200843070 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種可撓性基板及半導體裝置者。 【先前技術】 圖7係從斜上方觀看先前之COF(薄膜覆晶:Chip 〇n Film)型半導體裝置之概略圖。 上述半導體裝置具備:可撓性基板7(H,及搭載於該可 撓性基板701之半導體晶片7〇4。 上述半導體晶片704對可撓性基板701覆晶連接。而且, 在上述半導體晶片7〇4與可撓性基板7〇1之間,通常充填有 樹脂。 圖8係從上方觀看日本特開2〇〇1-237265號公報所揭示之 可撓性基板8〇1之要部概略圖。 上述可撓性基板801具備基材800,其係在一表面具有半 導體晶片搭載區域803者。 在上述半導體晶片搭載區域803,搭載有未圖示之半導 體晶片。更詳細而言,上述半導體晶片之凸起電極以未圖 示之 ACF(各向異性導電膜:Anis〇tr〇pic c〇nductive Fiim) 為中w ’藉由熱壓接而連接於内引線8〇6。 上述内引線806從抗銲層812之開口 813露出,並進入半 導體晶片搭載區域803内。 j上述半導體晶片搭載區域803,形成有引導在ACF加 熱壓接時產生之氣泡的導槽814。上述氣泡由導槽814所引 導從排出口 8 1 5向半導體晶片搭載區域8〇3外排出。 127707.doc 200843070 由於上述氣泡其内部會滞留水分及雜質而成為產生故障 之原因,故必須向半導體晶片搭載區域8〇3外排出氣泡。 圖9係從上方觀看日本特開2_一6462號公報揭示之可撓 性基板901之要部概略圖。 上述可撓性基板901具備形成於半導體晶片搭載區域903 之跨接線9 11。 在上述半導體晶片搭載區域903,以黏著樹脂為中介搭 載有未㈣之LSI(大規模積體電路)f晶片零件。 上述晶片零件以黏著樹脂為中介加熱賴於半導體晶片 搭载區域903。此時,由於在上述半導體晶片搭載區域9〇3 形成有跨接線911,因此黏著樹脂之流動性變得良好。 上述跨接線911包含:直線形狀之主幹佈線部921,接線 於該主幹佈線部921 —端之直線形狀之支佈線部922,及接 線於該主幹佈線部921另一端之直線形狀之支佈線部似。 上述主幹佈線部921,係以沿著晶片零件之長方形狀之 下面之長邊方向、即圖9中之左右方向延伸之方式形成。 上述支佈線部922、923延伸之方向,設定為相對於主幹 佈、線:21之延伸方向成“。而且,上述支佈線部922、 923攸主幹佈線部921延伸而接線於内引線906。此處,上 述角α為135±15。。 上述内引線906從抗銲層912的開口 913露出,並進入半 導體晶片搭载區域9〇3内。在該内引線_上連接晶片 之凸起電極。 7 如上述之可撓性基板9〇1, 係藉由跨接線911而使黏著樹 127707.doc 200843070 il動陵良好,以防止在可撓性基板9〇丨與晶片零之 間滯留氣泡。 7 但、,上述可撓性基板801、9〇1各自存在如下之問題。 曰上述可撓性基板801,其導槽814彼此之間隔,較半導體 日日片搭載區域803之中央部,其在周緣部較為狹窄。換言 之用於以上述導槽814引導上述氣泡之空間雖寬,但用 於將氣泡排出至半導體晶片搭載區域8〇3外之出口即排出 口 8 1 5卻狹窄。 因此,上述可撓性基板801具有不能將氣泡從排出口 81 5 順暢排出之問題。 另一方面,上述可撓性基板901中,在跨接線9ιι上未形 成如可撓性基板8〇1之排出口 81 5之開口。 而且,由於上述晶片零件之凸起電極與内引線9〇6連接 之連接部因為間距狹窄而顯得密集,故要將氣泡從該連接 部彼此之間排出至半導體晶片搭載區域9〇3之外,實質上 係困難的。 ' ' 因此,由於上述氣泡被圍困在半導體晶片搭载區域9〇3 内,因此具有不能將氣泡排出至半導體晶片搭载區域903 外之問題。 亦即,上述可撓性基板801、901兩者均具有將氣泡從半 導體晶片搭載區域内向半導體晶片搭载區域外之排出效果 低的問題。 【發明内容】 [發明所欲解決之問題] 127707.doc 200843070 二其 之目的在於提供—種可撓性基板及具備該 之切體裝置,上料撓性基板係可提高氣泡 Γ丰導體晶片搭載區域内向半導體晶片搭載區域外之排出 效果者。 [解決問題之技術手段] 其特徵在於具 為解決上述問;IP,太;^ β j碭本發明之可撓性基板 備:200843070 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a flexible substrate and a semiconductor device. [Prior Art] Fig. 7 is a schematic view of a conventional COF (Chip 〇n Film) type semiconductor device viewed obliquely from above. The semiconductor device includes a flexible substrate 7 (H, and a semiconductor wafer 7〇4 mounted on the flexible substrate 701. The semiconductor wafer 704 is flip-chip bonded to the flexible substrate 701. Further, the semiconductor wafer 7 is A resin is usually filled between the crucible 4 and the flexible substrate 7〇1. Fig. 8 is a schematic view of a main part of the flexible substrate 8〇1 disclosed in Japanese Laid-Open Patent Publication No. Hei 2-237265. The flexible substrate 801 includes a substrate 800 having a semiconductor wafer mounting region 803 on one surface thereof. A semiconductor wafer (not shown) is mounted on the semiconductor wafer mounting region 803. More specifically, the semiconductor wafer The bump electrode is connected to the inner lead 8〇6 by thermocompression bonding using an ACF (anisotropic conductive film: Anis〇tr〇pic c〇nductive Fiim) (not shown) as the middle w'. The inner lead 806 is The opening 813 of the solder resist layer 812 is exposed and enters the semiconductor wafer mounting region 803. j The semiconductor wafer mounting region 803 is formed with a guide groove 814 for guiding air bubbles generated during ACF heating and pressure bonding. guide The discharge port 815 is discharged to the outside of the semiconductor wafer mounting region 8〇3. 127707.doc 200843070 Since the inside of the bubble traps moisture and impurities in the inside of the bubble, the cause of the malfunction is caused, so that it is necessary to discharge the bubble to the outside of the semiconductor wafer mounting region 8〇3. Fig. 9 is a schematic view of a main part of a flexible substrate 901 disclosed in Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. 6642. The flexible substrate 901 includes a jumper 9 11 formed in a semiconductor wafer mounting region 903. In the semiconductor wafer mounting region 903, an LSI (large-scale integrated circuit) f-wafer component is mounted on the semiconductor resin by the adhesive resin. The wafer component is heated by the adhesive resin to the semiconductor wafer mounting region 903. Since the jumper 911 is formed in the semiconductor wafer mounting region 9A3, the fluidity of the adhesive resin is improved. The jumper 911 includes a linear trunk portion 921 and a straight line connected to the end of the trunk wiring portion 921. The shape wiring portion 922 is similar to the linear wiring portion that is connected to the other