TW200849332A - EUV mask blank - Google Patents

EUV mask blank Download PDF

Info

Publication number
TW200849332A
TW200849332A TW097112501A TW97112501A TW200849332A TW 200849332 A TW200849332 A TW 200849332A TW 097112501 A TW097112501 A TW 097112501A TW 97112501 A TW97112501 A TW 97112501A TW 200849332 A TW200849332 A TW 200849332A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
euv
mark
ultraviolet
Prior art date
Application number
TW097112501A
Other languages
Chinese (zh)
Other versions
TWI446405B (en
Inventor
Yoshiaki Ikuta
Ken Ebihara
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of TW200849332A publication Critical patent/TW200849332A/en
Application granted granted Critical
Publication of TWI446405B publication Critical patent/TWI446405B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7084Position of mark on substrate, i.e. position in (x, y, z) of mark, e.g. buried or resist covered mark, mark on rearside, at the substrate edge, in the circuit area, latent image mark, marks in plural levels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/067Construction details

Abstract

An EUV mask blank that realizes accurately pinpointing of the position of minute defects of about 30 nm sphere-equivalent diameter; and a relevant mask blank substrate and substrate with functional film. There is provided a substrate for reflective mask blank for EUV lithography, characterized in that on a film formation surface of the substrate, there are formed at least three marks satisfying the following requirements: (1) mark size ranging from 30 to 100 nm in sphere-equivalent diameter, and (2) on the film formation surface, three marks not lying on the same virtual straight line.

