WO2013133321A1 - Mask, mask unit, exposure device, substrate treatment apparatus and method for manufacturing device - Google Patents
Mask, mask unit, exposure device, substrate treatment apparatus and method for manufacturing device Download PDFInfo
- Publication number
- WO2013133321A1 WO2013133321A1 PCT/JP2013/056145 JP2013056145W WO2013133321A1 WO 2013133321 A1 WO2013133321 A1 WO 2013133321A1 JP 2013056145 W JP2013056145 W JP 2013056145W WO 2013133321 A1 WO2013133321 A1 WO 2013133321A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- mask
- optical system
- axis
- pattern
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/24—Curved surfaces
Definitions
- the present invention relates to a mask, a mask unit, an exposure apparatus, a substrate processing apparatus, and a device manufacturing method.
- This application claims priority based on Japanese Patent Application No. 2012-50664 for which it applied on March 7, 2012, and uses the content here.
- display elements constituting display devices such as display devices, for example, liquid crystal display elements, organic electroluminescence (organic EL) elements, electrophoretic elements used for electronic paper, and the like are known.
- switching elements thin film transistors: TFTs
- active elements active devices
- a technique for forming a display element on a sheet-like substrate for example, a film member
- a technique called a roll-to-roll system (hereinafter simply referred to as “roll system”) is known (see, for example, Patent Document 1).
- roll system a technique called a roll-to-roll system
- a single sheet-like substrate for example, a belt-like film member
- a substrate supply-side supply roller is sent out, and the sent-out substrate is wound up with a recovery roller on the substrate recovery side. Transport.
- a gate electrode, a gate oxide film, a semiconductor film, a source / drain electrode, and the like constituting the TFT are formed by a plurality of processing apparatuses from when the substrate is sent out until it is wound. Thereafter, other components of the display element are sequentially formed on the substrate. For example, when an organic EL element is formed on a substrate, a light emitting layer, an anode, a cathode, an electric circuit, and the like are sequentially formed on the substrate. These components may be formed using, for example, a photolithography method using an exposure apparatus that exposes the substrate with exposure light through a mask, for example.
- a cylindrical mask As an example of a mask for an exposure apparatus, for example, a cylindrical mask is known.
- a cylindrical mask has a rotating body having a pattern.
- the rotating body is formed in, for example, a cylindrical shape or a columnar shape, and a pattern is formed on the cylindrical surface.
- An object of an aspect of the present invention is to provide a mask, a mask unit, an exposure apparatus, a substrate processing apparatus, and a device manufacturing method that can prevent the structure from becoming complicated.
- a mask having a pattern on an outer peripheral surface formed around a predetermined axis, wherein the outer peripheral surface is a part of a spherical surface provided with a center point on the axis.
- a mask including a partial spherical surface formed, wherein the pattern is provided on the partial spherical surface.
- a mask unit comprising a plurality of masks according to the first aspect of the present invention, wherein the plurality of masks are arranged with the axes parallel to each other.
- an exposure apparatus for transferring a pattern to a substrate, which supports the mask of the first aspect of the present invention having the pattern on an outer peripheral surface formed around a predetermined axis. And a projection optical system that projects an image of the pattern of the mask supported by the support device onto the substrate, the projection optical system corresponding to a radius of curvature of the partial spherical surface of the mask.
- An exposure apparatus having a negative Petzval sum of magnitude is provided.
- an exposure apparatus for transferring a pattern to a substrate, comprising a plurality of masks having the pattern on an outer peripheral surface formed around a predetermined axis.
- a support device that supports a mask unit; and a plurality of projection optical systems that are provided corresponding to each of the plurality of masks supported by the support device and that project an image of the pattern onto the substrate,
- An exposure apparatus is provided in which the projection optical system has a negative Petzval sum having a magnitude corresponding to the radius of curvature of the partial spherical surface of the mask.
- a substrate processing apparatus for processing a strip-shaped substrate, wherein the substrate transport unit transports the substrate in the longitudinal direction of the substrate, and the substrate transport path by the substrate transport unit. And a substrate processing unit that performs processing on the substrate transported along the transport path, wherein the substrate processing unit transfers a pattern to the substrate.
- a substrate processing apparatus including the exposure apparatus of the aspect is provided.
- a device manufacturing method for processing a substrate to manufacture a device wherein the pattern is transferred to the substrate using the exposure apparatus according to the fourth aspect of the present invention. And processing the substrate on which the pattern is transferred based on the pattern.
- a mask that can prevent the structure from becoming complicated can be provided.
- the figure which shows schematic structure of exposure apparatus. The front view which looked at the mask from the -X side.
- Embodiments of a mask, a mask unit, an exposure apparatus, a substrate processing apparatus, and a device manufacturing method according to the present invention will be described below with reference to FIGS.
- FIG. 1 is a diagram showing a configuration of a substrate processing apparatus FPA according to the first embodiment of the present invention.
- the substrate processing apparatus FPA performs processing on a substrate supply unit SU that supplies a sheet substrate (for example, a strip-shaped film member) FB, and a surface (surface to be processed) of the sheet substrate FB. It includes a part PR, a substrate recovery part CL for recovering the sheet substrate FB, and a control part CONT for controlling these parts.
- the substrate processing apparatus FPA is installed in a factory, for example.
- the conveyance direction of the sheet substrate FB (longitudinal direction of the sheet substrate FB) is the X-axis direction
- the direction orthogonal to the conveyance direction of the sheet substrate FB (the short direction of the sheet substrate FB or the sheet substrate FB)
- the width direction is defined as the Y-axis direction
- the direction orthogonal to each of the X-axis direction and the Y-axis direction is defined as the Z-axis direction.
- the substrate processing apparatus FPA is a roll toe that performs various processes on the surface of the sheet substrate FB from when the sheet substrate FB is sent out from the substrate supply unit SU to when the sheet substrate FB is recovered by the substrate recovery unit CL.
- a device of a roll method hereinafter simply referred to as “roll method”.
- the substrate processing apparatus FPA can be used when forming a display element (electronic device) such as an organic EL element or a liquid crystal display element on the sheet substrate FB. Of course, when forming elements other than these elements, the substrate processing apparatus FPA may be used.
- the sheet substrate FB to be processed in the substrate processing apparatus FPA for example, a foil such as a resin film or stainless steel can be used.
- the resin film is made of polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, vinyl acetate resin, etc. Can be used.
- the dimension of the sheet substrate FB in the Y direction is, for example, about 1 m to 2 m
- the dimension in the X direction (long direction) is, for example, 10 m or more.
- this dimension is only an example and is not limited thereto.
- the dimension of the sheet substrate FB in the Y direction may be 1 m or 50 cm or less, or 2 m or more.
- substrate FB may be 10 m or less.
- the sheet substrate FB is formed to have flexibility, for example.
- the term “flexibility” refers to the property that the substrate can be bent without breaking or breaking even when a predetermined force of at least its own weight is applied to the substrate. Further, for example, the property of bending by the predetermined force is also included in the flexibility.
- the flexibility varies depending on the material, size, thickness, or environment such as temperature of the substrate.
- substrate FB you may use the sheet
- the sheet substrate FB can have a small coefficient of thermal expansion so that the dimensions do not substantially change even when it receives heat at a relatively high temperature (for example, about 200 ° C.) (thermal deformation is small).
- a relatively high temperature for example, about 200 ° C.
- an inorganic filler can be mixed with a resin film to reduce the thermal expansion coefficient.
- the inorganic filler include titanium oxide, zinc oxide, alumina, silicon oxide and the like.
- the substrate supply unit SU sends out the sheet substrate FB wound in a roll shape to the substrate processing unit PR, for example.
- the substrate supply unit SU is provided with, for example, a shaft around which the sheet substrate FB is wound, a rotation drive source that rotates the shaft, and the like.
- a configuration in which a cover portion that covers the sheet substrate FB wound in a roll shape or the like may be provided.
- the substrate collection unit CL collects the sheet substrate FB from the substrate processing unit PR in a roll shape, for example.
- the substrate recovery unit CL is provided with a shaft for winding the sheet substrate FB, a rotational drive source for rotating the shaft, a cover for covering the recovered sheet substrate FB, and the like. ing.
- the sheet substrate FB is cut into a panel shape in the substrate processing unit PR, for example, the sheet substrate FB is collected in a stacked state, and the sheet substrate FB is in a state different from the rolled state. It may be configured to collect the.
- the substrate processing unit PR transports the sheet substrate FB supplied from the substrate supply unit SU to the substrate recovery unit CL, and processes the surface Fp to be processed of the sheet substrate FB in the course of transport.
- the substrate processing unit PR includes, for example, a processing device 60, a transfer device 70, an alignment device 80, and the like.
- the processing apparatus 60 has various apparatuses for forming, for example, an organic EL element on the processing surface Fp of the sheet substrate FB.
- an apparatus for example, a partition forming apparatus for forming a partition on the processing surface Fp, an electrode forming apparatus for forming an electrode for driving an organic EL element, and light emission for forming a light emitting layer Examples thereof include a layer forming apparatus.
- film forming apparatuses such as a droplet coating apparatus (for example, an ink jet type coating apparatus, a spin coating type coating apparatus, etc.), a vapor deposition apparatus, a sputtering apparatus, an atmospheric pressure CVD apparatus, a mist deposition apparatus, and an electroless plating apparatus.
- an exposure apparatus a development apparatus, a surface modification apparatus, and a cleaning apparatus.
- Each of these apparatuses is appropriately provided, for example, on the conveyance path of the sheet substrate FB.
- the exposure apparatus will be mainly described among various apparatuses constituting the processing apparatus 60.
- the transport device 70 includes a roller device R that transports, for example, the sheet substrate FB to the substrate recovery unit CL in the substrate processing unit PR.
- a roller device R that transports, for example, the sheet substrate FB to the substrate recovery unit CL in the substrate processing unit PR.
- a plurality of roller devices R are provided along the conveyance path of the sheet substrate FB.
- a drive mechanism (not shown) is attached to at least some of the plurality of roller devices R. By rotating such a roller device R, the sheet substrate FB is conveyed in the X-axis direction.
- a part of the plurality of roller devices R may be configured to be movable in a direction orthogonal to the transport direction.
- Alignment device 80 performs an alignment operation on sheet substrate FB.
- the alignment apparatus 80 includes an alignment camera 81 that detects the position state of the sheet substrate FB, and the sheet substrate FB in the X direction, Y direction, Z direction, ⁇ X direction, ⁇ Y direction, and ⁇ Z direction based on the detection result of the alignment camera 81. And an adjusting device 82 for fine adjustment.
- the alignment camera 81 detects, for example, an alignment mark formed on the sheet substrate FB and transmits the detection result to the control unit CONT.
- the control unit CONT obtains the position information of the sheet substrate based on the detection result, and controls the adjustment amount by the adjusting device 82 based on the position information.
- FIG. 2 is a view showing a schematic configuration of an exposure apparatus EX used as the processing apparatus 60.
- the exposure apparatus EX is an apparatus that projects an image of the pattern Pm formed on the mask M onto the sheet substrate FB.
- the exposure apparatus EX includes an illumination optical system IU that illuminates exposure light on the mask M, a support apparatus MST that rotatably supports the mask M around a rotation axis (shaft portion) MJ, and a pattern Pm formed on the mask M.
- a projection optical system PU for projecting an image.
- FIG. 3 is a front view of the mask M viewed from the ⁇ X side.
- the mask M in the present embodiment is formed in a substantially disk shape centered on a central axis (predetermined axis) J parallel to the Y axis.
- the outer peripheral surface of the mask M includes a partial spherical surface Ma that forms a part of a spherical surface having a central point on the central axis J.
- the center point of the spherical surface is located at the substantial center of the partial spherical surface Ma with respect to the direction along the central axis J.
- the pattern Pm is formed in the pattern area PA of the partial spherical surface Ma excluding the non-pattern area PN in the circumferential direction.
- a configuration directly formed on the spherical surface Ma a configuration in which a sheet on which the pattern Pm is formed is pasted on the spherical surface Ma, or the like can be adopted.
- the pattern Pm formed in the pattern area PA is patterned by a material that reflects illumination light for exposure and a material that absorbs the illumination light.
- the pattern Pm is, for example, a circuit pattern for forming a pixel electrode, TFT, wiring, or the like of a display panel unit using liquid crystal or organic EL, or a circuit pattern for forming a display panel unit and a peripheral circuit unit for a mobile terminal device. And so on.
- the partial spherical surface Ma is formed in a belt shape around the central axis line J, intersects with an axis intersecting line passing through the center point of the spherical surface and orthogonal to the central axis line J, and the axis intersecting line and the partial spherical surface Ma. Is formed so that the tangent plane that includes the intersection with the partial spherical surface Ma is substantially parallel to the central axis J.
- the rotation axis MJ is provided on both sides of the mask M in the Y direction so that the center axis J and the axis coincide with each other (as the axis center). Further, the rotation shaft MJ is rotatably held together with the outer peripheral surface of the mask M by the support device MST, and is connected to a rotation drive device (rotation device) RD to be rotated.
- the driving of the rotation driving device RD (that is, the rotation driving of the mask M) is controlled by the control unit CONT.
- the illumination optical system IU illuminates the exposure light EL on the mask M.
- the illumination optical system IU includes a light source unit 20, a plane reflecting mirror M1, an optical element (first partial optical system) L11 and an optical element L12 that constitute a part of the projection optical system PU, a concave mirror L13, and a plane reflecting mirror M2. ing.
- the light source unit 20 may have a configuration in which a light source device such as a mercury lamp or a laser generator is installed, or a configuration in which an element that forms a secondary light source such as a fly-eye optical element is installed.
- the projection optical system PU projects an image of the pattern Pm formed on the mask M onto the sheet substrate FB.
- the projection optical system PU is arranged in order along the traveling direction of the exposure light EL, the optical elements L11 and L12, the concave mirror L13, the plane reflecting mirror M2, the optical element L14, the aperture stop (optical path limiting member) AS, and the optical element. Elements L15 to L19 and an optical element (second partial optical system) L20 are included.
- the aperture stop AS defines the numerical aperture of the projection optical system PU.
- the aperture stop AS is disposed at a position on the pupil plane that is a plane conjugate with the exit pupil (or entrance pupil) of the projection optical system PU.
- the reflecting surface of the concave mirror L13 is also arranged at the position of the pupil plane in the projection optical system PU.
- the exposure light EL from the light source unit 20 is sequentially reflected by the plane reflecting mirror M1 and the concave mirror L13, and then sequentially passes through the optical elements L12 and L11 to illuminate the pattern Pm formed on the partial spherical surface Ma of the mask M.
- the exposure light EL reflected by the mask M (partial spherical surface Ma) is received (transmitted) by the optical element L11, then passes through the optical element L12 and is reflected by the concave mirror L13 and the plane reflecting mirror M2.
- the exposure light EL reflected by the plane reflecting mirror M2 is sequentially transmitted through the optical elements L14 to L19, and then projected onto the sheet substrate FB by the optical element L20.
- FIG. 4 shows values of specifications of the projection optical system PU.
- the face number is shown.
- R represents the radius of curvature of each optical surface
- d represents the surface spacing between the optical surfaces.
- the r column shows the paraxial radius of curvature of each optical surface, and the d column shows the surface spacing.
- FIG. 5 shows aspherical data for each surface number formed on the aspherical surface.
- K is a conic coefficient
- a to F are fourth, sixth, eighth,... Aspheric coefficients.
- the sign of the paraxial radius of curvature r is positive when convex toward the object plane side (pattern Pm plane side), and the plane spacing d is reversed before and after the optical surface. Shall.
- the projection optical system PU has, for example, a wavelength (exposure wavelength) of 365 nm, a reduction ratio of 1 (equal magnification), an object-side numerical aperture NA of 0.055, the optical elements L11 and L12, the concave mirror L13, the plane It has a negative Petzval sum set by the reflecting mirror M2, the optical element L14, the aperture stop AS, and the optical elements L15 to L20.
- the Petzval sum Psum is expressed by the following equation. Is done.
- the focal length fi of the concave mirror L13 having a negative curvature radius ri is expressed by the following equation.
- the magnitude of the Petzval sum in the projection optical system PU is set substantially equal to the reciprocal of the radius of curvature (that is, the curvature) of the partial spherical surface Ma on which the pattern Pm is formed.
- the Petzval sum in the projection optical system PU is ⁇ 0.00199 ( ⁇ 1 / 500). It has become. Thereby, the image of the pattern Pm formed on the partial spherical surface Ma is projected onto the processing surface Fp of the sheet substrate FB in a substantially planar shape.
- the substrate processing apparatus FPA configured as described above produces, for example, the display substrate 1 by the so-called roll-to-roll method (hereinafter referred to as a roll method) under the control of the control unit CONT.
- a roll method roll-to-roll method
- the belt-shaped sheet substrate FB is wound around a roller provided in the substrate supply unit SU.
- the control unit CONT causes the sheet substrate FB to be sent out from the substrate supply unit SU from this state, and the sheet substrate FB that has been sent out is taken up by the roller of the substrate recovery unit CL to transport the sheet substrate FB.
- the control unit CONT displays the display by the processing device 60 while appropriately transporting the sheet substrate FB in the substrate processing unit PR by the transport device 70 of the substrate processing unit PR from when the sheet substrate FB is sent out to when it is wound up.
- the components of the substrate 1 are sequentially formed on the sheet substrate FB.
- the control unit CONT causes the alignment device 80 to align the sheet substrate FB.
- the control unit CONT performs exposure in the processing apparatus 60 while appropriately transporting the sheet substrate FB in the substrate processing unit PR by the transporting device 70 of the substrate processing unit PR from when the sheet substrate FB is sent out to when it is wound up.
- the apparatus EX is caused to project the pattern Pm of the mask M onto the processing surface Fp of the sheet substrate FB.
- the control unit CONT controls the rotation of the rotation driving device RD and the driving of the roller device R to synchronously drive the rotation of the mask M around the rotation axis MJ and the sheet substrate FB. More specifically, the control unit CONT determines that the ratio of the moving speed (conveying speed) of the sheet substrate FB to the moving speed around the rotation axis MJ of the partial spherical surface Ma included in the mask M is the projection magnification of the projection optical system PU. In the embodiment, the drive control is performed so as to be equal to 1 ⁇ .
- the image of the pattern Pm of the rotating mask M illuminated by the illumination optical system IU is sequentially projected onto the sheet substrate FB with a size corresponding to the projection magnification via the projection optical system PU.
- the mask M in which the pattern Pm is formed on the partial spherical surface forming a part of the spherical surface is used, an optical design for correcting the image surface becomes unnecessary, and the structure is prevented from becoming complicated. it can.
- the projection optical system PU having a negative Petzval sum can be easily realized by using the concave mirror L13, and the image of the pattern Pm can be easily projected on the sheet substrate FB with a simple structure. It is possible.
- FIGS. 1 to 5 a second embodiment of the exposure apparatus EX will be described with reference to FIGS.
- the configurations of the illumination optical system IU and the projection optical system PU are different from those of the first embodiment.
- the illumination optical system IU and the projection optical system PU will be described below.
- the same components as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
- the illumination optical system IU in this embodiment includes a light source unit 20, a beam splitter BS, optical elements L25 and L24, an aperture stop AS, and an optical element L23 that are sequentially arranged along the optical path of the exposure light EL. , L22, L21.
- These beam splitter BS, optical elements L25 and L24, aperture stop AS, and optical elements L23, L22, and L21 constitute a part of the projection optical system PU as will be described later.