end of the trunk wiring portion 921. The line portion 921 is formed to extend along the longitudinal direction of the lower surface of the rectangular shape of the wafer component, that is, in the horizontal direction in Fig. 9. The direction in which the branch wiring portions 922 and 923 extend is set to be relative to the main cloth. The extension direction of the line 21 is ". Further, the branch wiring portions 922, 923 攸 the main wiring portion 921 extends and is wired to the inner lead 906. Here, the above angle α is 135 ± 15. The inner lead 906 is resistant to soldering. The opening 913 of the layer 912 is exposed and enters the semiconductor wafer mounting region 9〇3. A bump electrode of the wafer is connected to the inner lead_. 7 As in the flexible substrate 9〇1 described above, the adhesive tree 127707.doc 200843070 il is well-grounded by the jumper 911 to prevent air bubbles from remaining between the flexible substrate 9A and the wafer zero. 7 However, the above flexible substrates 801 and 910 have the following problems. In the flexible substrate 801, the guide grooves 814 are spaced apart from each other, and are narrower at the peripheral portion than the central portion of the semiconductor day-and-slice mounting region 803. In other words, the space for guiding the bubble by the guide groove 814 is wide, but the discharge port 8 1 5 for discharging the bubble to the outside of the semiconductor wafer mounting region 8〇3 is narrow. Therefore, the flexible substrate 801 has a problem that air bubbles cannot be smoothly discharged from the discharge port 81 5 . On the other hand, in the above flexible substrate 901, an opening such as the discharge port 81 5 of the flexible substrate 8〇1 is not formed on the jumper wire 910. Further, since the connection portion between the bump electrode of the wafer component and the inner lead 9〇6 is dense due to the narrow pitch, air bubbles are discharged from the connection portion to each other outside the semiconductor wafer mounting region 9〇3. Essentially difficult. Therefore, since the air bubbles are trapped in the semiconductor wafer mounting region 9A3, there is a problem that the air bubbles cannot be discharged outside the semiconductor wafer mounting region 903. In other words, both of the flexible substrates 801 and 901 have a problem that the discharge effect of the bubbles from the inside of the semiconductor wafer mounting region to the outside of the semiconductor wafer mounting region is low. SUMMARY OF THE INVENTION [Problems to be Solved by the Invention] 127707.doc 200843070 The purpose of the invention is to provide a flexible substrate and a device for cutting the same, and the flexible substrate for loading can improve the carrier of the bubble-rich conductor wafer. The discharge effect outside the semiconductor wafer mounting area in the area. [Technical means for solving the problem] It is characterized in that it solves the above problem; IP, too; ^β j砀 The flexible substrate of the present invention
1 基材,其係在-表面具有半導體晶片搭載區域者; 複數之内引線,其係形成於上述基材之上述一表面上 者;及 佈線’其係接線於上述内引緩 < m V丨深,知牙上述+導體晶片搭 載區域者。 曰根據上述構成之可撓性基板,因為上述佈線橫穿半導體 B曰片搭載區域’故可藉由佈線順暢地引導半導體晶片搭載 區域内的氣泡至半導體晶片搭载區域外。 因此,可提高氣泡從上述半導體晶片搭載區域内向半導 體日日片搭載區域外之排出效果。 又,因為上述佈線橫穿半導體晶片搭載區域,故在半導 體晶片搭載區域内不會形成迴路。 因此,藉由上述佈線可防止氣泡被圍困在半導體晶片搭 載區域内。 而且’因為上述佈線接線於内引線,故可使佈線具有該 内引線之電位。 在貝施形態之可撓性基板中,接線於上述佈線之上述 127707.doc 200843070 I i之線ι’與未接線於上述佈線之上述内引線之線寬 不同。 根據上述實施形態之可撓性基板,在使接線於上述佈線 之上述内引線之線寬,比未接線於上述佈線之上述内引線 之線見為寬時,對於該佈線,例如即使連接半導體晶片電 極中處理最大電流之電極,亦可防止在佈線施加電流時之 燒損。1 a substrate having a semiconductor wafer mounting region on a surface thereof; a plurality of inner leads formed on the one surface of the substrate; and a wiring 'connected to the inner surface to slow down < m V丨 deep, know the teeth + conductor wafer mounting area. According to the flexible substrate having the above configuration, since the wiring traverses the semiconductor B-chip mounting region, the air bubbles in the semiconductor wafer mounting region can be smoothly guided to the outside of the semiconductor wafer mounting region by the wiring. Therefore, it is possible to enhance the discharge effect of the bubbles from the inside of the semiconductor wafer mounting region to the outside of the semiconductor wafer mounting region. Further, since the wiring traverses the semiconductor wafer mounting region, no loop is formed in the semiconductor wafer mounting region. Therefore, the above-mentioned wiring can prevent the air bubbles from being trapped in the semiconductor wafer