Description

200849332 九、發明說明 【發明所屬之技術領域】 本發明係關於在製造半導體等時所使用之 Extreme Ultra Violet:超紫外線)微影用反射型光 (以下在本說明書稱之爲「EUV光罩基底」)、及 光罩基底時所使用的基板(以下在本說明書中稱之 罩基底用基板」)、或在該基板上形成有反射層、 等功能膜之具有功能膜的基板。 此外,本發明係關於使用本發明之EUV光罩 光罩基底用基板、或具有功能膜之基板的缺點檢查 缺點修正方法。 此外,本發明係關於使用本發明之E U V光罩 EUV光罩之製造方法。 【先前技術】 隨著半導體元件的高積體化,微影用光罩基底 罩基底用基板所容許缺點的最大尺寸愈來愈小。具 ,以用以製作半間距3 2nm以下之半導體元件的微 而言,雖已硏究出使用波長約13.5nm之光的EUV 但是在EUV微影用光罩基底(以下稱之爲「EUV 底」)、及光罩基底用基板中,係要求不會存在有 當量球徑計爲約3 Onm程度以上的凹凸缺點。 但是,極爲難以實現完全不存在以當量球 3 〇nm之非常小的缺點之EUV光罩基底及EUV光罩 EUV ( 罩基底 製造該 爲「光 保護層 基底、 方法、 基底的 、及光 體而言 影技術 微影, 光罩基 大小以 徑計爲 基底用 200849332 基板。因此,已提出各種用以修正EUV光罩基底及光罩 基底用基板之缺點的方法。例如,以去除存在於光罩基底 用基板上之微粒的方法而言,已提出藉由局部照射雷射光 ,將基板局部加熱,且藉由基板/微粒間的熱膨脹差,將 微粒去除的方法(參照例如專利文獻1 )。此外,在EUV 光罩基底中,爲了消除因埋在反射多層膜中之微粒所造成 的段差(相位缺點),局部照射電子光束等,以藉由形成 矽化物而使體積收縮爲理由的段差消除方法已被探討(參 照例如專利文獻2 )。 爲了使用該等方法來修正缺點,必須正確掌握缺點的 位置。但是,目前的EUV光罩基底及光罩基底用基板一 般係在各種製程裝置(圖案化裝置、缺點修正裝置等)或 評估裝置(缺點檢查機等)中以基板外形爲基準予以定位 ,但是定位精度低,爲50至100 μηι左右,難以正確確定 出以當量球徑計爲3 Onm之非常小之缺點的位置。此外, 由於定位精度較低,因此在確定出缺點的位置時需要較長 的時間。 (專利文獻1 )日本專利特開2000-6 1 4 1 4號公報 (專利文獻2)日本專利特開2 006-5 9 83 5號公報 【發明內容】 (發明所欲解決之課題) 爲了解決上述之習知技術的問題點,目的在提供可正 確確定以當量球徑計爲3 Onm左右之微小缺點之位置的 -5- 200849332 EUV光罩基底、光罩基底用基板、及具有功能膜之基板。 此外,本發明的目的在提供使用該等EUV光罩基底 、光罩基底用基板、或具有功能膜之基板的缺點檢查方法 、缺點修正方法及EUV光罩之製造方法。 (解決課題之手段) 本發明爲達成上述目的,提供一種超紫外線(EUV ) 微影用反射型光罩基底用基板(以下稱之爲「本發明之光 罩基底用基板」),其特徵爲在基板的成膜面形成有滿足 下述(1 ) 、( 2 )之至少3個標記: (1 )標記大小以當量球徑計爲30至lOOnm ; (2 )在成膜面上,3個標記不在同一假想直線。 此外,本發明係提供一種具有超紫外線(EUV )微影 用反射層之基板(以下稱之爲「本發明之具有反射層之基 板」),係在基板上形成有用以反射超紫外光之反射層的 具有超紫外線(EUV )微影用反射層之基板,其特徵爲在 前述反射層表面形成有滿足下述(1) 、(2)之至少3個 標記: (1 )標記大小以當量球徑計爲30至l〇〇nm ; (2 )在反射層表面上,3個標記不在同一假想直線。 提供一種具有超紫外線(EUV )微影用反射層之基板 (以下稱之爲「本發明之具有反射層·保護層之基板」) ,係在基板上依序形成有用以反射超紫外光之反射層;及 用以保護該反射層的保護層的具有超紫外線(EUV )微影 200849332 用反射層之基板,其特徵爲在前述保護層表面形成有滿足 下述(1 ) 、( 2 )之至少3個標記: (1)標記大小以當量球徑計爲30至l〇〇nm; (2 )在保護層表面上,3個標記不在同一假想直線。 以下在本說明書中,有時亦將上述之本發明之光罩基 底用基板、本發明之具有反射層之基板及本發明之具有反 射層·保護層之基板總稱爲本發明之EUV光罩基底用基 板(廣義)。 此外,本發明係提供一種超紫外線(EUV )微影用反 射型光罩基底(A ),係在基板上依序形成有用以反射超 紫外光之反射層;及用以吸收超紫外光之吸收體層的超紫 外線(EUV )微影用反射型光罩基底,其特徵爲在前述吸 收體層表面形成有滿足下述(1 )、( 2 )之至少3個標記 (1 )標記大小以當量球徑計爲30至lOOnm ; (2 )在吸收體層表面上,3個標記不在同一假想直線 〇 此外,本發明係提供一種超紫外線(EUV )微影用反 射型光罩基底(B),係在基板上依序形成有用以反射超 紫外光之反射層;用以吸收超紫外光之吸收體層;以及對 檢查遮罩圖案時所使用之檢查光反射低之低反射層的超紫 外線(EUV )微影用反射型光罩基底,其特徵爲在前述低 反射層表面形成有滿足下述(1 )、( 2 )之至少3個標記 -7- 200849332 (1 )標記大小以當量球徑計爲30至100nm ; (2 )在低反射層表面上,3個標記不在同一假想直線 〇 以下在本說明書中,將前述EUV微影用反射型光罩 基底(A )及(B )總稱爲本發明之EUV光罩基底。 在本發明之EUV光罩基底中,最好在前述反射層與 前述吸收體層之間形成有用以保護前述吸收體層的保護層 〇 在本發明之EUV光罩基底、光罩基底用基板、具有 反射層之基板、及具有反射層·保護層之基板中,最好標 記係形成在圖案化時的曝光區域外。 此外,在本發明之光罩基底用基板中,最好前述標記 係形成在前述成膜面之108 XI 32mm□至149 XI 49mm□的 範圍內。 此外,在本發明之具有反射層之基板中,最好前述標 記係形成在前述反射層表面之 1 08 x 1 32mm □至 1 49x 1 49mm□的範圍內。 此外,在本發明之具有反射層·保護層之基板中,最 好前述標記係形成在前述保護層表面之108 XI 32mm□至 1 49 x 1 49mm□的範圍內。 此外,在本發明之EUV光罩基底(A)中,最好前述 標記係形成在前述吸收體層表面之 1 0 8 X 1 3 2mm □至 1 49 x 1 49mm□的範圍內。 此外,在本發明之EUV光罩基底(B)中,最好前述 200849332 標記係形成在前述低反射層表面之108 xl 32mm □至 1 49x 1 49mm□的範圍內。 在本發明之EUV光罩基底、光罩基底用基板、具有 反射層之基板、及具有反射層·保護層之基板中,最好前 述標記間的距離係相隔150nm以上。 此外,在本發明之光罩基底用基板中,最好另外在前 述基板的成膜面形成有用以識別前述標記的輔助標記。 此外,在本發明之具有反射層之基板中,最好另外在 前述反射層表面形成有用以識別前述標記的輔助標記。 此外,在本發明之具有反射層·保護層之基板中,最 好另外在前述保護層表面形成有用以識別前述標記的輔助 標記。 此外,在本發明之EUV光罩基底(A)中,最好另外 在前述吸收體層表面形成有用以識別前述標記的輔助標記 〇 此外,在本發明之EUV光罩基底(B)中,最好另外 在前述低反射層表面形成有用以識別前述標記的輔助標記 〇 此外,本發明係提供一種包含:使用形成在前述成膜 面的標記,來確定缺點之位置的步驟之本發明之光罩基底 用基板之缺點檢查方法。 此外’本發明係提供一種包含:使用形成在前述成膜 面的標記,來確定缺點之位置的步驟;以及修正在該步驟 中被確定了位置之缺點的步驟之本發明之光罩基底用基板 -9- 200849332 之缺點修正方法。 此外,本發明係提供一種包含:使用形成在前述反射 層表面的標記,來確定缺點之位置的步驟之本發明之具有 反射層之基板之缺點檢查方法。 此外,本發明係提供一種包含:使用形成在前述反射 層表面的標記,來確定缺點之位置的步驟;以及修正在該 步驟中被確定了位置之缺點的步驟之本發明之具有反射層 之基板之缺點修正方法。 此外,本發明係提供一種包含:使用形成在前述保護 層表面的標記,來確定缺點之位置的步驟之本發明之具有 反射層·保護層之基板之缺點檢查方法。 此外,本發明係提供一種包含:使用形成在前述保護 層表面的標記,來確定缺點之位置的步驟;以及修正在該 步驟中被確定了位置之缺點的步驟之本發明之具有反射層 •保護層之基板之缺點修正方法。 此外,本發明係提供一種包含:使用形成在前述吸收 體層表面的標記,來確定缺點之位置的步驟之本發明之 EUV光罩基底之缺點檢查方法。 此外,本發明係提供一種包含:使用形成在前述吸收 體層表面的標記,來確定缺點之位置的步驟;以及根據在 該步驟中所確定之缺點的位置,來微調在光罩基底進行圖 案化之位置的步驟之使用本發明之EUV光罩基底來製造 EUV微影用反射型光罩之方法(C )。 此外,本發明係提供一種包含:使用形成在前述低反 -10- 200849332 射層表面的標記,來確定缺點之位置的步驟之本發明之 EUV光罩基底之缺點檢查方法。 此外’本發明係提供一種包含:使用形成在前述低反 射層表面的標記,來確定缺點之位置的步驟;以及根據在 該步驟中所確定之缺點的位置,來微調在光罩基底進行圖 案化之位置的步驟之使用本發明之EUV光罩基底來製造 EUV微影用反射型光罩之方法(0)。 以下在本說明書中,將前述製造EUV微影用反射型 光罩之方法(C)及(D)稱爲本發明之EUV光罩之製造 方法。 (發明之效果) 根據本發明,當檢查EUV光罩基底或EUV光罩基底 用基板(廣義)時,可正確確定以當量球徑計爲30nm左 右之微小缺點的位置。 此外,根據本發明,當在進行EUV光罩基底或EUV 光罩基底用基板(廣義)之缺點修正時,由於正確確定以 當量球徑計爲3 Onm左右之微小缺點的位置,以修正被確 定了位置的缺點,因此可獲得不會發生在實施EUV微影 時有造成不良影響之虞的缺點的EUV光罩基底或EUV光 罩基底用基板(廣義)。 此外,根據本發明,由於正確確定以當量球徑計爲 3 0nm左右之微小缺點的位置,且根據被確定了的缺點的 位置,來微調在EUV光罩基底進行圖案化之位置,因此 -11 - 200849332 可獲得在對圖案造成影響的位置不會發生缺點、或者 對於圖案精度所造成的影響抑制爲最小限度的EUV 【貫施方式】 以下參照圖示,說明本發明。 <光罩基底用基板> 第1圖係顯示本發明之光罩基底用基板之一例的 圖。在第1圖中係顯示基板1的成膜面,亦即,在 光罩基底之製造步驟中在其上形成有多層反射膜及吸 層之側的基板表面。其中,爲了易於理解,第1圖中 構成要素有時係以與實際上不同的尺寸予以顯示。 在本發明之光罩基底用基板1中,爲了正確確定 於該基板1之成膜面的缺點(3 a,3 b,3 C )的位置, 成膜面上形成有滿足下述(1) 、(2)之至少3個標 2a, 2b, 2c) * (1 )標記大小以當量球徑計爲30至100nm ; (2 )在成膜面上,3個標記不在同一假想直線。 在本發明中,在光罩基底用基板1的成膜面形成 (2a,2b,2c )的目的在於當使用缺點檢查機來檢查 面時,以標記(2a,2b,2c )之相對位置而言,更具 言,以與連結標記(2a,2b,2c )間之軸(20,21 ) 對位置而言,用以確定基板1之成膜面中的缺點(3 a 缺點 光罩 俯視 EUV 收體 的各 存在 在該 記( 標記 成膜 體而 的相 ,3b -12- 200849332 ,3 c )的位置之故。 因此,標記(2a,2b,2c )係要求可藉由缺點 來進行檢測。因此,形成在光罩基底用基板1之成 標記(2a,2b,2c )係具有相對於成膜面變形爲凹 狀的部位。 在本發明中作爲標記大小的指標所使用的當 SEVD ( nm )係根據由上述成膜面變形爲凹狀或凸 位的體積,藉由下述式而予以計算。 SEVD = 2 ( 3 V/ 4π ) 1/3 在此,如第2圖所示,當將由成膜面所測定到 最大深度設爲h時,V係由成膜面相當於0.9h之深 之凹部的體積(nm3 )。當標記具有相對於成膜面 凸狀的部位時,由成膜面相當於〇. 9h ( h係由成膜 定到之凸部的最大高度)之高度爲止之凸部的體積 ,V係可藉由原子力顯微鏡(AFM )予以測定。 若標記(2a,2b,2c )的大小以當量球徑計! 以上,即可藉由缺點檢查機充分予以檢測。 另一方面,標記(2a,2b,2c )的大小以當量 超過1 OOnm時,藉由缺點檢查機所得之標記的檢測 度較低。例如,當以缺點檢查機檢查成膜面時,會 測標記的位置產生不均,標記的檢測位置重現性較 果,作爲與連結標記(2a,2b,2c )間之軸(20, 檢查機 膜面的 狀或凸 量球徑 狀之部 的凹部 度爲止 變形爲 面所測 。其中 r 3 Onm 球徑計 位置精 在所檢 低。結 21 )之 -13- 200849332 相對位置所確定的缺點(3 a,3 b,3 c )的位置精度較低。 亦即’當標記過大時,難以正確檢測標記的位置,作爲與 標記的相對位置所確定的缺點的位置反而不明確。 如日本專利特開2007-3 3 8 5 7號公報之記載所示,將 供製造管理等之用的識別碼或包含基板檢查資料資訊等之 標記設在光罩基底用基板乃在以往即已進行。但是,基於 通常必須以掃描型電子顯微鏡(SEM )或光學顯微鏡進行 檢測、以及必須包含識別碼、基板檢查資料資訊等資訊等 理由’以該等目的所設的標記相對較大,爲微米級的大小 。例如,在日本專利特開2 0 0 7 - 3 3 8 5 7號公報中已記載以 開口部寬度爲100至500 μιη、深度爲3至20 μιη的凹部作 爲標記而形成在基板。當以缺點檢測機檢查具有如上所示 之大小的標記的基板時,標記的檢測位置精度極低。例如 ,在所檢測標記的位置產生相當大的不均,標記的檢測位 置重現性極低,標記檢測位置的偏移量變爲超過+/-5 0 0 nm。 即使作爲與如上所示之檢測位置精度較低的標記的相 對位置而確定了缺點的位置,所確定缺點的位置精度極低 ,於用在缺點修正等時並不足夠。 若標記大小以當量球徑計爲3 0至1 〇 〇nm,則可利用缺 點檢查機予以檢測,而且標記的檢測位置精度佳,例如, 標記的檢測位置重現性佳,檢測位置的偏移量爲+/ -1 5 0 nm以下。更佳的標記大小以當量球徑計爲40至80nm。 關於這點,針對包含日本專利特開2 0 0 7 - 3 3 8 5 7號公 -14- 200849332 報所記載之供如標記之類的製造管理等之用的識別碼或基 板檢查資料資訊等之以往的標記、及本發明中在基板形成 在成fl吴面的標記’貫施將藉由缺點檢查機所得之檢測位置 重現性進行比較的比較實驗。 比較實驗 使用缺點檢查機,無須裝載(1 〇 a d ) /卸載(u η 1 〇 a d )在表面具有各種大小的標記(具有相對於基板表面變形 爲凸狀之部位者)的基板,反覆5次連續檢查,求出標記 檢測位置的偏移量。 在表1顯示有關習知之標記(像素1 2 8 6、當量球彳至( SEVD ) 2μπα )的結果。在表1中係顯示各次的檢查結果、 以第1次的檢查結果(檢測座標)爲基準時在進行第2 Μ 5次之檢查時之檢測座標的位移量、及使用下述式m $ & 的偏移量。 偏移二{ (X方向位移量)2+(y方向位移量)2丨0.5 在表1中,最大偏移量爲4555 nm。 -15- 200849332 (表1 ) 檢查 座標 位移量 X (mm) y (mm) x方向(mm) y方向(mm) 偏移量(nm) #1 -0.0707 0.7635 0 0 0 #2 -0.0710 0.7675 -250 4030 4038 #3 -0.0680 0.7626 2670 -940 2831 #4 -0.0714 0.7680 -640 4510 4555 #5 -0.0711 0.7622 -400 -1300 1360 在表2中係顯示關於本發明之標記(像素8.4、當量 球徑(SEVD). 7 0nm)之與上述相同的結果。在表2中, 最大偏移量爲206nm。 (表2 ) 檢查 座標 位移量 X (mm) y (mm) x方向(mm) y方向(mm) 偏移量(nm) #1 2.1168 0.7278 0 0 0 #2 2.1170 0.7675 200 50 206 #3 2.1167 0.7277 -50 -110 121 #4 2.1168 0.7277 50 -130 139 #5 2.1169 0.7277 100 -130 164 與該等相同地,針對像素1 286 (當量球徑(SEVD ) 約2μιη)至像素6.2 (當量球徑(SEVD) 64nm)之計9個 標記,求出檢測位置的偏移量。結果顯示於表3。 -16- 200849332 (表3 ) 像素 SEVD ( nm ) 最大偏移量(nm ) 6.2 64 277 7.8 69 242 8.4 70 206 20 119 1101 34 233 1251 44 372 1569 204 約4 μ m 3 5 73 693 約 1 2 μ m 1 1248 1286 2 μιη 45 5 5 關於像素 6.2 (當量球徑(SEVD ) 64nm )至像素 44 (當量球徑(SEVD ) 3 70nm )之計6個標記,將最大偏移 量與SEVD的關係顯示於第3圖。由第3圖可知,若爲 SEVD 10 Onm以下(像素10以下)的標記,最大偏移量爲 3 0 0nm (因此偏移量爲+ / -150nm以下)時,乃爲不會產 生問題的程度(level)。另一方面,若爲 SEVD200nm以 上(像素20以上)的標記,最大偏移量係超過Ιμιη (因 此偏移量超過+ /- 500nm)。 此外,若爲SEVD爲較大的標記,當SEVD爲約4μιη (像素2 04 )之標記時,最大偏移量爲3·6μιη,當 SEVD 爲約12μηι (像素693 )的標記時,最大偏移量爲1 Ιμιη, 最大偏移量爲更大。 其中,當考慮到當以缺點檢查機檢測出標記時之檢測 位置重現性爲+/ -150nm以下時,各標記(2a,2b,2c) 間的距離係以相離1 5 Onm以上爲佳,以相離1 cm以上爲 -17- 200849332 較佳,以相離5cm以上爲更佳。 以與連結標記(2a,2b ’ 2c )間之軸(20,21 對位置而言,爲了確定基板1之成膜面中之缺點( ,3 c )的正確位置,至少需要2軸。因此,在成膜 設置至少3個標記(2a,2b,2c ),而且該等3個 2a ’ 2b,2c)必須配置成在成膜面上不在同一假想i 其中,形成在成膜面的標記數並非限定爲3個 爲4個以上。當標記數爲4個以上時,若配置成在 上’該等標記之中的3個標記不在同一假想直線即1 標記(2a,2b,2c )只要其大小以當量球徑言-至1 0 0 nm,則其形狀並未特別予以限定,在成膜面 面形狀可爲三角形、矩形、或其他多角形形狀,亦 圓形、將3條線予以平行配置的川字形狀、2條線 的十字形狀之類之以複數個要素構成1個標記。但 以缺點檢查機所造成之標記的檢測位置精度的方面 成膜面中的平面形狀以圓形爲佳。 在用於確定缺點位置之標記的周圍係最好形成 別該標記的輔助標記。用在確定缺點位置的標記由 小以虽里球徑g十爲 3 0至 1 〇 〇 n m,因此較難以進行 缺點檢查機進行檢查之前確認有無標記,亦即,確 檢查之面是否爲形成有標記之側,或者難以大略確 有標記的位置。藉由在用以確定缺點位置之標記的 成輔助標記’較容易確認有無標記、或大略確定形 記的位置,而縮短缺點檢查機進行檢查所需時間。 )的相 3a,3b 面必須 標記( 宣線。 ,亦可 成膜面 可。 卜爲3 0 中的平 可爲橢 呈交叉 是,若 來看, 用以識 於其大 在藉由 認進行 定形成 周圍形 成有標 -18- 200849332 因此,輔助標記係必須爲可利用掃描型電子顯微鏡( SEM )或光學顯微鏡輕易辨識出其存在的大小。在此,所 謂可利用掃描型電子顯微鏡輕易辨識出其存在的充分大小 係指以當量球徑計爲超過50 Onm的大小,所謂可利用光學 顯微鏡輕易辨識出其存在的充分大小係指以當量球徑計爲 超過5 00nm的大小。輔助標記的大小係以當量球徑1至 1 Ομιη左右爲佳,以2至6μηι左右爲更佳。 此外,以不會損及因缺點檢查機所造成之標記的檢測 位置精度的方式,必須由標記隔出充分間隔來形成輔助標 記。標記與輔助標記的距離係以不會損及因缺點檢查機所 造成之標記之檢測位置精度的ΙΟμπι以上爲佳,以20μηι 以上爲更佳。 在第4圖中顯示標記與輔助標記之配置之一例。在第 4圖中係在用在確定缺點位置之當量球徑30至l〇〇nm的 標記2的周圍,以整體呈大致十字形的方式形成有4個輔 助標記4。在此,輔助標記4之長邊方向的長度例如爲 ΙΟΟμιη。此外’標記2與輔助標記4的距離例如爲ι〇μιη, 以5 μ m以上爲佳。 輔助標記的形狀及配置並非限定於圖示者,可識別標 記而且可適當選擇較佳形狀及配置。例如,可僅爲第4圖 中在標記2的上下所形成的2個輔助標記4,亦可僅爲在 標記2的左右所形成的2個輔助標記4。此外,亦可以使 標記位在其內部的方式,形成呈圓形、橢圓形、三角形、 四角形、六角形、八角形等形狀的輔助標記。 -19- 200849332 形成在基板1之成膜面的標記(2a,2b,2c )係以當 量球徑計爲30至10 〇nm的大小,因此’當在圖案化時的 曝光區域內,更具體而言,在使用該基板1所製造之光罩 基底在圖案化時的曝光區域1 1內存在有標記(2a ’ 2b ’ 2c )時,會有標記(2a,2b,2c )本身形成爲光罩基底之 缺點之虞。因此,標記(2a,2b,2c )係以形成在圖案化 時之曝光區域外爲佳。例如,在現行規格中,若爲 152.〇xl52.0mm[U (縱 152.0mmx 横 152.0mm)的基板,圖 案化時的曝光區域爲l〇8xl 32mm□(第1圖中以線11所 示之區域),因此以在該區域之更爲外側形成標記爲佳。 其中,該曝光區域通常係位在基板的中心。 另一方面,藉由把持基板之情況等,基板之外端附近 與基板其他部位相比較,缺點檢查機的檢測精度會變低。 例如,若爲使用在檢查152.0x152.Omm□之基板的既有缺 點檢查機,品質保證區域爲1 49 X 149mm□(第1圖中以線 1 2所示之區域),因此以在該區域內形成標記爲佳。 因此,按照關於152.0xl52.0mm□之基板的現行規格 ,使用既有的缺點檢查機來檢測缺點時,以在1 08 X 1 3 2mm □至1 49 X 1 4 9mm□的區域(第1圖中,線1 1與線12之間 的區域)設置標記爲佳。 以上,關於在基板之成膜面形成標記的位置,根據有 關1 52.0 x 1 52· 〇mm□的基板的現行規格及既有之缺點檢查 機的品質保證區域加以説明,但是若基板尺寸、圖案化時 之曝光區域的相關規格、所使用缺點檢查機的品質保證區 -20- 200849332 域等不同時,可視該等條件而適當選擇。 在基板1的成膜面形成標記(2a,2b,2c )的方法只 要不會對於形成基板之標記的部位以外造成不良影響,而 可在基板1的成膜面形成以當量球徑計爲30至lOOnm之 大小的標記,則並未特別有所限定。列舉如:在基板1的 成膜面的所希望位置照射雷射光,藉由照射部位的昇華、 熔解、或體積收縮、或該等二者以上之組合,而形成具有 由基板1的成膜面變形爲凹狀的部位的標記的方法、藉由 微影製程形成標記的方法、及藉由因微小壓子所造成的凹 口( i n d e n t a t i ο η )而形成標記的方法。 基板1係要求滿足作爲EUV光罩基底用之基板的特 性。因此,基板1係具有低熱膨脹係數(具體而言,2(TC 的熱膨脹係數以〇 士 〇.〇5xl(T7/°C爲佳,以0±0.03χ10·7/ °C爲尤佳),以平滑性、平坦度、及對於用在EUV光罩基 底或圖案化後之EUV光罩的洗淨等之洗淨液的耐性佳者 爲佳。以基板1而言,具體而言係使用具有低熱膨脹係數 的玻璃,例如Si02-Ti02系玻璃等,但並非限定於此,亦 可使用將β石英固熔體予以析出之結晶化玻璃或石英玻璃 或矽或金屬等基板。 基板1由於具有表面粗糙度(rms) 0.15nm以下之平 滑表面及lOOnm以下之平坦度在圖案化後的EUV光罩中 ’獲得高反射率及轉印精度,因此較爲理想。 基板1的大小或厚度等係依光罩之設計値等予以適當 決定,但最爲一般的是外形爲1 52.0 x 1 52.Omm□、厚度爲 -21 - 200849332 6.3 5 mm 者。 <具有反射層之基板> 在本發明之具有反射層之基板中,係在基板上形成用 有以反射EUV光的反射層,在該反射層表面形成有滿足 下述(1 ) 、( 2 )之至少3個標記: (1 )標記大小以當量球徑計爲30至lOOnm ; (2 )在反射層表面上,3個標記不在同一假想直線。 在此,形成在反射層表面的標記係除了形成有標記的 部位爲反射層表面以外,由於與上述形成在基板之成膜面 的標記相同,故省略記載。其中,在形成於反射層表面之 標記周圍亦以形成用以識別該標記的輔助標記爲佳。 此外,關於基板,除了在成膜面未形成標記以外,其 餘與上述相同,故省略記載。 反射層只要具有所希望之特性者作爲EUV光罩基底 的反射層,即無特別有所限定。在此,反射層尤其需求的 特性係高EUV光線反射率。具體而言,當將EUV光之波 長區域的光線照射在反射層表面時,以波長13. 5 rim附近 之光線反射率的最大値爲6 0 %以上爲佳,以6 5 °/。以上爲較 佳。 反射層由於可達成高EUV光線反射率,因此通常係 使用交替複數次疊層高折射率層與低折射率層而成的多層 反射膜作爲反射層來使用。在形成反射層的多層反射膜中 ,在高折射率層係廣泛使用Mo,在低折射率層係廣泛使 -22- 200849332 用Si。亦即,Mo/ Si多層反射膜最爲一般。但是,多層 反射膜並非限定於此,亦可使用Ru/Si多層反射膜、Mo /Be多層反射膜、Mo化合物/ Si化合物多層反射膜、Si /Mo/Ru多層反射膜、Si/Mo/Ru/Mo多層反射膜、 Si/Ru/Mo/Ru多層反射膜。 構成形成反射層之多層反射膜的各層的膜厚及層的反 覆單位的數目係可按照所使用之膜材料及反射層所要求的 EUV光線反射率而適當選擇。若以Mo/ Si反射膜爲例, 爲了形成爲E U V光線反射率的最大値爲6 0 %以上之反射 層,多層反射膜係使膜厚 2.3±0.1nm的 Mo層、膜厚 4.5 ±0.1nm的Si層以反覆單位數爲30至60的方式予以疊 層即可。 其中,構成形成反射層之多層反射膜的各層係使用磁 控濺鍍法、離子束濺鍍法等周知的成膜方法,以形成爲所 希望厚度的方式予以成膜即可。例如,當使用離子束濺鍍 法而形成S i / Μ 〇多層反射膜時,使用s i靶材作爲靶材, 使用Ar氣體(氣體壓力1.3xlO-2Pa至2.7xl(T2Pa)作爲 擺鑛氣體’以離子加速電壓300至1500V、成膜速度〇.〇3 至0.30nm/sec形成爲厚度4.5nm的方式形成Si膜,接著 ,使用Mo靶材作爲靶材,使用Ar氣體(氣體壓力 1.3xl(T2Pa至2.7xl(T2Pa)作爲濺鍍氣體,以離子加速電 壓300至150 0V、成膜速度〇·〇3至〇· 3 0nm/ sec形成爲厚 度2.3 nm的方式形成Mo膜爲佳。以此爲1個周期,使Si 膜及Mo膜疊層40至50周期,藉此形成有Si/M〇多層 -23- 200849332 反射膜。 爲了防止反射層表面氧化,形成反射層之多層反射膜 的最上層係以形成爲難以氧化之材料的層爲佳。難以氧化 之材料的層係具有作爲反射層的覆蓋層的功能。作爲覆蓋 層發揮功能之難以氧化之材料的層的具體例係可例示Si 層。當形成反射層之多層反射膜爲Si/ Mo膜時,藉由將 最上層形成爲Si層,可使該最上層作爲覆蓋層而發揮功 能。此時,覆蓋層的膜厚係以11. 〇±l. 〇nm爲佳。 <具有反射層·保護層之基板> 在本發明之具有反射層·保護層之基板中,係在基板 上依序形成有用以反射EUV光的反射層、及用以保護該 反射層的保護層, 在該保護層表面形成有滿足下述(1 )、( 2 )之至少 3個標記: (1 )標記大小以當量球徑計爲30至lOOnm ; (2 )在保護層表面上,3個標記不在同一假想直線。 在此,形成在保護層表面的標記係除了形成有標記的 部位爲保護層表面以外,由於與上述形成在基板之成膜面 的標記相同,故省略記載。其中,在形成在保護層表面的 標記周圍亦形成用以識別該標記的輔助標記爲佳。 此外,關於基板,除了在成膜面未形成標記以外,其 餘係與上述相同,故省略記載。 此外,關於反射層,除了在反射層表面未形成標記以 -24 - 200849332 外,其餘係與上述相同,故省略記載。 保護層係藉由鈾刻製程,通常係藉由乾式蝕刻蓼 而圖案形成於EUV光罩基底的吸收體層時,以使S 不會因蝕刻製程而受到損傷的方式,以保護反射層赁 而設。因此,以保護層的材質而言,係選擇難以因® 層的蝕刻製程而受到影響,亦即選擇該鈾刻速度比® 層慢,而且難以因該飩刻製程而受到損傷的物質。A 該條件的物質而言,例示如Cr、Al、Ru、Ta及該等 化物、以及Si02、Si3N4、Al2〇3或該等之混合物。韵 中,亦以Ru、CrN及Si〇2爲佳,以Ru爲特佳。 保護層的厚度以1至60nm爲佳,以1至20nm 佳。 保護層係使用磁控濺鍍法、離子束濺鍍法等周知 膜方法來進行成膜。當藉由磁控濺鍍法來形成Ru膜0夸 用Ru靶材作爲靶材,使用Ar*氣體(氣體壓力1.0x1 < 至lOxlO^Pa)作爲濺鍍氣體,以投入電力30W至 、成膜速度5至50nm/ min形成爲厚度2至5nm的 進行成膜爲佳。 < EUV光罩基底> 在本發明之EUV光罩基底中,係在基板上依序 有用以反射EUV光的反射層、及用以吸收EUV光的 體層, 在該吸收體層表面形成有滿足下述(1) 、(2) !程, :射層 ;目的 :收體 :收體 、滿足 ·:之氮 :等之 爲較 丨的成 ;,使 Γ1 Pa 500 W 方式 形成 吸收 之至 -25- 200849332 少3個標記: (1 )標記大小以當量球徑計爲30至100nm ; (2 )在吸收體層表面上,3個標記不在同一假想直線 〇 在此,形成在吸收體層表面的標記係除了形成有標記 的部位爲吸收體層表面以外,由於與上述形成在基板之成 膜面的標記相同,因此省略記載。其中,在形成在吸收體 層表面之標記周圍亦形成用以識別該標記的輔助標記爲佳 〇 此外,關於基板,除了在成膜面未形成標記以外,其 餘係與上述相同,故省略記載。關於反射層亦除了在反射 層表面未形成標記以外,其餘係與上述相同,故省略記載 〇 在本發明之EUV光罩基底中,亦可在反射層與吸收 體層之間設置用以保護該反射層的保護層。保護層係除了 在表面未形成標記以外,其餘係與上述相同,故予以省略 〇 吸收體層所特別要求的特性係EUV光線反射率爲極 低。具體而言,當將EUV光的波長區域的光線照射在吸 收體層表面時,以波長13.5 nm附近的最大光線反射率爲 0.5 %以下爲佳,以0.1 %以下爲更佳。 吸收體層係由對於EUV光之吸收係數較高的材料所 構成,具體而言,列舉如含有Cr或Ta的層,例如,含有 Cr或Ta的氮化物的層、或含有Ta及Hf的層(TaHf層) -26- 200849332 、含有Ta、B、Si及N的層(TaBSiN層)。 以吸收體層而言,只要滿足上述特性,即無特別有所 限定,但其中,TaHf層及TaBSiN層的EUV光線反射率 極低,而且層的結晶狀態形成爲非晶質,吸收體層表面的 平滑性佳,故較爲理想。當吸收體層表面的表面粗糙度較 大時,形成在吸收體層之圖案的邊緣粗糙度會變大,圖案 的尺寸精度會變差。隨著圖案變得愈微細,邊緣粗糙度的 影響愈爲明顯,因此要求吸收體層表面爲平滑。 若吸收體層爲TaHf層或TaBSiN層,由於形成爲非晶 質構造的膜或微結晶構造的膜,因此吸收體層表面的表面 粗糙度(rms)爲0.5nm以下,且吸收體層表面十分平滑 ,因此不會有因邊緣粗糙度的影響而使圖案的尺寸精度惡 化之虞。吸收體層表面的表面粗糙度(rms )以0.4nm以 下爲較佳,以〇 · 3 n m以下爲更佳。 其中,在說明書中,所謂「結晶狀態爲非晶質」的情 形’係除了形成爲完全未具有結晶構造之非晶質構造以外 ’速包含微結晶構造者。吸收體層若爲非晶質構造的膜或 微結晶構造的膜,則吸收體層表面的平滑性佳。 其中,吸收體層的結晶狀態爲非晶質,亦即,爲非晶 質構造、或爲微結晶構造係可藉由X線繞射(XRD )法來 確認。若吸收體層的結晶狀態爲非晶質構造或微結晶構造 ,在藉由XRD測定所得的繞射峰値中未見到急劇的( sharp)峰値(peak)。 當吸收體層爲TaHf層時,最好以以下記載之特定比 -27- 200849332 例含有Ta及Hf。 吸收體層的Hf含有率爲20至60at % (atomic percent ),吸收體層的結晶狀態易形成爲非晶質,且吸收體表面 的平滑性佳,故較爲理想。此外,吸收體層具有EUV光 的光線反射率、及圖案檢查光之波長範圍的光線反射率較 低等以EUV光罩基底而言爲優異的特性。 吸收體層的Hf含有率係以30至50at%爲較佳,以30 至45 at%爲更佳。 在吸收體層中,除了 Hf以外的殘部係以Ta爲佳。因 此,吸收體層中之Ta含有率係以40至8 Oat%爲佳。吸收 體層中之Ta含有率係以50至70at%爲較佳,以55至 70at%爲更佳。 在吸收體層中,Ta與Hf的組成比(Ta : Hf的原子比 )係以7: 3至4: 6爲較佳,以6·5: 3.5至4.5: 5.5爲 更佳,以6 : 4至5 : 5爲特佳。200849332 IX. EMBODIMENT OF THE INVENTION [Technical Field] The present invention relates to an Extreme Ultra Violet (Ultraviolet) lithographic reflective light used in the manufacture of semiconductors and the like (hereinafter referred to as "EUV reticle substrate" in this specification. The substrate used in the base of the mask (hereinafter referred to as a substrate for a cover substrate in the present specification) or a substrate having a functional film such as a reflective layer or the like formed on the substrate. Further, the present invention relates to a method for correcting the defect of the defect of the substrate for using the EUV reticle of the present invention or the substrate having the functional film. Further, the present invention relates to a method of manufacturing an E U V mask EUV mask using the present invention. [Prior Art] With the high integration of semiconductor elements, the maximum size of the defects of the reticle reticle base substrate for lithography is becoming smaller and smaller. In order to produce a semiconductor element having a half-pitch of 32 nm or less, EUV using a light having a wavelength of about 13.5 nm has been studied, but a mask base for EUV lithography (hereinafter referred to as "EUV bottom" has been studied. In the substrate for a reticle base, it is required that there is no unevenness in the equivalent spherical diameter of about 3 nm or more. However, it is extremely difficult to realize an EUV mask substrate and an EUV mask EUV which are completely free from the extremely small disadvantage of an equivalent sphere of 3 〇 nm (the cover substrate is manufactured as a "photoprotective layer substrate, method, substrate, and light body". The lithography of the photographic technique, the size of the reticle base is used as the substrate for the 200849332 substrate. Therefore, various methods for correcting the defects of the EUV reticle substrate and the substrate for the reticle substrate have been proposed. For example, to remove the presence of the reticle In the method of partially irradiating the fine particles on the substrate, a method of locally heating the substrate by partial irradiation of the laser light and removing the fine particles by the difference in thermal expansion between the substrate and the fine particles has been proposed (see, for example, Patent Document 1). In the EUV mask substrate, in order to eliminate the step (phase defect) caused by the particles buried in the reflective multilayer film, the electron beam is partially irradiated, and the step is eliminated by forming a telluride to cause volume shrinkage. It has been discussed (refer to, for example, Patent Document 2). In order to correct the disadvantages using these methods, it is necessary to correctly grasp the position of the defect. However, the current E The substrate for the UV reticle substrate and the reticle substrate is generally positioned in various process devices (patterning device, defect correction device, etc.) or evaluation device (defective inspection machine, etc.) based on the shape of the substrate, but the positioning accuracy is low, Between 50 and 100 μm, it is difficult to correctly determine the position of the very small defect of 3 Onm in terms of equivalent spherical diameter. Moreover, since the positioning accuracy is low, it takes a long time to determine the position of the defect. Japanese Patent Laid-Open No. 2000-6 1 4 1 4 (Patent Document 2) Japanese Patent Laid-Open No. Hei 2 006-5 9 83 5 (Summary of the Invention) A problem of the prior art is to provide a 5-200849332 EUV mask substrate, a substrate for a mask substrate, and a substrate having a functional film, which can accurately determine a position where a slight defect of about 3 Onm is equivalent to a spherical diameter. Further, an object of the present invention is to provide a defect inspection method, a defect correction method, and an EUV mask using the EUV mask substrate, the substrate for a mask substrate, or a substrate having a functional film. (Means for Solving the Problem) In order to achieve the above object, the present invention provides a substrate for a reflective reticle base for ultra-ultraviolet (EUV) lithography (hereinafter referred to as "the substrate for a reticle substrate of the present invention"). It is characterized in that at least three marks satisfying the following (1) and (2) are formed on the film formation surface of the substrate: (1) the mark size is 30 to 100 nm in terms of equivalent spherical diameter; (2) on the film formation surface, Further, the present invention provides a substrate having a reflective layer for ultra-ultraviolet (EUV) lithography (hereinafter referred to as "the substrate having a reflective layer of the present invention"), which is formed on a substrate. A substrate having a reflective layer for ultra-ultraviolet (EUV) lithography for reflecting a reflective layer of ultra-ultraviolet light, characterized in that at least three marks satisfying the following (1) and (2) are formed on the surface of the reflective layer: (1) The mark size is 30 to 10 nm in terms of equivalent spherical diameter; (2) On the surface of the reflective layer, the three marks are not in the same imaginary line. Provided is a substrate having a reflective layer for ultra-violet (EUV) lithography (hereinafter referred to as "the substrate having a reflective layer and a protective layer of the present invention"), which is sequentially formed on a substrate to reflect the reflection of ultra-ultraviolet light. a substrate having a reflective layer for ultra-ultraviolet (EUV) lithography 200849332 for protecting a protective layer of the reflective layer, characterized in that at least the following (1) and (2) are formed on the surface of the protective layer. Three marks: (1) The mark size is 30 to 10 nm in terms of equivalent spherical diameter; (2) On the surface of the protective layer, the three marks are not in the same imaginary line. Hereinafter, in the present specification, the substrate for a mask base of the present invention, the substrate having the reflective layer of the present invention, and the substrate having the reflective layer and the protective layer of the present invention may be collectively referred to as the EUV mask substrate of the present invention. Use a substrate (generalized). In addition, the present invention provides a reflective reticle substrate (A) for ultra-ultraviolet (EUV) lithography, which sequentially forms a reflective layer for reflecting ultra-ultraviolet light on a substrate; and absorbs absorption of ultra-ultraviolet light. a super-ultraviolet (EUV) lithography reflective reticle substrate for a bulk layer, characterized in that at least three marks (1) satisfying the following (1) and (2) are formed on the surface of the absorber layer with an equivalent spherical diameter The measurement is 30 to 100 nm; (2) on the surface of the absorber layer, the three marks are not in the same imaginary line. In addition, the present invention provides a reflective reticle substrate (B) for ultra-ultraviolet (EUV) lithography, which is attached to the substrate. Forming a reflective layer for reflecting ultra-ultraviolet light; an absorber layer for absorbing ultra-ultraviolet light; and an ultra-violet (EUV) lithography for detecting a mask pattern for detecting a low-reflection layer with low light reflection A reflective reticle substrate characterized in that at least three marks satisfying the following (1) and (2) are formed on the surface of the low-reflection layer, and the mark size is 30 to an equivalent spherical diameter. 100nm; (2) in the low reflection layer The three markers not on the same square the imaginary line in the present specification, the EUV lithography, and (B) of the present invention is a general term of a reflective mask substrate (A) EUV photomask substrate. In the EUV reticle substrate of the present invention, it is preferable that a protective layer for protecting the absorber layer is formed between the reflective layer and the absorber layer, and the EUV reticle substrate and the reticle substrate for the present invention have reflection. In the substrate of the layer and the substrate having the reflective layer and the protective layer, it is preferable that the mark is formed outside the exposed region at the time of patterning. Further, in the substrate for a reticle base of the present invention, it is preferable that the mark is formed in the range of 108 XI 32 mm □ to 149 XI 49 mm □ of the film formation surface. Further, in the substrate having the reflective layer of the present invention, it is preferable that the mark is formed in the range of 1 08 x 1 32 mm □ to 1 49 x 1 49 mm □ of the surface of the reflective layer. Further, in the substrate having the reflective layer/protective layer of the present invention, it is preferable that the above-mentioned mark is formed in the range of 108 XI 32 mm □ to 1 49 x 1 49 mm □ of the surface of the protective layer. Further, in the EUV reticle base (A) of the present invention, it is preferable that the mark is formed in the range of from 10 8 X 1 3 2 mm □ to 1 49 x 1 49 mm □ of the surface of the absorber layer. Further, in the EUV reticle base (B) of the present invention, it is preferable that the aforementioned 200849332 mark is formed in the range of 108 x l 32 mm □ to 1 49 x 1 49 mm □ of the surface of the low reflection layer. In the EUV mask substrate, the substrate for a mask base, the substrate having a reflective layer, and the substrate having the reflective layer and the protective layer of the present invention, it is preferable that the distance between the marks is 150 nm or more. Further, in the substrate for a reticle base of the present invention, it is preferable that an auxiliary mark for identifying the mark is formed on the film formation surface of the substrate. Further, in the substrate having the reflective layer of the present invention, it is preferable to additionally form an auxiliary mark for identifying the aforementioned mark on the surface of the aforementioned reflective layer. Further, in the substrate having the reflective layer/protective layer of the present invention, it is preferable to additionally form an auxiliary mark for identifying the aforementioned mark on the surface of the protective layer. Further, in the EUV reticle base (A) of the present invention, it is preferable to additionally form an auxiliary mark for identifying the aforementioned mark on the surface of the aforementioned absorber layer. Further, in the EUV reticle base (B) of the present invention, it is preferable. Further, an auxiliary mark for identifying the aforementioned mark is formed on the surface of the low reflection layer. Further, the present invention provides a reticle substrate of the present invention comprising the step of determining the position of the defect using the mark formed on the film formation surface. The defect inspection method using the substrate. Further, the present invention provides a substrate for a reticle substrate of the present invention comprising: a step of determining a position of a defect using a mark formed on the film formation surface; and a step of correcting a defect in which the position is determined in the step. -9- 200849332 The shortcomings correction method. Further, the present invention provides a method for inspecting a defect of a substrate having a reflective layer of the present invention comprising the step of determining the position of a defect using a mark formed on a surface of the above-mentioned reflective layer. Further, the present invention provides a substrate comprising a reflective layer of the present invention comprising the steps of determining a position of a defect using a mark formed on a surface of the reflective layer; and a step of correcting a defect in which the position is determined in the step. The shortcomings of the correction method. Further, the present invention provides a method for inspecting defects of a substrate having a reflective layer and a protective layer of the present invention comprising the step of determining the position of a defect using a mark formed on the surface of the protective layer. Further, the present invention provides a method comprising: a step of determining a position of a defect using a mark formed on a surface of the protective layer; and a reflective layer of the present invention for correcting a step of determining a position of the defect in the step. The method for correcting the defects of the substrate of the layer. Further, the present invention provides a defect inspection method of the EUV reticle substrate of the present invention comprising the step of determining the position of the defect using the mark formed on the surface of the aforementioned absorber layer. Further, the present invention provides a step of: determining a position of a defect using a mark formed on a surface of the absorber layer; and fine-tuning a pattern on the mask substrate according to a position determined by the defect in the step The step of locating the method (C) for producing a reflective reticle for EUV lithography using the EUV reticle substrate of the present invention. Further, the present invention provides a method for inspecting the defect of the EUV reticle substrate of the present invention comprising the step of determining the position of the defect using the mark formed on the surface of the above-mentioned low-reverse -10-200849332. Further, the present invention provides a step of: determining a position of a defect using a mark formed on a surface of the aforementioned low-reflection layer; and fine-tuning patterning on the reticle base according to a position at which the defect is determined in the step The method of position is to use the EUV reticle substrate of the present invention to manufacture a reflective reticle for EUV lithography (0). Hereinafter, in the present specification, the methods (C) and (D) for producing the reflective mask for EUV lithography are referred to as the manufacturing method of the EUV mask of the present invention. (Effect of the Invention) According to the present invention, when the EUV mask base or the EUV mask base substrate (generalized) is inspected, the position of a minor defect of about 30 nm in terms of equivalent spherical diameter can be correctly determined. Further, according to the present invention, when the defect of the EUV mask base or the EUV mask base substrate (generalized) is corrected, since the position of the minor defect of about 3 Onm in terms of the equivalent spherical diameter is correctly determined, the correction is determined. The disadvantage of the position is that an EUV mask base or an EUV mask base substrate (generalized) which does not have the disadvantage of causing adverse effects when performing EUV lithography can be obtained. Further, according to the present invention, since the position of the minor defect of about 30 nm in terms of the equivalent spherical diameter is correctly determined, and the position where the EUV mask base is patterned is finely adjusted according to the position of the determined defect, -11 - 200849332 It is possible to obtain an EUV that does not cause a defect at a position that affects a pattern, or that minimizes the influence on pattern accuracy. [Embodiment] Hereinafter, the present invention will be described with reference to the drawings. <Photomask substrate substrate> Fig. 1 is a view showing an example of the photomask base substrate of the present invention. In Fig. 1, the film formation surface of the substrate 1 is shown, that is, the surface of the substrate on which the multilayer reflection film and the suction layer are formed in the manufacturing process of the mask substrate. However, in order to facilitate understanding, the constituent elements in Fig. 1 may be displayed in a size different from the actual size. In the substrate 1 for a reticle base of the present invention, in order to accurately determine the position (3 a, 3 b, 3 C ) of the film formation surface of the substrate 1, the film formation surface is formed to satisfy the following (1). And (2) at least three labels 2a, 2b, 2c) * (1) The mark size is 30 to 100 nm in terms of equivalent spherical diameter; (2) On the film formation surface, the three marks are not in the same imaginary line. In the present invention, the purpose of forming (2a, 2b, 2c) on the film formation surface of the substrate 1 for a reticle base is to use the defect inspection machine to inspect the surface, with the relative positions of the marks (2a, 2b, 2c). More specifically, with respect to the position (20, 21) between the joint marks (2a, 2b, 2c), the position is used to determine the defects in the film formation surface of the substrate 1 (3 a disadvantage reticle overhead EUV Each of the bodies exists in the position of the mark (the phase marked with the film, 3b -12- 200849332, 3 c ). Therefore, the mark (2a, 2b, 2c) is required to be detected by the defect. Therefore, the marks (2a, 2b, 2c) formed on the substrate 1 for the mask base have a portion that is deformed into a concave shape with respect to the film formation surface. In the present invention, SEVD (which is used as an index of the mark size) The nm is calculated from the volume deformed into a concave shape or a convex position by the above-mentioned film formation surface by the following formula: SEVD = 2 ( 3 V / 4π ) 1/3 Here, as shown in Fig. 2, When the maximum depth measured by the film formation surface is h, the V system is a volume (nm3) of the concave portion corresponding to a depth of 0.9 h from the film formation surface. When the mark has a convex portion with respect to the film formation surface, the film formation surface corresponds to the volume of the convex portion of 〇. 9h (h is the maximum height of the convex portion determined by the film formation), and the V system can be It is measured by atomic force microscopy (AFM). If the size of the mark (2a, 2b, 2c) is based on the equivalent spherical diameter! Above, it can be fully detected by the defect inspection machine. On the other hand, the mark (2a, 2b, When the size of 2c) exceeds 100 nm, the degree of detection of the mark obtained by the defect inspection machine is low. For example, when the film formation surface is inspected by the defect inspection machine, the position of the mark is unevenly detected, and the mark is detected. The position reproducibility is as a result, and is measured as a surface between the joint mark (2a, 2b, 2c) (20, the shape of the film surface or the concave portion of the convex spherical shape is measured as a surface). 