- the projection optical system PU includes the optical element (first partial optical system) L21, the optical elements L22 to L23, the aperture stop AS, the optical elements L24 and L25, and the beam splitter BS, which are sequentially arranged along the optical path of the exposure light EL. , A concave mirror L26, a plane reflecting mirror M21, optical elements L27 to L29, and an optical element (second partial optical system) L30.
- the concave mirror L26 is disposed at the position of the pupil plane in the projection optical system PU.
- the exposure light EL from the light source unit 20 is incident and reflected by the beam splitter BS as the illumination optical system IU, and then passes through the optical elements L25 and L24, the aperture stop AS, the optical elements L23, L22, and L21, and the mask M.
- the pattern Pm formed on the partial spherical surface Ma is illuminated.
- the exposure light EL reflected by the mask M (partial spherical surface Ma) is incident on the beam splitter BS via optical elements L21 to L23 serving as a projection optical system PU, an aperture stop AS, and optical elements L24 and L25.
- the exposure light EL that has entered the beam splitter BS passes through the beam splitter BS, is reflected by the concave mirror L26, and again passes through the beam splitter BS and the optical elements L25 and L24 in order, and then is reflected by the planar reflecting mirror M21.
- the exposure light EL reflected by the plane reflecting mirror M21 is sequentially transmitted through the optical elements L27 to L30 to project an image of the pattern Pm of the mask M onto the sheet substrate FB.
- FIG. 7 shows values of specifications of the projection optical system PU in the present embodiment.
- the face number is shown.
- R represents the radius of curvature of each optical surface
- d represents the surface spacing between the optical surfaces.
- the r column shows the paraxial radius of curvature of each optical surface, and the d column shows the surface spacing.
- FIG. 8 shows aspherical data for each surface number formed on the aspherical surface.
- K is a conic coefficient
- a to F are 4th, 6th, 8th,... Aspherical coefficients.
- the sign of the paraxial radius of curvature r is positive when it is convex toward the object plane side (pattern Pm plane side), and the plane spacing d is reversed before and after the optical surface. It is supposed to be.
- the projection optical system PU has, for example, a wavelength (exposure wavelength) of 365 nm, a projection magnification of 2 (enlargement), and an object-side numerical aperture NA of 0.054.
- the Petzval sum set by the optical elements L21 to L23, aperture stop AS, optical elements L24 and L25, beam splitter BS, concave mirror L26, and optical elements L27 to L30 is ⁇ 0.00200 ( ⁇ 1/500 ).
- the use of the mask M in which the pattern Pm is formed on the partial spherical surface forming a part of the spherical surface and the projection optical system PU having the negative Petzval sum can prevent the structure from being complicated.
- the apparatus since the optical element is shared between the illumination optical system IU and the projection optical system PU, the apparatus can be reduced in size.
- FIGS. 1 to 5 a third embodiment of the exposure apparatus EX will be described with reference to FIGS.
- the configurations of the illumination optical system IU and the projection optical system PU are different from those of the first embodiment.
- the illumination optical system IU and the projection optical system PU will be described below.
- the same components as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
- the illumination optical system IU in the present embodiment includes a convex mirror L34, optical elements L33 and L32, a concave mirror L31, and a plane reflecting mirror M31 that are sequentially arranged along the optical path of the exposure light EL.
- the convex mirror L34, the optical elements L33 and L32, the concave mirror L31, and the plane reflecting mirror M31 constitute a part of the projection optical system PU as will be described later.
- the convex mirror L34 is semi-transmissive, and emits the exposure light EL incident from the surface opposite to the surface facing the optical element L33 toward the optical element L33.
- the exposure light EL incident on the optical element L33 is transmitted through the optical elements L33 and L32, then reflected by the concave mirror 31 and the plane reflecting mirror M31, travels toward the central axis J of the mask M, and reaches the partial spherical surface Ma of the mask M.
- the formed pattern Pm is illuminated.
- the projection optical system PU includes a concave mirror L35, in addition to the above-described plane reflecting mirror (first partial optical system) M31, concave mirror L31, optical elements L32 and L33, and convex mirror L34, which are sequentially arranged along the optical path of the exposure light EL.
- a plane reflecting mirror M32, an aperture stop AS, and an optical element (second partial optical system) L36 are provided.
- the concave mirrors L31 and L35 are disposed at the position of the pupil plane in the projection optical system PU.
- the concave mirror L35 is disposed in the vicinity of the aperture stop AS.
- the exposure light EL reflected by the mask M (partial spherical surface Ma) is reflected by the plane reflecting mirror M31 and the concave mirror L31 as the projection optical system PU, and then sequentially passes through the optical elements L32 and L33 and is reflected by the convex mirror L34.
- the exposure light EL reflected by the convex mirror L34 again passes through the optical elements L33 and L32 again, and then is reflected by the concave mirror L35 and the plane reflecting mirror M32.
- the exposure light EL reflected by the plane reflecting mirror M32 passes through the optical element L36 and projects an image of the pattern Pm of the mask M onto the sheet substrate FB.
- FIG. 10 shows values of specifications of the projection optical system PU in this embodiment.
- the surface number of each optical surface on which the exposure light EL sequentially enters or exits at the concave mirror L31, the optical elements L32 and L33, the convex mirror L34, the concave mirror L35, the aperture stop AS, and the optical element L36 is shown.
- R represents the radius of curvature of each optical surface
- d represents the surface spacing between the optical surfaces.
- the r column shows the paraxial radius of curvature of each optical surface, and the d column shows the surface spacing.
- FIG. 11 shows aspherical data for each surface number formed on the aspherical surface.
- K is a conic coefficient
- a to F are 4th, 6th, 8th,... Aspherical coefficients.
- the sign of the paraxial radius of curvature r is positive when it is convex toward the object plane side (pattern Pm plane side), and the plane spacing d is reversed before and after the optical surface. It is supposed to be.
- the projection optical system PU has, for example, a wavelength (exposure wavelength) of 365 nm, a projection magnification of 1.25 times (enlargement), an object-side numerical aperture NA of 0.055, the concave mirror L31, the optical elements L32, L33, The Petzval sum set by the convex mirror L34, the concave mirror L35, the aperture stop AS, and the optical element L36 is ⁇ 0.00175 ( ⁇ 1 / 560).
- the use of the mask M in which the pattern Pm is formed on the partial spherical surface forming a part of the spherical surface and the projection optical system PU having the negative Petzval sum can prevent the structure from being complicated.
- FIG. 1 a mask unit in which a plurality of masks M described above are arranged with their axes parallel to each other is provided, and a projection optical system is provided corresponding to each mask.
- the same components as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
- the exposure apparatus EX in the present embodiment includes a mask unit MU provided with a plurality (three in this case) of masks M1 to M3 each having the above-described partial spherical surface Ma.
- the masks M1 to M3 are arranged at intervals in the Y direction.
- the central axis J in each of the masks M1 to M3 extends in the Y-axis direction and is arranged in parallel to each other.
- the masks M1 to M3 are provided with a common rotation axis MJ ′ that extends in the Y-axis direction, has a common spherical axis as a center along with the partial spherical surface Ma, and can rotate around the common axis.
- the central axis J in each of the masks M1 to M3 is arranged coaxially with the common axis of the common rotation axis MJ ′.
- each of the masks M1 to M3 has the same configuration as the projection optical system PU in the above-described embodiment that projects the images of the patterns Pm1 to Pm3 on the sheet substrate FB.
- Projection optical systems PU1 to PU3 having negative Petzval sums corresponding to the radii of curvature of the partial spherical surfaces Ma of M3 to M3 are provided.
- Projection areas PA1 to PA3 projected by the projection optical systems PU1 to PU3 on the sheet substrate FB according to the projection magnification are adjacently arranged along the Y direction.
- the adjacent arrangement is a concept including not only a configuration in which the edges of adjacent projection areas are in contact with each other but also a part of edges of adjacent projection areas overlapping each other.
- the partial spherical surfaces Ma of the masks M1 to M3 are integrally rotated in accordance with the rotation of the common rotation axis MJ ′, and the patterns Pm1 to Pm3 of the masks M1 to M3 illuminated with the exposure light EL.
- the images are projected onto the projection areas PA1 to PA3 via the projection optical systems PU1 to PU3, respectively.
- the patterns Pm1 to Pm3 formed on the masks M1 to M3 are the same, a plurality of the same patterns are formed on the sheet substrate FB, so that a so-called multi-piece manufacturing is possible. Become.
- the patterns Pm1 to Pm3 formed on the masks M1 to M3 are combined to form one pattern, a large and large area pattern can be formed on the sheet substrate FB.
- the three masks M1 to M3 are provided coaxially by the common shaft portion MJ ′, and the projection optical systems PU1 to PU3 are also arranged along the Y direction.
- the mask M2 and the projection optical system PU2 are combined with the masks M1 and M3 and the projection optical systems PU1 and PU3. It is good also as a structure arrange
- the number of masks M1 to M3 and the number of projection optical systems PU included in the mask unit MU shown in the above embodiment are examples, and the configuration includes two masks or the configuration including four or more masks. Also good. Even in this case, for example, when it is difficult to arrange a plurality of projection optical systems along the common axis due to space restrictions, the mask and the projection optical system adjacent to each other in the direction (Y direction) orthogonal to the transport direction. May be arranged in a zigzag pattern separated in the transport direction (X direction).
- the exposure apparatus of the above-described embodiment is manufactured by assembling various subsystems including the constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy.
- various optical systems are adjusted to achieve optical accuracy
- various mechanical systems are adjusted to achieve mechanical accuracy
- various electrical systems are Adjustments are made to achieve electrical accuracy.
- the assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Prior to the assembly process from the various subsystems to the exposure apparatus, there is an assembly process for each subsystem. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus.
- the exposure apparatus can be manufactured in a clean room in which temperature, cleanliness, etc. are controlled.
- a microdevice such as a semiconductor device includes a step 201 for designing the function and performance of the microdevice, a step 202 for producing a mask (reticle) based on the design step, and a substrate which is a substrate of the device.
- Step 203 Exposing the substrate with exposure light using the mask pattern and developing the exposed substrate (photosensitive agent) according to the above-described embodiment
- the substrate is manufactured through a substrate processing step 204 including a substrate processing (exposure processing), a device assembly step (including processing processes such as a dicing process, a bonding process, and a packaging process) 205, an inspection step 206, and the like.
- the photosensitive agent is developed to form an exposure pattern layer (developed photosensitive agent layer) corresponding to the mask pattern, and the substrate is processed through the exposure pattern layer. It is.
- the substrate processing step 204 is a step of applying a photosensitive SAM agent on the surface of the substrate that changes from a state showing high liquid repellency to a state showing lyophilicity by irradiation of ultraviolet exposure light, the above-described embodiment.
- the pattern Pm of the mask M is used to expose the substrate coated with the photosensitive SAM agent with exposure light, and the lyophilic portion on the substrate by the exposure is exposed to a printing method or an inkjet method.
- a metal layer for wiring can be formed by immersing the exposed substrate as it is in an electroless plating solution (including ions such as palladium).
- step 202 for manufacturing the mask in FIG. 13 the projection reticle system PU described in each of the previous embodiments is used, and the pattern of the planar reticle serving as a master has a spherical outer peripheral surface serving as the mask M. It can be easily transferred onto a cylindrical body. Therefore, an example of producing a spherical cylindrical mask M using the projection optical system PU of the exposure apparatus shown in FIG. 6 will be described with reference to FIG.
- the projection optical system PU shown in FIG. 14 is obtained by reversing the relationship between the object plane and the image plane of the projection optical system PU shown in FIG. 6, and in FIG. On the side, a planar reticle RT serving as an original plate is disposed, and in FIG. 6, a cylindrical body M ′ having a spherical surface serving as a mask M is disposed on the object side where the mask M is located. Photoresist is uniformly applied to the spherical outer peripheral surface of the cylindrical body M ′, and exposed by a pattern Pm ′ projected from the planar reticle RT via the projection optical system PU.
- the best focus surface (pattern image surface) of the pattern Pm ′ is curved along each of the two directions of the Y axis and the Z axis in FIG. 14 along the spherical outer peripheral surface of the cylindrical body M ′. It becomes.
- a stage RST that moves one-dimensionally at least in the X direction supports the reticle RT so that the pattern surface Mp of the reticle RT is parallel to the XY plane.
- an illumination optical system ILU that irradiates slit-shaped (or rectangular) illumination light IB extending in the Y-axis direction toward the pattern surface Mp is provided.
- the spherical optical mask PU can be produced from the planar reticle RT by using the projection optical system PU described in FIG.
- FIG. 14 the example in which the projection optical system PU of FIG. 6 is used has been described.
- a spherical cylindrical mask is similarly formed from the planar reticle RT. M can be produced.
- 70 conveying device, AS ... aperture stop (optical path limiting member), CONT ... control unit, FPA ... substrate processing device, FB ... sheet substrate (substrate), J ... central axis (predetermined axis), L11, L21 ... optical element (First partial optical system), M31: plane reflecting mirror (first partial optical system), L13, L26, L31, L35 ... concave mirror, L20, L30, L36 ... optical element (second partial optical system), M ... mask , Ma: partial spherical surface, MJ: rotation axis (shaft), MST: support device, Pm: pattern, RD: rotation drive device (rotation device).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Lenses (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
A mask comprises a pattern (Pm) on the outer circumferential surface formed in a prescribed axis (J) circumference, the outer circumferential surface includes a partial spherical surface (Ma) which forms part of a spherical surface the central point of which is provided on said axis, and the pattern is provided on the partial spherical surface.
Description
本発明は、マスク、マスクユニット、露光装置、基板処理装置、及びデバイス製造方法に関する。
本願は、2012年3月7日に出願された特願2012-50664号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a mask, a mask unit, an exposure apparatus, a substrate processing apparatus, and a device manufacturing method.
This application claims priority based on Japanese Patent Application No. 2012-50664 for which it applied on March 7, 2012, and uses the content here.
本願は、2012年3月7日に出願された特願2012-50664号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a mask, a mask unit, an exposure apparatus, a substrate processing apparatus, and a device manufacturing method.
This application claims priority based on Japanese Patent Application No. 2012-50664 for which it applied on March 7, 2012, and uses the content here.
ディスプレイ装置などの表示装置を構成する表示素子として、例えば液晶表示素子、有機エレクトロルミネッセンス(有機EL)素子、電子ペーパに用いられる電気泳動素子などが知られている。
現在、これらの表示素子として、基板表面に薄膜トランジスタと呼ばれるスイッチング素子(Thin Film Transistor:TFT)を形成し、その上にそれぞれの表示デバイスを形成する能動的素子(アクティブデバイス)が主流となってきている。 As display elements constituting display devices such as display devices, for example, liquid crystal display elements, organic electroluminescence (organic EL) elements, electrophoretic elements used for electronic paper, and the like are known.
At present, as these display elements, switching elements (thin film transistors: TFTs) called thin film transistors are formed on the substrate surface, and active elements (active devices) for forming the respective display devices thereon have become mainstream. Yes.
現在、これらの表示素子として、基板表面に薄膜トランジスタと呼ばれるスイッチング素子(Thin Film Transistor:TFT)を形成し、その上にそれぞれの表示デバイスを形成する能動的素子(アクティブデバイス)が主流となってきている。 As display elements constituting display devices such as display devices, for example, liquid crystal display elements, organic electroluminescence (organic EL) elements, electrophoretic elements used for electronic paper, and the like are known.
At present, as these display elements, switching elements (thin film transistors: TFTs) called thin film transistors are formed on the substrate surface, and active elements (active devices) for forming the respective display devices thereon have become mainstream. Yes.
近年では、シート状の基板(例えばフィルム部材など)上に表示素子を形成する技術が提案されている。このような技術として、例えばロール・トゥ・ロール方式(以下、単に「ロール方式」と表記する)と呼ばれる手法が知られている(例えば、特許文献1参照)。
ロール方式は、基板供給側の供給用ローラーに巻かれた1枚のシート状の基板(例えば、帯状のフィルム部材)を送り出すと共に送り出された基板を基板回収側の回収用ローラーで巻き取りながら基板を搬送する。 In recent years, a technique for forming a display element on a sheet-like substrate (for example, a film member) has been proposed. As such a technique, for example, a technique called a roll-to-roll system (hereinafter simply referred to as “roll system”) is known (see, for example, Patent Document 1).
In the roll method, a single sheet-like substrate (for example, a belt-like film member) wound around a substrate supply-side supply roller is sent out, and the sent-out substrate is wound up with a recovery roller on the substrate recovery side. Transport.
ロール方式は、基板供給側の供給用ローラーに巻かれた1枚のシート状の基板(例えば、帯状のフィルム部材)を送り出すと共に送り出された基板を基板回収側の回収用ローラーで巻き取りながら基板を搬送する。 In recent years, a technique for forming a display element on a sheet-like substrate (for example, a film member) has been proposed. As such a technique, for example, a technique called a roll-to-roll system (hereinafter simply referred to as “roll system”) is known (see, for example, Patent Document 1).
In the roll method, a single sheet-like substrate (for example, a belt-like film member) wound around a substrate supply-side supply roller is sent out, and the sent-out substrate is wound up with a recovery roller on the substrate recovery side. Transport.
基板が送り出されてから巻き取られるまでの間、複数の処理装置により、TFTを構成するゲート電極、ゲート酸化膜、半導体膜、ソース・ドレイン電極等が形成される。その後、表示素子の他の構成要素が基板上に順次形成される。例えば基板上に有機EL素子を形成する場合には、発光層や陽極、陰極、電気回路などが基板上に順次形成される。
これらの構成要素は、例えばマスクを介した露光光で基板を露光する露光装置などを用いて、例えばフォトリソグラフィ法を用いて形成される場合がある。 A gate electrode, a gate oxide film, a semiconductor film, a source / drain electrode, and the like constituting the TFT are formed by a plurality of processing apparatuses from when the substrate is sent out until it is wound. Thereafter, other components of the display element are sequentially formed on the substrate. For example, when an organic EL element is formed on a substrate, a light emitting layer, an anode, a cathode, an electric circuit, and the like are sequentially formed on the substrate.
These components may be formed using, for example, a photolithography method using an exposure apparatus that exposes the substrate with exposure light through a mask, for example.
これらの構成要素は、例えばマスクを介した露光光で基板を露光する露光装置などを用いて、例えばフォトリソグラフィ法を用いて形成される場合がある。 A gate electrode, a gate oxide film, a semiconductor film, a source / drain electrode, and the like constituting the TFT are formed by a plurality of processing apparatuses from when the substrate is sent out until it is wound. Thereafter, other components of the display element are sequentially formed on the substrate. For example, when an organic EL element is formed on a substrate, a light emitting layer, an anode, a cathode, an electric circuit, and the like are sequentially formed on the substrate.
These components may be formed using, for example, a photolithography method using an exposure apparatus that exposes the substrate with exposure light through a mask, for example.
露光装置のマスクの一例として、例えば円筒型のマスクが知られている。このような円筒型マスクは、パターンを有する回転体を有している。この回転体は、例えば円筒形状又は円柱形状に形成されており、その円筒面上にパターンが形成されている。
円筒型のマスクを用いることにより、ステージを往復運動させたり、マスクを保持する複数のステージを用いたりする必要が無く、コストを低減することができる。また、被露光体を一方向に移動させることで被露光体上の複数箇所にパターンを転写することができるため、ステージの加減速の回数を低減させることができる。その結果として、露光精度を向上させることができる。 As an example of a mask for an exposure apparatus, for example, a cylindrical mask is known. Such a cylindrical mask has a rotating body having a pattern. The rotating body is formed in, for example, a cylindrical shape or a columnar shape, and a pattern is formed on the cylindrical surface.