mounting region. Further, since the above wiring is wired to the inner lead, the wiring can have the potential of the inner lead. In the flexible substrate of the Bayesian type, the line ι' of the above-mentioned 127707.doc 200843070 I i wired to the above wiring is different from the line width of the above-mentioned inner lead which is not wired to the above wiring. According to the flexible substrate of the above-described embodiment, when the line width of the inner lead wired to the wiring is wider than the line of the inner lead not wired to the wiring, for example, even if the semiconductor wafer is connected to the wiring The electrode that processes the maximum current in the electrode also prevents burnout when current is applied to the wiring.
U 因此,可確保具備上述可撓性基板與半導體晶片之半導 體裝置之可靠性。 在-實施形態之可撓性基板中’具備形成於上述基材之 上述一表面上之圖案保護膜;且 亨、上述佈線之上述半導體晶片搭載區域外之部分中,有 至少一部分未被上述圖案保護膜覆蓋因而露出。 "根據上述實施形態之可撓性基板,例如在上述佈線連接 半導體晶片之電極時,因為就上述佈線之上 r- 1 〜T股日日六 搭載區域外之部分中,有至少一 4刀未被上述圖案保護膜 “口而路出’故能夠以該至少一部分為,介放出半導體 晶片的熱’防止因熱而產生之半導體晶片之故障。 在一實施形態之可撓性其也由U Therefore, the reliability of the semiconductor device including the above flexible substrate and semiconductor wafer can be ensured. In the flexible substrate of the embodiment, the pattern protection film is formed on the one surface of the substrate; and at least a part of the portion other than the semiconductor wafer mounting region of the wiring and the wiring is not included in the pattern. The protective film is covered and exposed. According to the flexible substrate of the above-described embodiment, for example, when the electrode of the semiconductor wafer is connected to the wiring, at least one of the portions other than the mounting area of the r- 1 to T-days on the wiring is provided. The above-mentioned pattern protective film is not "out of the way", so that at least a part of the heat of the semiconductor wafer can be released to prevent the failure of the semiconductor wafer due to heat. In the embodiment, the flexibility is also
基板中上述佈線係厚度為U μ—圍内且、線寬為6〜3〇〇 μηι範圍内之金屬箔。 本發明之半導體褒置,其特徵在於具備: 本發明之可撓性基板;及 搭載於上述可撓性基板之上 導體晶片。 體曰曰片搭载區域之半 127707.doc 200843070 根據上述構成之半導體裝置,因為其具備上述可撓性基 $ ’故可防止因氣泡而產生之半導體晶片故障,提高其可 罪性。 更詳細而言’在上述可撓性基板與半導體晶片之間例如 充填樹脂之情形時,因為可撓性基板之佈線橫穿半導體晶 片搭载區域,故藉由該佈線可將半導體晶片搭载區域内之 樹月旨順暢地引導至半導體晶片搭載區域外。 …因此’可防止故障起因之氣泡殘留在上述可撓性基板與 半導體晶片之間,提高其可靠性。 此外,因為亦可不需使利於防止上述氣泡殘留之特別 材料或裝置,故可防止半導體裝置製造成本增加。 在一實施形態之半導體裝置中, 在上述半導體晶片之上料撓性基板側之表面形成有複 數之凸起電極; 上述半導體晶片之上述可撓性基板側之表面為長方形 狀; 上述凸起電極形成於上述半導體晶片之上述可撓性基板 側之表面之短邊附近以外之部分。 根據上述實施形態之半導體裝置,因為上述凸起電極係 形成於半導體晶片 < 可撓性基板側 < 表面之短邊附近以外 之口 ,故可從半導體晶片之可撓性基板側之表面之短邊 附近排出氣泡。 而且,藉由在上述半導體晶片之可撓性基板側之表面之 長邊附近形成凸起電極,可增加凸起電極之個數。 127707.doc -10- 200843070 在一實施形態之半導體裝置中, 在上述半導體晶片之上述可撓性基板側之表面形成有複 數之凸起電極; 連接於上述佈線之上述凸起電極之電位為接地電位。 根據上述實施形態之半導體裝置,因為連接於上述佈線 之凸起電極之電位為接地電位,故可使其電性特性穩定, 且可得到提高品質的效果。 在一實施形態之半導體裝置中, 在上述半導體晶片之上述可撓性基板側之表面形成有複 數之凸起電極; 上述佈線所連接之上述凸起電極,其處理之電流係上述 半導體晶片向外部輸出之電流。 根據上述實施形態之半導體裝置,因為連接於上述佈線 之凸起電極所處理之電流係半導體晶片向外部輸出之電 流’故能夠以接線於上述佈線之内引線為中介而取出上述 [發明之效果] 曰曰 根據本發明之可撓性基板,因為藉由佈線橫穿半導體晶 片搭載區域’可順暢地引導半導體晶片搭載區域内的氣: 至半導體晶片搭載區域外,故可提高氣泡從上述半導體 片搭載區域内向半導體晶片搭載區域外之排出效果。旦 根據本發明之半導时置,因為其㈣域之可持性基 :,故可防止因氣泡而產生之半導體晶片故障,提:其; 罪性。 127707.doc 200843070 【實施方式】 (弟一貫施形態) 圖1係從上方觀看本發明第一實施形態之可撓性基板1 j 之要部概略圖。 上述可撓性基板1 〇 1,如圖1、圖2所示,其具備··基材 100,其係在一表面具有以平面觀視呈長方形狀之半導體 晶片搭載區域103者;複數之内引線1〇6,其係形成於上述 一表面上者:及跨接線1 i丨,其係接線於上述複數之内引 線106中之2條者。而上述跨接線111係佈線之一例。 上述基材100係由例如厚度40 μηι之聚醯亞胺薄膜構成。 上述跨接線111包含第1佈線部121、第2佈線部122、第3 佈線部123、第4佈線部124及第5佈線部125。 上述第1佈線部121沿半導體晶片搭載區域ι〇3之長邊延 伸而検穿半導體晶片搭載區域丨〇3。即上述第丨佈線部 121,係跨及半導體晶片搭載區域1〇3及半導體晶片搭載區 域103外之區域而形成者。 上述第2佈線部! 2 2沿半導體晶片搭載區域i 〇 3之短邊延 伸。且上述第2佈線部122之一端連接在第i佈線部121之一 端。 上述第3佈線部123沿半導體晶片搭載區域1〇3之短邊延 伸。且上述第3佈線部123之一端連接在第丨佈線部121之另 一端。 上述第4佈線部124沿半導體晶片搭載區域1〇3之長邊、 相對於第1佈線部121成平行延伸。而且,上述第4佈線部 127707.doc ^ 200843070 124亦與第1佈線部121同樣,係跨及半導體晶片搭載區域 103及半導體晶片搭載區域外之區域而形成者。且上述 第4佈線部124之一端連接在第2佈線部122之另一端。另一 方面,上述第4佈線部124之另一端接線於内引線1〇6之頂 端。該内引線106之線寬與第4佈線部124之線寬大致相 同。 • 上述第5佈線部125沿半導體晶片搭載區域103之長邊、 f 相對於第1佈線部121成平行延伸。而且,上述第5佈線部 125亦與第1佈線部121同樣,係跨及半導體晶片搭载區域 103及半導體晶片搭載區域1〇3外之區域而形成者。且上述 第5佈線部125之一端連接在第3佈線部123之另一端。另一 方面’上述第5佈線部125之另一端接線於内引線1〇6之頂 端。該内引線106之線寬與第5佈線部125之線寬大致相 同。 又,上述第1佈線部121、第2佈線部122、第3佈線部 L 123、第4佈線部124及第5佈線部125之線寬,均為大致相 同。 此外,連接於上述第4、第5佈線部124、125另一端之内 引線106,形成為比其他内引線ι〇6長。 而且’上述第1佈線部121與第4佈線部124間之距離,與 第1佈線部121與第5佈線部12 5間之距離大致相同。 此外’就上述跨接線111之半導體晶片搭载區域1〇3外之 部分中,有一部分未被抗銲層112覆蓋因而露出。更詳細 而言,在上述半導體晶片搭載區域1〇3外,其中第1佈線部 127707.doc -13· 200843070 121之一部分、第4佈線部124之一部分、及第5佈線部l25 之一部分未被抗銲層112覆蓋因而露出。而上述抗銲層ιΐ2 係圖案保護膜之一例。 此外,上述第1佈線部121之兩端部,第2、第3佈線部 122、123之全部,及第4、第5佈線部124、125之一端部由 抗銲層112所覆蓋。藉此可提高上述跨接線U1之可靠性。 上述内引線106形成為位於抗銲層m之開口 113内。