3 Onm spherometer position is fine in the inspection. The positional accuracy of the relative position (3 a, 3 b, 3 c ) determined by the relative position of the junction 21)-13-200849332 is low. That is, when the mark is too large, It is difficult to correctly detect the position of the mark as a relative position to the mark The position of the identified defect is not clear. As shown in Japanese Patent Laid-Open Publication No. 2007-3 3 8 5, an identification code for manufacturing management or the like or a mark including substrate inspection data information is set. The substrate for a mask base has been conventionally performed. However, it is usually necessary to perform detection by a scanning electron microscope (SEM) or an optical microscope, and it is necessary to include information such as an identification code and substrate inspection data information. The markings are relatively large and are of the order of microns. For example, a recess having a width of 100 to 500 μm in the opening portion and a depth of 3 to 20 μm is formed on the substrate as a mark in Japanese Patent Laid-Open Publication No. H07- 3 3 857. When the substrate having the mark of the size shown above is inspected by the defect detecting machine, the detection position accuracy of the mark is extremely low. For example, a considerable unevenness is generated at the position of the detected mark, the detection position of the mark is extremely reproducible, and the offset of the mark detection position becomes more than +/- 50,000 nm. Even if the position where the defect is determined as the relative position of the mark having the lower detection position accuracy as described above, the positional accuracy of the determined defect is extremely low, which is not sufficient when used for the defect correction or the like. If the mark size is 30 to 1 〇〇 nm in terms of equivalent spherical diameter, it can be detected by the defect inspection machine, and the detection position of the mark is excellent in accuracy, for example, the detection position of the mark is reproducible, and the position of the mark is shifted. The amount is +/ -1 5 0 nm or less. A more preferred mark size is 40 to 80 nm in terms of equivalent spherical diameter. In this regard, the identification code or the substrate inspection information, etc., for the manufacturing management, etc., such as the mark, which is described in the Japanese Patent Laid-Open Publication No. Hei. No. Hei. The conventional mark and the comparative test in which the mark formed on the substrate in the present invention is compared with the test position reproducibility obtained by the defect inspection machine. In the comparative experiment, the defect inspection machine was used, and it was not necessary to load (1 〇ad ) / unload (u η 1 〇ad ) a substrate having various sizes of marks on the surface (having a portion deformed convexly with respect to the surface of the substrate), and repeated 5 times. Continuously check to find the offset of the mark detection position. Table 1 shows the results of the conventional label (pixel 1 286, equivalent sphere 彳 to (SEVD) 2μπα). In Table 1, the results of each inspection are shown, and the displacement of the detected coordinates when the second inspection is performed based on the first inspection result (detection coordinate) is used, and the following formula m $ is used. The offset of &. Offset two { (X-direction displacement) 2+ (y-direction displacement) 2 丨 0.5 In Table 1, the maximum offset is 4555 nm. -15- 200849332 (Table 1) Check coordinate displacement X (mm) y (mm) x direction (mm) y direction (mm) offset (nm) #1 -0.0707 0.7635 0 0 0 #2 -0.0710 0.7675 - 250 4030 4038 #3 -0.0680 0.7626 2670 -940 2831 #4 -0.0714 0.7680 -640 4510 4555 #5 -0.0711 0.7622 -400 -1300 1360 In the table 2 shows the mark on the invention (pixel 8.4, equivalent spherical diameter ( SEVD). 7 0 nm) The same result as above. In Table 2, the maximum offset is 206 nm. (Table 2) Check coordinate displacement X (mm) y (mm) x direction (mm) y direction (mm) offset (nm) #1 2.1168 0.7278 0 0 0 #2 2.1170 0.7675 200 50 206 #3 2.1167 0.7277 -50 -110 121 #4 2.1168 0.7277 50 -130 139 #5 2.1169 0.7277 100 -130 164 Same as above, for pixel 1 286 (equivalent spherical diameter (SEVD) about 2μιη) to pixel 6.2 (equivalent spherical diameter (SEVD) ) 9 marks of 64 nm), and the offset of the detected position is obtained. The results are shown in Table 3. -16- 200849332 (Table 3) Pixel SEVD (nm) Maximum Offset (nm) 6.2 64 277 7.8 69 242 8.4 70 206 20 119 1101 34 233 1251 44 372 1569 204 Approx. 4 μ m 3 5 73 693 Approx 1 2 μ m 1 1248 1286 2 μηη 45 5 5 Regarding the pixel 6.2 (equivalent spherical diameter (SEVD) 64nm) to pixel 44 (equivalent spherical diameter (SEVD) 3 70nm), 6 marks, the relationship between the maximum offset and SEVD Shown in Figure 3. As can be seen from Fig. 3, when the mark of SEVD 10 Onm or less (pixel 10 or less) has a maximum offset of 300 nm (hence the offset is +/- 150 nm or less), it is a problem that does not cause a problem. (level). On the other hand, if the SEVD is more than 200 nm (pixel 20 or more), the maximum offset is more than Ιμηη (so the offset exceeds +/- 500 nm). In addition, if the SEVD is a large mark, when the SEVD is a mark of about 4 μm (pixel 2 04 ), the maximum offset is 3·6 μm, and when the SEVD is a mark of about 12 μm (pixel 693), the maximum offset The amount is 1 Ιμιη, and the maximum offset is larger. Wherein, it is considered that when the detection position reproducibility when the mark is detected by the defect inspection machine is +/- 150 nm or less, the distance between each mark (2a, 2b, 2c) is preferably more than 15 Onm or more. Preferably, the separation is from 1 cm or more to -17 to 200849332, and more preferably from 5 cm or more. With respect to the axis between the joint marks (2a, 2b ' 2c ) (20, 21 pairs of positions, at least 2 axes are required in order to determine the correct position of the defect (3 c ) in the film formation surface of the substrate 1. Therefore, At least three marks (2a, 2b, 2c) are provided in the film formation, and the three pieces 2a' 2b, 2c) must be arranged such that the film formation surface is not in the same imaginary i, and the number of marks formed on the film formation surface is not It is limited to three or more. When the number of the markers is four or more, if the three markers arranged in the upper ones are not in the same imaginary straight line, that is, the one marker (2a, 2b, 2c), as long as the size thereof is equal to the sphere diameter - to 1 0 0 nm, the shape is not particularly limited, and the shape of the film formation surface may be a triangle, a rectangle, or other polygonal shape, and also a circular shape, a zigzag shape in which three lines are arranged in parallel, and two lines. A cross shape or the like constitutes one mark by a plurality of elements. However, in terms of the accuracy of the detection position of the mark caused by the defect inspection machine, the planar shape in the film formation surface is preferably circular. Preferably, the auxiliary mark of the mark is formed around the mark for determining the position of the defect. The mark used to determine the position of the defect is small, although the ball diameter g is 30 to 1 〇〇 nm, so it is more difficult to check whether there is a mark before checking the defect inspection machine, that is, whether the surface to be inspected is formed or not The side of the mark, or the location where it is difficult to mark the mark. The time required for the defect inspection machine to perform the inspection is shortened by making it easier to confirm the presence or absence of the mark or to substantially determine the position of the mark in the auxiliary mark ' used to determine the mark of the defective position. The phase 3a, 3b surface must be marked (provisional line. It can also be formed into a film surface. The flatness in the 3 0 can be an ellipse crossover. If you look at it, it is used to recognize it. The formation of the mark is formed around the mark -18- 200849332. Therefore, the auxiliary mark must be easily identifiable by scanning electron microscopy (SEM) or optical microscope. Here, it can be easily identified by scanning electron microscope. The sufficient size of the present invention refers to a size exceeding 50 Onm in terms of equivalent spherical diameter, and the sufficient size that can be easily recognized by an optical microscope means that the size is more than 500 nm in terms of equivalent spherical diameter. It is preferably about 1 to 1 Ομιη, and preferably about 2 to 6 μηη. Further, it is necessary to isolate the mark from the mark without damaging the detection position accuracy of the mark caused by the defect inspection machine. The auxiliary mark is formed at intervals. The distance between the mark and the auxiliary mark is preferably ΙΟμπι or more which does not damage the detection position accuracy of the mark caused by the defect inspection machine. 20 μηι or more is more preferable. An example of the arrangement of the mark and the auxiliary mark is shown in Fig. 4. In Fig. 4, around the mark 2 for determining the equivalent spherical diameter of 30 to 10 nm in the defective position, The four auxiliary marks 4 are formed in a substantially cruciform shape as a whole. Here, the length of the auxiliary mark 4 in the longitudinal direction is, for example, ΙΟΟμιη. Further, the distance between the mark 2 and the auxiliary mark 4 is, for example, ι〇μηη, to 5 μ. Preferably, the shape and arrangement of the auxiliary mark are not limited to those shown in the figure, and the mark can be recognized and the preferred shape and arrangement can be appropriately selected. For example, it can be only two of the upper and lower sides of the mark 2 in FIG. The auxiliary mark 4 may be only two auxiliary marks 4 formed on the left and right sides of the mark 2. In addition, the mark may be placed inside, forming a circle, an ellipse, a triangle, a quadrangle, a hexagon, An auxiliary mark of an octagonal shape, etc. -19- 200849332 The mark (2a, 2b, 2c) formed on the film formation surface of the substrate 1 is a size of 30 to 10 〇 nm in terms of equivalent spherical diameter, and thus 'when patterned Within the exposure area More specifically, when the photomask substrate manufactured using the substrate 1 has a mark (2a ' 2b ' 2c ) in the exposed region 1 1 at the time of patterning, the mark (2a, 2b, 2c) itself is formed. It is a defect of the reticle base. Therefore, the mark (2a, 2b, 2c) is preferably formed outside the exposed area at the time of patterning. For example, in the current specification, if it is 152. 〇 xl 52.0 mm [U The substrate (vertical 152.0 mmx horizontally 152.0 mm) has an exposed area of 10 l 8 x 32 mm (the area indicated by the line 11 in Fig. 1), so that it is preferable to form a mark on the outer side of the area. . Wherein, the exposed area is usually centered at the center of the substrate. On the other hand, when the substrate is held, the vicinity of the outer end of the substrate is compared with the other portions of the substrate, and the detection accuracy of the defect inspection machine is lowered. For example, if it is a conventional defect inspection machine using a substrate of 152.0x152.Omm□, the quality assurance area is 1 49 X 149 mm □ (the area indicated by line 12 in Fig. 1), so in this area It is better to form the mark inside. Therefore, according to the current specifications of the substrate of 152.0xl52.0mm□, use the existing defect inspection machine to detect the defects, in the area of 1 08 X 1 3 2mm □ to 1 49 X 1 4 9mm□ (Fig. 1) In the middle, the area between line 1 1 and line 12) is marked as good. As described above, the position where the mark is formed on the film formation surface of the substrate is described based on the current specifications of the substrate of 1 52.0 x 1 52 · 〇mm□ and the quality assurance area of the existing defect inspection machine, but if the substrate size and pattern The relevant specifications of the exposure area and the quality assurance area of the defect inspection machine used in the -20-200849332 domain may be appropriately selected depending on these conditions. The method of forming the marks (2a, 2b, 2c) on the film formation surface of the substrate 1 does not adversely affect the portion where the mark of the substrate is formed, but can be formed on the film formation surface of the substrate 1 by an equivalent spherical diameter of 30. The mark to the size of 100 nm is not particularly limited. For example, the laser beam is irradiated at a desired position on the film formation surface of the substrate 1, and the film formation surface having the substrate 1 is formed by sublimation, melting, or volume shrinkage of the irradiation portion, or a combination of the two or more. A method of forming a mark in a concave portion, a method of forming a mark by a lithography process, and a method of forming a mark by a notch (indentati η) caused by a minute pressure. The substrate 1 is required to satisfy the characteristics of the substrate used as the EUV mask substrate. Therefore, the substrate 1 has a low coefficient of thermal expansion (specifically, 2 (the thermal expansion coefficient of TC is preferably 〇 〇 〇 5xl (T7/°C is preferred, preferably 0±0.03 χ 10·7/°C). Preferably, the smoothness, the flatness, and the resistance to the cleaning liquid used for cleaning the EUV mask base or the patterned EUV mask are preferred. The glass having a low coefficient of thermal expansion, for example, SiO 2 -TiO 2 -based glass, is not limited thereto, and a crystallized glass or quartz glass or a substrate such as tantalum or metal in which a β quartz solid solution is precipitated may be used. Roughness (rms) A smooth surface of 0.15 nm or less and a flatness of 100 nm or less are preferable in the patterned EUV mask to obtain high reflectance and transfer accuracy. The size or thickness of the substrate 1 is preferred. The design of the mask is appropriately determined, but the most common one is the shape of 1 52.0 x 1 52.Omm□ and the thickness of -21 -49349332 6.3 5 mm. <Substrate having a reflective layer> In the substrate having the reflective layer of the present invention, a reflective layer for reflecting EUV light is formed on the substrate, and the surface of the reflective layer is formed to satisfy the following (1), ( 2) at least 3 marks: (1) the mark size is 30 to 100 nm in terms of equivalent spherical diameter; (2) on the surface of the reflective layer, the three marks are not in the same imaginary line. Here, the mark formed on the surface of the reflective layer is the same as the mark formed on the film formation surface of the substrate except that the portion where the mark is formed is the surface of the reflective layer, and thus the description thereof is omitted. Among them, it is preferable to form an auxiliary mark for identifying the mark around the mark formed on the surface of the reflective layer. Further, the substrate is the same as the above except that the mark is not formed on the film formation surface, and thus the description thereof is omitted. The reflective layer is not particularly limited as long as it has a desired characteristic as a reflective layer of the EUV mask base. Here, a particularly desirable property of the reflective layer is the high EUV light reflectance. Specifically, when the light of the wavelength region of the EUV light is irradiated on the surface of the reflective layer, the maximum 値 of the light reflectance near the wavelength of 13.5 rim is preferably 60% or more, and is 65 °/. The above is better. Since the reflective layer can achieve high EUV light reflectance, it is usually used as a reflective layer by using a multilayer reflective film in which a high refractive index layer and a low refractive index layer are laminated in plural plural times. Among the multilayer reflective films forming the reflective layer, Mo is widely used in the high refractive index layer, and in the low refractive index layer, Si is widely used in -22-200849332. That is, the Mo/Si multilayer reflective film is the most common. However, the multilayer reflective film is not limited thereto, and a Ru/Si multilayer reflective film, a Mo/Be multilayer reflective film, a Mo compound/Si compound multilayer reflective film, a Si/Mo/Ru multilayer reflective film, and Si/Mo/Ru may be used. /Mo multilayer reflective film, Si/Ru/Mo/Ru multilayer reflective film. The film thickness of each layer constituting the multilayer reflective film forming the reflective layer and the number of the reflecting units of the layer can be appropriately selected in accordance with the EUV light reflectance required for the film material and the reflective layer to be used. Taking a Mo/Si reflective film as an example, in order to form a reflective layer having a maximum 値 reflectance of EUV light transmittance of 60% or more, the multilayer reflective film is a Mo layer having a film thickness of 2.3±0.1 nm and a film thickness of 4.5 ± 0.1 nm. The Si layer may be laminated in such a manner that the number of reverse units is 30 to 60. Here, each layer constituting the multilayer reflective film forming the reflective layer may be formed into a film so as to have a desired thickness by a known film formation method such as a magnetron sputtering method or an ion beam sputtering method. For example, when ion beam sputtering is used to form a S i / Μ 〇 multilayer reflective film, a Si target is used as a target, and Ar gas (gas pressure 1.3xlO-2Pa to 2.7xl (T2Pa) is used as a penetrating gas). 'Si film was formed so that the ion acceleration voltage was 300 to 1500 V, and the film formation speed was 〇3 to 0.30 nm/sec to a thickness of 4.5 nm. Next, using a Mo target as a target, Ar gas (gas pressure 1.3 xl) was used. (T2Pa to 2.7xl (T2Pa) is preferably used as a sputtering gas to form a Mo film so as to have an ion acceleration voltage of 300 to 150 V and a film formation rate of 〇·〇3 to 〇·30 nm/sec to a thickness of 2.3 nm. This is one cycle, and the Si film and the Mo film are laminated for 40 to 50 cycles, whereby a Si/M 〇 multilayer -23-200849332 reflective film is formed. In order to prevent oxidation of the surface of the reflective layer, a multilayer reflective film forming a reflective layer is formed. The uppermost layer is preferably a layer formed of a material that is difficult to oxidize. The layer of the material that is difficult to oxidize has a function as a coating layer of the reflective layer. A specific example of a layer of a material that is difficult to oxidize as a coating layer may be The Si layer is exemplified. When the reflective layer forming the reflective layer is Si/ In the case of the Mo film, the uppermost layer is formed as a Si layer, and the uppermost layer functions as a coating layer. In this case, the film thickness of the coating layer is preferably 11. 〇±l. 〇nm. <Substrate having a reflective layer and a protective layer> In the substrate having the reflective layer and the protective layer of the present invention, a reflective layer for reflecting EUV light and a reflective layer for protecting the reflective layer are sequentially formed on the substrate. The protective layer is formed with at least three marks satisfying the following (1) and (2) on the surface of the protective layer: (1) the mark size is 30 to 100 nm in terms of equivalent spherical diameter; (2) on the surface of the protective layer, The three markers are not in the same imaginary line. Here, the mark formed on the surface of the protective layer is the same as the mark formed on the film formation surface of the substrate except that the portion where the mark is formed is the surface of the protective layer, and thus the description thereof is omitted. Among them, an auxiliary mark for identifying the mark is preferably formed around the mark formed on the surface of the protective layer. Further, the substrate is the same as the above except that the mark is not formed on the film formation surface, and thus the description thereof is omitted. Further, the reflective layer is the same as the above except that no mark is formed on the surface of the reflective layer, and the description is omitted. The protective layer is formed by the uranium engraving process, usually by patterning on the absorber layer of the EUV mask substrate by dry etching, so that S is not damaged by the etching process, and the reflective layer is protected. . Therefore, in terms of the material of the protective layer, it is difficult to be affected by the etching process of the ® layer, that is, the uranium engraving speed is slower than that of the ® layer, and it is difficult to be damaged by the etching process. A substance of the condition is exemplified by Cr, Al, Ru, Ta, and the like, and SiO 2 , Si 3 N 4 , Al 2 〇 3 or a mixture thereof. In the rhyme, Ru, CrN and Si〇2 are also preferred, and Ru is particularly good. The thickness of the protective layer is preferably from 1 to 60 nm, preferably from 1 to 20 nm. The protective layer is formed by a known film method such as a magnetron sputtering method or an ion beam sputtering method. When a Ru film is formed by magnetron sputtering, a Ru target is used as a target, and Ar* gas (gas pressure 1.0x1) is used. < to lOxlO^Pa) It is preferable to form a film having a thickness of 2 to 5 nm at a deposition power of 30 W to a deposition rate of 5 to 50 nm/min as a sputtering gas. < EUV reticle substrate> In the EUV reticle substrate of the present invention, a reflective layer for sequentially reflecting EUV light and a body layer for absorbing EUV light are sequentially formed on the substrate, and the surface of the absorber layer is formed to satisfy The following (1), (2) !, : shot layer; purpose: the body: the body, the satisfaction of: the nitrogen: etc. is a relatively sturdy formation, so that the Γ 1 Pa 500 W way to form the absorption - 25- 200849332 3 fewer marks: (1) The mark size is 30 to 100 nm in terms of equivalent spherical diameter; (2) On the surface of the absorber layer, 3 marks are not in the same imaginary line, and marks formed on the surface of the absorber layer The portion where the mark is formed is the surface of the absorber layer, and the description is the same as the mark formed on the film formation surface of the substrate. In addition, it is preferable to form an auxiliary mark for identifying the mark around the mark formed on the surface of the absorber layer. Further, the substrate is the same as the above except that the mark is not formed on the film formation surface, and the description thereof is omitted. The reflective layer is also the same as the above except that no mark is formed on the surface of the reflective layer. Therefore, the description is omitted in the EUV mask substrate of the present invention, and may be provided between the reflective layer and the absorber layer to protect the reflection. The protective layer of the layer. The protective layer is the same as the above except that the mark is not formed on the surface, so that the characteristic that the absorber layer is particularly required is that the EUV light reflectance is extremely low. Specifically, when the light of the wavelength region of the EUV light is irradiated onto the surface of the absorber layer, the maximum light reflectance at a wavelength of 13.5 nm is preferably 0.5% or less, more preferably 0.1% or less. The absorber layer is composed of a material having a high absorption coefficient for EUV light, and specifically, a layer containing Cr or Ta, for example, a layer containing a nitride of Cr or Ta, or a layer containing Ta and Hf ( TaHf layer) -26- 200849332, a layer containing Ta, B, Si, and N (TaBSiN layer). The absorber layer is not particularly limited as long as the above characteristics are satisfied, but the reflectance of the EUV light of the TaHf layer and the TaBSiN layer is extremely low, and the crystal state of the layer is amorphous, and the surface of the absorber layer is smooth. Good sex, so it is ideal. When the surface roughness of the surface of the absorber layer is large, the edge roughness of the pattern formed on the absorber layer becomes large, and the dimensional accuracy of the pattern is deteriorated. As the pattern becomes finer, the effect of the edge roughness becomes more pronounced, so the surface of the absorber layer is required to be smooth. When the absorber layer is a TaHf layer or a TaBSiN layer, since the film is formed into an amorphous structure or a microcrystalline structure, the surface roughness (rms) of the surface of the absorber layer is 0.5 nm or less, and the surface of the absorber layer is very smooth. There is no possibility that the dimensional accuracy of the pattern is deteriorated due to the influence of the edge roughness. The surface roughness (rms) of the surface of the absorber layer is preferably 0.4 nm or less, more preferably 〇 · 3 n m or less. In the specification, the "crystal form is amorphous" is a structure in which a microcrystal structure is included in addition to an amorphous structure having no crystal structure at all. When the absorber layer is a film having an amorphous structure or a film having a microcrystalline structure, the surface of the absorber layer is excellent in smoothness. Here, the crystal state of the absorber layer is amorphous, that is, it is an amorphous structure or a microcrystalline structure can be confirmed by X-ray diffraction (XRD). If the crystal state of the absorber layer is an amorphous structure or a microcrystalline structure, no sharp peak is observed in the diffraction peak obtained by XRD measurement. When the absorber layer is a TaHf layer, it is preferable to contain Ta and Hf in the specific ratio described below in -27-200849332. The Hf content of the absorber layer is 20 to 60 at%, and the crystal state of the absorber layer is easily formed into an amorphous state, and the surface of the absorber is excellent in smoothness, which is preferable. Further, the absorber layer has excellent characteristics such as light reflectance of EUV light and low light reflectance in a wavelength range of pattern inspection light, in the case of an EUV mask base. The Hf content of the absorber layer is preferably from 30 to 50 at%, more preferably from 30 to 45 at%. In the absorber layer, Ta is preferable to the residue other than Hf. Therefore, the Ta content in the absorber layer is preferably 40 to 8 Oat%. The Ta content in the absorber layer is preferably from 50 to 70 at%, more preferably from 55 to 70 at%. In the absorber layer, the composition ratio of Ta to Hf (atomic ratio of Ta:Hf) is preferably 7:3 to 4:6, more preferably 6:5:3.5 to 4.5:5.5, and 6:4. To 5: 5 is especially good.

