013037864A (en) * 2011-08-06 2013-02-21 Denso Corp Nonaqueous electrolyte secondary battery
US9276288B2 (en) 2011-08-06 2016-03-01 Denso Corporation Nonaqueous electrolyte rechargeable battery
US9590266B2 (en) 2011-09-22 2017-03-07 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery including the same
JP2015099770A (en) * 2013-10-15 2015-05-28 Tdk株式会社 Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same

Similar Documents

Publication Publication Date Title
JP5314885B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same
US8257870B2 (en) Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same
JP2008053212A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2008300126A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP5134770B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery including the same
JP4911888B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
JP2007200605A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it
WO2006038614A1 (en) Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same
JP2008041296A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same
WO2006109443A1 (en) Nonaqueous electrolyte solution for battery and nonaqueous electrolyte secondary battery comprising same
EP2157656B1 (en) Nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery comprising the same
JP2008041413A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same
JP2010050021A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP5093992B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
JP5738010B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2006286570A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery having it
JP2008300125A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2006286277A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having it
JP2008052988A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2010050026A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP2010015720A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2008041308A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110