而 且,上述内引線1 06之形成間距、即内引線間距p,係配合 後述之凸起電極105之形成間距而設定為5〇 μιη。又,上述 内引線106彼此之間隔、即内引線間隙〇為25 。又,上 述内引線106之線寬W亦為25 μηι。 上述所謂内引線間隙G與内引線丨06之線寬w,係考慮以 下風險之平衡來設定者,即··蝕刻殘餘、及因蝕刻殘餘而 引起之遷移等致使内引線1〇6彼此接近之風險,與因内引 線1〇6之圖案殘缺、及電流容量降低等導致細線化而引起 之風險之平衡。 圖2係從斜上方觀看本發明第丨實施形態之半導體裝置概 略圖。再者,圖3係圖2之半導體晶片搭載區域1〇3之放大 圖此外,圖3中,為易於理解,將樹脂1 1 〇作為透明物進 行圖示。 上述半導體裝置,如圖2、及圖3所示,具備:可撓性基 板101,半導體晶片104,其係以覆晶連接而連接於上述可 挽性基板ιοί,且搭載於半導體晶片搭載區域1〇3者;及樹 脂11〇,其係覆蓋抗銲層112之開口 113者。 127707.doc -14· 200843070 在上述半導體晶片104之下面(可撓性基板1〇1側之表面 形成有複數之凸起電極105。更詳細而言,上述半導體晶 片104之下面呈長方形狀,沿此下面之長邊形成有複^ 凸起電極105。藉此,可使後述佈線102之各圖案呈直線形 狀而簡單化。 在上述複數之凸起電極105中,半導體晶片104下面之一 側長邊附近之凸起電極105係輸出側電極,而半導體晶片 104下面另一側長邊附近之凸起電極1〇5係輸入側電極。 又,在半導體晶片104下面之短邊附近未形成有凸起電極 105 ° 在上述可撓性基板1〇1之一構成部之基材1〇〇之一表面 (半導體晶片104側之表面)形成有佈線1〇2,並以覆蓋該佈 線102大部分之方式形成有抗銲層112。 上述佈線102由厚度為8 μηι之銅箔形成。而且,上述佈 線102之半導體晶片搭載區域1〇3側之端部形成為内引線 106。亦即,上述内引線1〇6係佈線ι〇2之一部分。 上述樹脂110存在於半導體晶片1〇4之周圍。該樹脂u〇 之σ卩分進入可撓性基板101與半導體晶片1 〇4之間隙s。 由於在上述半導體晶片1〇4下面之長邊附近,有凸起電 極105與内引線106在直線上密集排列,故該等實質上如牆 壁般形成封閉可撓性基板1〇1與半導體晶片1〇4之間隙§之 狀態。 另方面在上述半導體晶片1 〇 4下面之短邊附近則沒 有凸起電極105,跨接線1U之第1佈線部ι21沿半導體晶片 127707.doc -15- 200843070 104下面之長邊延伸而橫穿半導體晶片搭載區域1〇3,並從 半導體晶片搭載區域103内朝向半導體晶片搭載區域1〇3外 突出。 如此,藉由在上述半導體晶片1〇4下面之短邊附近不形 成凸起電極1 05,及使跨接線1丨丨之第1佈線部12丨沿半導體 晶片104下面之長邊延伸而橫穿半導體晶片搭載區域1〇3, , 可將可撓性基板1〇1與半導體晶片104之間隙S之氣泡,從 ^ , 半導體晶片1 04下面之短邊附近排出至半導體晶片搭載區 域10 3之外。 因此,上述可撓性基板101從半導體晶片搭載區域1〇3内 向半導體晶片搭載區域1 〇3外之氣泡排出效果高。 而且,因為上述跨接線111在半導體晶片搭載區域丨〇3内 未形成迴路,故可防止氣泡被圍困在半導體晶片搭載區域 1 03 内。 在上述第1實施形態中,第2佈線部122形成為位於抗銲 層U2之開口 U3外之位置,但亦可形成為位於抗銲層112 之開口 113内之位置。即,上述第2佈線部122亦可不用以 抗銲層112覆蓋。 在上述第1實施形態中,第3佈線部123形成為位於抗銲 層m之開口 113外之位置,但亦可形成為位於抗鲜層 之開口 113内之位置。即,上述第3佈線部123亦可不用以 抗銲層112覆蓋。 在上述第1實施形態中,内引線1〇6之線寬评為25 pm, 但亦可為除此以外之線寬。又,上述内引線106之厚度 127707.doc -16- 200843070 為8 μπι,但亦可為除此 I 予度。亦即,在上述第實 施形態中,亦可使用由 ^ 予又在1〜50 μηι範圍内、線寬在 〜300 μηι範圍内之金屬箱所形成之内引線。 在上述第1實施形態中,亦 J J使用具有比上述内引線1 06 之線寬為窄的線寬之跨接線。 、在上述第1實施形態中,既可使上述跨接線iu中流通電 机,亦可使上述跨接線丨丨丨中不流通電流。The wiring in the substrate is a metal foil having a thickness of U μ-inclusive and a line width of 6 to 3 μm. A semiconductor device of the present invention includes: a flexible substrate of the present invention; and a conductor wafer mounted on the flexible substrate. Half of the body piece mounting region 127707.doc 200843070 The semiconductor device having the above configuration has the above-described flexible base $', thereby preventing semiconductor wafer failure due to air bubbles and improving the sinfulness. More specifically, when a resin is filled between the flexible substrate and the semiconductor wafer, for example, since the wiring of the flexible substrate traverses the semiconductor wafer mounting region, the wiring can be used in the semiconductor wafer mounting region. The tree month is smoothly guided to the outside of the semiconductor wafer mounting area. Therefore, the air bubbles which prevent the cause of the trouble remain between the above-mentioned flexible substrate and the semiconductor wafer, thereby improving the reliability. Further, since it is not necessary to make a special material or device for preventing the above-mentioned air bubbles from remaining, it is possible to prevent an increase in the manufacturing cost of the semiconductor device. In the semiconductor device of the embodiment, a plurality of bump electrodes are formed on a surface of the semiconductor wafer on the side of the flexible substrate; and a surface of the semiconductor wafer on the side of the flexible substrate is a rectangular shape; A portion other than the short side of the surface of the semiconductor wafer on the side of the flexible substrate. According to the semiconductor device of the above-described embodiment, since the bump electrode is formed on the semiconductor wafer < the flexible substrate side < the vicinity of the short side of the surface, the surface of the semiconductor wafer can be formed from the surface of the flexible substrate side. Air bubbles are discharged near the short side. Further, by forming the bump electrodes in the vicinity of the long side of the surface of the flexible substrate side of the semiconductor wafer, the number of the bump electrodes can be increased. In a semiconductor device according to one embodiment, a plurality of bump electrodes are formed on a surface of the semiconductor wafer on the flexible substrate side; and a potential of the bump electrode connected to the wiring is grounded Potential. According to the semiconductor device of the above-described embodiment, since the potential of the bump electrode connected to the wiring is at the ground potential, the