TaHf層係在惰性氣體環境下,可藉由實施使用TaHf 化合物靶材的濺鍍法,例如,磁控濺鍍法或離子束濺鍍法 來形成。The TaHf layer can be formed by performing a sputtering method using a TaHf compound target, for example, magnetron sputtering or ion beam sputtering in an inert gas atmosphere.

TaHf化合物靶材由於其組成爲Ta二30至70at%、Hf 二70至3 Oat%可獲得所希望組成的吸收體層,而且可回避 膜之組成或膜厚的不均,故較爲理想。 當利用上述方法形成TaHf層時,具體而言,以以下 之成膜條件予以實施即可。 濺鍍氣體:Ar氣體(氣體壓力l.OxlO^Pa至50x10^ -28- 200849332The TaHf compound target is preferably obtained by obtaining an absorber layer having a desired composition of Ta 30 to 70 at% and Hf 70 to 3 Oat%, and avoiding the composition of the film or the unevenness of the film thickness. When the TaHf layer is formed by the above method, specifically, it may be carried out under the following film forming conditions. Sputtering gas: Ar gas (gas pressure l.OxlO^Pa to 50x10^ -28- 200849332

Pa,以 l.Oxio-ipa 至 WxlC^Pa 爲佳,以 l.〇xl(riPa 至 SOxlO^Pa爲更佳) 投入電力:30至1000W,以50至750W爲佳,以80 至5 00W爲更佳 成膜速度:2.0 至 60nm/min,以 3.5 至 45nm/min 爲佳,以5至30nm/ min爲更佳 當吸收體層爲TaBSiN層時,最好以以下所述之特定 比率含有Ta、B、Si及N。Pa, preferably from l.Oxio-ipa to WxlC^Pa, with l.〇xl (riPa to SOxlO^Pa is better) Power: 30 to 1000W, preferably 50 to 750W, 80 to 500 W More preferable film formation speed: 2.0 to 60 nm/min, preferably 3.5 to 45 nm/min, more preferably 5 to 30 nm/min. When the absorber layer is a TaBSiN layer, it is preferable to contain Ta at a specific ratio as described below. B, Si and N.

TaBSiN層的B含有率係以lat%以上、未達5at%爲佳 。以往,當使用含有Ta與B的膜(TaB膜、TaBN膜、 TaBO膜、TaBNO膜)作爲吸收體層時,爲了將膜的結晶 狀態形成爲非晶質,必須將膜的B含有率形成爲5at%以 上。但是,當膜的B含有率爲5at%以上時,會有成膜速 度變慢,或難以控制膜的B含有率或膜厚的問題。 在本發明中,TaBSiN層以特定的比率含有Ta、B、Si 及N,因此即使B含有率未達5 at%,結晶狀態亦形成爲 非晶質。 當B含有率未達1 at%時,爲了將結晶狀態形成爲非 晶質,必須增加Si添加量。具體而言,必須將Si含有率 形成爲超過25at%,由於將EUV光線反射率形成爲0.5% 以下所需的膜厚會變厚,故較不理想。當 B含有率爲 5 at%以上時,會產生成膜速度變慢等上述問題。 B含有率係以1至4.5at%爲較佳,以1.5至4at%爲更 佳。若爲1.5至4at%,除了可穩定進行成膜以外,光罩之 -29 - 200849332 所需特性的平滑性等亦佳,由於取得該等均佳的平衡’因 此非常理想。The B content of the TaBSiN layer is preferably lat% or more and less than 5 at%. Conventionally, when a film containing Ta and B (TaB film, TaBN film, TaBO film, TaBNO film) is used as the absorber layer, in order to form the crystalline state of the film to be amorphous, it is necessary to form the film B content to 5 at. %the above. However, when the B content of the film is 5 at% or more, the film formation rate is slow, or it is difficult to control the B content or film thickness of the film. In the present invention, the TaBSiN layer contains Ta, B, Si and N in a specific ratio, so that even if the B content is less than 5 at%, the crystalline state is formed to be amorphous. When the B content is less than 1 at%, in order to form the crystalline state as amorphous, it is necessary to increase the amount of Si added. Specifically, the Si content is required to be more than 25 at%, and the film thickness required to form the EUV light reflectance to 0.5% or less is increased, which is not preferable. When the B content is 5 at% or more, the above problems such as a slow film formation rate occur. The B content is preferably from 1 to 4.5 at%, more preferably from 1.5 to 4 at%. If it is 1.5 to 4 at%, in addition to stable film formation, the smoothness of the desired characteristics of the mask -29 - 200849332 is also excellent, and it is preferable to obtain such a good balance.

TaBSiN層的Si含有率爲1至25 at%。當Si含有率未 達1 at%時,結晶狀態不會形成爲非晶質。Si係EUV光的 吸收係數較低的材料,因此當Si含有率超過25at%時,將 EUV光線反射率形成爲0.5%以下所需的膜厚會變厚,故 較不理想。The TaBSiN layer has a Si content of 1 to 25 at%. When the Si content is less than 1 at%, the crystalline state is not formed into an amorphous state. Since the Si-based EUV light has a low absorption coefficient, when the Si content exceeds 25 at%, the film thickness required to form the EUV light reflectance to 0.5% or less becomes thick, which is not preferable.

Si含有率係以1至20at%爲較佳,以2至12at%爲更 佳。 在TaBSiN層中,除了 B及Si以外的殘部係Ta及N 。TaBSiN層中之Ta與N的組成比(Ta : N的原子比)爲 8 : 1至1 : 1。相較於上述組成比,當Ta的比例較高時, 無法充分降低圖案檢查光之波長範圍的光線反射率。另一 方面,相較於上述組成比,當N的比例較高時,膜密度會 降低,EUV光的吸收係數會降低,而無法獲得充分的EUV 光線的吸收特性。此外,耐酸性會降低。 此外,Ta含有率係以50至90at%爲較佳,以60至 8〇at%爲更佳。N含有率係以5至30at%爲較佳,以10至 2 5 a t %爲更佳。 其中,TaBSiN層亦可含有Ta、B、Si、N以外的元素 ,但是必須滿足EUV光線之吸收特性等作爲光罩基底的 適性。The Si content is preferably from 1 to 20 at%, more preferably from 2 to 12 at%. In the TaBSiN layer, Ta and N are the residues other than B and Si. The composition ratio of Ta to N in the TaBSiN layer (atomic ratio of Ta:N) is 8:1 to 1:1. Compared with the above composition ratio, when the ratio of Ta is high, the light reflectance of the wavelength range of the pattern inspection light cannot be sufficiently reduced. On the other hand, when the ratio of N is higher than that of the above composition ratio, the film density is lowered, the absorption coefficient of EUV light is lowered, and sufficient absorption characteristics of EUV light are not obtained. In addition, the acid resistance will decrease. Further, the Ta content is preferably from 50 to 90 at%, more preferably from 60 to 8 〇 at%. The N content is preferably from 5 to 30 at%, more preferably from 10 to 25 a %. Among them, the TaBSiN layer may contain elements other than Ta, B, Si, and N, but it is necessary to satisfy the absorption characteristics of EUV light or the like as a mask base.