By using a cylindrical mask, it is not necessary to reciprocate the stage or to use a plurality of stages for holding the mask, and the cost can be reduced. Moreover, since the pattern can be transferred to a plurality of locations on the object to be exposed by moving the object to be exposed in one direction, the number of times of acceleration / deceleration of the stage can be reduced. As a result, the exposure accuracy can be improved.
円筒型のマスクを用いることにより、ステージを往復運動させたり、マスクを保持する複数のステージを用いたりする必要が無く、コストを低減することができる。また、被露光体を一方向に移動させることで被露光体上の複数箇所にパターンを転写することができるため、ステージの加減速の回数を低減させることができる。その結果として、露光精度を向上させることができる。 As an example of a mask for an exposure apparatus, for example, a cylindrical mask is known. Such a cylindrical mask has a rotating body having a pattern. The rotating body is formed in, for example, a cylindrical shape or a columnar shape, and a pattern is formed on the cylindrical surface.
By using a cylindrical mask, it is not necessary to reciprocate the stage or to use a plurality of stages for holding the mask, and the cost can be reduced. Moreover, since the pattern can be transferred to a plurality of locations on the object to be exposed by moving the object to be exposed in one direction, the number of times of acceleration / deceleration of the stage can be reduced. As a result, the exposure accuracy can be improved.
しかしながら、上記の露光処理において円筒面上のパターン像を平面である基板上に投影するためには、像面を補正するための光学設計が必要になり、構造が複雑になるという問題が生じる。
However, in order to project the pattern image on the cylindrical surface onto the flat substrate in the above exposure processing, an optical design for correcting the image surface is required, which causes a problem that the structure becomes complicated.
本発明の態様は、構造の複雑化を防止できるマスク、マスクユニット、露光装置、基板処理装置、及びデバイス製造方法を提供することを目的とする。
An object of an aspect of the present invention is to provide a mask, a mask unit, an exposure apparatus, a substrate processing apparatus, and a device manufacturing method that can prevent the structure from becoming complicated.
本発明の第1の態様に従えば、所定の軸線周りに形成された外周面にパターンを有するマスクであって、前記外周面は、前記軸線上に中心点が設けられた球面の一部を成す部分球面を含み、前記パターンは、前記部分球面に設けられている、マスクが提供される。
According to the first aspect of the present invention, there is provided a mask having a pattern on an outer peripheral surface formed around a predetermined axis, wherein the outer peripheral surface is a part of a spherical surface provided with a center point on the axis. There is provided a mask including a partial spherical surface formed, wherein the pattern is provided on the partial spherical surface.
本発明の第2の態様に従えば、本発明の第1の態様のマスクを複数備え、複数の前記マスクは、それぞれ前記軸線を互いに平行にして配置されている、マスクユニットが提供される。
According to the second aspect of the present invention, there is provided a mask unit comprising a plurality of masks according to the first aspect of the present invention, wherein the plurality of masks are arranged with the axes parallel to each other.
本発明の第3の態様に従えば、基板にパターンを転写する露光装置であって、所定の軸線回りに形成された外周面に前記パターンを有する本発明の第1の態様のマスクを支持する支持装置と、前記支持装置に支持された前記マスクの前記パターンの像を前記基板に投影する投影光学系と、を備え、前記投影光学系は、前記マスクの前記部分球面の曲率半径に対応する大きさの負のペッツバール和を有する、露光装置が提供される。
According to the third aspect of the present invention, there is provided an exposure apparatus for transferring a pattern to a substrate, which supports the mask of the first aspect of the present invention having the pattern on an outer peripheral surface formed around a predetermined axis. And a projection optical system that projects an image of the pattern of the mask supported by the support device onto the substrate, the projection optical system corresponding to a radius of curvature of the partial spherical surface of the mask. An exposure apparatus having a negative Petzval sum of magnitude is provided.
本発明の第4の態様に従えば、基板にパターンを転写する露光装置であって、所定の軸線回りに形成された外周面に前記パターンを有するマスクを複数備える本発明の第2の態様のマスクユニットを支持する支持装置と、前記支持装置に支持された複数の前記マスクのそれぞれに対応して設けられ、前記パターンの像を前記基板に投影する複数の投影光学系と、を備え、前記投影光学系は、前記マスクの前記部分球面の曲率半径に対応する大きさの負のペッツバール和を有する、露光装置が提供される。
According to a fourth aspect of the present invention, there is provided an exposure apparatus for transferring a pattern to a substrate, comprising a plurality of masks having the pattern on an outer peripheral surface formed around a predetermined axis. A support device that supports a mask unit; and a plurality of projection optical systems that are provided corresponding to each of the plurality of masks supported by the support device and that project an image of the pattern onto the substrate, An exposure apparatus is provided in which the projection optical system has a negative Petzval sum having a magnitude corresponding to the radius of curvature of the partial spherical surface of the mask.
本発明の第5の態様に従えば、帯状の基板を処理する基板処理装置であって、前記基板を前記基板の長手方向に搬送する基板搬送部と、前記基板搬送部による前記基板の搬送経路に沿って設けられ、前記搬送経路に沿って搬送される前記基板に対して処理を行う基板処理部と、を備え、前記基板処理部は、前記基板にパターンを転写する本発明の第4の態様の露光装置を含む、基板処理装置が提供される。
According to a fifth aspect of the present invention, there is provided a substrate processing apparatus for processing a strip-shaped substrate, wherein the substrate transport unit transports the substrate in the longitudinal direction of the substrate, and the substrate transport path by the substrate transport unit. And a substrate processing unit that performs processing on the substrate transported along the transport path, wherein the substrate processing unit transfers a pattern to the substrate. A substrate processing apparatus including the exposure apparatus of the aspect is provided.
本発明の第6の態様に従えば、基板を処理してデバイスを製造するデバイス製造方法であって、本発明の第4の態様の露光装置を用いて、前記基板にパターンを転写することと、前記パターンが転写された前記基板を前記パターンに基づいて加工することと、を含むデバイス製造方法が提供される。
According to a sixth aspect of the present invention, there is provided a device manufacturing method for processing a substrate to manufacture a device, wherein the pattern is transferred to the substrate using the exposure apparatus according to the fourth aspect of the present invention. And processing the substrate on which the pattern is transferred based on the pattern.
本発明の態様では、構造の複雑化を防止できるマスクを提供することができる。
In the embodiment of the present invention, a mask that can prevent the structure from becoming complicated can be provided.
以下、本発明のマスク、マスクユニット、露光装置、基板処理装置、及びデバイス製造方法の実施の形態を、図1から図14を参照して説明する。
Embodiments of a mask, a mask unit, an exposure apparatus, a substrate processing apparatus, and a device manufacturing method according to the present invention will be described below with reference to FIGS.
(第1実施形態)
図1は、本発明の第1実施形態に係る基板処理装置FPAの構成を示す図である。
図1に示すように、基板処理装置FPAは、シート基板(例えば、帯状のフィルム部材)FBを供給する基板供給部SU、シート基板FBの表面(被処理面)に対して処理を行う基板処理部PR、シート基板FBを回収する基板回収部CL、及び、これらの各部を制御する制御部CONTを有している。基板処理装置FPAは、例えば工場などに設置される。 (First embodiment)
FIG. 1 is a diagram showing a configuration of a substrate processing apparatus FPA according to the first embodiment of the present invention.
As shown in FIG. 1, the substrate processing apparatus FPA performs processing on a substrate supply unit SU that supplies a sheet substrate (for example, a strip-shaped film member) FB, and a surface (surface to be processed) of the sheet substrate FB. It includes a part PR, a substrate recovery part CL for recovering the sheet substrate FB, and a control part CONT for controlling these parts. The substrate processing apparatus FPA is installed in a factory, for example.
図1は、本発明の第1実施形態に係る基板処理装置FPAの構成を示す図である。
図1に示すように、基板処理装置FPAは、シート基板(例えば、帯状のフィルム部材)FBを供給する基板供給部SU、シート基板FBの表面(被処理面)に対して処理を行う基板処理部PR、シート基板FBを回収する基板回収部CL、及び、これらの各部を制御する制御部CONTを有している。基板処理装置FPAは、例えば工場などに設置される。 (First embodiment)
FIG. 1 is a diagram showing a configuration of a substrate processing apparatus FPA according to the first embodiment of the present invention.
As shown in FIG. 1, the substrate processing apparatus FPA performs processing on a substrate supply unit SU that supplies a sheet substrate (for example, a strip-shaped film member) FB, and a surface (surface to be processed) of the sheet substrate FB. It includes a part PR, a substrate recovery part CL for recovering the sheet substrate FB, and a control part CONT for controlling these parts. The substrate processing apparatus FPA is installed in a factory, for example.
以下、基板処理装置FPAの説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。
XYZ直交座標系のうちシート基板FBの搬送方向(シート基板FBの長手方向)をX軸方向とし、シート基板FBの搬送方向と直交する方向(シート基板FBの短手方向、又はシート基板FBの幅方向)をY軸方向とし、X軸方向及びY軸方向のそれぞれと直交する方向をZ軸方向とする。 Hereinafter, in the description of the substrate processing apparatus FPA, an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to the XYZ orthogonal coordinate system.
In the XYZ orthogonal coordinate system, the conveyance direction of the sheet substrate FB (longitudinal direction of the sheet substrate FB) is the X-axis direction, and the direction orthogonal to the conveyance direction of the sheet substrate FB (the short direction of the sheet substrate FB or the sheet substrate FB) The width direction is defined as the Y-axis direction, and the direction orthogonal to each of the X-axis direction and the Y-axis direction is defined as the Z-axis direction.
XYZ直交座標系のうちシート基板FBの搬送方向(シート基板FBの長手方向)をX軸方向とし、シート基板FBの搬送方向と直交する方向(シート基板FBの短手方向、又はシート基板FBの幅方向)をY軸方向とし、X軸方向及びY軸方向のそれぞれと直交する方向をZ軸方向とする。 Hereinafter, in the description of the substrate processing apparatus FPA, an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to the XYZ orthogonal coordinate system.
In the XYZ orthogonal coordinate system, the conveyance direction of the sheet substrate FB (longitudinal direction of the sheet substrate FB) is the X-axis direction, and the direction orthogonal to the conveyance direction of the sheet substrate FB (the short direction of the sheet substrate FB or the sheet substrate FB) The width direction is defined as the Y-axis direction, and the direction orthogonal to each of the X-axis direction and the Y-axis direction is defined as the Z-axis direction.
基板処理装置FPAは、基板供給部SUからシート基板FBが送り出されてから、基板回収部CLでシート基板FBを回収するまでの間に、シート基板FBの表面に各種処理を実行するロール・トゥ・ロール方式(以下、単に「ロール方式」と表記する)の装置である。
基板処理装置FPAは、シート基板FB上に例えば有機EL素子、液晶表示素子等の表示素子(電子デバイス)を形成する場合に用いることができる。勿論、これらの素子以外の素子を形成する場合において基板処理装置FPAを用いても構わない。 The substrate processing apparatus FPA is a roll toe that performs various processes on the surface of the sheet substrate FB from when the sheet substrate FB is sent out from the substrate supply unit SU to when the sheet substrate FB is recovered by the substrate recovery unit CL. A device of a roll method (hereinafter simply referred to as “roll method”).
The substrate processing apparatus FPA can be used when forming a display element (electronic device) such as an organic EL element or a liquid crystal display element on the sheet substrate FB. Of course, when forming elements other than these elements, the substrate processing apparatus FPA may be used.
基板処理装置FPAは、シート基板FB上に例えば有機EL素子、液晶表示素子等の表示素子(電子デバイス)を形成する場合に用いることができる。勿論、これらの素子以外の素子を形成する場合において基板処理装置FPAを用いても構わない。 The substrate processing apparatus FPA is a roll toe that performs various processes on the surface of the sheet substrate FB from when the sheet substrate FB is sent out from the substrate supply unit SU to when the sheet substrate FB is recovered by the substrate recovery unit CL. A device of a roll method (hereinafter simply referred to as “roll method”).
The substrate processing apparatus FPA can be used when forming a display element (electronic device) such as an organic EL element or a liquid crystal display element on the sheet substrate FB. Of course, when forming elements other than these elements, the substrate processing apparatus FPA may be used.
基板処理装置FPAにおいて処理対象となるシート基板FBとしては、例えば樹脂フィルムやステンレス鋼などの箔(フォイル)を用いることができる。
例えば、樹脂フィルムは、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、酢酸ビニル樹脂、などの材料を用いることができる。 As the sheet substrate FB to be processed in the substrate processing apparatus FPA, for example, a foil such as a resin film or stainless steel can be used.
For example, the resin film is made of polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, vinyl acetate resin, etc. Can be used.
例えば、樹脂フィルムは、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、酢酸ビニル樹脂、などの材料を用いることができる。 As the sheet substrate FB to be processed in the substrate processing apparatus FPA, for example, a foil such as a resin film or stainless steel can be used.
For example, the resin film is made of polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, vinyl acetate resin, etc. Can be used.
シート基板FBのY方向(短尺方向)の寸法は、例えば1m~2m程度に形成されており、X方向(長尺方向)の寸法は、例えば10m以上に形成されている。
勿論、この寸法は一例に過ぎず、これに限られることは無い。例えばシート基板FBのY方向の寸法が1m又は50cm以下であっても構わないし、2m以上であっても構わない。また、シート基板FBのX方向の寸法が10m以下であっても構わない。 The dimension of the sheet substrate FB in the Y direction (short direction) is, for example, about 1 m to 2 m, and the dimension in the X direction (long direction) is, for example, 10 m or more.
Of course, this dimension is only an example and is not limited thereto. For example, the dimension of the sheet substrate FB in the Y direction may be 1 m or 50 cm or less, or 2 m or more. Moreover, the dimension of the X direction of the sheet | seat board | substrate FB may be 10 m or less.
勿論、この寸法は一例に過ぎず、これに限られることは無い。例えばシート基板FBのY方向の寸法が1m又は50cm以下であっても構わないし、2m以上であっても構わない。また、シート基板FBのX方向の寸法が10m以下であっても構わない。 The dimension of the sheet substrate FB in the Y direction (short direction) is, for example, about 1 m to 2 m, and the dimension in the X direction (long direction) is, for example, 10 m or more.
Of course, this dimension is only an example and is not limited thereto. For example, the dimension of the sheet substrate FB in the Y direction may be 1 m or 50 cm or less, or 2 m or more. Moreover, the dimension of the X direction of the sheet | seat board | substrate FB may be 10 m or less.
シート基板FBは、例えば可撓性を有するように形成されている。ここで可撓性とは、例えば基板に少なくとも自重程度の所定の力を加えても線断したり破断したりすることはなく、その基板を撓めることが可能な性質をいう。また、例えば上記所定の力によって屈曲する性質も可撓性に含まれる。また、上記可撓性は、基板の材質、大きさ、厚さ、又は温度などの環境、等に応じて変わる。
なお、シート基板FBとしては、1枚の帯状の基板を用いても構わないが、複数の単位基板を接続して帯状に形成される構成としても構わない。 The sheet substrate FB is formed to have flexibility, for example. Here, the term “flexibility” refers to the property that the substrate can be bent without breaking or breaking even when a predetermined force of at least its own weight is applied to the substrate. Further, for example, the property of bending by the predetermined force is also included in the flexibility. The flexibility varies depending on the material, size, thickness, or environment such as temperature of the substrate.
In addition, as the sheet | seat board | substrate FB, you may use the sheet | seat-like board | substrate of 1 sheet, However, It is good also as a structure formed by connecting a some unit board | substrate and forming in a strip | belt shape.
なお、シート基板FBとしては、1枚の帯状の基板を用いても構わないが、複数の単位基板を接続して帯状に形成される構成としても構わない。 The sheet substrate FB is formed to have flexibility, for example. Here, the term “flexibility” refers to the property that the substrate can be bent without breaking or breaking even when a predetermined force of at least its own weight is applied to the substrate. Further, for example, the property of bending by the predetermined force is also included in the flexibility. The flexibility varies depending on the material, size, thickness, or environment such as temperature of the substrate.
In addition, as the sheet | seat board | substrate FB, you may use the sheet | seat-like board | substrate of 1 sheet, However, It is good also as a structure formed by connecting a some unit board | substrate and forming in a strip | belt shape.
シート基板FBは、比較的高温(例えば200℃程度)の熱を受けても寸法が実質的に変わらない(熱変形が小さい)ように熱膨張係数を小さくすることができる。例えば、無機フィラーを樹脂フィルムに混合して熱膨張係数を小さくすることができる。無機フィラーの例としては、酸化チタン、酸化亜鉛、アルミナ、酸化ケイ素などが挙げられる。
The sheet substrate FB can have a small coefficient of thermal expansion so that the dimensions do not substantially change even when it receives heat at a relatively high temperature (for example, about 200 ° C.) (thermal deformation is small). For example, an inorganic filler can be mixed with a resin film to reduce the thermal expansion coefficient. Examples of the inorganic filler include titanium oxide, zinc oxide, alumina, silicon oxide and the like.
基板供給部SUは、例えばロール状に巻かれたシート基板FBを基板処理部PRへ送り出して供給する。基板供給部SUには、例えばシート基板FBを巻きつける軸部や、その軸部を回転させる回転駆動源などが設けられている。この他、例えばロール状に巻かれた状態のシート基板FBを覆うカバー部などが設けられた構成であっても構わない。
The substrate supply unit SU sends out the sheet substrate FB wound in a roll shape to the substrate processing unit PR, for example. The substrate supply unit SU is provided with, for example, a shaft around which the sheet substrate FB is wound, a rotation drive source that rotates the shaft, and the like. In addition, for example, a configuration in which a cover portion that covers the sheet substrate FB wound in a roll shape or the like may be provided.
基板回収部CLは、基板処理部PRからのシート基板FBを例えばロール状に巻きとって回収する。基板回収部CLには、基板供給部SUと同様に、シート基板FBを巻きつけるための軸部や、その軸部を回転させる回転駆動源、回収したシート基板FBを覆うカバー部などが設けられている。
なお、基板処理部PRにおいてシート基板FBが例えばパネル状に切断される場合などには、例えばシート基板FBを重ねた状態に回収するなど、ロール状に巻いた状態とは異なる状態でシート基板FBを回収する構成であっても構わない。 The substrate collection unit CL collects the sheet substrate FB from the substrate processing unit PR in a roll shape, for example. Similarly to the substrate supply unit SU, the substrate recovery unit CL is provided with a shaft for winding the sheet substrate FB, a rotational drive source for rotating the shaft, a cover for covering the recovered sheet substrate FB, and the like. ing.
In addition, when the sheet substrate FB is cut into a panel shape in the substrate processing unit PR, for example, the sheet substrate FB is collected in a stacked state, and the sheet substrate FB is in a state different from the rolled state. It may be configured to collect the.
なお、基板処理部PRにおいてシート基板FBが例えばパネル状に切断される場合などには、例えばシート基板FBを重ねた状態に回収するなど、ロール状に巻いた状態とは異なる状態でシート基板FBを回収する構成であっても構わない。 The substrate collection unit CL collects the sheet substrate FB from the substrate processing unit PR in a roll shape, for example. Similarly to the substrate supply unit SU, the substrate recovery unit CL is provided with a shaft for winding the sheet substrate FB, a rotational drive source for rotating the shaft, a cover for covering the recovered sheet substrate FB, and the like. ing.