electrical characteristics can be stabilized, and the effect of improving the quality can be obtained. In the semiconductor device of the embodiment, a plurality of bump electrodes are formed on a surface of the semiconductor wafer on the side of the flexible substrate; and the current of the bump electrode connected to the wiring is processed to be external to the semiconductor wafer Output current. According to the semiconductor device of the above-described embodiment, since the current supplied to the current-based semiconductor wafer processed by the bump electrode of the wiring is externally outputted, the above-described wiring can be taken out by the wiring inside the wiring. According to the flexible substrate of the present invention, the gas in the semiconductor wafer mounting region can be smoothly guided by the wiring across the semiconductor wafer mounting region ′ to the outside of the semiconductor wafer mounting region, so that the air bubbles can be mounted from the semiconductor wafer. The discharge effect in the area outside the semiconductor wafer mounting area. According to the semi-conducting time of the present invention, because of the (4) domain's sustainability base, it is possible to prevent semiconductor wafer failure due to bubbles, and to mention it; 127707.doc 200843070 [Embodiment] FIG. 1 is a schematic view of a principal part of a flexible substrate 1 j according to a first embodiment of the present invention as seen from above. As shown in FIG. 1 and FIG. 2, the flexible substrate 1A1 includes a substrate 100 having a semiconductor wafer mounting region 103 having a rectangular shape in plan view; Leads 1〇6, which are formed on one of the above surfaces: and jumper wires 1i, which are connected to two of the plurality of inner leads 106. The above jumper 111 is an example of wiring. The substrate 100 is made of, for example, a polyimide film having a thickness of 40 μm. The jumper 111 includes the first wiring portion 121, the second wiring portion 122, the third wiring portion 123, the fourth wiring portion 124, and the fifth wiring portion 125. The first wiring portion 121 extends along the long side of the semiconductor wafer mounting region ι 3 to traverse the semiconductor wafer mounting region 丨〇3. In other words, the second wiring portion 121 is formed to extend over the semiconductor wafer mounting region 1〇3 and the region outside the semiconductor wafer mounting region 103. The second wiring unit described above! 2 2 extends along the short side of the semiconductor wafer mounting region i 〇 3 . One end of the second wiring portion 122 is connected to one end of the i-th wiring portion 121. The third wiring portion 123 extends along the short side of the semiconductor wafer mounting region 1〇3. One end of the third wiring portion 123 is connected to the other end of the second wiring portion 121. The fourth wiring portion 124 extends in parallel with respect to the first wiring portion 121 along the long side of the semiconductor wafer mounting region 1〇3. Further, similarly to the first wiring portion 121, the fourth wiring portion 127707.doc ^ 200843070 124 is formed over the semiconductor wafer mounting region 103 and the region outside the semiconductor wafer mounting region. One end of the fourth wiring portion 124 is connected to the other end of the second wiring portion 122. On the other hand, the other end of the fourth wiring portion 124 is connected to the top end of the inner lead 1?6. The line width of the inner lead 106 is substantially the same as the line width of the fourth wiring portion 124. The fifth wiring portion 125 extends in parallel with respect to the first wiring portion 121 along the long side of the semiconductor wafer mounting region 103 and f. Further, similarly to the first wiring portion 121, the fifth wiring portion 125 is formed to extend over the semiconductor wafer mounting region 103 and the region other than the semiconductor wafer mounting region 1A3. One end of the fifth wiring portion 125 is connected to the other end of the third wiring portion 123. On the other hand, the other end of the fifth wiring portion 125 is connected to the top end of the inner lead 1?6. The line width of the inner lead 106 is substantially the same as the line width of the fifth wiring portion 125. Further, the line widths of the first wiring portion 121, the second wiring portion 122, the third wiring portion L123, the fourth wiring portion 124, and the fifth wiring portion 