TaBSiN層係可使用磁控濺鍍法或離子束濺鍍法之類 的濺鍍法等周知的成膜方法來形成。當使用磁控濺鍍法時 -30- 200849332 ,可利用下述(1 )至(3 )的方法來形成。 (1 )使用Ta靶材、B靶材及S i靶材,在利用氬( Ar )予以稀釋的氮(N2 )環境中,使該等各個靶材同時放 電,藉此形成TaBSiN層。 (2 )使用TaB化合物靶材及Si靶材,在利用氬予以 稀釋的氮環境中,使該等各個靶材同時放電,藉此形成 TaBSiN 層。 (3 )使用TaBSi化合物靶材,在利用氬予以稀釋的 氮環境中,使將該3元素予以一體化的靶材放電,藉此形 成TaBSiN層。其中,在上述方法之中,在使2個以上之 靶材同時放電的方法((1 ) 、( 2 ))中,係可藉由調節 各靶材的投入電力,來控制所形成吸收體層的組成。 在上述之中,(2)及(3)的方法在可回避放電的不 穩定化或膜之組成或膜厚的不均方面較爲理想,以(3 ) 的方法爲特佳。TaBSi化合物靶材係以其組成爲Ta= 50 至94at%、Si = 5至3 Oat%、B = 1至20at%可回避放電的 不穩定化或膜之組成或膜厚的不均方面尤其理想。 當利用上述例示方法形成TaBSiN層時,具體而言, 若以以下成膜條件予以實施即可。 使用TaB化合物靶材及Si靶材的方法(2 ) 濺鍍氣體:Ar與N2的混合氣體(N2氣體濃度3至 8 0 v ο 1 %,以5至3 0 v ο 1 %爲佳,以8至1 5 v ο 1 %爲更佳。氣 體壓力 l.OxlO^Pa 至 lOxlO^Pa,以 l.OxlO^Pa 至 SxlO^Pa -31 - 200849332 爲佳,以l.Oxli^Pa至Sxli^Pa爲更佳。) 投入電力(針對各靶材):30至1000W,以 50至 750W爲佳,以80至5 00W爲更佳 成膜速度·· 2.0 至 60nm/min,以 3·5 至 45nm/min 爲佳,以5至30nm / min爲更佳 使用TaBSi化合物靶材的方法(3 ) 濺鍍氣體:Ar與N2的混合氣體(N2氣體濃度3至 80vol%,以5至30vol%爲佳,以8至15vol%爲更佳。氣 體壓力 l.OxlO^Pa 至 lOxlO^Pa,以 l.OxlO^Pa 至 SxlO^Pa 爲佳,以l.OxlO^Pa至SxH^Pa爲更佳。) 投入電力:30至1000W,以50至750W爲佳,以80 至5 00W爲更佳 成膜速度·· 2.0 至 60nm/min’ 以 3.5 至 45nm/min 爲佳,以5至30nm/min爲更佳 在吸收體層上亦可設置對檢查遮罩圖案時所使用之檢 查光反射率較低的低反射層。其中,當在吸收體層上設置 低反射層時,並非在吸收體層表面,而係在低反射層表面 形成標記。其中,形成在低反射層表面之標記周圍亦以形 成用以識別該標記之輔助標記爲佳。 在製作EUV光罩時,在吸收體層形成圖案之後,檢 查該圖案是否按照設計予以形成。在該遮罩圖案的檢查中 ,一般係使用採用257nm左右之光作爲檢查光的檢查機。 亦即,藉由該25 7nm左右之光的反射率的差予以檢查,具 -32- 200849332 體而言,利用藉由圖案化來去除吸收體層而露出的面、與 藉由圖案化未予以去除而殘留下來的吸收體層表面的反射 率的差予以檢查。在此,前者係反射層表面或保護層表面 ,一般爲保護層表面。因此,對檢查光之波長的保護層表 面與吸收體層表面的反射率的差較小時,檢查時的對比會 變差,而無法正確的檢查。The TaBSiN layer can be formed by a known film formation method such as a sputtering method such as a magnetron sputtering method or an ion beam sputtering method. When the magnetron sputtering method is used, -30-200849332, it can be formed by the following methods (1) to (3). (1) Using a Ta target, a B target, and a S i target, the respective targets are simultaneously discharged in a nitrogen (N2) environment diluted with argon (Ar) to form a TaBSiN layer. (2) Using a TaB compound target and a Si target, the respective targets are simultaneously discharged in a nitrogen atmosphere diluted with argon to form a TaBSiN layer. (3) Using a TaBSi compound target, a target in which the three elements are integrated is discharged in a nitrogen atmosphere diluted with argon to form a TaBSiN layer. Among the above methods, in the method ((1), (2)) of simultaneously discharging two or more targets, it is possible to control the formation of the absorber layer by adjusting the input electric power of each target. composition. Among the above, the methods (2) and (3) are preferable in that the discharge can be prevented from being unstable or the composition of the film or the film thickness is uneven, and the method of (3) is particularly preferable. The TaBSi compound target is particularly desirable in that it has a composition of Ta = 50 to 94 at%, Si = 5 to 3 Oat%, and B = 1 to 20 at% to avoid the instability of the discharge or the composition of the film or the unevenness of the film thickness. . When the TaBSiN layer is formed by the above-described exemplary method, specifically, it may be carried out under the following film formation conditions. Method for using TaB compound target and Si target (2) Sputtering gas: a mixed gas of Ar and N2 (N2 gas concentration 3 to 80 v ο 1 %, preferably 5 to 30 v ο 1 %, 8 to 1 5 v ο 1 % is more preferable. The gas pressure is 1.OxlO^Pa to lOxlO^Pa, preferably l.OxlO^Pa to SxlO^Pa -31 - 200849332, and l.Oxli^Pa to Sxli^ Pa is better.) Input power (for each target): 30 to 1000W, preferably 50 to 750W, and 80 to 500W for better film formation speed · 2.0 to 60nm/min, from 3·5 to 45 nm/min is preferable, and a method of using a TaBSi compound target at 5 to 30 nm/min is preferred. (3) Sputter gas: a mixed gas of Ar and N2 (N2 gas concentration is 3 to 80 vol%, and 5 to 30 vol% is Preferably, it is preferably from 8 to 15 vol%. The gas pressure is from 1. OxlO^Pa to lOxlO^Pa, preferably from 1.0 OxlO^Pa to SxlO^Pa, and more preferably from 1.0 OxlO^Pa to SxH^Pa. ) Input power: 30 to 1000W, preferably 50 to 750W, and 80 to 500W for better film formation speed. · 2.0 to 60nm/min' is preferably 3.5 to 45nm/min, and 5 to 30nm/min. More preferably, the absorber layer may be provided for checking the mask pattern. Check the low reflection layer with low light reflectance. Here, when the low reflection layer is provided on the absorber layer, not on the surface of the absorber layer, a mark is formed on the surface of the low reflection layer. Among them, it is preferable that the mark formed on the surface of the low reflection layer is formed with an auxiliary mark for identifying the mark. When the EUV mask is fabricated, after the pattern is formed on the absorber layer, it is checked whether the pattern is formed as designed. In the inspection of the mask pattern, an inspection machine using light of about 257 nm as inspection light is generally used. That is, by examining the difference in reflectance of the light of about 25 nm, the surface exposed by the patterning to remove the absorber layer is not removed by patterning. The difference in reflectance of the remaining absorber layer surface was examined. Here, the former is the surface of the reflective layer or the surface of the protective layer, generally the surface of the protective layer. Therefore, when the difference in reflectance between the surface of the protective layer and the surface of the absorber layer of the wavelength of the inspection light is small, the contrast at the time of inspection is deteriorated, and the inspection cannot be performed correctly.

TaHf層及TaBSiN層的 EUV光線反射率極低,以 EUV光罩基底的吸收體層而言,具有優異的特性,但是針 對檢查光的波長而觀看時,並不能說光線反射率必定十分 低。結果,檢查光之波長的吸收體層表面之反射率與保護 層表面之反射率的差變得較小,而有無法充分獲得檢查時 之對比的可能性。當無法充分獲得檢查時之對比時,無法 在光罩檢查中充分判別圖案缺陷,而無法進行正確的缺陷 檢查。 藉由在TaHf層及TaBSiN層上形成低反射層,檢查時 的對比會變得良好,換言之,檢查光之波長的光線反射率 變得極低。具體而言,當將檢查光之波長區域的光線照射 在低反射層表面時,該檢查光之波長之最大光線反射率以 15%以下爲佳,以10%以下爲較佳,以5%以下爲更佳。 若檢查光之波長的光線反射率爲1 5 %以下,該檢查時 的對比良好。具體而言,保護層表面中之檢查光之波長的 反射光、與低反射層表面中之檢查光之波長的反射光的對 比爲30%以上。 、 本說明書中,對比係可使用下述數式予以求出。 -33- 200849332 對比(%) = ( (R2-Ri) / (R2 + R!) ) χΙΟΟ 在此,檢查光之波長中之R2係保護層表面的反射率 ,R1係低反射層表面的反射率。其中,上述R!及R2係在 EUV光罩基底之吸收體層進行圖案化後之狀態下進行測定 。上述R2係利用藉由圖案化而將吸收體層予以去除而露 出於外部的反射層表面或保護層表面予以測定的値,R!係 利用藉由圖案化未予以去除而殘留下來的低反射層表面予 以測定的値。 在本發明中,上述式中所表示的對比以45%以上爲較 佳,以60%以上爲更佳,以80%以上爲特佳。 低反射層係爲了達成上述特性,而以相較於TaHf層 及TaBSiN層爲檢查光之波長之折射率較低的材料所構成 ,該結晶狀態以爲非晶質爲佳。 形成在TaHf層上的低反射層係以含有Ta、Hf及Ο 之層(TaHfO層)爲佳。當低反射層爲TaHfO層時,最好 以以下所述之特定比率含有Ta、Hf及Ο。The TaHf layer and the TaBSiN layer have extremely low EUV light reflectance, and have excellent characteristics in terms of the absorber layer of the EUV mask base, but it cannot be said that the light reflectance is necessarily low when viewed for checking the wavelength of light. As a result, the difference between the reflectance of the surface of the absorber layer at which the wavelength of the light is examined and the reflectance of the surface of the protective layer becomes small, and there is a possibility that the contrast at the time of inspection cannot be sufficiently obtained. When the comparison at the time of inspection is not sufficiently obtained, the pattern defect cannot be sufficiently discriminated in the mask inspection, and the correct defect inspection cannot be performed. By forming a low-reflection layer on the TaHf layer and the TaBSiN layer, the contrast at the inspection becomes good, in other words, the reflectance of the light at the wavelength of the inspection light becomes extremely low. Specifically, when the light of the wavelength region of the inspection light is irradiated onto the surface of the low reflection layer, the maximum light reflectance of the wavelength of the inspection light is preferably 15% or less, preferably 10% or less, and preferably 5% or less. For better. If the light reflectance of the wavelength of the inspection light is less than 15%, the contrast at the time of the inspection is good. Specifically, the contrast between the reflected light of the wavelength of the inspection light in the surface of the protective layer and the reflected light of the wavelength of the inspection light on the surface of the low-reflection layer is 30% or more. In the present specification, the comparison can be obtained by using the following formula. -33- 200849332 Contrast (%) = ( (R2-Ri) / (R2 + R!) ) χΙΟΟ Here, check the reflectivity of the R2-based protective layer surface in the wavelength of light, and R1 is the reflection of the surface of the low-reflecting layer. rate. Here, the above R! and R2 were measured in a state in which the absorber layer of the EUV mask base was patterned. In the above R2, the surface of the reflective layer exposed on the outside or the surface of the protective layer is removed by patterning, and the surface of the protective layer is removed by R: The enthalpy to be measured. In the present invention, the contrast represented by the above formula is preferably 45% or more, more preferably 60% or more, and particularly preferably 80% or more. In order to achieve the above characteristics, the low-reflection layer is composed of a material having a lower refractive index than the TaHf layer and the TaBSiN layer at the wavelength of the inspection light, and the crystal state is preferably amorphous. The low reflection layer formed on the TaHf layer is preferably a layer containing Ta, Hf and yttrium (TaHfO layer). When the low reflection layer is a TaHfO layer, it is preferable to contain Ta, Hf and yttrium at a specific ratio as described below.

TaHfO層係以Ta及Hf的合計含有率爲30至80 at % 、Ta與Hf的組成比(Ta : Hf的原子比)爲8 : 2至4 : 6 爲佳。當 Ta及 Hf的合計含有率未達 30at%時,會有 TaHfO層的導電性降低,在進行電子線描繪時發生充電( charge up)之問題的可能性。當Ta及Hf的合計含有率超 過80at°/〇時,無法充分降低圖案檢查光的光線反射率。此 -34- 200849332 外,當Hf低於上述組成比時(亦即,當Hf/ ( Ta + Hf) < 4時),結晶狀態係難以形成爲非晶質。當Hf高於上 述組成比時(亦即,當Hf/ ( Ta + Hf) > 8時),會有鈾 刻特性惡化,而無法滿足所要求之蝕刻選擇比的可能性。The TaHfO layer has a total content of Ta and Hf of 30 to 80 at %, and a composition ratio of Ta to Hf (atomic ratio of Ta:Hf) of 8:2 to 4:6. When the total content of Ta and Hf is less than 30 at%, the conductivity of the TaHfO layer may be lowered, and there is a possibility that charge up occurs when the electron beam is drawn. When the total content of Ta and Hf exceeds 80 at ° / 〇, the light reflectance of the pattern inspection light cannot be sufficiently reduced. Further, when Hf is lower than the above composition ratio (i.e., when Hf / (Ta + Hf) < 4), the crystalline state is difficult to form amorphous. When Hf is higher than the above composition ratio (i.e., when Hf / (Ta + Hf) > 8), there is a possibility that uranium characteristics are deteriorated and the desired etching selectivity ratio cannot be satisfied.

TaHfO層中之Ο含有率係以20至70at%爲佳。當〇 含有率低於20 at%時,會有無法充分降低圖案檢查光之波 長範圍之光線反射率的可能性。當Ο含有率高於70 at%時 ,會有耐酸性降低,低反絶緣性增加,在進行電子線描繪 時發生充電等之問題的可能性。The cerium content in the TaHfO layer is preferably from 20 to 70 at%. When the 〇 content is less than 20 at%, there is a possibility that the light reflectance of the wavelength range of the pattern inspection light cannot be sufficiently reduced. When the niobium content is higher than 70 at%, there is a possibility that the acid resistance is lowered, the low anti-insulation property is increased, and charging or the like occurs during the drawing of the electron beam.

TaHfO層中之 Ta及 Hf的合計含有率係以 35至 80at%爲較佳,以35至75at%爲更佳。此外,Ta與Hf的 組成比係以Ta : Hf= 7:3至4:6爲較佳,以6.5:3.5至 4.5 : 5.5爲更佳,以6 : 4至5 : 5爲特佳。Ο含有率係以 20至65 at%爲較佳,以25至65 at %爲更佳。 其中,TaHfO層亦可視需要而含有Ta、Hf及Ο以外 的元素。此時,在TaHfO層所含有的元素係必須滿足 EUV光線之吸收特性等之作爲光罩基底的適性。 以可包含在TaHfO層的元素之一例而言,係列舉N。 此時,由於TaHfO層含有N,而使表面平滑性提升。 當TaHfO層含有N時(亦即爲TaHfON層時),最好 Ta及Hf的合計含有率爲30至80at%,Ta與Hf的組成比 爲Ta: Hf=8: 2至4: 6, N及0的合計含有率爲20至 7 0at°/〇,N與Ο的組成比(N : Ο的原子比)爲9 : 1至1 ••9。當Ta及Hf的合計含有率未達30at%時,會有導電 -35- 200849332 性降低,在進行電子線描繪時發生充電之問題的可能性。 當Ta及Hf的合計含有率超過80at%時,並無法充分降低 圖案檢查光的光線反射率。當Hf低於上述組成比時,會 有結晶狀態無法形成爲非晶質的可能性。當Hf高於上述 組成比時,會有蝕刻特性惡化、無法滿足所要求之鈾刻選 擇比的可能性。此外,當N及Ο含有率低於20at%時,會 有無法充分降低圖案檢查光之波長範圍之光線反射率的可 能性。當N及Ο含有率高於70at%時,會有耐酸性降低、 絶緣性增加、在進行電子線描繪時發生充電等之問題的可 能性。 在TaHfON層中,Ta及Hf的合計含有率係以35至 8 Oat%爲較佳,以35至75 at%爲更佳。此外,Ta與Hf的 組成比(原子比)係以Ta : Hf = 7 : 3至4 : 6爲較佳,以 6.5 : 3 · 5至4 · 5 : 5.5爲更佳,以6 : 4至5 ·· 5爲特佳。N 及◦的合計含有率係以20至65at%爲較佳,以25至 6 5 at%爲更佳。The total content of Ta and Hf in the TaHfO layer is preferably 35 to 80 at%, more preferably 35 to 75 at%. Further, the composition ratio of Ta to Hf is preferably Ta:Hf = 7:3 to 4:6, more preferably 6.5:3.5 to 4.5:5.5, and particularly preferably 6:4 to 5:5. The cerium content is preferably from 20 to 65 at%, more preferably from 25 to 65 at %. Among them, the TaHfO layer may contain elements other than Ta, Hf, and yttrium as needed. At this time, the element contained in the TaHfO layer must satisfy the absorbability of the EUV light or the like as a mask base. For the example of an element that can be included in the TaHfO layer, the series is N. At this time, since the TaHfO layer contains N, the surface smoothness is improved. When the TaHfO layer contains N (that is, when the TaHfON layer is used), it is preferable that the total content of Ta and Hf is 30 to 80 at%, and the composition ratio of Ta to Hf is Ta: Hf = 8: 2 to 4: 6, N The total content of 0 and the ratio of 0 to 70 ° ° / 〇, the composition ratio of N to Ο (N: atomic ratio of Ο) is 9: 1 to 1 • • 9. When the total content of Ta and Hf is less than 30 at%, there is a possibility that the conductivity -35 - 200849332 is lowered, and charging occurs when the electron beam is drawn. When the total content of Ta and Hf exceeds 80 at%, the light reflectance of the pattern inspection light cannot be sufficiently lowered. When Hf is less than the above composition ratio, there is a possibility that the crystalline state cannot be formed into an amorphous state. When Hf is higher than the above composition ratio, there is a possibility that the etching characteristics are deteriorated and the desired uranium engraving ratio cannot be satisfied. Further, when the N and cerium contents are less than 20 at%, there is a possibility that the light reflectance of the wavelength range of the pattern inspection light cannot be sufficiently reduced. When the N content and the niobium content are more than 70 at%, there is a possibility that the acid resistance is lowered, the insulation property is increased, and charging or the like occurs during the drawing of the electron beam. In the TaHfON layer, the total content of Ta and Hf is preferably 35 to 8 Oat%, more preferably 35 to 75 at%. Further, the composition ratio (atomic ratio) of Ta to Hf is preferably Ta:Hf = 7:3 to 4:6, more preferably 6.5:3 · 5 to 4 · 5 : 5.5, and is 6:4 to 5 ·· 5 is especially good. The total content of N and lanthanum is preferably from 20 to 65 at%, more preferably from 25 to 65 at%.

TaHfON層由於爲上述構成,因此其結晶狀態爲非晶 質,且其表面的平滑性佳。具體而言,表面粗糙度(rms )爲0.5 nm以下。 如上所述,爲了防止因邊緣粗糙度的影響以致圖案的 尺寸精度惡化,吸收體層表面係要求爲平滑。在吸收體層 上作爲低反射層所形成的TaHfON層係要求其表面爲平滑 〇Since the TaHfON layer has the above configuration, its crystalline state is amorphous and its surface smoothness is good. Specifically, the surface roughness (rms) is 0.5 nm or less. As described above, in order to prevent the dimensional accuracy of the pattern from being deteriorated due to the influence of the edge roughness, the surface of the absorber layer is required to be smooth. The TaHfON layer formed as a low-reflection layer on the absorber layer is required to have a smooth surface.

若TaHfON層表面的表面粗糖度(rms)爲0.5 n m VX -36- 200849332 下,由於表面十分平滑,因此不會有因邊緣粗糙度的影響 而使圖案之尺寸精度惡化之虞。TaHfON層表面的表面粗 糙度(rms )係以〇.4nm以下爲較佳,以〇.3nm以下爲更 佳。 其中,TaHfON層的結晶狀態爲非晶質,亦即,爲非 晶質構造或爲微結晶構造,係可藉由X線繞射(XRD )法 予以確認。若TaHfON層的結晶狀態爲非晶質構造、或微 結晶構造,在藉由XRD測定所得之繞射峰値不會觀看到 急劇的(sharp )峰値。If the surface roughness (rms) of the surface of the TaHfON layer is 0.5 n m VX -36-200849332, since the surface is very smooth, there is no possibility that the dimensional accuracy of the pattern is deteriorated due to the influence of the edge roughness. The surface roughness (rms) of the surface of the TaHfON layer is preferably 〇.4 nm or less, more preferably 〇.3 nm or less. Among them, the crystalline state of the TaHfON layer is amorphous, that is, it is an amorphous structure or a microcrystalline structure, which can be confirmed by X-ray diffraction (XRD). If the crystal state of the TaHfON layer is an amorphous structure or a microcrystalline structure, a sharp peak is not observed in the diffraction peak obtained by XRD measurement.

TaHfO層及TaHfON層係可藉由實施使用TaHf化合 物靶材的濺鍍法,例如,磁控濺鍍法或離子束濺鍍法予以 形成。 其中,若爲TaHfO層,藉由在以例如氬予以稀釋的氧 (〇2 )環境中使TaHf化合物靶材放電而形成。或者亦可 在惰性氣體環境中使TaHf化合物靶材放電而形成含有Ta 及Hf的膜之後,例如曝露於氧電漿中,或照射使用氧的 離子束,藉此將所形成的膜氧化而形成爲TaHfO層。 另一方面,若爲TaHfON層,藉由在以氬予以稀釋的 氧(〇2 ) •氮(N2 )混合氣體環境中使TaHf化合物靶材 放電而形成。或者亦可在以氬予以稀釋的氮(N2 )環境中 使TaHf化合物靶材放電而形成含有Ta、Hf及N的膜之 後,例如曝露於氧電漿中,或照射使用氧的離子束,藉此 將所形成的膜氧化而形成爲TaHfON層。The TaHfO layer and the TaHfON layer can be formed by performing a sputtering method using a TaHf compound target, for example, magnetron sputtering or ion beam sputtering. Here, in the case of the TaHfO layer, it is formed by discharging a TaHf compound target in an oxygen (〇2) environment diluted with, for example, argon. Alternatively, the TaHf compound target may be discharged in an inert gas atmosphere to form a film containing Ta and Hf, for example, exposed to an oxygen plasma, or irradiated with an ion beam using oxygen, thereby oxidizing the formed film. It is the TaHfO layer. On the other hand, in the case of the TaHfON layer, a TaHf compound target is formed by discharging a TaHf compound target in an oxygen (〇2)•nitrogen (N2) mixed gas atmosphere diluted with argon. Alternatively, the TaHf compound target may be discharged in a nitrogen (N2) environment diluted with argon to form a film containing Ta, Hf, and N, for example, exposed to an oxygen plasma, or irradiated with an ion beam using oxygen. This oxidizes the formed film to form a TaHfON layer.