In addition, when the sheet substrate FB is cut into a panel shape in the substrate processing unit PR, for example, the sheet substrate FB is collected in a stacked state, and the sheet substrate FB is in a state different from the rolled state. It may be configured to collect the.
基板処理部PRは、基板供給部SUから供給されるシート基板FBを基板回収部CLへ搬送すると共に、搬送の過程でシート基板FBの被処理面Fpに対して処理を行う。基板処理部PRは、例えば処理装置60、搬送装置70及びアライメント装置80などを有している。
The substrate processing unit PR transports the sheet substrate FB supplied from the substrate supply unit SU to the substrate recovery unit CL, and processes the surface Fp to be processed of the sheet substrate FB in the course of transport. The substrate processing unit PR includes, for example, a processing device 60, a transfer device 70, an alignment device 80, and the like.
処理装置60は、シート基板FBの被処理面Fpに対して例えば有機EL素子を形成するための各種装置を有している。このような装置としては、例えば被処理面Fp上に隔壁を形成するための隔壁形成装置、有機EL素子を駆動するための電極を形成するための電極形成装置、発光層を形成するための発光層形成装置などが挙げられる。
より具体的には、液滴塗布装置(例えばインクジェット型塗布装置、スピンコート型塗布装置など)、蒸着装置、スパッタリング装置、大気圧CVD装置、ミストデポジション装置、無電解メッキ装置などの成膜装置や、露光装置、現像装置、表面改質装置、洗浄装置などが挙げられる。これらの各装置は、例えばシート基板FBの搬送経路上に適宜設けられている。
本実施形態では、処理装置60を構成する各種装置のうち、露光装置を主体に説明する。 Theprocessing apparatus 60 has various apparatuses for forming, for example, an organic EL element on the processing surface Fp of the sheet substrate FB. As such an apparatus, for example, a partition forming apparatus for forming a partition on the processing surface Fp, an electrode forming apparatus for forming an electrode for driving an organic EL element, and light emission for forming a light emitting layer Examples thereof include a layer forming apparatus.
More specifically, film forming apparatuses such as a droplet coating apparatus (for example, an ink jet type coating apparatus, a spin coating type coating apparatus, etc.), a vapor deposition apparatus, a sputtering apparatus, an atmospheric pressure CVD apparatus, a mist deposition apparatus, and an electroless plating apparatus. And an exposure apparatus, a development apparatus, a surface modification apparatus, and a cleaning apparatus. Each of these apparatuses is appropriately provided, for example, on the conveyance path of the sheet substrate FB.
In the present embodiment, the exposure apparatus will be mainly described among various apparatuses constituting theprocessing apparatus 60.
より具体的には、液滴塗布装置(例えばインクジェット型塗布装置、スピンコート型塗布装置など)、蒸着装置、スパッタリング装置、大気圧CVD装置、ミストデポジション装置、無電解メッキ装置などの成膜装置や、露光装置、現像装置、表面改質装置、洗浄装置などが挙げられる。これらの各装置は、例えばシート基板FBの搬送経路上に適宜設けられている。
本実施形態では、処理装置60を構成する各種装置のうち、露光装置を主体に説明する。 The
More specifically, film forming apparatuses such as a droplet coating apparatus (for example, an ink jet type coating apparatus, a spin coating type coating apparatus, etc.), a vapor deposition apparatus, a sputtering apparatus, an atmospheric pressure CVD apparatus, a mist deposition apparatus, and an electroless plating apparatus. And an exposure apparatus, a development apparatus, a surface modification apparatus, and a cleaning apparatus. Each of these apparatuses is appropriately provided, for example, on the conveyance path of the sheet substrate FB.
In the present embodiment, the exposure apparatus will be mainly described among various apparatuses constituting the
搬送装置70は、基板処理部PR内において例えばシート基板FBを基板回収部CL側へ搬送するローラー装置Rを有している。ローラー装置Rは、シート基板FBの搬送経路に沿って例えば複数設けられている。複数のローラー装置Rのうち少なくとも一部のローラー装置Rには、駆動機構(不図示)が取り付けられている。
このようなローラー装置Rが回転することにより、シート基板FBがX軸方向に搬送される。複数のローラー装置Rのうち例えば一部のローラー装置Rが搬送方向と直交する方向に移動可能に設けられた構成であっても構わない。 Thetransport device 70 includes a roller device R that transports, for example, the sheet substrate FB to the substrate recovery unit CL in the substrate processing unit PR. For example, a plurality of roller devices R are provided along the conveyance path of the sheet substrate FB. A drive mechanism (not shown) is attached to at least some of the plurality of roller devices R.
By rotating such a roller device R, the sheet substrate FB is conveyed in the X-axis direction. For example, a part of the plurality of roller devices R may be configured to be movable in a direction orthogonal to the transport direction.
このようなローラー装置Rが回転することにより、シート基板FBがX軸方向に搬送される。複数のローラー装置Rのうち例えば一部のローラー装置Rが搬送方向と直交する方向に移動可能に設けられた構成であっても構わない。 The
By rotating such a roller device R, the sheet substrate FB is conveyed in the X-axis direction. For example, a part of the plurality of roller devices R may be configured to be movable in a direction orthogonal to the transport direction.
アライメント装置80は、シート基板FBに対してアライメント動作を行う。アライメント装置80は、シート基板FBの位置状態を検出するアライメントカメラ81と、アライメントカメラ81の検出結果に基づいてシート基板FBをX方向、Y方向、Z方向、θX方向、θY方向、θZ方向に微調整する調整装置82とを有している。
Alignment device 80 performs an alignment operation on sheet substrate FB. The alignment apparatus 80 includes an alignment camera 81 that detects the position state of the sheet substrate FB, and the sheet substrate FB in the X direction, Y direction, Z direction, θX direction, θY direction, and θZ direction based on the detection result of the alignment camera 81. And an adjusting device 82 for fine adjustment.
アライメントカメラ81は、例えばシート基板FBに形成されたアライメントマークなどを検出し、検出結果を制御部CONTに送信する。制御部CONTは、この検出結果に基づいてシート基板の位置情報を求め、この位置情報に基づいて調整装置82による調整量を制御する。
The alignment camera 81 detects, for example, an alignment mark formed on the sheet substrate FB and transmits the detection result to the control unit CONT. The control unit CONT obtains the position information of the sheet substrate based on the detection result, and controls the adjustment amount by the adjusting device 82 based on the position information.
図2は、処理装置60として用いられる露光装置EXの概略構成を示す図である。
図2に示すように、露光装置EXは、マスクMに形成されたパターンPmの像をシート基板FBに投影する装置である。露光装置EXは、マスクMに露光光を照明する照明光学系IUと、マスクMを回転軸(軸部)MJ周りに回転自在に支持する支持装置MSTと、マスクMに形成されたパターンPmの像を投影する投影光学系PUとを有している。 FIG. 2 is a view showing a schematic configuration of an exposure apparatus EX used as theprocessing apparatus 60.
As shown in FIG. 2, the exposure apparatus EX is an apparatus that projects an image of the pattern Pm formed on the mask M onto the sheet substrate FB. The exposure apparatus EX includes an illumination optical system IU that illuminates exposure light on the mask M, a support apparatus MST that rotatably supports the mask M around a rotation axis (shaft portion) MJ, and a pattern Pm formed on the mask M. A projection optical system PU for projecting an image.
図2に示すように、露光装置EXは、マスクMに形成されたパターンPmの像をシート基板FBに投影する装置である。露光装置EXは、マスクMに露光光を照明する照明光学系IUと、マスクMを回転軸(軸部)MJ周りに回転自在に支持する支持装置MSTと、マスクMに形成されたパターンPmの像を投影する投影光学系PUとを有している。 FIG. 2 is a view showing a schematic configuration of an exposure apparatus EX used as the
As shown in FIG. 2, the exposure apparatus EX is an apparatus that projects an image of the pattern Pm formed on the mask M onto the sheet substrate FB. The exposure apparatus EX includes an illumination optical system IU that illuminates exposure light on the mask M, a support apparatus MST that rotatably supports the mask M around a rotation axis (shaft portion) MJ, and a pattern Pm formed on the mask M. A projection optical system PU for projecting an image.
図3は、マスクMを-X側から視た正面図である。
図2及び図3に示されるように、本実施形態におけるマスクMは、Y軸と平行な中心軸線(所定の軸線)Jを中心とする実質的円盤状に形成されている。マスクMの外周面は、上記中心軸線J上に中心点が設けられた球面の一部を成す部分球面Maが含まれている。球面の中心点は、上記中心軸線Jに沿った方向に関して、部分球面Maの実質的中央部に位置している。
パターンPmは、部分球面Maのうち、周方向で非パターン領域PNを除いたパターン領域PAに形成されている。パターンPmとしては、球面Maに直接形成される構成や、パターンPmが形成されたシートを球面Maに貼設する構成等を採用することができる。
パターン領域PAに形成されるパターンPmは、露光用の照明光を反射する材料と、その照明光を吸収する材料とによってパターニングされている。パターンPmは、例えば、液晶や有機ELによる表示パネル部の画素電極、TFT、配線等を形成する為の回路パターン、モバイル端末機器用の表示パネル部と周辺回路部とを形成する為の回路パターン等として描画されている。 FIG. 3 is a front view of the mask M viewed from the −X side.
As shown in FIGS. 2 and 3, the mask M in the present embodiment is formed in a substantially disk shape centered on a central axis (predetermined axis) J parallel to the Y axis. The outer peripheral surface of the mask M includes a partial spherical surface Ma that forms a part of a spherical surface having a central point on the central axis J. The center point of the spherical surface is located at the substantial center of the partial spherical surface Ma with respect to the direction along the central axis J.
The pattern Pm is formed in the pattern area PA of the partial spherical surface Ma excluding the non-pattern area PN in the circumferential direction. As the pattern Pm, a configuration directly formed on the spherical surface Ma, a configuration in which a sheet on which the pattern Pm is formed is pasted on the spherical surface Ma, or the like can be adopted.
The pattern Pm formed in the pattern area PA is patterned by a material that reflects illumination light for exposure and a material that absorbs the illumination light. The pattern Pm is, for example, a circuit pattern for forming a pixel electrode, TFT, wiring, or the like of a display panel unit using liquid crystal or organic EL, or a circuit pattern for forming a display panel unit and a peripheral circuit unit for a mobile terminal device. And so on.
図2及び図3に示されるように、本実施形態におけるマスクMは、Y軸と平行な中心軸線(所定の軸線)Jを中心とする実質的円盤状に形成されている。マスクMの外周面は、上記中心軸線J上に中心点が設けられた球面の一部を成す部分球面Maが含まれている。球面の中心点は、上記中心軸線Jに沿った方向に関して、部分球面Maの実質的中央部に位置している。
パターンPmは、部分球面Maのうち、周方向で非パターン領域PNを除いたパターン領域PAに形成されている。パターンPmとしては、球面Maに直接形成される構成や、パターンPmが形成されたシートを球面Maに貼設する構成等を採用することができる。
パターン領域PAに形成されるパターンPmは、露光用の照明光を反射する材料と、その照明光を吸収する材料とによってパターニングされている。パターンPmは、例えば、液晶や有機ELによる表示パネル部の画素電極、TFT、配線等を形成する為の回路パターン、モバイル端末機器用の表示パネル部と周辺回路部とを形成する為の回路パターン等として描画されている。 FIG. 3 is a front view of the mask M viewed from the −X side.
As shown in FIGS. 2 and 3, the mask M in the present embodiment is formed in a substantially disk shape centered on a central axis (predetermined axis) J parallel to the Y axis. The outer peripheral surface of the mask M includes a partial spherical surface Ma that forms a part of a spherical surface having a central point on the central axis J. The center point of the spherical surface is located at the substantial center of the partial spherical surface Ma with respect to the direction along the central axis J.
The pattern Pm is formed in the pattern area PA of the partial spherical surface Ma excluding the non-pattern area PN in the circumferential direction. As the pattern Pm, a configuration directly formed on the spherical surface Ma, a configuration in which a sheet on which the pattern Pm is formed is pasted on the spherical surface Ma, or the like can be adopted.
The pattern Pm formed in the pattern area PA is patterned by a material that reflects illumination light for exposure and a material that absorbs the illumination light. The pattern Pm is, for example, a circuit pattern for forming a pixel electrode, TFT, wiring, or the like of a display panel unit using liquid crystal or organic EL, or a circuit pattern for forming a display panel unit and a peripheral circuit unit for a mobile terminal device. And so on.
また、この部分球面Maは、上記中心軸線J周りに帯状に形成されており、上記球面の中心点を通り中心軸線Jと直交する軸交線と交差するとともに、上記軸交線と部分球面Maとの交点を含み部分球面Maに接する接平面が上記中心軸線Jと実質的に平行になるように形成されている。
The partial spherical surface Ma is formed in a belt shape around the central axis line J, intersects with an axis intersecting line passing through the center point of the spherical surface and orthogonal to the central axis line J, and the axis intersecting line and the partial spherical surface Ma. Is formed so that the tangent plane that includes the intersection with the partial spherical surface Ma is substantially parallel to the central axis J.
回転軸MJは、マスクMのY方向両側に、上記中心軸線Jと軸線を合致させて(軸中心として)突設されている。また、回転軸MJは、支持装置MSTによって、マスクMの外周面とともに回転自在に保持されるととともに、回転駆動装置(回転装置)RDに接続されて回転駆動が付与される。回転駆動装置RDの駆動(すなわち、マスクMの回転駆動)は制御部CONTにより制御される。
The rotation axis MJ is provided on both sides of the mask M in the Y direction so that the center axis J and the axis coincide with each other (as the axis center). Further, the rotation shaft MJ is rotatably held together with the outer peripheral surface of the mask M by the support device MST, and is connected to a rotation drive device (rotation device) RD to be rotated. The driving of the rotation driving device RD (that is, the rotation driving of the mask M) is controlled by the control unit CONT.
照明光学系IUは、マスクMに露光光ELを照明する。照明光学系IUは、光源部20、平面反射鏡M1、投影光学系PUの一部を構成する光学素子(第1部分光学系)L11及び光学素子L12、凹面鏡L13、平面反射鏡M2を有している。
光源部20としては、水銀ランプやレーザ発生装置等の光源装置を設置する構成や、フライアイ光学素子等の2次光源を形成する素子を設置する構成を採ることができる。 The illumination optical system IU illuminates the exposure light EL on the mask M. The illumination optical system IU includes alight source unit 20, a plane reflecting mirror M1, an optical element (first partial optical system) L11 and an optical element L12 that constitute a part of the projection optical system PU, a concave mirror L13, and a plane reflecting mirror M2. ing.
Thelight source unit 20 may have a configuration in which a light source device such as a mercury lamp or a laser generator is installed, or a configuration in which an element that forms a secondary light source such as a fly-eye optical element is installed.
光源部20としては、水銀ランプやレーザ発生装置等の光源装置を設置する構成や、フライアイ光学素子等の2次光源を形成する素子を設置する構成を採ることができる。 The illumination optical system IU illuminates the exposure light EL on the mask M. The illumination optical system IU includes a
The
投影光学系PUは、マスクMに形成されたパターンPmの像をシート基板FBに投影する。投影光学系PUは、露光光ELの進行方向に沿って順次配置された、上記光学素子L11、L12、凹面鏡L13、平面反射鏡M2、及び光学素子L14、開口絞り(光路制限部材)AS、光学素子L15~L19、及び光学素子(第2部分光学系)L20を有している。
開口絞りASは、投影光学系PUの開口数を規定する。開口絞りASは、投影光学系PUの射出瞳(または入射瞳)と共役な面である瞳面の位置に配置されている。また、凹面鏡L13の反射面も投影光学系PUにおける瞳面の位置に配置されている。 The projection optical system PU projects an image of the pattern Pm formed on the mask M onto the sheet substrate FB. The projection optical system PU is arranged in order along the traveling direction of the exposure light EL, the optical elements L11 and L12, the concave mirror L13, the plane reflecting mirror M2, the optical element L14, the aperture stop (optical path limiting member) AS, and the optical element. Elements L15 to L19 and an optical element (second partial optical system) L20 are included.
The aperture stop AS defines the numerical aperture of the projection optical system PU. The aperture stop AS is disposed at a position on the pupil plane that is a plane conjugate with the exit pupil (or entrance pupil) of the projection optical system PU. The reflecting surface of the concave mirror L13 is also arranged at the position of the pupil plane in the projection optical system PU.
開口絞りASは、投影光学系PUの開口数を規定する。開口絞りASは、投影光学系PUの射出瞳(または入射瞳)と共役な面である瞳面の位置に配置されている。また、凹面鏡L13の反射面も投影光学系PUにおける瞳面の位置に配置されている。 The projection optical system PU projects an image of the pattern Pm formed on the mask M onto the sheet substrate FB. The projection optical system PU is arranged in order along the traveling direction of the exposure light EL, the optical elements L11 and L12, the concave mirror L13, the plane reflecting mirror M2, the optical element L14, the aperture stop (optical path limiting member) AS, and the optical element. Elements L15 to L19 and an optical element (second partial optical system) L20 are included.
The aperture stop AS defines the numerical aperture of the projection optical system PU. The aperture stop AS is disposed at a position on the pupil plane that is a plane conjugate with the exit pupil (or entrance pupil) of the projection optical system PU. The reflecting surface of the concave mirror L13 is also arranged at the position of the pupil plane in the projection optical system PU.
光源部20からの露光光ELは、平面反射鏡M1及び凹面鏡L13で順次反射した後に、光学素子L12、L11を順次透過してマスクMの部分球面Maに形成されたパターンPmを照明する。
マスクM(部分球面Ma)で反射した露光光ELは、光学素子L11で受光(透過)された後に、光学素子L12を透過して凹面鏡L13及び平面反射鏡M2で反射する。平面反射鏡M2で反射した露光光ELは、光学素子L14~L19を順次透過した後に、光学素子L20によりシート基板FBに投影される。 The exposure light EL from thelight source unit 20 is sequentially reflected by the plane reflecting mirror M1 and the concave mirror L13, and then sequentially passes through the optical elements L12 and L11 to illuminate the pattern Pm formed on the partial spherical surface Ma of the mask M.
The exposure light EL reflected by the mask M (partial spherical surface Ma) is received (transmitted) by the optical element L11, then passes through the optical element L12 and is reflected by the concave mirror L13 and the plane reflecting mirror M2. The exposure light EL reflected by the plane reflecting mirror M2 is sequentially transmitted through the optical elements L14 to L19, and then projected onto the sheet substrate FB by the optical element L20.
マスクM(部分球面Ma)で反射した露光光ELは、光学素子L11で受光(透過)された後に、光学素子L12を透過して凹面鏡L13及び平面反射鏡M2で反射する。平面反射鏡M2で反射した露光光ELは、光学素子L14~L19を順次透過した後に、光学素子L20によりシート基板FBに投影される。 The exposure light EL from the
The exposure light EL reflected by the mask M (partial spherical surface Ma) is received (transmitted) by the optical element L11, then passes through the optical element L12 and is reflected by the concave mirror L13 and the plane reflecting mirror M2. The exposure light EL reflected by the plane reflecting mirror M2 is sequentially transmitted through the optical elements L14 to L19, and then projected onto the sheet substrate FB by the optical element L20.