125 are substantially the same. Further, the inner leads 106 connected to the other ends of the fourth and fifth wiring portions 124 and 125 are formed to be longer than the other inner leads ι 6 . Further, the distance between the first wiring portion 121 and the fourth wiring portion 124 is substantially the same as the distance between the first wiring portion 121 and the fifth wiring portion 125. Further, some of the portions other than the semiconductor wafer mounting region 1?3 of the jumper 111 are not covered by the solder resist layer 112 and are exposed. More specifically, in the semiconductor wafer mounting region 1〇3, one of the first wiring portions 127707.doc-13/200843070 121, one portion of the fourth wiring portion 124, and a portion of the fifth wiring portion 125 are not The solder resist layer 112 is covered and thus exposed. An example of the above-mentioned solder resist layer ι 2 is a pattern protective film. Further, at both end portions of the first wiring portion 121, all of the second and third wiring portions 122 and 123, and one end portions of the fourth and fifth wiring portions 124 and 125 are covered by the solder resist layer 112. Thereby, the reliability of the above jumper U1 can be improved. The inner lead 106 is formed to be located in the opening 113 of the solder resist layer m. Further, the pitch of formation of the inner leads 106, that is, the inner lead pitch p is set to 5 〇 μη in accordance with the pitch of formation of the bump electrodes 105 to be described later. Further, the inner leads 106 are spaced apart from each other, i.e., the inner lead gap 〇 is 25. Further, the line width W of the inner lead 106 is also 25 μm. The line width w of the inner lead gap G and the inner lead 丨06 is set in consideration of the balance of the risk, that is, the etching residue, the migration due to the etching residue, and the like, causing the inner leads 1 to 6 to approach each other. The risk is balanced with the risk caused by the thinning of the pattern of the inner lead 1〇6 and the reduction of the current capacity. Fig. 2 is a schematic view of a semiconductor device according to a third embodiment of the present invention as seen obliquely from above. 3 is an enlarged view of the semiconductor wafer mounting region 1〇3 of FIG. 2. In addition, in FIG. 3, in order to facilitate understanding, the resin 1 1 〇 is illustrated as a transparent material. As shown in FIG. 2 and FIG. 3, the semiconductor device includes a flexible substrate 101 and a semiconductor wafer 104 which is connected to the switchable substrate by flip chip connection and mounted on the semiconductor wafer mounting region 1. 〇3; and resin 11〇, which covers the opening 113 of the solder resist layer 112. 127707.doc -14· 200843070 A plurality of bump electrodes 105 are formed on the lower surface of the semiconductor wafer 104 (the surface of the flexible substrate 1〇1 side. More specifically, the lower surface of the semiconductor wafer 104 has a rectangular shape along the The lower side of the lower side is formed with a bump electrode 105. This simplifies the pattern of the wiring 102 to be described later in a straight line shape. In the plurality of bump electrodes 105, one side of the lower side of the semiconductor wafer 104 is long. The bump electrode 105 near the side is a side electrode, and the bump electrode 1〇5 near the long side of the other side of the semiconductor wafer 104 is an input side electrode. Further, no bump is formed near the short side of the lower surface of the semiconductor wafer 104. The electrode 105° is formed with a wiring 1〇2 on one surface (surface on the side of the semiconductor wafer 104) of one of the substrates 1 constituting the flexible substrate 1〇1, and covers most of the wiring 102. The solder resist layer 112 is formed. The wiring 102 is formed of a copper foil having a thickness of 8 μm, and the end portion of the wiring 102 on the side of the semiconductor wafer mounting region 1〇3 is formed as an inner lead 106. That is, the inner lead is formed. 