TaHf化合物靶材中,其組成爲Ta = 30至70at%、Hf -37- 200849332 =70至30at%可獲得所希望組成之TaHfO層及TaHfON層 ’而且可回避膜的組成或膜厚的不均,故較爲理想。TaHf 化合物?E材亦可含有〇 · 1至5.0 at %的Z r。 爲了利用上述方法來形成TaHfO層及TaHfON層,具 體而言,若利用以下成膜條件予以實施即可。 當形成TaHfO層時 濺鍍氣體:Ar與〇2的混合氣體(〇2氣體濃度3至 8 0vol°/〇,以5至60vol%爲佳,以1〇至40vol%爲較佳;氣 體壓力 l.OxlO^Pa 至 SOxlO^Pa,以 l.OxlO^Pa 至 4〇xlO-1Pa 爲佳,以l.OxlO^Pa至30x10-^3爲較佳) 投入電力:30至1000W,以50至750W爲佳,以80 至500W爲較佳 成膜速度:2.0 至 60nm/min,以 3.5 至 45nm/min 爲佳,以5至30nm/min爲較佳 當形成TaHfON層時 濺鍍氣體:Ar與02與N2的混合氣體(〇2氣體濃度5 至40vol%、N2氣體濃度5至40vol%,以〇2氣體濃度6 至3 5vol%、N2氣體濃度6至35vol%爲佳,以〇2氣體濃 度10至30vol%、N2氣體濃度1〇至30vol%爲較佳;氣體 壓力 1.0xl0]Pa 至 50x10·、,以 KOxlO^Pa 至 4〇χ 1 0_1Pa 爲佳,以l.Oxli^Pa至SOxli^Pa爲較佳) 投入電力:30至1000W,以50至750W爲佳,以80 -38· 200849332 至5 00W爲更佳 成膜速度:2.0 至 60nm/min,以 3.5 至 45nm/min 爲佳,以5至30nm/ min爲更佳 形成在TaBSiN層上的低反射層係以含有Ta、B、Si 及〇的層(TaBSiO層)爲佳。當低反射層爲TaBSiO層時 ,以以下所述之特定比率含有Ta、B、Si及Ο爲佳。In the TaHf compound target, the composition is Ta = 30 to 70 at%, Hf - 37 - 200849332 = 70 to 30 at%, the TaHfO layer and the TaHfON layer of the desired composition can be obtained, and the composition of the film or the unevenness of the film thickness can be avoided. Therefore, it is more ideal. TaHf compound? The E material may also contain Z 1 to 5.0 at % Z r . In order to form the TaHfO layer and the TaHfON layer by the above method, it may be carried out by the following film formation conditions. When the TaHfO layer is formed, the sputtering gas: a mixed gas of Ar and 〇2 (the gas concentration of 〇2 is 3 to 80 vol ° / 〇, preferably 5 to 60 vol%, preferably 1 〇 to 40 vol%; gas pressure l .OxlO^Pa to SOxlO^Pa, preferably l.OxlO^Pa to 4〇xlO-1Pa, preferably l.OxlO^Pa to 30x10-^3) Power input: 30 to 1000W, 50 to 750W Preferably, a film formation speed of 80 to 500 W is preferred: 2.0 to 60 nm/min, preferably 3.5 to 45 nm/min, and 5 to 30 nm/min is preferred. When a TaHfON layer is formed, a sputtering gas: Ar and 02 Mixed gas with N2 (〇2 gas concentration 5 to 40 vol%, N2 gas concentration 5 to 40 vol%, 〇2 gas concentration 6 to 35 vol%, N2 gas concentration 6 to 35 vol%, preferably 〇2 gas concentration 10 Up to 30 vol%, N2 gas concentration of 1 〇 to 30 vol% is preferred; gas pressure 1.0 x 10 Pa Pa to 50 x 10 ·, with KO x l O ^ Pa to 4 〇χ 1 0_1 Pa, preferably l. Oxli ^ Pa to SOxli ^ Pa For better) Input power: 30 to 1000W, preferably 50 to 750W, 80-38·200849332 to 50000 for better film formation speed: 2.0 to 60nm/min, preferably 3.5 to 45nm/min, 5 to 30 nm/min is better formed in TaBSiN The low reflection layer on the layer is preferably a layer (TaBSiO layer) containing Ta, B, Si and ruthenium. When the low reflection layer is a TaBSiO layer, it is preferred to contain Ta, B, Si, and ruthenium in a specific ratio as described below.

TaBSiO層的B含有率係lat%以上、未達5at%。針對 吸收體層如上所述,當使用含有Ta與B的膜(TaB膜、 TaBN膜、TaBO膜、TaBNO膜)時,爲了將膜的結晶狀 態形成爲非晶質,必須將膜的B含有率形成爲5at%以上 。在本發明中,由於TaBSiO層係以特定比率含有Ta、B 、Si及Ο,即使B含有率未達5at%,結晶狀態亦形成爲 非晶質。 當B含有率未達lat%時,爲了將結晶狀態形成爲非 晶質,必須增加Si添加量。具體而言,必須將Si含有率 形成爲超過25at%,雖然亦依TaBSiN層的Si含有率或膜 厚而異,但是由於將EUV光線反射率形成爲0.5%以下所 需之吸收體層與低反射層的膜厚合計會變大’故較不理想 。當B含有率爲5at%以上時,會發生成膜速度變慢等與 針對TaBSiN層所記載之內容相同的問題。 B含有率係以1至4.5 at%爲較佳,以1 .5至4at%爲更 佳。The B content of the TaBSiO layer is lat% or more and less than 5 at%. As described above, when a film containing Ta and B (TaB film, TaBN film, TaBO film, TaBNO film) is used, in order to form a crystalline state of the film to be amorphous, it is necessary to form a B content of the film. It is 5at% or more. In the present invention, since the TaBSiO layer contains Ta, B, Si, and antimony in a specific ratio, even if the B content is less than 5 at%, the crystalline state is formed to be amorphous. When the B content is less than lat%, in order to form the crystalline state as amorphous, it is necessary to increase the amount of Si added. Specifically, it is necessary to form the Si content to more than 25 at%, and depending on the Si content or the film thickness of the TaBSiN layer, the absorber layer and the low reflection required for forming the EUV light reflectance to 0.5% or less. The total film thickness of the layer will become larger, which is less desirable. When the B content is 5 at% or more, the same problem as described for the TaBSiN layer occurs when the film formation rate is slow. The B content is preferably from 1 to 4.5 at%, more preferably from 1.5 to 4 at%.

Si含有率爲1至25at%。當Si含有率未達lat%時, 結晶狀態不會形成爲非晶質。S i係EUV光的吸收係數較 -39- 200849332 低的材料,因此當Si含有率超過25at°/〇時’雖亦依 TaBSiN層的Si含有率或膜厚而異,但是將EUV光線反射 率形成爲〇 . 5 %以下所需之吸收體層與低反射層的膜厚的 合計會變大,故較不理想。The Si content is 1 to 25 at%. When the Si content is less than lat%, the crystalline state is not formed into an amorphous state. Since the absorption coefficient of S i-based EUV light is lower than that of -39-200849332, when the Si content exceeds 25 at ° / ', it depends on the Si content or film thickness of the TaBSiN layer, but the EUV light reflectance The total thickness of the absorber layer and the low-reflection layer required to form 〇. 5 % or less is large, which is not preferable.

Si含有率係以1至20at%爲較佳,以2至10at%爲更 佳。 在TaBSiO層中,除了 B及Si以外的殘部係Ta及Ο 。TaBSiO層中之Ta與Ο的組成比(Ta : Ο的原子比)爲 7 : 2至1 : 2。相較於上述組成比,當Ta的比例較高時, 無法充分降低圖案檢查光之波長範圍的光線反射率。另一 方面,相較於上述組成比,當0的比例較高時,由於絶緣 性變高、在進行電子線描繪時發生充電、膜密度降低、絶 緣性增加、在進行電子線描繪時發生充電,因此較不理想 。其中,TaBSiO層的膜厚比TaBSiN層薄,較難以發生充 電。因此,與TaBSiN層相比,〇含有率的上限較爲緩和 〇The Si content is preferably from 1 to 20 at%, more preferably from 2 to 10 at%. In the TaBSiO layer, Ta and Ο are other than B and Si. The composition ratio of Ta to ruthenium (Ta: atomic ratio of ruthenium) in the TaBSiO layer is 7:2 to 1:2. Compared with the above composition ratio, when the ratio of Ta is high, the light reflectance of the wavelength range of the pattern inspection light cannot be sufficiently reduced. On the other hand, when the ratio of 0 is higher than the composition ratio, the insulation is high, charging occurs during electron beam drawing, film density is lowered, insulation is increased, and charging occurs during electron beam drawing. Therefore, it is less than ideal. Among them, the film thickness of the TaBSiO layer is thinner than that of the TaBSiN layer, and charging is less likely to occur. Therefore, the upper limit of the cerium content ratio is more moderate than that of the TaBSiN layer.

TaBSiO層中之Ta與〇的組成比(Ta : Ο的原子比) 以7 : 2至1 : 1爲佳,以2 : 1至1 : 1爲更佳。The composition ratio of Ta to ruthenium in the TaBSiO layer (Ta: atomic ratio of ruthenium) is preferably from 7:2 to 1:1, more preferably from 2:1 to 1:1.

TaBSiO層係除了 Ta、B、Si及Ο以外,亦可含有N 。亦即,亦可爲TaB Si ON層。The TaBSiO layer may contain N in addition to Ta, B, Si and yttrium. That is, it can also be a TaB Si ON layer.

TaBSiON層係以以下所述之特定比率含有Ta、B、Si 、0及N爲佳。 其中,由於TaBSiON層係含有N,因此提升表面平滑 性。 -40- 200849332The TaBSiON layer preferably contains Ta, B, Si, 0 and N in a specific ratio as described below. Among them, since the TaBSiON layer contains N, the surface smoothness is improved. -40- 200849332

TaBSiON層的B含有率係1 at %以上、未達5 at %。當 B含有率未達1 at%時,爲了將結晶狀態形成爲非晶質,必 須增加Si添加量。具體而言,必須將Si含有率形成爲超 過25 at%,雖亦依吸收體層的Si含有率或膜厚而異,但是 由於將EUV光線反射率形成爲0.5%以下所需的吸收體層 與低反射層的膜厚的合計會變大,故較不理想。當B含有 率爲5at%以上時,會發生成膜速度變慢等與針對TaBSiN 層所記載的內容相同的問題。 B含有率係以1至4.5at%爲較佳,以2至4.0at%爲更 佳。The B content of the TaBSiON layer is 1 at % or more and less than 5 at %. When the B content is less than 1 at%, in order to form the crystalline state into an amorphous state, it is necessary to increase the amount of Si added. Specifically, the Si content is required to be more than 25 at%, and depending on the Si content or the film thickness of the absorber layer, the absorber layer required to form the EUV light reflectance to 0.5% or less is low. The total thickness of the reflective layer is increased, which is less desirable. When the B content is 5 at% or more, the same problem as that described for the TaBSiN layer occurs when the film formation rate is slow. The B content is preferably from 1 to 4.5 at%, more preferably from 2 to 4.0 at%.

TaBSiON層的Si含有率爲1至25 at%。當Si含有率 未達lat%時,結晶狀態不會形成爲非晶質。Si係EUV光 的吸收係數較低的材料,因此當Si含有率超過25at%時, 雖亦依TaBSiN層的Si含有率或膜厚而異,但是由於將 EUV光線反射率設爲0.5%以下時所需的吸收體層與低反 射層的膜厚的合計會變大,故較不理想。The TaBSiON layer has a Si content of 1 to 25 at%. When the Si content is less than lat%, the crystalline state is not formed into an amorphous state. Since the Si-based EUV light has a low absorption coefficient, when the Si content exceeds 25 at%, the Si content or the film thickness of the TaBSiN layer varies depending on the EUV light reflectance of 0.5% or less. The total thickness of the desired absorber layer and the low-reflection layer is increased, which is less desirable.

Si含有率係以1至20at%爲較佳,以2至10at%爲更 佳。 在TaBSiON層中,除了 B及Si以外的殘部係Ta、Ο 及N。TaBSiON層中之Ta與Ο及N的組成比(Ta :( 0 + N的原子比)爲7 : 2至1 : 2。相較於上述組成比,當 Ta的比例較高時,並無法充分降低圖案檢查光之波長範 圍的光線反射率。另一方面,相較於上述組成比,當〇及 N的比例較高時,會產生耐酸性降低、絶緣性增加、電子 -41 - 200849332 線描繪時發生充電(charge up )等問題。The Si content is preferably from 1 to 20 at%, more preferably from 2 to 10 at%. In the TaBSiON layer, the residues other than B and Si are Ta, Ο and N. The composition ratio of Ta to yttrium and N in the TaBSiON layer (Ta: (atomic ratio of 0 + N) is 7:2 to 1:2. Compared with the above composition ratio, when the ratio of Ta is high, it is not sufficient. Decreasing the light reflectance of the wavelength range of the pattern inspection light. On the other hand, when the ratio of bismuth and N is higher than that of the above composition ratio, acid resistance is lowered, insulation is increased, and electron-41 - 200849332 line drawing Problems such as charge up occur.

TaBSiON層中之Ta與〇及n的組成比(Ta : ( 0 + N 的原子比)係以7 : 2至1 : 1爲佳,以2 : 1至1 : 1爲更 佳。The composition ratio of Ta to yttrium and n in the TaBSiON layer (Ta: (atomic ratio of 0 + N) is preferably from 7:2 to 1:1, more preferably from 2:1 to 1:1.

TaBSiO層及TaBSiON層由於爲上述構成,因此此其 結晶狀態爲非晶質,且其表面的平滑性佳。具體而言,表 面粗縫度(rms)爲0.5nm以下。 如上所述,由於防止因邊緣粗糙度的影響而使圖案的 尺寸精度惡化,因此要求吸收體層表面爲平滑。因此,在 吸收體層上作爲低反射層所形成的TaBSiO層及TaBSiON 層係要求其表面爲平滑。Since the TaBSiO layer and the TaBSiON layer have the above-described constitution, the crystal state thereof is amorphous, and the surface smoothness is good. Specifically, the surface roughness (rms) is 0.5 nm or less. As described above, since the dimensional accuracy of the pattern is prevented from being deteriorated due to the influence of the edge roughness, the surface of the absorber layer is required to be smooth. Therefore, the TaBSiO layer and the TaBSiON layer formed as a low reflection layer on the absorber layer are required to have a smooth surface.

TaBSiO層及 TaBSiON層的表面粗糙度(rms)若爲 0.5nm以下,由於表面十分平滑,因此不會有因邊緣粗糙 度的影響而使圖案的尺寸精度惡化之虞。表面粗糙度( rms)係以0.4nm以下爲較佳,以〇.3nm以下爲更佳。 相較於TaBSiO層,TaBSiON層以平滑性方面爲較佳 〇When the surface roughness (rms) of the TaBSiO layer and the TaBSiON layer is 0.5 nm or less, since the surface is very smooth, there is no possibility that the dimensional accuracy of the pattern is deteriorated due to the influence of the edge roughness. The surface roughness (rms) is preferably 0.4 nm or less, more preferably 〇.3 nm or less. The TaBSiON layer is better in terms of smoothness than the TaBSiO layer.