図4に、投影光学系PUの諸元の値を示す。
図4において、左端には露光光ELが、上記光学素子L11、L12、凹面鏡L13、平面反射鏡M2、及び光学素子L14、開口絞りAS、光学素子L15~L20において順次入射または出射する各光学面の面番号が示されている。
また、rは、各光学面の曲率半径を示しており、dは各光学面間の面間隔を示している。そして、rの列には各光学面の近軸曲率半径が示されており、dの列には各面間隔が示されている。 FIG. 4 shows values of specifications of the projection optical system PU.
In FIG. 4, at the left end, each optical surface on which exposure light EL sequentially enters or exits at the optical elements L11 and L12, the concave mirror L13, the plane reflecting mirror M2, the optical element L14, the aperture stop AS, and the optical elements L15 to L20. The face number is shown.
R represents the radius of curvature of each optical surface, and d represents the surface spacing between the optical surfaces. The r column shows the paraxial radius of curvature of each optical surface, and the d column shows the surface spacing.
図4において、左端には露光光ELが、上記光学素子L11、L12、凹面鏡L13、平面反射鏡M2、及び光学素子L14、開口絞りAS、光学素子L15~L20において順次入射または出射する各光学面の面番号が示されている。
また、rは、各光学面の曲率半径を示しており、dは各光学面間の面間隔を示している。そして、rの列には各光学面の近軸曲率半径が示されており、dの列には各面間隔が示されている。 FIG. 4 shows values of specifications of the projection optical system PU.
In FIG. 4, at the left end, each optical surface on which exposure light EL sequentially enters or exits at the optical elements L11 and L12, the concave mirror L13, the plane reflecting mirror M2, the optical element L14, the aperture stop AS, and the optical elements L15 to L20. The face number is shown.
R represents the radius of curvature of each optical surface, and d represents the surface spacing between the optical surfaces. The r column shows the paraxial radius of curvature of each optical surface, and the d column shows the surface spacing.
図5には、非球面に形成される面番号毎の非球面データが示されている。
図5中、Kはコニック係数、A~Fは4次、6次、8次、…の非球面係数である。
なお、図4及び図5において、近軸曲率半径rの符号は物体面側(パターンPm面側)に向けて凸となる場合を正とし、面間隔dは光学面の前後で符号が反転するものとする。 FIG. 5 shows aspherical data for each surface number formed on the aspherical surface.
In FIG. 5, K is a conic coefficient, and A to F are fourth, sixth, eighth,... Aspheric coefficients.
In FIGS. 4 and 5, the sign of the paraxial radius of curvature r is positive when convex toward the object plane side (pattern Pm plane side), and the plane spacing d is reversed before and after the optical surface. Shall.
図5中、Kはコニック係数、A~Fは4次、6次、8次、…の非球面係数である。
なお、図4及び図5において、近軸曲率半径rの符号は物体面側(パターンPm面側)に向けて凸となる場合を正とし、面間隔dは光学面の前後で符号が反転するものとする。 FIG. 5 shows aspherical data for each surface number formed on the aspherical surface.
In FIG. 5, K is a conic coefficient, and A to F are fourth, sixth, eighth,... Aspheric coefficients.
In FIGS. 4 and 5, the sign of the paraxial radius of curvature r is positive when convex toward the object plane side (pattern Pm plane side), and the plane spacing d is reversed before and after the optical surface. Shall.
投影光学系PUは、例えば波長(露光波長)が365nm、縮小倍率が1倍(等倍)、物体側の開口数NAが0.055であり、上記の光学素子L11、L12、凹面鏡L13、平面反射鏡M2、及び光学素子L14、開口絞りAS、光学素子L15~L20により設定される負のペッツバール和を有している。
ここで、複数の光学素子から構成される光学系において、i番目の光学面の焦点距離をfi、光学面の前後の屈折率をni、ni’とすると、ペッツバール和Psumは以下の式で表される。 The projection optical system PU has, for example, a wavelength (exposure wavelength) of 365 nm, a reduction ratio of 1 (equal magnification), an object-side numerical aperture NA of 0.055, the optical elements L11 and L12, the concave mirror L13, the plane It has a negative Petzval sum set by the reflecting mirror M2, the optical element L14, the aperture stop AS, and the optical elements L15 to L20.
Here, in an optical system composed of a plurality of optical elements, if the focal length of the i-th optical surface is fi and the refractive indices before and after the optical surface are ni and ni ′, the Petzval sum Psum is expressed by the following equation. Is done.
ここで、複数の光学素子から構成される光学系において、i番目の光学面の焦点距離をfi、光学面の前後の屈折率をni、ni’とすると、ペッツバール和Psumは以下の式で表される。 The projection optical system PU has, for example, a wavelength (exposure wavelength) of 365 nm, a reduction ratio of 1 (equal magnification), an object-side numerical aperture NA of 0.055, the optical elements L11 and L12, the concave mirror L13, the plane It has a negative Petzval sum set by the reflecting mirror M2, the optical element L14, the aperture stop AS, and the optical elements L15 to L20.
Here, in an optical system composed of a plurality of optical elements, if the focal length of the i-th optical surface is fi and the refractive indices before and after the optical surface are ni and ni ′, the Petzval sum Psum is expressed by the following equation. Is done.
このとき、像面の曲率半径をR0とすると、ペッツバール和Psumは以下になる。
Psum=-1/R0
例えば、凹面鏡L13の場合、正のパワーを有しペッツバール和は負の値となる。図4に示すように、曲率半径riが負の値である凹面鏡L13の焦点距離fiは以下の式で表される。 At this time, if the curvature radius of the image plane is R0, the Petzval sum Psum is as follows.
Psum = -1 / R0
For example, in the case of the concave mirror L13, it has positive power and the Petzval sum is a negative value. As shown in FIG. 4, the focal length fi of the concave mirror L13 having a negative curvature radius ri is expressed by the following equation.
Psum=-1/R0
例えば、凹面鏡L13の場合、正のパワーを有しペッツバール和は負の値となる。図4に示すように、曲率半径riが負の値である凹面鏡L13の焦点距離fiは以下の式で表される。 At this time, if the curvature radius of the image plane is R0, the Petzval sum Psum is as follows.
Psum = -1 / R0
For example, in the case of the concave mirror L13, it has positive power and the Petzval sum is a negative value. As shown in FIG. 4, the focal length fi of the concave mirror L13 having a negative curvature radius ri is expressed by the following equation.
また、凹面鏡L13のペッツバール和Psumは以下の式で表される。
Also, the Petzval sum Psum of the concave mirror L13 is expressed by the following equation.
そして、本実施形態では、投影光学系PUにおけるペッツバール和の大きさは、パターンPmが形成された部分球面Maの曲率半径の逆数(すなわち曲率)に実質的に等しく設定される。具体的には、図4に示したように、部分球面Maの曲率半径が500mmの場合には、投影光学系PUにおけるペッツバール和の大きさは、-0.00199(≒-1/500)となっている。
これにより、部分球面Maに形成されたパターンPmの像は、実質的平面状でシート基板FBの被処理面Fpに投影される。 In this embodiment, the magnitude of the Petzval sum in the projection optical system PU is set substantially equal to the reciprocal of the radius of curvature (that is, the curvature) of the partial spherical surface Ma on which the pattern Pm is formed. Specifically, as shown in FIG. 4, when the radius of curvature of the partial spherical surface Ma is 500 mm, the Petzval sum in the projection optical system PU is −0.00199 (≈−1 / 500). It has become.
Thereby, the image of the pattern Pm formed on the partial spherical surface Ma is projected onto the processing surface Fp of the sheet substrate FB in a substantially planar shape.
これにより、部分球面Maに形成されたパターンPmの像は、実質的平面状でシート基板FBの被処理面Fpに投影される。 In this embodiment, the magnitude of the Petzval sum in the projection optical system PU is set substantially equal to the reciprocal of the radius of curvature (that is, the curvature) of the partial spherical surface Ma on which the pattern Pm is formed. Specifically, as shown in FIG. 4, when the radius of curvature of the partial spherical surface Ma is 500 mm, the Petzval sum in the projection optical system PU is −0.00199 (≈−1 / 500). It has become.
Thereby, the image of the pattern Pm formed on the partial spherical surface Ma is projected onto the processing surface Fp of the sheet substrate FB in a substantially planar shape.
上記のように構成された基板処理装置FPAは、制御部CONTの制御により、いわゆるロール・トゥ・ロール方式(以下、ロール方式と表記する)によって、例えば表示基板1を製造する。以下、上記構成の基板処理装置FPAを用いて表示基板1を製造する工程を説明する。
The substrate processing apparatus FPA configured as described above produces, for example, the display substrate 1 by the so-called roll-to-roll method (hereinafter referred to as a roll method) under the control of the control unit CONT. Hereinafter, a process of manufacturing the display substrate 1 using the substrate processing apparatus FPA having the above configuration will be described.
まず、基板供給部SUに設けられるローラーに帯状のシート基板FBを巻き付けた状態にする。制御部CONTは、この状態から基板供給部SUからこのシート基板FBが送り出されるようにし、送り出されたシート基板FBを基板回収部CLのローラーで巻き取らせてシート基板FBを搬送させる。
First, the belt-shaped sheet substrate FB is wound around a roller provided in the substrate supply unit SU. The control unit CONT causes the sheet substrate FB to be sent out from the substrate supply unit SU from this state, and the sheet substrate FB that has been sent out is taken up by the roller of the substrate recovery unit CL to transport the sheet substrate FB.
制御部CONTは、シート基板FBが送り出されてから巻き取られるまでの間に、基板処理部PRの搬送装置70によってシート基板FBを基板処理部PR内で適宜搬送させつつ、処理装置60によって表示基板1の構成要素をシート基板FB上に順次形成させる。
処理装置60による処理を行わせる際、制御部CONTは、アライメント装置80にシート基板FBの位置合わせを行わせる。 The control unit CONT displays the display by theprocessing device 60 while appropriately transporting the sheet substrate FB in the substrate processing unit PR by the transport device 70 of the substrate processing unit PR from when the sheet substrate FB is sent out to when it is wound up. The components of the substrate 1 are sequentially formed on the sheet substrate FB.
When the processing by theprocessing device 60 is performed, the control unit CONT causes the alignment device 80 to align the sheet substrate FB.
処理装置60による処理を行わせる際、制御部CONTは、アライメント装置80にシート基板FBの位置合わせを行わせる。 The control unit CONT displays the display by the
When the processing by the
制御部CONTは、シート基板FBが送り出されてから巻き取られるまでの間に、基板処理部PRの搬送装置70によってシート基板FBを基板処理部PR内で適宜搬送させつつ、処理装置60における露光装置EXに、マスクMのパターンPmをシート基板FBの被処理面Fpに投影させる。
The control unit CONT performs exposure in the processing apparatus 60 while appropriately transporting the sheet substrate FB in the substrate processing unit PR by the transporting device 70 of the substrate processing unit PR from when the sheet substrate FB is sent out to when it is wound up. The apparatus EX is caused to project the pattern Pm of the mask M onto the processing surface Fp of the sheet substrate FB.
このとき、制御部CONTは、回転駆動装置RDの駆動及びローラー装置Rの駆動を制御して、マスクMの回転軸MJ周りの回転とシート基板FBとを同期駆動する。
より詳細には、制御部CONTは、マスクMが有する部分球面Maの回転軸MJ回りの移動速度に対する、シート基板FBの移動速度(搬送速度)の比が、投影光学系PUの投影倍率(本実施形態では等倍)と等しくなるように駆動制御を行う。 At this time, the control unit CONT controls the rotation of the rotation driving device RD and the driving of the roller device R to synchronously drive the rotation of the mask M around the rotation axis MJ and the sheet substrate FB.
More specifically, the control unit CONT determines that the ratio of the moving speed (conveying speed) of the sheet substrate FB to the moving speed around the rotation axis MJ of the partial spherical surface Ma included in the mask M is the projection magnification of the projection optical system PU. In the embodiment, the drive control is performed so as to be equal to 1 ×.
より詳細には、制御部CONTは、マスクMが有する部分球面Maの回転軸MJ回りの移動速度に対する、シート基板FBの移動速度(搬送速度)の比が、投影光学系PUの投影倍率(本実施形態では等倍)と等しくなるように駆動制御を行う。 At this time, the control unit CONT controls the rotation of the rotation driving device RD and the driving of the roller device R to synchronously drive the rotation of the mask M around the rotation axis MJ and the sheet substrate FB.
More specifically, the control unit CONT determines that the ratio of the moving speed (conveying speed) of the sheet substrate FB to the moving speed around the rotation axis MJ of the partial spherical surface Ma included in the mask M is the projection magnification of the projection optical system PU. In the embodiment, the drive control is performed so as to be equal to 1 ×.
これにより、照明光学系IUで照明された回転するマスクMのパターンPmの像は、投影光学系PUを介して、投影倍率に応じた大きさで逐次シート基板FB上に投影される。
Thereby, the image of the pattern Pm of the rotating mask M illuminated by the illumination optical system IU is sequentially projected onto the sheet substrate FB with a size corresponding to the projection magnification via the projection optical system PU.
このように、本実施形態では、球面の一部を成す部分球面にパターンPmが形成されたマスクMを用いるため、像面を補正するための光学設計が不要になり、構造の複雑化を防止できる。
特に、本実施形態では、凹面鏡L13を用いることにより、容易に負のペッツバール和を有する投影光学系PUを実現することができ、簡単な構造で容易にシート基板FBにパターンPmの像を投影することが可能である。 As described above, in the present embodiment, since the mask M in which the pattern Pm is formed on the partial spherical surface forming a part of the spherical surface is used, an optical design for correcting the image surface becomes unnecessary, and the structure is prevented from becoming complicated. it can.
In particular, in this embodiment, the projection optical system PU having a negative Petzval sum can be easily realized by using the concave mirror L13, and the image of the pattern Pm can be easily projected on the sheet substrate FB with a simple structure. It is possible.
特に、本実施形態では、凹面鏡L13を用いることにより、容易に負のペッツバール和を有する投影光学系PUを実現することができ、簡単な構造で容易にシート基板FBにパターンPmの像を投影することが可能である。 As described above, in the present embodiment, since the mask M in which the pattern Pm is formed on the partial spherical surface forming a part of the spherical surface is used, an optical design for correcting the image surface becomes unnecessary, and the structure is prevented from becoming complicated. it can.
In particular, in this embodiment, the projection optical system PU having a negative Petzval sum can be easily realized by using the concave mirror L13, and the image of the pattern Pm can be easily projected on the sheet substrate FB with a simple structure. It is possible.
(第2実施形態)
続いて、露光装置EXの第2実施形態について、図6から図8を参照して説明する。
第2実施形態では、照明光学系IU及び投影光学系PUの構成が上記第1実施形態と相違している。このため、以下、照明光学系IU及び投影光学系PUについて説明する。
なお、これらの図において、図1から図5に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略または簡略化する。 (Second Embodiment)
Next, a second embodiment of the exposure apparatus EX will be described with reference to FIGS.
In the second embodiment, the configurations of the illumination optical system IU and the projection optical system PU are different from those of the first embodiment. For this reason, the illumination optical system IU and the projection optical system PU will be described below.
In these drawings, the same components as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
続いて、露光装置EXの第2実施形態について、図6から図8を参照して説明する。
第2実施形態では、照明光学系IU及び投影光学系PUの構成が上記第1実施形態と相違している。このため、以下、照明光学系IU及び投影光学系PUについて説明する。
なお、これらの図において、図1から図5に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略または簡略化する。 (Second Embodiment)
Next, a second embodiment of the exposure apparatus EX will be described with reference to FIGS.
In the second embodiment, the configurations of the illumination optical system IU and the projection optical system PU are different from those of the first embodiment. For this reason, the illumination optical system IU and the projection optical system PU will be described below.
In these drawings, the same components as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
本実施形態における照明光学系IUは、図6に示すように、光源部20、露光光ELの光路に沿って順次配置されたビームスプリッタBS、光学素子L25、L24、開口絞りAS、光学素子L23、L22、L21を備えている。これらビームスプリッタBS、光学素子L25、L24、開口絞りAS、光学素子L23、L22、L21は、後述するように、投影光学系PUの一部を構成している。
As shown in FIG. 6, the illumination optical system IU in this embodiment includes a light source unit 20, a beam splitter BS, optical elements L25 and L24, an aperture stop AS, and an optical element L23 that are sequentially arranged along the optical path of the exposure light EL. , L22, L21. These beam splitter BS, optical elements L25 and L24, aperture stop AS, and optical elements L23, L22, and L21 constitute a part of the projection optical system PU as will be described later.
投影光学系PUは、露光光ELの光路に沿って順次配置された上記の光学素子(第1部分光学系)L21、光学素子L22~L23、開口絞りAS、光学素子L24、L25、ビームスプリッタBS、凹面鏡L26、平面反射鏡M21、光学素子L27~L29、及び光学素子(第2部分光学系)L30を備えている。凹面鏡L26は、投影光学系PUにおける瞳面の位置に配置されている。
The projection optical system PU includes the optical element (first partial optical system) L21, the optical elements L22 to L23, the aperture stop AS, the optical elements L24 and L25, and the beam splitter BS, which are sequentially arranged along the optical path of the exposure light EL. , A concave mirror L26, a plane reflecting mirror M21, optical elements L27 to L29, and an optical element (second partial optical system) L30. The concave mirror L26 is disposed at the position of the pupil plane in the projection optical system PU.
光源部20からの露光光ELは、照明光学系IUとしてのビームスプリッタBSで入射して反射した後に、光学素子L25、L24、開口絞りAS、光学素子L23、L22、L21を介して、マスクMの部分球面Maに形成されたパターンPmを照明する。
マスクM(部分球面Ma)で反射した露光光ELは、投影光学系PUとしての光学素子L21~L23、開口絞りAS、光学素子L24、L25を介してビームスプリッタBSに入射する。
ビームスプリッタBSに入射した露光光ELは、ビームスプリッタBSを透過した後に凹面鏡L26で反射して再度ビームスプリッタBS、光学素子L25、L24を順次透過した後に平面反射鏡M21で反射する。
平面反射鏡M21で反射した露光光ELは、光学素子L27~L30を順次透過して、マスクMのパターンPmの像をシート基板FBに投影する。 The exposure light EL from thelight source unit 20 is incident and reflected by the beam splitter BS as the illumination optical system IU, and then passes through the optical elements L25 and L24, the aperture stop AS, the optical elements L23, L22, and L21, and the mask M. The pattern Pm formed on the partial spherical surface Ma is illuminated.
The exposure light EL reflected by the mask M (partial spherical surface Ma) is incident on the beam splitter BS via optical elements L21 to L23 serving as a projection optical system PU, an aperture stop AS, and optical elements L24 and L25.
The exposure light EL that has entered the beam splitter BS passes through the beam splitter BS, is reflected by the concave mirror L26, and again passes through the beam splitter BS and the optical elements L25 and L24 in order, and then is reflected by the planar reflecting mirror M21.
The exposure light EL reflected by the plane reflecting mirror M21 is sequentially transmitted through the optical elements L27 to L30 to project an image of the pattern Pm of the mask M onto the sheet substrate FB.
マスクM(部分球面Ma)で反射した露光光ELは、投影光学系PUとしての光学素子L21~L23、開口絞りAS、光学素子L24、L25を介してビームスプリッタBSに入射する。
ビームスプリッタBSに入射した露光光ELは、ビームスプリッタBSを透過した後に凹面鏡L26で反射して再度ビームスプリッタBS、光学素子L25、L24を順次透過した後に平面反射鏡M21で反射する。
平面反射鏡M21で反射した露光光ELは、光学素子L27~L30を順次透過して、マスクMのパターンPmの像をシート基板FBに投影する。 The exposure light EL from the
The exposure light EL reflected by the mask M (partial spherical surface Ma) is incident on the beam splitter BS via optical elements L21 to L23 serving as a projection optical system PU, an aperture stop AS, and optical elements L24 and L25.