1 The resin 110 is present around the semiconductor wafer 1〇4. The σ of the resin is divided into the gap s between the flexible substrate 101 and the semiconductor wafer 1 〇4. In the vicinity of the long side under the wafer 1〇4, the bump electrode 105 and the inner lead 106 are densely arranged in a line, so that the gap between the flexible substrate 1〇1 and the semiconductor wafer 1〇4 is substantially formed like a wall. In other words, there is no bump electrode 105 near the short side under the semiconductor wafer 1 〇4, and the first wiring portion ι21 of the jumper 1U extends along the long side of the semiconductor wafer 127707.doc -15-200843070 104 The semiconductor wafer mounting region 1〇3 is traversed, and protrudes from the inside of the semiconductor wafer mounting region 103 toward the semiconductor wafer mounting region 1〇3. Thus, no bump is formed in the vicinity of the short side under the semiconductor wafer 1〇4. The electrode 105 and the first wiring portion 12 of the jumper 1 are extended along the long side of the lower surface of the semiconductor wafer 104 to traverse the semiconductor wafer mounting region 1〇3, and the flexible substrate 1〇1 and the semiconductor can be used. The bubble of the gap S of the sheet 104 is discharged from the vicinity of the short side of the lower surface of the semiconductor wafer 104 to the outside of the semiconductor wafer mounting region 103. Therefore, the flexible substrate 101 is inwardly directed from the semiconductor wafer mounting region 1〇3 to the semiconductor wafer. In the semiconductor wafer mounting region 丨〇3, the jumper 111 is not formed in the semiconductor wafer mounting region 丨〇3, so that the air bubbles are prevented from being trapped in the semiconductor wafer mounting region 103. In the first embodiment, the second wiring portion 122 is formed at a position outside the opening U3 of the solder resist layer U2, but may be formed at a position inside the opening 113 of the solder resist layer 112. In other words, the second wiring portion 122 may not be covered with the solder resist layer 112. In the first embodiment, the third wiring portion 123 is formed at a position outside the opening 113 of the solder resist layer m, but may be formed at a position inside the opening 113 of the anti-fresh layer. In other words, the third wiring portion 123 may not be covered with the solder resist layer 112. In the first embodiment described above, the line width of the inner leads 1〇6 is rated as 25 pm, but may be other than the line width. Further, the thickness of the inner lead 106 is 127707.doc -16 - 200843070, which is 8 μπι, but may be a degree other than this. That is, in the above-described first embodiment, an inner lead formed of a metal case having a line width in the range of 1 to 50 μm and a line width in the range of 〜300 μη can be used. In the first embodiment described above, a jumper having a line width narrower than the line width of the inner lead 106 is also used. In the first embodiment described above, the motor may be distributed in the jumper iu or the current may not flow through the jumper.
(第2實施形態) 圖4係從上方觀看本發明第2實施形態之半導體裝置之要 部概略圖。又’在圖4中’與,所示的^實施形態之構 成部相同之構成冑,均附上肖圖k構成部相同之參照號 碼而省略其說明。X’在圖4中省略上述半導體裝置具備 之半導體晶片204之圖示。 上述半導體裝置具備:可撓性基板2〇 i ;及半導體晶片 104,其係以覆晶連接而連接於上述可撓性基板2〇1,且搭 載於半導體晶片搭載區域103者。 上述可撓性基板201具備跨接線211,其係包含第1佈線 部221、第2佈線部222、第3佈線部223、第4佈線部224及 第5佈線部225者。又,上述跨接線211為佈線之一例。 上述第1佈線部221沿半導體晶片搭載區域1〇3之長邊延 伸而橫穿半導體晶片搭載區域1 03。即,上述第1佈線部 221 ’係跨及半導體晶片搭載區域1 〇3,及半導體晶片搭載 區域1 03外之區域而形成者。 上述第2佈線部2 2 2沿半導體晶片搭載區域1 〇 3之短邊延 127707.doc -17- 200843070 伸。且上述第2佈線部222之一端連接在第1佈線部221之一 端。 上述第3佈線部223沿半導體晶片搭載區域1 〇3之短邊延 伸。且上述第3佈線部223之一端連接在第1佈線部221之另 一端。 上述第4佈線部224沿半導體晶片搭載區域1〇3之長邊、 相對於第1佈線部221成平行延伸。而且,上述第4佈線部 224亦與第i佈線部221同樣,係跨及從半導體晶片搭載區 域103至半導體晶片搭載區域103外之區域而形成者。且上 述弟4佈線部2 2 4之一端連接在第2佈線部2 2 2之另一端。另 一方面,上述第4佈線部224之另一端接線於内引線206之 頂端。該内引線206之線寬與第4佈線部224之線寬大致相 同,且比内引線1〇6之線寬為寬。 上述第5佈線部225沿半導體晶片搭載區域1〇3之長邊、 相對於第1佈線部221成平行延伸。而且,上述第5佈線部 225亦與第1佈線部221同樣,係跨及半導體晶片搭載區域 103及半導體晶片搭載區域1〇3外之區域而形成者。且上述 第5佈線部225之一端連接在第3佈線部223之另一端。另一 方面,上述第5佈線部225之另一端接線於内引線206之頂 端。該内引線206之線寬與第5佈線部225之線寬大致相 同’且比内引線106之線寬為寬。 又,上述第1佈線部22 1、第2佈線部222、第3佈線部 223、第4佈線部224及第5佈線部225之線寬,均為大致相 同0 127707.doc -18 - 200843070 此外’連接於上述第4、第5佈線部224、225另一端之内 引線206,形成為比其他内引線ι〇6長。 而且,上述第1佈線部221與第4佈線部224間之距離,與 第1佈線部221與第5佈線部225間之距離大致相同。 此外,就上述跨接線211之半導體晶片搭載區域ι〇3外之 部分中’有一部分未被抗銲層i 12覆蓋因而露出。更詳細 " 而言,在上述半導體晶片搭载區域103外,其中第1佈線部 f 221之一部分、第4佈線部224之一部分、及第5佈線部225 之一部分未被抗銲層112覆蓋因而露出。此外,上述第1佈 線部221之兩端部,第2、第3佈線部222、223之全部,及 第4、第5佈線部224、225之一端部由抗銲層i 12所覆蓋。 藉此,可提高上述跨接線211之可靠性。而上述抗銲層112 係圖案保護膜之一例。 此外,在上述第1佈線部22 1及内引線206連接凸起電極 205 〇 圖5係從圖4之V_V線觀看之概略剖面圖。 在上述半導體晶片204之下面(可撓性基板2〇1側之表面) 形成有凸起電極105、205。且,上述半導體晶片2〇4之下 面呈長方形狀。 在上述第1佈線部221連接之凸起電極2〇5,其形成在半 導體晶片1 04下面稍微偏離其長邊之處。 在上述内引線206連接之凸起電極2〇5,其形成在半導體 晶片104下面之長邊附近。 上述半導體晶片204係向未圖示之列印頭供給電壓之列 127707.doc -19- 200843070 印驅動器,在向上述列印頭供給電壓時產生之電流會流通 於内引線206及跨接線2 11。因此,上述内引線及跨接 線211為避免因上述電流而燒損,故必須設計為充分降低 電阻之佈線尺寸。具體而言,上述内引線2〇6及跨接線211 用厚度為8 μπι且線寬為40 μιη之銅箔形成。