TaBSiO層及TaBSiON層係可使用磁控濺鍍法或離子 束濺鍍法之類的濺鍍法等周知的成膜方法予以形成’當使 用磁控濺鍍法時,可利用下述(1 )至(3 )的方法來形成 TaBSiO 層·· (1 )使用T a靶材、B耙材及S i靶材,在以氬(A r )予以稀釋的氧(〇2 )環境中使該等各個耙材同時放電, 藉此形成TaBSiO層。 -42- 200849332 (2 )使用TaB化合物靶材及Si靶材,使該等靶材在 以氬予以稀釋的氧環境中同時放電,藉此形成TaBSi0層 〇 (3 )使用TaB Si化合物靶材,使該3元素予以一體 化的靶材在以氬予以稀釋的氧環境中放電’藉此形成 TaBSiO 層。 其中,上述方法中,在使2個以上的靶材同時放電的 方法((1 ) 、 ( 2 ))中,藉由調節各靶材的投入電力, 可控制所形成之TaBSiO層的組成。 上述之中(2)及(3)的方法在可回避放電不穩定化 或膜的組成或膜厚不均方面較爲理想,以(3 )的方法尤 其理想。TaB Si化合物靶材中,其組成爲Ta= 50至94 at% 、Si = 5至30at%、B = 1至20at%可回避放電不穩定化或 膜的組成或膜厚不均,故尤其理想。 在形成TaBSiON層時,替代以氬予以稀釋的氧環境 ,亦可在以氬予以稀釋的氧·氮混合氣體環境中,實施與 上述相同的順序。 當以上述方法形成TaBSiO層時,具體而言,以以下 之成膜條件予以實施即可。 使用TaB化合物靶材及Si靶材的方法(2 ) 濺鍍氣體:Ar與〇2的混合氣體(〇2氣體濃度3至 80vol%,以5至30vol%爲佳,以8至l5v〇1%爲更佳。氣 體壓力 l.OxltTipa 至 l〇xl(r】Pa,以 l.0xl(rlpa 至 5xl〇-ipa -43· 200849332 爲佳,以l.OxlOdPa至SxlOdpa爲更佳。) 投入電力(針對各靶材):30至1 000W,以 50至 75 0W爲佳,以80至5 00W爲更佳 成膜速度:2.0 至 60nm/min,以 3.5 至 45nm/min 爲佳,以5至30nm / min爲更佳 使用TaBSi化合物靶材的方法(3 ) 濺鍍氣體:Ar與〇2的混合氣體(〇2氣體濃度3至 80vol%’以5至30vol%爲佳’以8至15vol%爲更佳。氣 體壓力 l.Oxlt^Pa 至 lOxlO^Pa,以 l.OxlO^Pa 至 SxlO-ipa 爲佳,以l.OxlO^Pa至SxlOdpa爲更佳。) 投入電力:30至1000W,以50至750W爲佳,以80 至5 00W爲更佳 成膜速度:2.0 至 50nm/min,以 2.5 至 35nm/min 爲佳,以5至25nm/min爲更佳 當以上述方法形成TaBSiON層時,具體而言,以以 下之成膜條件予以實施即可。 使用T aB化合物靶材及S i耙材的方法(2 ) 濺鍍氣體:Ar與〇2與N2的混合氣體(〇2氣體濃度5 至3 0vol%、N2氣體濃度5至30vol%,以〇2氣體濃度6 至25vol%、N2氣體濃度6至25v〇l%爲佳,以〇2氣體濃 度10至20vol%、N2氣體濃度15至25vol%爲更佳。氣體 壓力 l.〇xl〇-2Pa 至 l〇xl〇_2pa,以 l.〇xl〇_2Pa 至 5xl〇-2Pa -44- 200849332 爲佳,以l.〇xl(T2Pa至3xl(T2Pa爲更佳。) 投入電力(針對各靶材):30至1 000W,以 50至 750W爲佳,以80至5 00W爲更佳 成膜速度:2.0 至 50nm/min,以 2.5 至 35nm/min 爲佳,以5至25nm / min爲更佳 使用TaBSi化合物靶材的方法(3) 濺鍍氣體·· Ar與〇2與N2的混合氣體(〇2氣體濃度5 至3 0vol%、N2氣體濃度5至30vol%,以〇2氣體濃度6 至25vol%、N2氣體濃度6至25v〇l%爲佳,以〇2氣體濃 度10至20vol%、N2氣體濃度15至25vol%爲更佳。氣體 壓力 l.〇xl(T2Pa 至 10xl0-2Pa,以 l.〇xl(T2Pa 至 5xlO_2Pa 爲佳,以l.〇xl(T2Pa至3xl(T2Pa爲更佳。) 投入電力·· 30至1000W,以50至750W爲佳,以80 至500W爲更佳 成膜速度:2.0 至 50nm/min,以 2.5 至 35nm/min 爲佳,以5至25nm/min爲更佳 吸收體層的厚度以50至100nm爲佳。此外,當在吸 收體層上形成有低反射層時,吸收體層與低反射層的合計 膜厚以滿足上述範圍爲佳。但是,當低反射層的膜厚大於 吸收體層的膜厚時,會有吸收體層的EUV光吸收特性降 低之虞,因此低反射層的膜厚係以小於吸收體層的膜厚爲 佳。因此,低反射層的厚度係以5至3 0nm爲佳’以1 0至 2 0 n m爲更佳。 -45 - 200849332 本發明之EUV光罩基底係除了反射層 收體層、低反射層以外,亦可具有在EUV 中周知的功能膜。以如上所示之功能膜的具 如,日本特表2003 -5 0 1 823號公報之記載所 對於基板的背面側(相對於成膜面)所施行 膜(coating),俾以促使基板的靜電夾持( 在該目的之下對於基板背面所施行的高介電 片阻抗爲100Ω/ □以下的方式,選擇構成 率與厚度。以高介電性塗膜的構成材料而言 文獻之記載中廣泛選擇。例如,可適用曰 5 0 1 823號公報所記載之高介電係數的塗膜, 適用由矽、TiN、鉬、鉻、TaSi所構成的塗 塗膜的厚度係可形成爲例如10至lOOOnm。 基底用基板、具有反射層之基板及具有反射 基板亦可具有如上所示之周知的功能膜。 高介電性塗膜係可使用周知的成膜方法 鍍法、離子束濺鍍法等濺鍍法、CVD法、真 解鑛敷法來形成。 &lt;缺點檢查方法&gt; 在本發明之光罩基底用基板之缺點檢查 使用缺點檢查機來檢查基板1的成膜面時, 1之成膜面的標記(2 a,2 b,2 c )的相對位 體而言’以與連結標記(2a,2b,2c )間之 、保護層、吸 光罩基底領域 體例而言,例 示,列舉一種 的高介電性塗 chucking) ° 性塗膜係以使 材料的電傳導 ,可由周知的 本特表 2003 -具體而言,可 膜。高介電性 本發明之光罩 層•保護層之 ,例如磁控濺 空蒸鍍法、電 方法中,係當 以與設在基板 置而言,更具 軸(20,21 ) -46- 200849332 的相對位置而言,確定存在於基板1之成膜面的缺點(3 a ,3b,3c )的位置。在此,所謂存在於基板之成膜面的缺 點係指由平滑基板的成膜面,變形爲凹狀或凸狀的部位, 尤其係指變形爲以當量球徑計爲3 Onm以上之大小之凹狀 或凸狀的部位。以變形爲凹狀的部位的具體例而言,係列 舉因硏磨等所造成的坑洞(pit )或刮痕(scratch )。以變 形爲凸狀的部位的具體例而言,係列舉存在於基板之成膜 面的異物等。在本發明之光罩基底用基板之缺點檢查方法 中,係確定如上所示之缺點之成膜面中的位置,亦即確定 在成膜面中的二次元的位置。 在第1圖中,以與2軸(20,21)的相對位置而言, 確定了缺點3 c之成膜面中的二次元的位置。 在習知的缺點檢查方法中,由於將基板外形作爲基準 予以定位,因此定位精度較低,爲50至100 μπι左右,難 以正確確定出以當量球徑計爲3 Onm之非常小的缺點的位 置。此外,由於定位精度較低,因此在確定缺點位置時需 要較長時間。在本發明中,以與2軸(20,21 )的相對位 置而言,由於確定缺點(3a,3b,3c)的位置,可在短時 間內而且以較高的檢測位置精度確定以當量球徑計爲 3 Onm之非常小的缺點的位置。例如,可以檢測位置偏移 量爲+/ -1 5 Onm以下之較高的檢測位置重現性來確定缺點 的位置。 其中,在本發明之具有反射層之基板之檢查方法、具 有反射層·保護層之基板之檢查方法、EUV光罩基底之檢 -47- 200849332 查方法中,以與連結以與上述相同的順序形成在反射層表 面、保護層表面、吸收體層表面的標記間的2軸的相對位 置而言,係確定存在於反射層之缺點、存在於保護層之缺 點、存在於吸收體層之缺點的位置。在此,所謂存在於反 射層之缺點、存在於保護層之缺點、存在於吸收體層之缺 點係指分別由平滑的反射層表面、保護層表面、吸收體層 表面,變形爲凹狀或凸狀的部位,尤其係指變形爲以當量 球徑計爲3 Onm以上之大小的凹狀或凸狀的部位。以如上 所示之部位的具體例而言,係列舉如:因在反射層中、保 護層中、吸收體層中存在有異物,而在反射層表面、保護 層表面、吸收體層表面所發生之變形爲凸狀的部位;在具 有缺點的表面上形成有反射層、保護層、吸收體層,藉此 在反射層表面、保護層表面、吸收體層表面所發生之變形 爲凸狀的部位或變形爲凹狀的部位;例如在具有缺點的基 板之成膜面形成有反射層的結果,在反射層表面所發生之 變形爲凸狀的部位或變形爲凹狀的部位;在具有缺點的反 射層表面或保護層表面形成有吸收體層的結果,在吸收體 層表面所發生之變形爲凸狀的部位或變形爲凹狀的部位。 &lt;缺點修正方法&gt; 在本發明之光罩基底用基板之缺點修正方法中,對於 ± Μ丨頃序被確定了位置之存在於基板之成膜面的缺點進 行修;Ε °以缺點的修正方法而言,例如若爲凸缺點時,係 有* H S使用蝕刻液的濕式蝕刻來去除缺點的舉離法(lift -48- 200849332 off)、或藉由刷洗、精密硏磨等來去除缺點的方法。若爲 凹缺點時,係有在成膜面形成由基板材料所構成的膜、或 由性質與基板材料類似的材料所構成的膜,藉由塡埋凹缺 點,來修正缺點的方法。此外有藉由雷射照射而使凹缺點 附近的基板材料膨脹,藉此修正缺點的方法。 其中,與本發明之具有反射層之基板之缺點修正方法 、具有反射層·保護層之基板之缺點修正方法的情形相同 ,對於存在於以上述順序被確定了位置的反射層的缺點、 存在於保護層的缺點進行修正。 &lt; EUV光罩之製造方法&gt; 在本發明之EUV光罩之製造方法中,係根據以上述 順序被確定了的缺點的位置,來微調在EUV光罩基底進 行圖案化的位置。具體而言,以使缺點不會存在於對於所 形成之圖案造成影響的位置的方式,或者以使缺點對於圖 案化精度造成的不良影響爲最小限度的方式,來微調在 EUV光罩基底進行圖案化的位置。在藉由圖案化來去除吸 收體層而露出於外部的反射層或保護層存在缺點時,會對 所形成的圖案造成不良影響。 如上所示之缺點藉由以位於圖案化後殘留吸收體層的 區域的方式來微調進行圖案化的位置,可對所形成的圖案 不會造成不良影響。此外,例如,在藉由圖案化來去除吸 收體層而露出於外部的反射層或保護層存在缺點時,由於 使縮小轉印在晶圓上阻劑的半導體元件電路的尺寸由目標 -49- 200849332 値偏移而損及圖案化精度,故較不理想。在此,因缺點對 於圖案化精度所造成的影響係取決於在圖案化後所殘留的 吸收體層與露出於外部的缺點的水平方向距離,因此以使 其影響爲最小的方式來對進行圖案化的位置進行微調,藉 此可將對於圖案化精度所造成的不良影響抑制爲最小限度 (產業上利用可能性) 可利用在隨著半導體元件之高積體化,在製造EUV 光罩時需要在對於圖案造成影響的位置不會產生缺點、或 者缺點對於圖案精度所造成的影響被抑制爲最小限度方面 〇 其中,在此沿用2007年4月17日申請之日本專利申 請2007- 1 08060號說明書、申請專利範圍、圖示及摘要的 所有內容,且作爲本發明之說明書之揭示而編入者。 【圖式簡單說明】 第1圖係顯不本發明之光罩基底用基板之一例的俯視 圖。 第2圖係用以說明在計算當量球徑時所使用之體積v 的模式圖。 第3圖係顯示形成在基板上之標記的SEVD、與藉由 缺點檢查機所得之該標記之檢測位置之最大位移量(最大 偏移量)的關係曲線圖。 -50- 200849332 第4圖係顯示標記與輔助標記之配置之一例圖。 【主要元件符號說明】 1 :基板 1 1 : 1 0 8 x 1 3 2mm口 12 : 1 49x 1 49mm口 2 a至2 c :標記 20、21 :連結標記間的軸 3 a至3 c :缺點 -51 -The TaBSiO layer and the TaBSiON layer can be formed by a known film formation method such as a sputtering method such as a magnetron sputtering method or an ion beam sputtering method. When the magnetron sputtering method is used, the following (1) can be used. The method of (3) to form a TaBSiO layer (1) using a T a target, a B coffin, and a S i target, and making them in an oxygen (〇 2 ) environment diluted with argon (A r ) Each coffin is simultaneously discharged, thereby forming a TaBSiO layer. -42- 200849332 (2) Using a TaB compound target and a Si target, the targets are simultaneously discharged in an oxygen environment diluted with argon, thereby forming a TaBSi0 layer 〇(3) using a TaB Si compound target, The target in which the three elements are integrated is discharged in an oxygen atmosphere diluted with argon to thereby form a TaBSiO layer. In the above method, in the method ((1), (2)) of simultaneously discharging two or more targets, the composition of the formed TaBSiO layer can be controlled by adjusting the input power of each target. The methods (2) and (3) above are preferable in that the discharge is unstable or the composition of the film or the film thickness is uneven, and the method (3) is particularly preferable. In the TaB Si compound target, the composition is Ta = 50 to 94 at%, Si = 5 to 30 at%, and B = 1 to 20 at%, which is particularly desirable because it can avoid discharge instability or film composition or film thickness unevenness. . In the formation of the TaBSiON layer, instead of the oxygen atmosphere diluted with argon, the same procedure as described above may be carried out in an oxygen-nitrogen mixed gas atmosphere diluted with argon. When the TaBSiO layer is formed by the above method, specifically, it may be carried out under the following film formation conditions. Method for using TaB compound target and Si target (2) Sputtering gas: mixed gas of Ar and 〇2 (〇2 gas concentration 3 to 80 vol%, preferably 5 to 30 vol%, 8 to 15 〇 1% For better gas pressure l.OxltTipa to l〇xl (r) Pa, l.0xl (rlpa to 5xl〇-ipa -43· 200849332 is better, lOxlOdPa to SxlOdpa is better.) For each target): 30 to 1 000 W, preferably 50 to 75 0 W, 80 to 500 W for better film formation speed: 2.0 to 60 nm/min, preferably 3.5 to 45 nm/min, 5 to 30 nm /min is a method for better use of TaBSi compound target (3) Sputtering gas: a mixed gas of Ar and 〇2 (〇2 gas concentration 3 to 80 vol%' is preferably 5 to 30 vol%' at 8 to 15 vol% More preferably, the gas pressure is from 1.Oxlt^Pa to lOxlO^Pa, preferably from 1.OxlO^Pa to SxlO-ipa, preferably from 1.00xO^Pa to SxlOdpa.) Input power: 30 to 1000W, to 50 Preferably, it is 750W, and a film formation speed of 80 to 500 W is better: 2.0 to 50 nm/min, preferably 2.5 to 35 nm/min, and more preferably 5 to 25 nm/min. When the TaBSiON layer is formed by the above method, Specifically, the following Film formation conditions can be carried out. Method of using T aB compound target and S i coffin (2 ) Sputtering gas: mixed gas of Ar and 〇2 and N2 (〇2 gas concentration 5 to 30 vol%, N2 gas The concentration is 5 to 30 vol%, preferably 〇2 gas concentration 6 to 25 vol%, N2 gas concentration 6 to 25 〇l%, more preferably 〇2 gas concentration 10 to 20 vol%, and N2 gas concentration 15 to 25 vol%. The pressure l.〇xl〇-2Pa to l〇xl〇_2pa, preferably l.〇xl〇_2Pa to 5xl〇-2Pa -44- 200849332, l.〇xl (T2Pa to 3xl (T2Pa is better) Power input (for each target): 30 to 1 000 W, preferably 50 to 750 W, and 80 to 500 W for better film formation speed: 2.0 to 50 nm/min, preferably 2.5 to 35 nm/min. 5 to 25 nm / min is a better method for using TaBSi compound targets (3) Sputter gas · Ar and a mixture of 〇 2 and N 2 (〇 2 gas concentration 5 to 30 vol%, N 2 gas concentration 5 to 30 vol % is preferably 6 to 25 vol% of the gas concentration of 〇2, and 6 to 25 volt% of the N2 gas concentration, more preferably 10 to 20 vol% of the gas concentration of 〇2 and 15 to 25 vol% of the gas concentration of N2. Gas pressure l. 〇xl (T2Pa to 10xl0-2Pa, l. 〇xl (T2Pa to 5xlO_2Pa is better, l. 〇xl (T2Pa to 3xl (T2Pa is better.) Power input · 30 to 1000W, 50 to 750W is preferable, and a film formation speed of 80 to 500W is preferable: 2.0 to 50 nm/min, preferably 2.5 to 35 nm/min, and 5 to 25 nm/min is preferable for the thickness of the absorber layer to 50 to 100 nm. Further, when a low reflection layer is formed on the absorber layer, the total film thickness of the absorber layer and the low reflection layer is preferably in the above range. However, when the film thickness of the low reflection layer is larger than the film thickness of the absorber layer, There is a possibility that the EUV light absorption property of the absorber layer is lowered. Therefore, the film thickness of the low reflection layer is preferably smaller than the film thickness of the absorber layer. Therefore, the thickness of the low reflection layer is preferably 5 to 30 nm. More preferably, it is more than 20 nm. -45 - 200849332 The EUV mask base of the present invention may have a functional film well known in EUV in addition to the reflective layer and the low reflection layer. The back side of the substrate (relative to the description of Japanese Patent Publication No. 2003-5001 823) The film formation surface is subjected to a coating to promote electrostatic chucking of the substrate (the composition ratio and thickness are selected such that the high dielectric sheet impedance applied to the back surface of the substrate is 100 Ω/□ or less. The constituent material of the high dielectric coating film is widely selected from the literature. For example, a coating film having a high dielectric constant described in Japanese Patent Publication No. 5 0 823 can be applied, and is suitable for ruthenium, TiN, molybdenum, and chromium. The thickness of the coating film formed of TaSi may be, for example, 10 to 100 nm. The substrate for a substrate, the substrate having a reflective layer, and the reflective substrate may have a well-known functional film as described above. High dielectric coating film It can be formed by a sputtering method such as a known film formation method or an ion beam sputtering method, a CVD method or a true demineralization method. <Disadvantage inspection method> Disadvantages of the substrate for a mask base of the present invention When the defect inspection machine is used to inspect the film formation surface of the substrate 1, the relative position of the mark (2 a, 2 b, 2 c ) of the film formation surface of 1 is the same as the connection mark (2a, 2b, 2c). Inter-, protective layer, diffuser substrate field Illustratively, a high dielectric coating chucking system is exemplified to enable electrical conduction of a material, which can be known from the patent table 2003 - specifically, a film. High dielectric properties of the mask layer of the present invention • The protective layer, such as the magnetron sputtering vapor deposition method, the electrical method, is determined to exist in the relative position of the shaft (20, 21) -46-200849332 when it is placed on the substrate. The position of the defect (3 a , 3b, 3c ) of the film formation surface of the substrate 1. Here, the disadvantage that the film formation surface of the substrate is formed by the film formation surface of the smooth substrate is deformed into a concave shape or a convex shape, and in particular, the deformation is equal to or larger than the equivalent spherical diameter of 3 Onm or more. Concave or convex part. In the specific example of the portion which is deformed into a concave shape, a series of pits or scratches caused by honing or the like are used. In the specific example of the portion where the deformation is convex, a series of foreign matter or the like existing on the film formation surface of the substrate is used. In the method for inspecting the defects of the substrate for a reticle base of the present invention, the position in the film formation surface which is a defect as described above is determined, that is, the position of the secondary element in the film formation surface is determined. In Fig. 1, the position of the secondary element in the film formation surface of the defect 3c is determined in terms of the relative position with respect to the two axes (20, 21). In the conventional defect inspection method, since the outer shape of the substrate is used as a reference, the positioning accuracy is low, and it is about 50 to 100 μπι, and it is difficult to accurately determine the position of a very small defect of 3 Onm in terms of equivalent spherical diameter. . In addition, due to the low positioning accuracy, it takes a long time to determine the position of the defect. In the present invention, in terms of the relative position with respect to the two axes (20, 21), since the position of the defect (3a, 3b, 3c) is determined, the equivalent ball can be determined in a short time and with a high detection position accuracy. The diameter is a very small disadvantage of 3 Onm. For example, a higher position detection reproducibility with a position offset of +/ -1 5 Onm or less can be detected to determine the position of the defect. In the method for inspecting the substrate having the reflective layer of the present invention, the method for inspecting the substrate having the reflective layer and the protective layer, and the method for inspecting the EUV mask substrate, the method is the same as described above. The relative positions of the two axes formed between the marks on the surface of the reflective layer, the surface of the protective layer, and the surface of the absorber layer determine the disadvantages of the reflective layer, the disadvantages of the protective layer, and the disadvantages of the absorber layer. Here, the disadvantages of being present in the reflective layer, the disadvantages of being present in the protective layer, and the disadvantages existing in the absorber layer mean that the surface of the smooth reflective layer, the surface of the protective layer, and the surface of the absorber layer are respectively deformed into a concave shape or a convex shape. The portion, in particular, is a concave or convex portion that is deformed to have an equivalent spherical diameter of 3 Onm or more. In the specific example of the portion shown above, the series is such that deformation occurs on the surface of the reflective layer, the surface of the protective layer, and the surface of the absorber layer due to the presence of foreign matter in the reflective layer, the protective layer, and the absorber layer. a convex portion; a reflective layer, a protective layer, and an absorber layer are formed on the surface having defects, whereby the deformation of the surface of the reflective layer, the surface of the protective layer, and the surface of the absorber layer is convex or deformed into a concave shape. a portion that is formed, for example, as a result of forming a reflective layer on a film formation surface of a substrate having a defect, a portion where the deformation of the surface of the reflective layer is convex or a portion that is deformed into a concave shape; on the surface of the reflective layer having a defect or As a result of the formation of the absorber layer on the surface of the protective layer, the deformation occurring on the surface of the absorber layer is a convex portion or a portion deformed into a concave shape. &lt;Disadvantage Correction Method&gt; In the method for correcting the defect of the substrate for a reticle substrate of the present invention, the defect that the position of the Μ丨 Μ丨 sequence is determined to exist on the film formation surface of the substrate is repaired; For the correction method, for example, if it is a convex defect, the HS is removed by wet etching using an etching solution to remove the disadvantage (lift -48-200849332 off), or by brushing, precision honing, or the like. The method of the shortcomings. In the case of a concave defect, there is a method in which a film made of a substrate material or a film having a property similar to that of a substrate material is formed on a film formation surface, and a defect is corrected by burying a defect. Further, there is a method of swelling the substrate material in the vicinity of the concave defect by laser irradiation, thereby correcting the disadvantage. In the same manner as in the case of the method for correcting the defect of the substrate having the reflective layer of the present invention and the method for correcting the defect of the substrate having the reflective layer and the protective layer, there is a disadvantage of the reflective layer existing in the above-described order. The shortcomings of the protective layer are corrected. &lt;Manufacturing Method of EUV Photomask&gt; In the method of manufacturing an EUV mask of the present invention, the position where the EUV mask base is patterned is finely adjusted based on the position of the defect determined in the above-described order. Specifically, fine-tuning the pattern on the EUV mask base in such a manner that the disadvantage does not exist at the position affecting the formed pattern, or in a manner that minimizes the adverse effect of the defect on the patterning accuracy Location. When there is a defect in the reflective layer or the protective layer exposed by the patterning to remove the absorber layer, the formed pattern is adversely affected. The disadvantages shown above are that the position of the patterning is fine-tuned in such a manner that the area of the absorber layer remains after patterning, so that the formed pattern is not adversely affected. Further, for example, when there is a disadvantage in that the reflective layer or the protective layer exposed to the outside is removed by patterning, the size of the semiconductor element circuit which reduces the resist on the wafer is reduced by the target -49-200849332 The offset is degraded and the patterning accuracy is impaired, so it is less desirable. Here, the influence of the defect on the patterning accuracy depends on the horizontal distance of the absorber layer remaining after patterning and the disadvantage of being exposed to the outside, and therefore the patterning is performed in such a manner that the influence thereof is minimized. The position is fine-tuned, thereby minimizing the adverse effects on the patterning accuracy (industrial utilization possibility), which can be utilized in the manufacture of an EUV mask in accordance with the high integration of semiconductor elements. The position that affects the pattern does not cause a defect, or the effect of the defect on the pattern accuracy is suppressed to a minimum. Here, the specification of Japanese Patent Application No. 2007-1 08060, filed on Apr. 17, 2007, The entire contents of the patent application, the drawings and the abstract are incorporated herein by reference. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view showing an example of a substrate for a mask base of the present invention. Figure 2 is a schematic diagram for explaining the volume v used in calculating the equivalent spherical diameter. Fig. 3 is a graph showing the relationship between the SEVD of the mark formed on the substrate and the maximum displacement amount (maximum offset amount) of the detection position of the mark obtained by the defect inspection machine. -50- 200849332 Figure 4 is a diagram showing an example of the configuration of the marker and the auxiliary marker. [Description of main component symbols] 1 : Substrate 1 1 : 1 0 8 x 1 3 2mm Port 12 : 1 49x 1 49mm Port 2 a to 2 c : Mark 20, 21 : Axis 3 a to 3 c between the joint marks: Disadvantage -51 -

Claims (1)