The exposure light EL that has entered the beam splitter BS passes through the beam splitter BS, is reflected by the concave mirror L26, and again passes through the beam splitter BS and the optical elements L25 and L24 in order, and then is reflected by the planar reflecting mirror M21.
The exposure light EL reflected by the plane reflecting mirror M21 is sequentially transmitted through the optical elements L27 to L30 to project an image of the pattern Pm of the mask M onto the sheet substrate FB.
図7に、本実施形態における投影光学系PUの諸元の値を示す。
図7において、左端には露光光ELが、上記光学素子L21~L23、開口絞りAS、光学素子L24、L25、ビームスプリッタBS、凹面鏡L26、光学素子L27~L30において順次入射または出射する各光学面の面番号が示されている。
また、rは、各光学面の曲率半径を示しており、dは各光学面間の面間隔を示している。そして、rの列には各光学面の近軸曲率半径が示されており、dの列には各面間隔が示されている。 FIG. 7 shows values of specifications of the projection optical system PU in the present embodiment.
In FIG. 7, at the left end, each optical surface on which exposure light EL sequentially enters or exits the optical elements L21 to L23, aperture stop AS, optical elements L24 and L25, beam splitter BS, concave mirror L26, and optical elements L27 to L30. The face number is shown.
R represents the radius of curvature of each optical surface, and d represents the surface spacing between the optical surfaces. The r column shows the paraxial radius of curvature of each optical surface, and the d column shows the surface spacing.
図7において、左端には露光光ELが、上記光学素子L21~L23、開口絞りAS、光学素子L24、L25、ビームスプリッタBS、凹面鏡L26、光学素子L27~L30において順次入射または出射する各光学面の面番号が示されている。
また、rは、各光学面の曲率半径を示しており、dは各光学面間の面間隔を示している。そして、rの列には各光学面の近軸曲率半径が示されており、dの列には各面間隔が示されている。 FIG. 7 shows values of specifications of the projection optical system PU in the present embodiment.
In FIG. 7, at the left end, each optical surface on which exposure light EL sequentially enters or exits the optical elements L21 to L23, aperture stop AS, optical elements L24 and L25, beam splitter BS, concave mirror L26, and optical elements L27 to L30. The face number is shown.
R represents the radius of curvature of each optical surface, and d represents the surface spacing between the optical surfaces. The r column shows the paraxial radius of curvature of each optical surface, and the d column shows the surface spacing.
図8には、非球面に形成される面番号毎の非球面データが示されている。
図8中、Kはコニック係数、A~Fは4次、6次、8次、…の非球面係数である。
なお、図7及び図8において、近軸曲率半径rの符号は物体面側(パターンPm面側)に向けて凸となる場合を正とし、面間隔dは光学面の前後で符号が反転するものとしている。 FIG. 8 shows aspherical data for each surface number formed on the aspherical surface.
In FIG. 8, K is a conic coefficient, and A to F are 4th, 6th, 8th,... Aspherical coefficients.
7 and 8, the sign of the paraxial radius of curvature r is positive when it is convex toward the object plane side (pattern Pm plane side), and the plane spacing d is reversed before and after the optical surface. It is supposed to be.
図8中、Kはコニック係数、A~Fは4次、6次、8次、…の非球面係数である。
なお、図7及び図8において、近軸曲率半径rの符号は物体面側(パターンPm面側)に向けて凸となる場合を正とし、面間隔dは光学面の前後で符号が反転するものとしている。 FIG. 8 shows aspherical data for each surface number formed on the aspherical surface.
In FIG. 8, K is a conic coefficient, and A to F are 4th, 6th, 8th,... Aspherical coefficients.
7 and 8, the sign of the paraxial radius of curvature r is positive when it is convex toward the object plane side (pattern Pm plane side), and the plane spacing d is reversed before and after the optical surface. It is supposed to be.
投影光学系PUは、例えば波長(露光波長)が365nm、投影倍率が2倍(拡大)、物体側の開口数NAが0.054である。上記の光学素子L21~L23、開口絞りAS、光学素子L24、L25、ビームスプリッタBS、凹面鏡L26、光学素子L27~L30により設定されるペッツバール和の大きさは、-0.00200(-1/500)となっている。
The projection optical system PU has, for example, a wavelength (exposure wavelength) of 365 nm, a projection magnification of 2 (enlargement), and an object-side numerical aperture NA of 0.054. The Petzval sum set by the optical elements L21 to L23, aperture stop AS, optical elements L24 and L25, beam splitter BS, concave mirror L26, and optical elements L27 to L30 is −0.00200 (−1/500 ).
従って、本実施形態でも、球面の一部を成す部分球面にパターンPmが形成されたマスクMを用い、また負のペッツバール和を有する投影光学系PUを用いることにより、構造の複雑化を防止しつつ、部分球面Maから平面(シート基板FBの被処理面Fp)に良好な光学性能で投影することができる。
さらに、本実施形態によれば、照明光学系IUと投影光学系PUとの間で光学素子を共用しているため、装置の小型化を実現することができる。 Therefore, also in this embodiment, the use of the mask M in which the pattern Pm is formed on the partial spherical surface forming a part of the spherical surface and the projection optical system PU having the negative Petzval sum can prevent the structure from being complicated. On the other hand, it is possible to project with good optical performance from the partial spherical surface Ma to the plane (surface Fp of the sheet substrate FB).
Furthermore, according to the present embodiment, since the optical element is shared between the illumination optical system IU and the projection optical system PU, the apparatus can be reduced in size.
さらに、本実施形態によれば、照明光学系IUと投影光学系PUとの間で光学素子を共用しているため、装置の小型化を実現することができる。 Therefore, also in this embodiment, the use of the mask M in which the pattern Pm is formed on the partial spherical surface forming a part of the spherical surface and the projection optical system PU having the negative Petzval sum can prevent the structure from being complicated. On the other hand, it is possible to project with good optical performance from the partial spherical surface Ma to the plane (surface Fp of the sheet substrate FB).
Furthermore, according to the present embodiment, since the optical element is shared between the illumination optical system IU and the projection optical system PU, the apparatus can be reduced in size.
(第3実施形態)
続いて、露光装置EXの第3実施形態について、図9から図11を参照して説明する。
第3実施形態では、照明光学系IU及び投影光学系PUの構成が上記第1実施形態と相違している。このため、以下、照明光学系IU及び投影光学系PUについて説明する。
なお、これらの図において、図1から図5に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略または簡略化する。 (Third embodiment)
Next, a third embodiment of the exposure apparatus EX will be described with reference to FIGS.
In the third embodiment, the configurations of the illumination optical system IU and the projection optical system PU are different from those of the first embodiment. For this reason, the illumination optical system IU and the projection optical system PU will be described below.
In these drawings, the same components as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
続いて、露光装置EXの第3実施形態について、図9から図11を参照して説明する。
第3実施形態では、照明光学系IU及び投影光学系PUの構成が上記第1実施形態と相違している。このため、以下、照明光学系IU及び投影光学系PUについて説明する。
なお、これらの図において、図1から図5に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略または簡略化する。 (Third embodiment)
Next, a third embodiment of the exposure apparatus EX will be described with reference to FIGS.
In the third embodiment, the configurations of the illumination optical system IU and the projection optical system PU are different from those of the first embodiment. For this reason, the illumination optical system IU and the projection optical system PU will be described below.
In these drawings, the same components as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
本実施形態における照明光学系IUは、図9に示すように、露光光ELの光路に沿って順次配置された凸面鏡L34、光学素子L33、L32、凹面鏡L31、平面反射鏡M31を備えている。これら凸面鏡L34、光学素子L33、L32、凹面鏡L31、平面反射鏡M31は、後述するように、投影光学系PUの一部を構成している。
As shown in FIG. 9, the illumination optical system IU in the present embodiment includes a convex mirror L34, optical elements L33 and L32, a concave mirror L31, and a plane reflecting mirror M31 that are sequentially arranged along the optical path of the exposure light EL. The convex mirror L34, the optical elements L33 and L32, the concave mirror L31, and the plane reflecting mirror M31 constitute a part of the projection optical system PU as will be described later.
凸面鏡L34は半透過性を有しており、光学素子L33と対向する面と逆側の面から入射した露光光ELを光学素子L33に向けて出射させる。
光学素子L33に入射した露光光ELは、光学素子L33、L32を透過した後に凹面鏡31及び平面反射鏡M31で反射し、マスクMの中心軸線Jに向けて進行してマスクMの部分球面Maに形成されたパターンPmを照明する。 The convex mirror L34 is semi-transmissive, and emits the exposure light EL incident from the surface opposite to the surface facing the optical element L33 toward the optical element L33.
The exposure light EL incident on the optical element L33 is transmitted through the optical elements L33 and L32, then reflected by the concave mirror 31 and the plane reflecting mirror M31, travels toward the central axis J of the mask M, and reaches the partial spherical surface Ma of the mask M. The formed pattern Pm is illuminated.
光学素子L33に入射した露光光ELは、光学素子L33、L32を透過した後に凹面鏡31及び平面反射鏡M31で反射し、マスクMの中心軸線Jに向けて進行してマスクMの部分球面Maに形成されたパターンPmを照明する。 The convex mirror L34 is semi-transmissive, and emits the exposure light EL incident from the surface opposite to the surface facing the optical element L33 toward the optical element L33.
The exposure light EL incident on the optical element L33 is transmitted through the optical elements L33 and L32, then reflected by the concave mirror 31 and the plane reflecting mirror M31, travels toward the central axis J of the mask M, and reaches the partial spherical surface Ma of the mask M. The formed pattern Pm is illuminated.
投影光学系PUは、露光光ELの光路に沿って順次配置された上述の平面反射鏡(第1部分光学系)M31、凹面鏡L31、光学素子L32、L33、凸面鏡L34に加えて、凹面鏡L35、平面反射鏡M32、開口絞りAS、光学素子(第2部分光学系)L36を備えている。
凹面鏡L31、L35は、投影光学系PUにおける瞳面の位置に配置されている。凹面鏡L35は、開口絞りASの近傍に配置されている。 The projection optical system PU includes a concave mirror L35, in addition to the above-described plane reflecting mirror (first partial optical system) M31, concave mirror L31, optical elements L32 and L33, and convex mirror L34, which are sequentially arranged along the optical path of the exposure light EL. A plane reflecting mirror M32, an aperture stop AS, and an optical element (second partial optical system) L36 are provided.
The concave mirrors L31 and L35 are disposed at the position of the pupil plane in the projection optical system PU. The concave mirror L35 is disposed in the vicinity of the aperture stop AS.
凹面鏡L31、L35は、投影光学系PUにおける瞳面の位置に配置されている。凹面鏡L35は、開口絞りASの近傍に配置されている。 The projection optical system PU includes a concave mirror L35, in addition to the above-described plane reflecting mirror (first partial optical system) M31, concave mirror L31, optical elements L32 and L33, and convex mirror L34, which are sequentially arranged along the optical path of the exposure light EL. A plane reflecting mirror M32, an aperture stop AS, and an optical element (second partial optical system) L36 are provided.
The concave mirrors L31 and L35 are disposed at the position of the pupil plane in the projection optical system PU. The concave mirror L35 is disposed in the vicinity of the aperture stop AS.
マスクM(部分球面Ma)で反射した露光光ELは、投影光学系PUとしての平面反射鏡M31、凹面鏡L31で反射した後に、光学素子L32、L33を順次透過して凸面鏡L34で反射する。
凸面鏡L34で反射した露光光ELは、再度、光学素子L33、L32を順次透過した後に凹面鏡L35及び平面反射鏡M32で反射する。
平面反射鏡M32で反射した露光光ELは、光学素子L36を透過して、マスクMのパターンPmの像をシート基板FBに投影する。 The exposure light EL reflected by the mask M (partial spherical surface Ma) is reflected by the plane reflecting mirror M31 and the concave mirror L31 as the projection optical system PU, and then sequentially passes through the optical elements L32 and L33 and is reflected by the convex mirror L34.
The exposure light EL reflected by the convex mirror L34 again passes through the optical elements L33 and L32 again, and then is reflected by the concave mirror L35 and the plane reflecting mirror M32.
The exposure light EL reflected by the plane reflecting mirror M32 passes through the optical element L36 and projects an image of the pattern Pm of the mask M onto the sheet substrate FB.
凸面鏡L34で反射した露光光ELは、再度、光学素子L33、L32を順次透過した後に凹面鏡L35及び平面反射鏡M32で反射する。
平面反射鏡M32で反射した露光光ELは、光学素子L36を透過して、マスクMのパターンPmの像をシート基板FBに投影する。 The exposure light EL reflected by the mask M (partial spherical surface Ma) is reflected by the plane reflecting mirror M31 and the concave mirror L31 as the projection optical system PU, and then sequentially passes through the optical elements L32 and L33 and is reflected by the convex mirror L34.
The exposure light EL reflected by the convex mirror L34 again passes through the optical elements L33 and L32 again, and then is reflected by the concave mirror L35 and the plane reflecting mirror M32.
The exposure light EL reflected by the plane reflecting mirror M32 passes through the optical element L36 and projects an image of the pattern Pm of the mask M onto the sheet substrate FB.
図10に、本実施形態における投影光学系PUの諸元の値を示す。
図10において、左端には露光光ELが、上記凹面鏡L31、光学素子L32、L33、凸面鏡L34、凹面鏡L35、開口絞りAS、光学素子L36において順次入射または出射する各光学面の面番号が示されている。
また、rは、各光学面の曲率半径を示しており、dは各光学面間の面間隔を示している。そして、rの列には各光学面の近軸曲率半径が示されており、dの列には各面間隔が示されている。 FIG. 10 shows values of specifications of the projection optical system PU in this embodiment.
In FIG. 10, at the left end, the surface number of each optical surface on which the exposure light EL sequentially enters or exits at the concave mirror L31, the optical elements L32 and L33, the convex mirror L34, the concave mirror L35, the aperture stop AS, and the optical element L36 is shown. ing.
R represents the radius of curvature of each optical surface, and d represents the surface spacing between the optical surfaces. The r column shows the paraxial radius of curvature of each optical surface, and the d column shows the surface spacing.
図10において、左端には露光光ELが、上記凹面鏡L31、光学素子L32、L33、凸面鏡L34、凹面鏡L35、開口絞りAS、光学素子L36において順次入射または出射する各光学面の面番号が示されている。
また、rは、各光学面の曲率半径を示しており、dは各光学面間の面間隔を示している。そして、rの列には各光学面の近軸曲率半径が示されており、dの列には各面間隔が示されている。 FIG. 10 shows values of specifications of the projection optical system PU in this embodiment.
In FIG. 10, at the left end, the surface number of each optical surface on which the exposure light EL sequentially enters or exits at the concave mirror L31, the optical elements L32 and L33, the convex mirror L34, the concave mirror L35, the aperture stop AS, and the optical element L36 is shown. ing.
R represents the radius of curvature of each optical surface, and d represents the surface spacing between the optical surfaces. The r column shows the paraxial radius of curvature of each optical surface, and the d column shows the surface spacing.
図11には、非球面に形成される面番号毎の非球面データが示されている。
図11中、Kはコニック係数、A~Fは4次、6次、8次、…の非球面係数である。
なお、図10及び図11において、近軸曲率半径rの符号は物体面側(パターンPm面側)に向けて凸となる場合を正とし、面間隔dは光学面の前後で符号が反転するものとしている。 FIG. 11 shows aspherical data for each surface number formed on the aspherical surface.
In FIG. 11, K is a conic coefficient, and A to F are 4th, 6th, 8th,... Aspherical coefficients.
10 and 11, the sign of the paraxial radius of curvature r is positive when it is convex toward the object plane side (pattern Pm plane side), and the plane spacing d is reversed before and after the optical surface. It is supposed to be.
図11中、Kはコニック係数、A~Fは4次、6次、8次、…の非球面係数である。
なお、図10及び図11において、近軸曲率半径rの符号は物体面側(パターンPm面側)に向けて凸となる場合を正とし、面間隔dは光学面の前後で符号が反転するものとしている。 FIG. 11 shows aspherical data for each surface number formed on the aspherical surface.
In FIG. 11, K is a conic coefficient, and A to F are 4th, 6th, 8th,... Aspherical coefficients.
10 and 11, the sign of the paraxial radius of curvature r is positive when it is convex toward the object plane side (pattern Pm plane side), and the plane spacing d is reversed before and after the optical surface. It is supposed to be.
投影光学系PUは、例えば波長(露光波長)が365nm、投影倍率が1.25倍(拡大)、物体側の開口数NAが0.055であり、上記の凹面鏡L31、光学素子L32、L33、凸面鏡L34、凹面鏡L35、開口絞りAS、光学素子L36により設定されるペッツバール和の大きさは、-0.00175(≒-1/560)となっている。
The projection optical system PU has, for example, a wavelength (exposure wavelength) of 365 nm, a projection magnification of 1.25 times (enlargement), an object-side numerical aperture NA of 0.055, the concave mirror L31, the optical elements L32, L33, The Petzval sum set by the convex mirror L34, the concave mirror L35, the aperture stop AS, and the optical element L36 is −0.00175 (≈−1 / 560).
従って、本実施形態でも、球面の一部を成す部分球面にパターンPmが形成されたマスクMを用い、また負のペッツバール和を有する投影光学系PUを用いることにより、構造の複雑化を防止しつつ、部分球面Maから平面(シート基板FBの被処理面Fp)に良好な光学性能で投影することができる。
Therefore, also in this embodiment, the use of the mask M in which the pattern Pm is formed on the partial spherical surface forming a part of the spherical surface and the projection optical system PU having the negative Petzval sum can prevent the structure from being complicated. On the other hand, it is possible to project with good optical performance from the partial spherical surface Ma to the plane (surface Fp of the sheet substrate FB).
(第4実施形態)
続いて、露光装置EXの第4実施形態について、図12を参照して説明する。
第4実施形態における露光装置EXにおいては、上述したマスクMが軸線を互いに平行にして複数配置されたマスクユニットが設けられ、各マスクに対応して投影光学系が設けられる構成となっている。
なお、これらの図において、図1から図5に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略または簡略化する。 (Fourth embodiment)
Next, a fourth embodiment of the exposure apparatus EX will be described with reference to FIG.
In the exposure apparatus EX according to the fourth embodiment, a mask unit in which a plurality of masks M described above are arranged with their axes parallel to each other is provided, and a projection optical system is provided corresponding to each mask.
In these drawings, the same components as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
続いて、露光装置EXの第4実施形態について、図12を参照して説明する。
第4実施形態における露光装置EXにおいては、上述したマスクMが軸線を互いに平行にして複数配置されたマスクユニットが設けられ、各マスクに対応して投影光学系が設けられる構成となっている。
なお、これらの図において、図1から図5に示す第1実施形態の構成要素と同一の要素については同一符号を付し、その説明を省略または簡略化する。 (Fourth embodiment)
Next, a fourth embodiment of the exposure apparatus EX will be described with reference to FIG.
In the exposure apparatus EX according to the fourth embodiment, a mask unit in which a plurality of masks M described above are arranged with their axes parallel to each other is provided, and a projection optical system is provided corresponding to each mask.
In these drawings, the same components as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
図12に示すように、本実施形態における露光装置EXは、それぞれ上述した部分球面Maを有する複数(ここでは3つ)のマスクM1~M3が設けられたマスクユニットMUを備えている。マスクM1~M3は、Y方向に間隔をあけて配置されている。
各マスクM1~M3における中心軸線JはY軸方向に延在し、互いに平行に配置される。本実施形態では、マスクM1~M3は、Y軸方向に延在し部分球面Maとともに共通軸線を軸中心とし、且つこの共通軸線周りに回転可能な共通回転軸MJ’を備えている。各マスクM1~M3における中心軸線Jは共通回転軸MJ’の共通軸線と同軸にして配置される。 As shown in FIG. 12, the exposure apparatus EX in the present embodiment includes a mask unit MU provided with a plurality (three in this case) of masks M1 to M3 each having the above-described partial spherical surface Ma. The masks M1 to M3 are arranged at intervals in the Y direction.
The central axis J in each of the masks M1 to M3 extends in the Y-axis direction and is arranged in parallel to each other. In the present embodiment, the masks M1 to M3 are provided with a common rotation axis MJ ′ that extends in the Y-axis direction, has a common spherical axis as a center along with the partial spherical surface Ma, and can rotate around the common axis. The central axis J in each of the masks M1 to M3 is arranged coaxially with the common axis of the common rotation axis MJ ′.
各マスクM1~M3における中心軸線JはY軸方向に延在し、互いに平行に配置される。本実施形態では、マスクM1~M3は、Y軸方向に延在し部分球面Maとともに共通軸線を軸中心とし、且つこの共通軸線周りに回転可能な共通回転軸MJ’を備えている。各マスクM1~M3における中心軸線Jは共通回転軸MJ’の共通軸線と同軸にして配置される。 As shown in FIG. 12, the exposure apparatus EX in the present embodiment includes a mask unit MU provided with a plurality (three in this case) of masks M1 to M3 each having the above-described partial spherical surface Ma. The masks M1 to M3 are arranged at intervals in the Y direction.
The central axis J in each of the masks M1 to M3 extends in the Y-axis direction and is arranged in parallel to each other. In the present embodiment, the masks M1 to M3 are provided with a common rotation axis MJ ′ that extends in the Y-axis direction, has a common spherical axis as a center along with the partial spherical surface Ma, and can rotate around the common axis. The central axis J in each of the masks M1 to M3 is arranged coaxially with the common axis of the common rotation axis MJ ′.
各マスクM1~M3のそれぞれに対応して、各マスクM1~M3のパターンPm1~Pm3の像をシート基板FBに投影する上記実施形態における投影光学系PUと同様の構成を有し、各マスクM1~M3の部分球面Maの曲率半径に対応する大きさの負のペッツバール和を有する投影光学系PU1~PU3が設けられている。
各投影光学系PU1~PU3が投影倍率に応じてシート基板FB上にそれぞれ投影する投影領域PA1~PA3は、Y方向に沿って隣接配置される。なお、隣接配置とは、隣り合う投影領域の端縁同士が接する構成のみならず、隣り合う投影領域の端縁同士の一部が互いに重なることも含む概念である。 Corresponding to each of the masks M1 to M3, each of the masks M1 to M3 has the same configuration as the projection optical system PU in the above-described embodiment that projects the images of the patterns Pm1 to Pm3 on the sheet substrate FB. Projection optical systems PU1 to PU3 having negative Petzval sums corresponding to the radii of curvature of the partial spherical surfaces Ma of M3 to M3 are provided.
Projection areas PA1 to PA3 projected by the projection optical systems PU1 to PU3 on the sheet substrate FB according to the projection magnification are adjacently arranged along the Y direction. The adjacent arrangement is a concept including not only a configuration in which the edges of adjacent projection areas are in contact with each other but also a part of edges of adjacent projection areas overlapping each other.
各投影光学系PU1~PU3が投影倍率に応じてシート基板FB上にそれぞれ投影する投影領域PA1~PA3は、Y方向に沿って隣接配置される。なお、隣接配置とは、隣り合う投影領域の端縁同士が接する構成のみならず、隣り合う投影領域の端縁同士の一部が互いに重なることも含む概念である。 Corresponding to each of the masks M1 to M3, each of the masks M1 to M3 has the same configuration as the projection optical system PU in the above-described embodiment that projects the images of the patterns Pm1 to Pm3 on the sheet substrate FB. Projection optical systems PU1 to PU3 having negative Petzval sums corresponding to the radii of curvature of the partial spherical surfaces Ma of M3 to M3 are provided.
Projection areas PA1 to PA3 projected by the projection optical systems PU1 to PU3 on the sheet substrate FB according to the projection magnification are adjacently arranged along the Y direction. The adjacent arrangement is a concept including not only a configuration in which the edges of adjacent projection areas are in contact with each other but also a part of edges of adjacent projection areas overlapping each other.
上記構成の露光装置EXでは、共通回転軸MJ’の回転に応じてマスクM1~M3の部分球面Maが一体的に回転し、露光光ELで照明されたマスクM1~M3のパターンPm1~Pm3の像は、投影光学系PU1~PU3を介して投影領域PA1~PA3にそれぞれ投影される。
In the exposure apparatus EX configured as described above, the partial spherical surfaces Ma of the masks M1 to M3 are integrally rotated in accordance with the rotation of the common rotation axis MJ ′, and the patterns Pm1 to Pm3 of the masks M1 to M3 illuminated with the exposure light EL. The images are projected onto the projection areas PA1 to PA3 via the projection optical systems PU1 to PU3, respectively.
このとき、例えばマスクM1~M3に形成されたパターンPm1~Pm3が同一である場合には、シート基板FBには同一のパターンが複数形成されることになり、所謂複数個取りの製造が可能になる。
一方、例えばマスクM1~M3に形成されたパターンPm1~Pm3が合成されて一つのパターンを形成する場合には、シート基板FBには大型で大面積のパターンを形成することが可能になる。 At this time, for example, if the patterns Pm1 to Pm3 formed on the masks M1 to M3 are the same, a plurality of the same patterns are formed on the sheet substrate FB, so that a so-called multi-piece manufacturing is possible. Become.
On the other hand, for example, when the patterns Pm1 to Pm3 formed on the masks M1 to M3 are combined to form one pattern, a large and large area pattern can be formed on the sheet substrate FB.
一方、例えばマスクM1~M3に形成されたパターンPm1~Pm3が合成されて一つのパターンを形成する場合には、シート基板FBには大型で大面積のパターンを形成することが可能になる。 At this time, for example, if the patterns Pm1 to Pm3 formed on the masks M1 to M3 are the same, a plurality of the same patterns are formed on the sheet substrate FB, so that a so-called multi-piece manufacturing is possible. Become.
On the other hand, for example, when the patterns Pm1 to Pm3 formed on the masks M1 to M3 are combined to form one pattern, a large and large area pattern can be formed on the sheet substrate FB.
なお、上記実施形態におけるマスクユニットMUでは、共通軸部MJ’により3つのマスクM1~M3を同軸で設け、また投影光学系PU1~PU3についてもY方向に沿って配置する構成とした。
一方、例えばスペースの制約により3つの投影光学系PU1~PU3を共通軸線に沿って配置することが困難な場合には、マスクM2及び投影光学系PU2をマスクM1、M3及び投影光学系PU1、PU3に対してX方向に離間させた、いわゆる千鳥状に配置する構成としてもよい。 In the mask unit MU in the above embodiment, the three masks M1 to M3 are provided coaxially by the common shaft portion MJ ′, and the projection optical systems PU1 to PU3 are also arranged along the Y direction.
On the other hand, for example, when it is difficult to arrange the three projection optical systems PU1 to PU3 along the common axis due to space restrictions, the mask M2 and the projection optical system PU2 are combined with the masks M1 and M3 and the projection optical systems PU1 and PU3. It is good also as a structure arrange | positioned at what is called zigzag form spaced apart with respect to the X direction.
一方、例えばスペースの制約により3つの投影光学系PU1~PU3を共通軸線に沿って配置することが困難な場合には、マスクM2及び投影光学系PU2をマスクM1、M3及び投影光学系PU1、PU3に対してX方向に離間させた、いわゆる千鳥状に配置する構成としてもよい。 In the mask unit MU in the above embodiment, the three masks M1 to M3 are provided coaxially by the common shaft portion MJ ′, and the projection optical systems PU1 to PU3 are also arranged along the Y direction.
On the other hand, for example, when it is difficult to arrange the three projection optical systems PU1 to PU3 along the common axis due to space restrictions, the mask M2 and the projection optical system PU2 are combined with the masks M1 and M3 and the projection optical systems PU1 and PU3. It is good also as a structure arrange | positioned at what is called zigzag form spaced apart with respect to the X direction.
また、上記実施形態で示したマスクユニットMUが備えるマスクM1~M3の数、及び投影光学系PUの数は一例であり、2つのマスクを備える構成や4つ以上のマスクを備える構成であってもよい。
この場合においても、例えばスペースの制約により複数の投影光学系を共通軸線に沿って配置することが困難な場合には、搬送方向と直交する方向(Y方向)で隣り合うマスク及び投影光学系については搬送方向(X方向)に離間させる、千鳥状に配置する構成とすればよい。 In addition, the number of masks M1 to M3 and the number of projection optical systems PU included in the mask unit MU shown in the above embodiment are examples, and the configuration includes two masks or the configuration including four or more masks. Also good.
Even in this case, for example, when it is difficult to arrange a plurality of projection optical systems along the common axis due to space restrictions, the mask and the projection optical system adjacent to each other in the direction (Y direction) orthogonal to the transport direction. May be arranged in a zigzag pattern separated in the transport direction (X direction).
この場合においても、例えばスペースの制約により複数の投影光学系を共通軸線に沿って配置することが困難な場合には、搬送方向と直交する方向(Y方向)で隣り合うマスク及び投影光学系については搬送方向(X方向)に離間させる、千鳥状に配置する構成とすればよい。 In addition, the number of masks M1 to M3 and the number of projection optical systems PU included in the mask unit MU shown in the above embodiment are examples, and the configuration includes two masks or the configuration including four or more masks. Also good.
Even in this case, for example, when it is difficult to arrange a plurality of projection optical systems along the common axis due to space restrictions, the mask and the projection optical system adjacent to each other in the direction (Y direction) orthogonal to the transport direction. May be arranged in a zigzag pattern separated in the transport direction (X direction).
以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
The preferred embodiments according to the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
上述の実施形態の露光装置は、本願請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。
これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。 The exposure apparatus of the above-described embodiment is manufactured by assembling various subsystems including the constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. The
In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy.
これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。 The exposure apparatus of the above-described embodiment is manufactured by assembling various subsystems including the constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. The
In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy.
各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程がある。
各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことができる。 The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Prior to the assembly process from the various subsystems to the exposure apparatus, there is an assembly process for each subsystem.
When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. The exposure apparatus can be manufactured in a clean room in which temperature, cleanliness, etc. are controlled.
各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことができる。 The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Prior to the assembly process from the various subsystems to the exposure apparatus, there is an assembly process for each subsystem.
When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. The exposure apparatus can be manufactured in a clean room in which temperature, cleanliness, etc. are controlled.
半導体デバイス等のマイクロデバイスは、図13に示すように、マイクロデバイスの機能及び性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板(長尺のシート状のフレキシブル基板)を製造するステップ203、上述の実施形態に従って、マスクのパターンを用いて露光光で基板を露光すること、及び露光された基板(感光剤)を現像することを含む基板処理(露光処理)を含む基板処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)205、検査ステップ206等を経て製造される。
なお、ステップ204では、感光剤を現像することで、マスクのパターンに対応する露光パターン層(現像された感光剤の層)を形成し、この露光パターン層を介して基板を加工することが含まれる。 As shown in FIG. 13, a microdevice such as a semiconductor device includes astep 201 for designing the function and performance of the microdevice, a step 202 for producing a mask (reticle) based on the design step, and a substrate which is a substrate of the device. (Manufacturing the long sheet-like flexible substrate) Step 203, Exposing the substrate with exposure light using the mask pattern and developing the exposed substrate (photosensitive agent) according to the above-described embodiment The substrate is manufactured through a substrate processing step 204 including a substrate processing (exposure processing), a device assembly step (including processing processes such as a dicing process, a bonding process, and a packaging process) 205, an inspection step 206, and the like.
Instep 204, the photosensitive agent is developed to form an exposure pattern layer (developed photosensitive agent layer) corresponding to the mask pattern, and the substrate is processed through the exposure pattern layer. It is.
なお、ステップ204では、感光剤を現像することで、マスクのパターンに対応する露光パターン層(現像された感光剤の層)を形成し、この露光パターン層を介して基板を加工することが含まれる。 As shown in FIG. 13, a microdevice such as a semiconductor device includes a
In
また、近年、エコなプロセスとして、感光剤の現像を不要とするアディティブなプロセスが望まれてきている。
その場合、基板処理ステップ204は、紫外線の露光光の照射によって高い撥液性を示す状態から親液性を示す状態に変化させる感光性SAM剤を基板の表面に塗布する工程、上述の実施形態に従って、マスクMのパターンPmを用いて露光光で感光性SAM剤が塗布された基板を露光する工程、その露光によって基板上で親液性が高くなった部分に、印刷方式やインクジェット方式等により、配線用の導電性インクやペースト、或いはTFT用の半導体材料の溶液等を選択的に塗布する工程、等で構成される。 In recent years, an additive process that does not require development of a photosensitive agent has been desired as an ecological process.
In that case, thesubstrate processing step 204 is a step of applying a photosensitive SAM agent on the surface of the substrate that changes from a state showing high liquid repellency to a state showing lyophilicity by irradiation of ultraviolet exposure light, the above-described embodiment. The pattern Pm of the mask M is used to expose the substrate coated with the photosensitive SAM agent with exposure light, and the lyophilic portion on the substrate by the exposure is exposed to a printing method or an inkjet method. , A process of selectively applying a conductive ink or paste for wiring, a solution of a semiconductor material for TFT, or the like.
その場合、基板処理ステップ204は、紫外線の露光光の照射によって高い撥液性を示す状態から親液性を示す状態に変化させる感光性SAM剤を基板の表面に塗布する工程、上述の実施形態に従って、マスクMのパターンPmを用いて露光光で感光性SAM剤が塗布された基板を露光する工程、その露光によって基板上で親液性が高くなった部分に、印刷方式やインクジェット方式等により、配線用の導電性インクやペースト、或いはTFT用の半導体材料の溶液等を選択的に塗布する工程、等で構成される。 In recent years, an additive process that does not require development of a photosensitive agent has been desired as an ecological process.
In that case, the
さらに、露光光の照射を受けた部分にメッキ還元能が発現するような材料も知られている。そのような材料を用いた場合は、露光された基板をそのまま無電解メッキ液(パラジウム等のイオンを含む)に漬けることで、配線用の金属層を形成することができる。
Furthermore, there are also known materials that exhibit plating reduction ability in the portions irradiated with exposure light. When such a material is used, a metal layer for wiring can be formed by immersing the exposed substrate as it is in an electroless plating solution (including ions such as palladium).
ところで、図13中のマスクを製作するステップ202では、先の各実施形態で説明した投影光学系PUを使って、マスターとなる平面レチクルのパターンを、マスクMとなる球面状の外周面を有する円筒体上に容易に転写することができる。そこで、先の図6に示した露光装置の投影光学系PUを使って、球面状の円筒マスクMを作製する一例を、図14を用いて説明する。
By the way, in step 202 for manufacturing the mask in FIG. 13, the projection reticle system PU described in each of the previous embodiments is used, and the pattern of the planar reticle serving as a master has a spherical outer peripheral surface serving as the mask M. It can be easily transferred onto a cylindrical body. Therefore, an example of producing a spherical cylindrical mask M using the projection optical system PU of the exposure apparatus shown in FIG. 6 will be described with reference to FIG.
図14に示した投影光学系PUは、図6に示した投影光学系PUの物面と像面の関係を逆にしたもので、図6において被露光対象である基板FBが位置する像面側に、原版となる平面レチクルRTが配置され、図6においてマスクMが位置する物面側に、マスクMとなる球状表面を有する円筒体M’が配置される。
この円筒体M’の球状の外周面には、フォトレジストが一様に塗布され、平面レチクルRTから投影光学系PUを介して投影されるパターンPm’によって露光される。本実施形態では、パターンPm’のベストフォーカス面(パターン像面)は、円筒体M’の球状の外周面に沿って、図14中のY軸とZ軸の2方向の各々に湾曲したものとなる。 The projection optical system PU shown in FIG. 14 is obtained by reversing the relationship between the object plane and the image plane of the projection optical system PU shown in FIG. 6, and in FIG. On the side, a planar reticle RT serving as an original plate is disposed, and in FIG. 6, a cylindrical body M ′ having a spherical surface serving as a mask M is disposed on the object side where the mask M is located.
Photoresist is uniformly applied to the spherical outer peripheral surface of the cylindrical body M ′, and exposed by a pattern Pm ′ projected from the planar reticle RT via the projection optical system PU. In the present embodiment, the best focus surface (pattern image surface) of the pattern Pm ′ is curved along each of the two directions of the Y axis and the Z axis in FIG. 14 along the spherical outer peripheral surface of the cylindrical body M ′. It becomes.
この円筒体M’の球状の外周面には、フォトレジストが一様に塗布され、平面レチクルRTから投影光学系PUを介して投影されるパターンPm’によって露光される。本実施形態では、パターンPm’のベストフォーカス面(パターン像面)は、円筒体M’の球状の外周面に沿って、図14中のY軸とZ軸の2方向の各々に湾曲したものとなる。 The projection optical system PU shown in FIG. 14 is obtained by reversing the relationship between the object plane and the image plane of the projection optical system PU shown in FIG. 6, and in FIG. On the side, a planar reticle RT serving as an original plate is disposed, and in FIG. 6, a cylindrical body M ′ having a spherical surface serving as a mask M is disposed on the object side where the mask M is located.
Photoresist is uniformly applied to the spherical outer peripheral surface of the cylindrical body M ′, and exposed by a pattern Pm ′ projected from the planar reticle RT via the projection optical system PU. In the present embodiment, the best focus surface (pattern image surface) of the pattern Pm ′ is curved along each of the two directions of the Y axis and the Z axis in FIG. 14 along the spherical outer peripheral surface of the cylindrical body M ′. It becomes.
図14において、少なくともX方向に一次元移動するステージRSTは、レチクルRTのパターン面MpがXY面と平行になるようにレチクルRTを支持する。レチクルRTの上方には、Y軸方向に延びたスリット状(又は長方形状)の照明光IBをパターン面Mpに向けて照射する照明光学系ILUが設けられる。
In FIG. 14, a stage RST that moves one-dimensionally at least in the X direction supports the reticle RT so that the pattern surface Mp of the reticle RT is parallel to the XY plane. Above the reticle RT, an illumination optical system ILU that irradiates slit-shaped (or rectangular) illumination light IB extending in the Y-axis direction toward the pattern surface Mp is provided.
このように、本実施形態では、図6で説明した投影光学系PUを、そのまま、或いは若干変更して使うことで、平面のレチクルRTから球面状の円筒マスクMを作製することができる。
図14では、図6の投影光学系PUを使う例を説明したが、他の図2、図9に示した投影光学系PUを使っても、同様に平面のレチクルRTから球面状の円筒マスクMを作製することができる。 Thus, in this embodiment, the spherical optical mask PU can be produced from the planar reticle RT by using the projection optical system PU described in FIG.