200849332 十、申請專利範圍 1·一種超紫外線(EUV )微影用反射型光罩基 板’其特徵爲在該基板的成膜面形成有滿足下述 (2 )之至少3個標記: (1 )標記大小以當量球徑計爲30至lOOnm ; (2 )在成膜面上,3個標記不在同一假想直線 2·如申請專利範圍第1項所記載之超紫外線( 微影用反射型光罩基底用基板,其中,前述標記係 圖案化時之曝光區域外。 3·如申請專利範圍第1項所記載之超紫外線( 微影用反射型光罩基底用基板,其中,前述標記係 前述成膜面之1 0 8 x 1 3 2mm□至149x 149mm□的範圍 4 ·如申請專利範圍第1項至第3項中任一項所 超紫外線(EUV )微影用反射型光罩基底用基板, 前述標記間的距離係相隔1 50nm以上。 5 .如申請專利範圍第1項至第4項中任一項所 超紫外線(EUV )微影用反射型光罩基底用基板, 另外在前述基板的成膜面形成有用以識別前述標記 標記。 6·—種具有超紫外線(EUV )微影用反射層之 係在基板上形成有用以反射超紫外光之反射層的具 外線(EUV )微影用反射層之基板,其特徵爲在前 層表面形成有滿足下述(1 )、( 2 )之至少3個標; (1 )標記大小以當量球徑計爲30至lOOnm ; 底用基 EUV ) 形成在 EUV ) 形成在 內。 記載之 其中, 記載之 其中, 的輔助 基板, 有超紫 述反射 -52- 200849332 (2)在反射層表面上,3個標記不在同一假想直線。 7.—種具有超紫外線(EUV )微影用反射層之基板, 係在基板上依序形成有用以反射超紫外光之反射層;及用 以保護該反射層的保護層的具有超紫外線(EUV )微影用 反射層之基板,其特徵爲在前述保護層表面形成有滿足下 述(1 ) 、( 2 )之至少3個標記: (1 )標記大小以當量球徑計爲30至lOOnm ; (2 )在保護層表面上,3個標記不在同一假想直線。 8·如申請專利範圍第6項或第7項所記載之具有超紫 外線(EUV )微影用反射層之基板,其中,前述標記係形 成在圖案化時之曝光區域外。 9 ·如申請專利範圍第6項所記載之具有超紫外線( EUV )微影用反射層之基板,其中,前述標記係形成在反 射層表面之108x132mm□至149x149mm□的範圍內。 1 0·如申請專利範圍第7項所記載之具有超紫外線( EUV )微影用反射層之基板,其中,前述標記係形成在保 護層表面之1 0 8 x 1 3 2mm□至1 49x 1 49mm□的範圍內。 1 1 ·如申請專利範圍第6項至第1 〇項中任一項所記載 之具有超紫外線(EUV )微影用反射層之基板,其中,前 述標記間的距離係相隔1 5 Onm以上。 1 2 .如申請專利範圍第6項所記載之具有超紫外線( EUV )微影用反射層之基板,其中,另外在前述反射層表 面形成有用以識別前述標記的輔助標記。 1 3 .如申請專利範圍第7項所記載之具有超紫外線( -53- 200849332 EUV )微影用反射層之基板,其中,另外在前述 面形成有用以識別前述標記的輔助標記。 14. 一種超紫外線(EUV)微影用反射型光罩 在基板上依序形成有用以反射超紫外光之反射層 吸收超紫外光之吸收體層的超紫外線(EUV )微 型光罩基底,其特徵爲在前述吸收體層表面形成 述(1 ) 、( 2 )之至少3個標記: (1 )標記大小以當量球徑計爲30至lOOnm (2)在吸收體層表面上,3個標記不在同一 〇 15. —種超紫外線(EUV)微影用反射型光罩 在基板上依序形成有用以反射超紫外光之反射層 收超紫外光之吸收體層;以及對檢查遮罩圖案時 檢查光反射低之低反射層的超紫外線(EUV )微 型光罩基底,其特徵爲在前述低反射層表面形成 述(1 ) 、( 2 )之至少3個標記·· (1 )標記大小以當量球徑計爲30至lOOnm (2)在低反射層表面上,3個標記不在同一 〇 1 6 ·如申請專利範圍第1 4項或第1 5項所記 外線(EUV )微影用反射型光罩基底,其中,在 層與前述吸收體層之間形成有用以保護前述吸收 護層。 1 7 .如申請專利範圍第1 4項至第1 6項中任 保護層表 基底,係 ;及用以 影用反射 有滿足下 假想直線 基底,係 ;用以吸 所使用之 影用反射 有滿足下 假想直線 載之超紫 前述反射 體層的保 一項所記 -54- 200849332 載之超紫外線(EUV)微影用反射型光罩基底,其中,前 述標記係形成在圖案化時的曝光區域外。 1 8 .如申請專利範圍第1 4項或第1 6項所記載之超紫 外線(EUV )微影用反射型光罩基底,其中,前述標記係 形成在前述吸收體層表面之108x132 mm □至149x149 mm □的範圍內。 19·如申請專利範圍第15項或第16項所記載之超紫 外線(EUV )微影用反射型光罩基底,其中,前述標記係 形成在前述低反射層表面之108x132 mm □至149x149 mm □的範圍內。 20·如申請專利範圍第14項至第19項中任一項所記 載之超紫外線(EUV )微影用反射型光罩基底,其中,前 述標記間的距離係相隔1 50nm以上。 2 1 ·如申請專利範圍第1 4項所記載之超紫外線(e u v )微影用反射型光罩基底,其中,另外在前述吸收體層表 面形成有用以識別前述標記的輔助標記。 2 2 ·如申請專利範圍第1 5項所記載之超紫外線(eu V )微影用反射型光罩基底’其中,另外在前述低反射層表 面形成有用以識別前述標記的輔助標記。 2 3 · —種如申請專利範圍第1項至第5項中任一項所 記載之超紫外線(EUV )微影用反射型光罩基底用基板之 缺點檢查方法,係包含:使用形成在前述成膜面的標記, 來確定缺點之位置的步驟。 2 4 · —種如申請專利範圍第1項至第5項中任一項所 -55- 200849332 吕己載之超紫外線(EUV)微影用反射型光罩基底用基板之 缺點修正方法,係包含:使用形成在前述成膜面的標記, 來確定缺點之位置的步驟;以及修正在該步驟中被確定了 位置之缺點的步驟。 25·—種如申請專利範圍第6項所記載之具有超紫外 線(EUV )微影用反射層之基板之缺點檢查方法,係包含 :使用形成在前述反射層表面的標記,來確定缺點之位置 的步驟。 26·—種如申請專利範圍第6項所記載之具有超紫外 線(EUV )微影用反射層之基板之缺點修正方法,係包含 :使用形成在前述反射層表面的標記,來確定缺點之位置 的步驟;以及修正在該步驟中被確定了位置之缺點的步驟 〇 27· —種如申請專利範圍第7項所記載之具有超紫外 線(EUV )微影用反射層之基板之缺點檢查方法,係包含 :使用形成在前述保護層表面的標記,來確定缺點之位置 的步驟。 2 8 · —種如申請專利範圍第7項所記載之具有超紫外 線(EUV )微影用反射層之基板之缺點修正方法,係包含 :使用形成在前述保護層表面的標記,來確定缺點之位置 的步驟;以及修正在該步驟中被確定了位置之缺點的步驟 〇 2 9 · —種如申請專利範圍第1 4項所記載之超紫外線( E U V )微影用反射型光罩基底之缺點檢查方法,係包含: -56- 200849332 使用形成在前述吸收體層表面的標記,來確定缺點之 的步驟。 30.—種使用如申請專利範圍第I#項所記載之超 線(EUV )微影用反射型光罩基底來製造超紫外線( )微W用反射型光罩的方法,係包含:使用形成在前 收體層表面的標記,來確定缺點之位置的步驟;以及 在該步驟中所確定之缺點的位置,來微調在光罩基底 圖案化之位置的步驟。 3 1 · —種如申請專利範圍第1 5項所記載之超紫外 EUV )微影用反射型光罩基底之缺點檢查方法,係包 使用形成在前述低反射層表面的標記,來確定缺點之 的步驟。 3 2 · —種使用如申請專利範圍第1 5項所記載之超 線(EUV )微影用反射型光罩基底來製造超紫外線( )微影用反射型光罩的方法,係包含:使用形成在前 射層表面的標記,來確定缺點之位置的步驟;以及根 該步驟中所確定之缺點的位置’來微調在光罩基底進 案化之位置的步驟。 位置 紫外 EUV 述吸 根據 進行 線( 含: 位置 紫外 EUV 述反 據在 行圖 -57-200849332 X. Patent Application No. 1. A reflective reticle substrate for ultra-ultraviolet (EUV) lithography, characterized in that at least three marks satisfying the following (2) are formed on the film formation surface of the substrate: (1) The mark size is 30 to 100 nm in terms of equivalent spherical diameter; (2) on the film formation surface, the three marks are not in the same imaginary line. 2. Ultraviolet light as described in the first item of the patent application (reflective mask for lithography) The substrate for a substrate, wherein the mark is in the form of a super-ultraviolet light (the substrate for a reflective shadow mask substrate for lithography), wherein the mark is the aforementioned The range of 1 0 8 x 1 3 2 mm □ to 149 x 149 mm □ of the film surface. The substrate for the reflective reticle base for ultra-ultraviolet (EUV) lithography according to any one of claims 1 to 3. The distance between the marks is 1 50 nm or more. 5. The substrate for a reflective reticle for ultra-violet (EUV) lithography according to any one of claims 1 to 4, and the substrate The film forming surface is formed to identify the aforementioned target a substrate having a reflective layer with an ultraviolet (EUV) lithography and a reflective layer for reflecting an ultra-ultraviolet light reflecting layer on a substrate, characterized in that The front layer surface is formed with at least three labels satisfying the following (1) and (2); (1) the mark size is 30 to 100 nm in terms of equivalent spherical diameter; and the base EUV is formed in EUV). In the description, among the auxiliary substrates, there is a super-violet reflection. -52- 200849332 (2) On the surface of the reflective layer, the three marks are not in the same imaginary line. 7. A substrate having a reflective layer for ultra-violet (EUV) lithography, sequentially forming a reflective layer for reflecting ultra-ultraviolet light on a substrate; and super-ultraviolet rays for protecting a protective layer of the reflective layer ( EUV) A substrate for a reflective layer for lithography, characterized in that at least three marks satisfying the following (1) and (2) are formed on the surface of the protective layer: (1) the mark size is 30 to 100 nm in terms of equivalent spherical diameter (2) On the surface of the protective layer, the three marks are not in the same imaginary line. 8. The substrate having a super-violet (EUV) lithographic reflection layer as described in claim 6 or 7, wherein the mark is formed outside the exposed region at the time of patterning. The substrate having a super-ultraviolet (EUV) lithography reflective layer as described in claim 6, wherein the mark is formed in a range of from 108 x 132 mm □ to 149 x 149 mm □ of the surface of the reflective layer. The substrate having a reflective layer for ultra-ultraviolet (EUV) lithography as described in claim 7, wherein the mark is formed on the surface of the protective layer from 1 0 8 x 1 3 2 mm □ to 1 49 x 1 Within the range of 49mm□. The substrate having a super-ultraviolet (EUV) lithography reflective layer according to any one of claims 6 to 1, wherein the distance between the labels is 15 5 nm or more. The substrate having a super-ultraviolet (EUV) lithographic reflection layer according to claim 6, wherein an auxiliary mark for identifying the mark is formed on the surface of the reflective layer. A substrate having a super-ultraviolet (-53-200849332 EUV) lithographic reflection layer as described in claim 7, wherein an auxiliary mark for identifying the mark is formed on the surface. 14. An ultra-ultraviolet (EUV) lithography uses a reflective reticle to sequentially form an ultra-ultraviolet (EUV) micro-mask substrate on a substrate for reflecting an ultra-ultraviolet absorber layer by reflecting a super-ultraviolet light reflecting layer. To form at least three marks of (1) and (2) on the surface of the absorber layer: (1) the mark size is 30 to 100 nm in terms of equivalent spherical diameter (2) on the surface of the absorber layer, the three marks are not in the same 〇15. Ultra-ultraviolet (EUV) lithography uses a reflective reticle to sequentially form an absorber layer for reflecting ultra-ultraviolet light reflecting the ultra-ultraviolet light on the substrate; and checking the light reflection when inspecting the mask pattern a low-reflection layer ultra-ultraviolet (EUV) micro-mask substrate characterized in that at least three marks (1) and (2) are formed on the surface of the low-reflection layer. Calculated as 30 to 100 nm (2) On the surface of the low-reflection layer, the three marks are not in the same 〇1 6 · As in the patent range, item 14 or item 15 (EUV) a cover substrate, wherein between the layer and the aforementioned absorber layer Into useful to protect the absorbent covering. 1 7 . If the application is in the range of items 14 to 16 of the protective layer, the base is used; and the reflection is used to satisfy the hypothetical straight line substrate; the image reflection used for suction is A reflective reticle substrate for ultra-ultraviolet (EUV) lithography, wherein the marking is formed in an exposed area during patterning, in accordance with the imaginary linear loading of the super-violet-shaped reflector layer - 54-200849332 outer. The reflective reticle substrate for ultra-ultraviolet (EUV) lithography according to claim 14 or claim 16, wherein the mark is formed on the surface of the absorber layer from 108x132 mm □ to 149×149 Within the range of mm □. The reflective reticle substrate for ultra-ultraviolet (EUV) lithography according to claim 15 or 16, wherein the mark is formed on the surface of the low reflection layer from 108 x 132 mm □ to 149 x 149 mm □ In the range. The reflective reticle substrate for ultra-ultraviolet (EUV) lithography as described in any one of claims 14 to 19, wherein the distance between the aforementioned marks is 190 nm or more. The super-ultraviolet (e u v ) lithography reflective reticle substrate according to claim 14 wherein an auxiliary mark for identifying the mark is formed on the surface of the absorber layer. In the case of the ultra-ultraviolet (eu V) lithography reflective reticle substrate described in the fifteenth aspect of the patent application, an auxiliary mark for identifying the mark is formed on the surface of the low-reflection layer. The method for inspecting the defects of the substrate for a reflective reticle for ultra-violet (EUV) lithography according to any one of the first to fifth aspects of the present invention, comprising: The step of marking the film surface to determine the location of the defect. 2 4 · - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - The method includes the steps of: determining the position of the defect by using a mark formed on the film forming surface, and correcting the disadvantage of the position determined in the step. A method for inspecting a defect of a substrate having a reflective layer for ultra-ultraviolet (EUV) lithography as described in claim 6 includes: using a mark formed on a surface of the reflective layer to determine a position of a defect A step of. A method for correcting a defect of a substrate having a super-ultraviolet (EUV) lithography reflective layer as described in claim 6 includes: using a mark formed on a surface of the reflective layer to determine a defect position And a step of correcting the defect of the substrate having the ultra-ultraviolet (EUV) lithography reflective layer as described in claim 7 of the patent application, The method includes the step of determining the position of the defect by using a mark formed on the surface of the foregoing protective layer. A method for correcting a defect of a substrate having a super-ultraviolet (EUV) lithography reflective layer as described in claim 7 includes: using a mark formed on a surface of the protective layer to determine a defect a step of locating; and a step of correcting the disadvantage of the position determined in the step 〇2 9 - a disadvantage of the reflective reticle substrate for ultra-ultraviolet (EUV) lithography as described in claim 14 The inspection method includes: -56- 200849332 A step of determining a defect using a mark formed on the surface of the aforementioned absorber layer. 30. A method for producing a super-ultraviolet () micro-W reflective reticle by using a super-optical (EUV) lithography reflective reticle substrate as described in the Patent Application No. I#, which comprises: forming using The step of marking the surface of the front body layer to determine the location of the defect; and the location of the defect identified in the step to fine tune the step of patterning the reticle base. 3 1 - A method for inspecting defects of a reflective reticle substrate for lithography as described in claim 15 of the patent application, the method of using a mark formed on the surface of the low-reflection layer to determine a defect A step of. 3 2 - A method of manufacturing a super-ultraviolet ( ) lithographic reflective reticle using a super-light (EUV) lithography reflective reticle as described in claim 15 of the patent application, comprising: using The step of forming a mark on the surface of the front shot layer to determine the position of the defect; and the position of the defect identified in the step is used to fine tune the position at which the mask substrate is introduced. Position UV EUV Sampling according to the line (including: position UV EUV) in the map -57-
TW097112501A 2007-04-17 2008-04-07 Ultraviolet (EUV) mask base TWI446405B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108060 2007-04-17

Publications (2)

Publication Number Publication Date
TW200849332A true TW200849332A (en) 2008-12-16
TWI446405B TWI446405B (en) 2014-07-21

Family

ID=39875443

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097112501A TWI446405B (en) 2007-04-17 2008-04-07 Ultraviolet (EUV) mask base

Country Status (3)

Country Link
JP (1) JP5327046B2 (en)
TW (1) TWI446405B (en)
WO (1) WO2008129914A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468852B (en) * 2009-03-26 2015-01-11 Hoya Corp Reflective mask blank and methods of manufacturing the same
TWI651587B (en) * 2012-02-10 2019-02-21 日商Hoya股份有限公司 Method for manufacturing substrate with multilayer reflective film, method for manufacturing reflective mask substrate, and method for manufacturing reflective mask
TWI705484B (en) * 2013-02-22 2020-09-21 日商Hoya股份有限公司 Manufacturing method of reflective photomask substrate and manufacturing method of reflective photomask

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210802A (en) * 2008-03-04 2009-09-17 Asahi Glass Co Ltd Reflective mask blank for extreme ultraviolet lithography
WO2010061725A1 (en) * 2008-11-27 2010-06-03 Hoya株式会社 Substrate with multilayer reflection film, reflective mask blank and method for manufacturing reflective mask blank
JP5910625B2 (en) * 2011-03-07 2016-04-27 旭硝子株式会社 Multilayer substrate, multilayer substrate manufacturing method, multilayer substrate quality control method
JP5935804B2 (en) 2011-09-01 2016-06-15 旭硝子株式会社 Reflective mask blank and method of manufacturing reflective mask blank
KR101993322B1 (en) 2011-09-28 2019-06-26 호야 가부시키가이샤 Glass substrate for mask blank, substrate with multilayer reflective film, mask blank and mask, and preparation method for the same
WO2013133321A1 (en) * 2012-03-07 2013-09-12 株式会社ニコン Mask, mask unit, exposure device, substrate treatment apparatus and method for manufacturing device
JP6460619B2 (en) * 2012-03-12 2019-01-30 Hoya株式会社 Reflective mask blank and method of manufacturing reflective mask
JP6111243B2 (en) 2012-03-28 2017-04-05 Hoya株式会社 Method for manufacturing substrate with multilayer reflective film, method for manufacturing reflective mask blank, and method for manufacturing reflective mask
WO2014050891A1 (en) * 2012-09-28 2014-04-03 旭硝子株式会社 Reflective mask blank for euv-lithography and manufacturing method therefor, and reflective mask for euv-lithography and manufacturing method therefor
JP6114009B2 (en) * 2012-11-13 2017-04-12 Hoya株式会社 Reflective mask blank and method of manufacturing reflective mask
JP6106413B2 (en) * 2012-11-13 2017-03-29 Hoya株式会社 Reflective mask blank and method of manufacturing reflective mask
JP6147514B2 (en) * 2013-01-31 2017-06-14 Hoya株式会社 Method for manufacturing substrate for mask blank, method for manufacturing substrate with multilayer reflective film, method for manufacturing mask blank, and method for manufacturing transfer mask
JP6713251B2 (en) * 2015-03-30 2020-06-24 Hoya株式会社 Substrate with multilayer reflective film, reflective mask blank, reflective mask, and manufacturing method thereof
JP6565471B2 (en) * 2015-08-19 2019-08-28 Agc株式会社 Glass substrate for mask blanks
JP6586934B2 (en) 2015-09-17 2019-10-09 Agc株式会社 Reflective mask blank and method of manufacturing reflective mask blank
JP2017075997A (en) * 2015-10-13 2017-04-20 旭硝子株式会社 Reflection type mask blank, and manufacturing method of reflection type mask blank
JP6792901B2 (en) 2016-03-31 2020-12-02 Hoya株式会社 Manufacturing method of reflective mask blank, reflective mask blank, manufacturing method of reflective mask, reflective mask, and manufacturing method of semiconductor device
WO2020095959A1 (en) * 2018-11-07 2020-05-14 Hoya株式会社 Multilayer reflection film-provided substrate, reflective mask blank, reflective mask producing method, and semiconductor device producing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000029202A (en) * 1998-07-15 2000-01-28 Nikon Corp Production of mask
JP4397496B2 (en) * 2000-02-25 2010-01-13 Okiセミコンダクタ株式会社 Reflective exposure mask and EUV exposure apparatus
JP2003248299A (en) * 2002-02-26 2003-09-05 Toshiba Corp Mask substrate and method of manufacturing the same
JP4212025B2 (en) * 2002-07-04 2009-01-21 Hoya株式会社 REFLECTIVE MASK BLANK, REFLECTIVE MASK, AND METHOD FOR PRODUCING REFLECTIVE MASK
JP2004170948A (en) * 2002-10-30 2004-06-17 Nikon Corp Pattern transfer mask, method for manufacturing mask and exposure method
JP2004193269A (en) * 2002-12-10 2004-07-08 Hitachi Ltd Manufacturing method of mask, and manufacturing method of semiconductor integrated circuit device
JP2005241688A (en) * 2004-02-24 2005-09-08 Toppan Printing Co Ltd Method for drawing photomask
JP4157486B2 (en) * 2004-03-24 2008-10-01 株式会社東芝 Method for generating drawing pattern data and mask drawing method
JP4408732B2 (en) * 2004-03-24 2010-02-03 Necエレクトロニクス株式会社 Method for forming hole pattern
JP2006113221A (en) * 2004-10-14 2006-04-27 Renesas Technology Corp Method of correcting mask
JP2006332153A (en) * 2005-05-24 2006-12-07 Hoya Corp Reflective mask blank, reflective mask, and method of manufacturing semiconductor device
WO2010061725A1 (en) * 2008-11-27 2010-06-03 Hoya株式会社 Substrate with multilayer reflection film, reflective mask blank and method for manufacturing reflective mask blank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468852B (en) * 2009-03-26 2015-01-11 Hoya Corp Reflective mask blank and methods of manufacturing the same
TWI651587B (en) * 2012-02-10 2019-02-21 日商Hoya股份有限公司 Method for manufacturing substrate with multilayer reflective film, method for manufacturing reflective mask substrate, and method for manufacturing reflective mask
TWI705484B (en) * 2013-02-22 2020-09-21 日商Hoya股份有限公司 Manufacturing method of reflective photomask substrate and manufacturing method of reflective photomask
US11131921B2 (en) 2013-02-22 2021-09-28 Hoya Corporation Method for manufacturing reflective mask blank, and method for manufacturing reflective mask

Also Published As

Publication number Publication date
TWI446405B (en) 2014-07-21
JPWO2008129914A1 (en) 2010-07-22
WO2008129914A1 (en) 2008-10-30
JP5327046B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
TW200849332A (en) EUV mask blank
US10295900B2 (en) Mask blank substrate, substrate with multilayer reflection film, transmissive mask blank, reflective mask, and semiconductor device fabrication method
JP6630005B2 (en) Substrate with conductive film, substrate with multilayer reflective film, reflective mask blank and reflective mask, and method for manufacturing semiconductor device
US8192901B2 (en) Glass substrate-holding tool
JP6515235B2 (en) Substrate for mask blank, substrate with multilayer reflective film, reflective mask blank, reflective mask and method for manufacturing semiconductor device
US10191365B2 (en) Reflective mask blank, method of manufacturing reflective mask blank, reflective mask and method of manufacturing semiconductor device
TWI444757B (en) Reflective mask blank for euv lithography
TWI434131B (en) Reflective mask base for EUV microfilm
US8389184B2 (en) Reflective mask blank and method of manufacturing a reflective mask
TWI437360B (en) EUV micro-shadow with a reflective mask base, and EUV micro-shadow with a reflective mask
US9726969B2 (en) Reflective mask blank, method of manufacturing same, reflective mask and method of manufacturing semiconductor device
TW200804970A (en) Reflective mask blank for EUV lithography and substrate with functional film for the same
JP5874407B2 (en) Method of manufacturing a reflective mask for EUV exposure that reduces the influence of phase defects
TWI825296B (en) Substrate for mask base, substrate with multi-layer reflective film, reflective mask base, reflective mask, translucent mask substrate, translucent mask and method for manufacturing semiconductor device
JP2004289048A (en) Process for producing reflective mask