In FIG. 14, the example in which the projection optical system PU of FIG. 6 is used has been described. However, even if the projection optical system PU shown in FIGS. 2 and 9 is used, a spherical cylindrical mask is similarly formed from the planar reticle RT. M can be produced.
図14では、図6の投影光学系PUを使う例を説明したが、他の図2、図9に示した投影光学系PUを使っても、同様に平面のレチクルRTから球面状の円筒マスクMを作製することができる。 Thus, in this embodiment, the spherical optical mask PU can be produced from the planar reticle RT by using the projection optical system PU described in FIG.
In FIG. 14, the example in which the projection optical system PU of FIG. 6 is used has been described. However, even if the projection optical system PU shown in FIGS. 2 and 9 is used, a spherical cylindrical mask is similarly formed from the planar reticle RT. M can be produced.
70…搬送装置、 AS…開口絞り(光路制限部材)、 CONT…制御部、 FPA…基板処理装置、 FB…シート基板(基板)、 J…中心軸線(所定の軸線)、 L11、L21…光学素子(第1部分光学系)、 M31…平面反射鏡(第1部分光学系)、 L13、L26、L31、L35…凹面鏡、 L20、L30、L36…光学素子(第2部分光学系)、 M…マスク、 Ma…部分球面、 MJ…回転軸(軸部)、 MST…支持装置、 Pm…パターン、 RD…回転駆動装置(回転装置)。
70: conveying device, AS ... aperture stop (optical path limiting member), CONT ... control unit, FPA ... substrate processing device, FB ... sheet substrate (substrate), J ... central axis (predetermined axis), L11, L21 ... optical element (First partial optical system), M31: plane reflecting mirror (first partial optical system), L13, L26, L31, L35 ... concave mirror, L20, L30, L36 ... optical element (second partial optical system), M ... mask , Ma: partial spherical surface, MJ: rotation axis (shaft), MST: support device, Pm: pattern, RD: rotation drive device (rotation device).
Claims (23)
- 所定の軸線周りに形成された外周面にパターンを有するマスクであって、
前記外周面は、前記軸線上に中心点が設けられた球面の一部を成す部分球面を含み、
前記パターンは、前記部分球面に設けられている、マスク。 A mask having a pattern on an outer peripheral surface formed around a predetermined axis,
The outer peripheral surface includes a partial spherical surface forming a part of a spherical surface provided with a center point on the axis.
The pattern is a mask provided on the partial spherical surface. - 前記部分球面は、前記球面の前記中心点を通って前記軸線と直交する軸交線と交差する請求項1に記載のマスク。 2. The mask according to claim 1, wherein the partial spherical surface intersects with an axis intersecting line orthogonal to the axis passing through the center point of the spherical surface.
- 前記軸交線と前記部分球面との交点を含み前記部分球面に接する接平面が前記軸線と実質的に平行である請求項2に記載のマスク。 3. The mask according to claim 2, wherein a tangent plane including an intersection of the axis intersection line and the partial spherical surface and in contact with the partial spherical surface is substantially parallel to the axis line.
- 前記部分球面は、前記軸線周りに帯状に形成されている請求項1~3のいずれか一項に記載のマスク。 The mask according to any one of claims 1 to 3, wherein the partial spherical surface is formed in a band shape around the axis.
- 前記球面の前記中心点は、前記軸線に沿った方向に関して、帯状の前記部分球面の実質的中央部に位置する請求項4に記載のマスク。 The mask according to claim 4, wherein the center point of the spherical surface is located at a substantially central portion of the belt-shaped partial spherical surface with respect to a direction along the axis.
- 前記外周面に連結され、前記外周面とともに前記軸線回りに回転可能に設けられた軸部を備える請求項1~5のいずれか一項に記載のマスク。 The mask according to any one of claims 1 to 5, further comprising a shaft portion connected to the outer peripheral surface and rotatably provided around the axis along with the outer peripheral surface.
- 前記軸部は、前記軸線を軸中心として設けられる請求項6に記載のマスク。 The mask according to claim 6, wherein the shaft portion is provided with the axis as an axis center.
- 請求項1~7のいずれか一項に記載のマスクを複数備え、
複数の前記マスクは、それぞれ前記軸線を互いに平行にして配置されている、マスクユニット。 A plurality of the masks according to any one of claims 1 to 7,
A plurality of the masks are each a mask unit arranged with the axes parallel to each other. - 複数の前記マスクは、それぞれ前記軸線を所定の共通軸線と同軸にして配置されている請求項8に記載のマスクユニット。 The mask unit according to claim 8, wherein each of the plurality of masks is arranged with the axis coaxial with a predetermined common axis.
- 複数の前記マスクの前記外周面に連結され、前記外周面とともに前記共通軸線回りに回転可能に設けられた共通軸部を備える請求項9に記載のマスクユニット。 10. The mask unit according to claim 9, further comprising a common shaft portion that is connected to the outer peripheral surface of the plurality of masks and is provided so as to be rotatable around the common axis along with the outer peripheral surface.
- 前記共通軸部は、前記共通軸線を軸中心として設けられる請求項10に記載のマスクユニット。 The mask unit according to claim 10, wherein the common shaft portion is provided with the common axis as an axis center.
- 基板にパターンを転写する露光装置であって、
所定の軸線回りに形成された外周面に前記パターンを有する請求項1~7のいずれか一項に記載のマスクを支持する支持装置と、
前記支持装置に支持された前記マスクの前記パターンの像を前記基板に投影する投影光学系と、を備え、
前記投影光学系は、前記マスクの前記部分球面の曲率半径に対応する大きさの負のペッツバール和を有する、露光装置。 An exposure apparatus for transferring a pattern to a substrate,
A support device for supporting the mask according to any one of claims 1 to 7, which has the pattern on an outer peripheral surface formed around a predetermined axis;
A projection optical system that projects an image of the pattern of the mask supported by the support device onto the substrate;
The exposure apparatus according to claim 1, wherein the projection optical system has a negative Petzval sum having a magnitude corresponding to a radius of curvature of the partial spherical surface of the mask. - 基板にパターンを転写する露光装置であって、
所定の軸線回りに形成された外周面に前記パターンを有するマスクを複数備える請求項8~11のいずれか一項に記載のマスクユニットを支持する支持装置と、
前記支持装置に支持された複数の前記マスクのそれぞれに対応して設けられ、前記パターンの像を前記基板に投影する複数の投影光学系と、を備え、
前記投影光学系は、前記マスクの前記部分球面の曲率半径に対応する大きさの負のペッツバール和を有する、露光装置。 An exposure apparatus for transferring a pattern to a substrate,
A supporting device for supporting the mask unit according to any one of claims 8 to 11, comprising a plurality of masks having the pattern on an outer peripheral surface formed around a predetermined axis.
A plurality of projection optical systems provided corresponding to each of the plurality of masks supported by the support device, and projecting an image of the pattern onto the substrate;
The exposure apparatus according to claim 1, wherein the projection optical system has a negative Petzval sum having a magnitude corresponding to a radius of curvature of the partial spherical surface of the mask. - 前記複数の投影光学系は、それぞれの投影領域が、前記マスクの前記軸線に沿った方向、又は前記マスクの前記軸線に沿った方向と光学的に対応する方向に関して、互いに隣接するように配置される請求項13に記載の露光装置。 The plurality of projection optical systems are arranged such that respective projection regions are adjacent to each other in a direction along the axis of the mask or a direction optically corresponding to a direction along the axis of the mask. The exposure apparatus according to claim 13.
- 前記投影光学系のペッツバール和の大きさは、前記部分球面の曲率半径の逆数に実質的に等しい請求項12~14のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 12 to 14, wherein a magnitude of the Petzval sum of the projection optical system is substantially equal to a reciprocal of a radius of curvature of the partial spherical surface.
- 前記投影光学系は、
前記パターンから発した光を受光する第1部分光学系と、
前記第1部分光学系を介した光を前記基板に投影する第2部分光学系と、
前記第1部分光学系と前記第2部分光学系との間の光路に配置され、前記投影光学系の開口数を規定する光路制限部材と、
前記第1部分光学系と前記第2部分光学系との間の光路に配置され、前記第1部分光学系を介した光を反射させる少なくとも1つの凹面鏡と、
を含む請求項12~15のいずれか一項に記載の露光装置。 The projection optical system is
A first partial optical system for receiving light emitted from the pattern;
A second partial optical system that projects light through the first partial optical system onto the substrate;
An optical path limiting member that is disposed in an optical path between the first partial optical system and the second partial optical system and defines a numerical aperture of the projection optical system;
At least one concave mirror disposed in an optical path between the first partial optical system and the second partial optical system and reflecting light via the first partial optical system;
The exposure apparatus according to any one of claims 12 to 15, further comprising: - 少なくとも1つの前記凹面鏡は、前記光路制限部材の近傍に配置される請求項16に記載の露光装置。 The exposure apparatus according to claim 16, wherein the at least one concave mirror is disposed in the vicinity of the optical path limiting member.
- 前記投影光学系は、前記投影光学系の瞳面の近傍に配置される少なくとも1つの凹面鏡を含む請求項12~15のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 12 to 15, wherein the projection optical system includes at least one concave mirror disposed in the vicinity of a pupil plane of the projection optical system.
- 前記投影光学系は、前記パターンの像を拡大して投影する請求項12~18のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 12 to 18, wherein the projection optical system projects an image of the pattern in an enlarged manner.
- 前記支持装置に支持された前記マスクを前記軸線回りに回転させる回転装置と、
前記基板を前記基板の表面に沿って搬送する搬送装置と、
前記回転装置及び前記搬送装置を同期して駆動させる駆動制御を行う制御部と、
を備える請求項12~19のいずれか一項に記載の露光装置。 A rotating device that rotates the mask supported by the supporting device around the axis;
A transfer device for transferring the substrate along the surface of the substrate;
A control unit that performs drive control to drive the rotating device and the transport device in synchronization;
The exposure apparatus according to any one of claims 12 to 19, further comprising: - 前記制御部は、前記マスクが有する前記部分球面の前記軸線回りの移動速度に対する、前記基板の搬送速度の比が、前記投影光学系の投影倍率と等しくなるように前記駆動制御を行う請求項20に記載の露光装置。 21. The control unit performs the drive control so that a ratio of a conveyance speed of the substrate to a movement speed of the partial spherical surface of the mask around the axis is equal to a projection magnification of the projection optical system. The exposure apparatus described in 1.
- 帯状の基板を処理する基板処理装置であって、
前記基板を前記基板の長手方向に搬送する基板搬送部と、
前記基板搬送部による前記基板の搬送経路に沿って設けられ、前記搬送経路に沿って搬送される前記基板に対して処理を行う基板処理部と、を備え、
前記基板処理部は、前記基板にパターンを転写する請求項12~21のいずれか一項に記載の露光装置を含む、基板処理装置。 A substrate processing apparatus for processing a band-shaped substrate,
A substrate transfer section for transferring the substrate in the longitudinal direction of the substrate;
A substrate processing unit that is provided along a transport path of the substrate by the substrate transport unit and that performs processing on the substrate transported along the transport path;
The substrate processing apparatus including the exposure apparatus according to any one of claims 12 to 21, wherein the substrate processing unit transfers a pattern to the substrate. - 基板を処理してデバイスを製造するデバイス製造方法であって、
請求項12~21のいずれか一項に記載の露光装置を用いて、前記基板にパターンを転写することと、
前記パターンが転写された前記基板を前記パターンに基づいて加工することと、
を含むデバイス製造方法。 A device manufacturing method for manufacturing a device by processing a substrate,
Using the exposure apparatus according to any one of claims 12 to 21 to transfer a pattern to the substrate;
Processing the substrate on which the pattern is transferred based on the pattern;
A device manufacturing method including:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014503882A JP6135664B2 (en) | 2012-03-07 | 2013-03-06 | Mask, mask unit, exposure apparatus, substrate processing apparatus, and device manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012050664 | 2012-03-07 | ||
JP2012-050664 | 2012-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013133321A1 true WO2013133321A1 (en) | 2013-09-12 |
Family
ID=49116794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/056145 WO2013133321A1 (en) | 2012-03-07 | 2013-03-06 | Mask, mask unit, exposure device, substrate treatment apparatus and method for manufacturing device |
Country Status (3)
Country | Link |
---|---|
JP (4) | JP6135664B2 (en) |
TW (3) | TWI634382B (en) |
WO (1) | WO2013133321A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02160237A (en) * | 1988-12-14 | 1990-06-20 | Nikon Corp | Mask substrate, production of mask and exposing method by using this mask substrate |
JPH08213305A (en) * | 1995-02-08 | 1996-08-20 | Nippon Telegr & Teleph Corp <Ntt> | Charged beam transfer device and method |
JPH09167736A (en) * | 1995-12-15 | 1997-06-24 | Canon Inc | Scanning type aligner and manufacture of device using the aligner |
JP2001501779A (en) * | 1996-12-04 | 2001-02-06 | ボール セミコンダクター インコーポレイテッド | Spherical semiconductor integrated circuit, semiconductor integrated circuit manufacturing method, semiconductor integrated circuit manufacturing apparatus, and semiconductor particle floating device |
JP2007299918A (en) * | 2006-04-28 | 2007-11-15 | Nikon Corp | Exposure system and method, exposure mask, and manufacturing method of device |
WO2008029917A1 (en) * | 2006-09-08 | 2008-03-13 | Nikon Corporation | Mask, exposure apparatus and device manufacturing method |
JP2011203311A (en) * | 2010-03-24 | 2011-10-13 | Nikon Corp | Mask holder, cylindrical mask, exposure device, substrate processing device, and device manufacturing method |
JP2011221538A (en) * | 2010-04-13 | 2011-11-04 | Nikon Corp | Mask case, mask unit, exposure equipment, substrate processing apparatus and device manufacturing method |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2546312B2 (en) * | 1987-12-29 | 1996-10-23 | キヤノン株式会社 | Reflective mask, exposure apparatus and exposure method using the reflective mask |
DE10005189A1 (en) * | 2000-02-05 | 2001-08-09 | Zeiss Carl | Projection exposure system has light source, illumination system, reflective reticle, beam divider cube in reduction objective that superimposes illumination and imaging beam paths |
JP2001343589A (en) * | 2000-03-31 | 2001-12-14 | Canon Inc | Projection optical system, projection exposure device by the same, manufacturing method of devices |
CN1659479A (en) * | 2002-04-10 | 2005-08-24 | 富士胶片株式会社 | Exposure head, exposure apparatus, and application thereof |
US6995833B2 (en) * | 2003-05-23 | 2006-02-07 | Canon Kabushiki Kaisha | Projection optical system, exposure apparatus, and device manufacturing method |
JP4521539B2 (en) * | 2004-05-18 | 2010-08-11 | 学校法人東京電機大学 | Exposure method |
JP2006093318A (en) * | 2004-09-22 | 2006-04-06 | Tohoku Univ | Euv exposure device, euv exposure method and reflection type mask |
US20080204682A1 (en) * | 2005-06-28 | 2008-08-28 | Nikon Corporation | Exposure method and exposure apparatus, and device manufacturing method |
JP2007227438A (en) * | 2006-02-21 | 2007-09-06 | Nikon Corp | Exposure apparatus and exposure method, and mask for light exposure |
WO2008129914A1 (en) * | 2007-04-17 | 2008-10-30 | Asahi Glass Company, Limited | Euv mask blank |
EP2219077A1 (en) * | 2009-02-12 | 2010-08-18 | Carl Zeiss SMT AG | Projection exposure method, projection exposure system and projection objective |
CN102483580B (en) * | 2009-08-20 | 2015-04-01 | 株式会社尼康 | Object processing apparatus, exposure apparatus and exposure method, and device manufacturing method |
US20110123913A1 (en) * | 2009-11-19 | 2011-05-26 | Nikon Corporation | Exposure apparatus, exposing method, and device fabricating method |
JP2011221536A (en) * | 2010-04-13 | 2011-11-04 | Nikon Corp | Mask moving device, exposure device, substrate processor and device manufacturing method |
CN102893217B (en) * | 2010-05-18 | 2016-08-17 | Asml荷兰有限公司 | Lithographic equipment and device making method |
-
2013
- 2013-03-06 JP JP2014503882A patent/JP6135664B2/en active Active
- 2013-03-06 TW TW106114290A patent/TWI634382B/en active
- 2013-03-06 TW TW102107797A patent/TWI587077B/en active
- 2013-03-06 TW TW107125221A patent/TWI654481B/en active
- 2013-03-06 WO PCT/JP2013/056145 patent/WO2013133321A1/en active Application Filing
-
2016
- 2016-02-02 JP JP2016017951A patent/JP6048600B2/en active Active
-
2017
- 2017-04-18 JP JP2017082093A patent/JP6369591B2/en active Active
-
2018
- 2018-07-10 JP JP2018130360A patent/JP6562129B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02160237A (en) * | 1988-12-14 | 1990-06-20 | Nikon Corp | Mask substrate, production of mask and exposing method by using this mask substrate |
JPH08213305A (en) * | 1995-02-08 | 1996-08-20 | Nippon Telegr & Teleph Corp <Ntt> | Charged beam transfer device and method |
JPH09167736A (en) * | 1995-12-15 | 1997-06-24 | Canon Inc | Scanning type aligner and manufacture of device using the aligner |
JP2001501779A (en) * | 1996-12-04 | 2001-02-06 | ボール セミコンダクター インコーポレイテッド | Spherical semiconductor integrated circuit, semiconductor integrated circuit manufacturing method, semiconductor integrated circuit manufacturing apparatus, and semiconductor particle floating device |
JP2007299918A (en) * | 2006-04-28 | 2007-11-15 | Nikon Corp | Exposure system and method, exposure mask, and manufacturing method of device |
WO2008029917A1 (en) * | 2006-09-08 | 2008-03-13 | Nikon Corporation | Mask, exposure apparatus and device manufacturing method |
JP2011203311A (en) * | 2010-03-24 | 2011-10-13 | Nikon Corp | Mask holder, cylindrical mask, exposure device, substrate processing device, and device manufacturing method |
JP2011221538A (en) * | 2010-04-13 | 2011-11-04 | Nikon Corp | Mask case, mask unit, exposure equipment, substrate processing apparatus and device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP6562129B2 (en) | 2019-08-21 |
JPWO2013133321A1 (en) | 2015-07-30 |
JP2017134422A (en) | 2017-08-03 |
JP6369591B2 (en) | 2018-08-08 |
TW201730666A (en) | 2017-09-01 |
TW201348855A (en) | 2013-12-01 |
TWI654481B (en) | 2019-03-21 |
TWI634382B (en) | 2018-09-01 |
JP6048600B2 (en) | 2016-12-21 |
TW201841048A (en) | 2018-11-16 |
JP2016066105A (en) | 2016-04-28 |
TWI587077B (en) | 2017-06-11 |
JP2018159958A (en) | 2018-10-11 |
JP6135664B2 (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6436216B2 (en) | Projection exposure equipment | |
JP6245342B2 (en) | Device manufacturing method | |
KR102079793B1 (en) | Scanning exposure method | |
WO2013035489A1 (en) | Substrate processing device | |
KR102178173B1 (en) | Scanning exposure method and device manufacturing method | |
JP6562129B2 (en) | Exposure equipment | |
JP2013213983A (en) | Exposure apparatus and device manufacturing method | |
JP2014102468A (en) | Processor and method of manufacturing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13757771 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014503882 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13757771 Country of ref document: EP Kind code of ref document: A1 |