由於該内引線 206及跨接線211之截面積為32〇 μιη2,故可充分防止内引 線206及跨接線211因電流而燒損。 本發明者藉由實驗發現··在對於半導體晶片2〇4實際處 理電流為0.2 Α之具有邊限之設計上,考慮使用1〇倍之電流 2 A之佈線線寬時,佈線之截面積需要3〇〇 gw。 因此,若現狀之可撓性基板之佈線形成限度即厚度為 1 μπι,則佈線線寬需要300 μιη。反之,若將佈線加厚則可 減小佈線線寬,作為使用於先前之Tcp(捲帶式晶片載體封 裝·· Tape Carrier Package)等之佈線,若採用厚度為% 之銅箔則可將佈線線寬減小為6 μηι。 此外,在上述可撓性基板201中,亦與可撓性基板1〇1同 樣,可將可撓性基板2〇1與半導體晶片2〇4之間之氣泡從半 導體晶片204下面之短邊附近排出至半導體晶片搭載區域 103之外。 因此,上述可撓性基板2〇1從半導體晶片搭載區域1〇3内 向半導體晶片搭載區域103外之氣泡排出效果高。 在上述第2實施形態中,第2佈線部222形成為位於抗銲 層112之開口 113外之位置’但亦可形成為位於抗銲層ιΐ2 之開口 113内之位置。即,上述第2佈線部222亦可不用以 127707.doc -20- 200843070 抗婷層112覆蓋。 在上述第2實施形態中, 層112之開口 113外之位置 之開口 113内之位置。即, 抗銲層112覆蓋。 第3佈線部223形成為位於抗銲 但亦可形成為位於抗銲層112 上述第3佈線部223亦可不用以 在上述第2實施形態中’半導體裝置亦可具備覆蓋抗銲 層112之開口 113之樹脂。(Second Embodiment) Fig. 4 is a schematic view of a main part of a semiconductor device according to a second embodiment of the present invention as seen from above. The same components as those of the constituent portions of the embodiment shown in Fig. 4 are denoted by the same reference numerals as those of the components of the schematic diagram, and the description thereof is omitted. X' is an illustration of the semiconductor wafer 204 included in the above semiconductor device in Fig. 4 . The semiconductor device includes a flexible substrate 2 and a semiconductor wafer 104 which are connected to the flexible substrate 2〇1 by a flip chip connection and are mounted on the semiconductor wafer mounting region 103. The flexible substrate 201 includes a jumper 211 including a first wiring portion 221, a second wiring portion 222, a third wiring portion 223, a fourth wiring portion 224, and a fifth wiring portion 225. Further, the jumper wire 211 is an example of wiring. The first wiring portion 221 extends across the long side of the semiconductor wafer mounting region 1A and traverses the semiconductor wafer mounting region 103. In other words, the first wiring portion 221' is formed across the semiconductor wafer mounting region 1A and the region outside the semiconductor wafer mounting region 103. The second wiring portion 2 2 2 extends along the short side of the semiconductor wafer mounting region 1 〇 3 by 127707.doc -17- 200843070. One end of the second wiring portion 222 is connected to one end of the first wiring portion 221 . The third wiring portion 223 extends along the short side of the semiconductor wafer mounting region 1 〇3. One end of the third wiring portion 223 is connected to the other end of the first wiring portion 221. The fourth wiring portion 224 extends in parallel with respect to the first wiring portion 221 along the long side of the semiconductor wafer mounting region 1〇3. Further, similarly to the i-th wiring portion 221, the fourth wiring portion 224 is formed across the semiconductor wafer mounting region 103 to a region outside the semiconductor wafer mounting region 103. One end of the wiring portion 2 2 4 of the above-described fourth wiring is connected to the other end of the second wiring portion 2 2 2 . On the other hand, the other end of the fourth wiring portion 224 is connected to the top end of the inner lead 206. The line width of the inner lead 206 is substantially the same as the line width of the fourth wiring portion 224, and is wider than the line width of the inner leads 1?6. The fifth wiring portion 225 extends in parallel with respect to the first wiring portion 221 along the long side of the semiconductor wafer mounting region 1〇3. Further, similarly to the first wiring portion 221, the fifth wiring portion 225 is formed to extend over the semiconductor wafer mounting region 103 and the region other than the semiconductor wafer mounting region 1A3. One end of the fifth wiring portion 225 is connected to the other end of the third wiring portion 223. On the other hand, the other end of the fifth wiring portion 225 is connected to the top end of the inner lead 206. The line width of the inner lead 206 is substantially the same as the line width of the fifth wiring portion 225 and is wider than the line width of the inner lead 106. Further, the line widths of the first wiring portion 22 1 , the second wiring portion 222 , the third wiring portion 223 , the fourth wiring portion 224 , and the fifth wiring portion 225 are substantially the same as 0 127 707 . doc -18 - 200843070 The inner leads 206 connected to the other ends of the fourth and fifth wiring portions 224 and 225 are formed to be longer than the other inner leads ι 6 . Further, the distance between the first wiring portion 221 and the fourth wiring portion 224 is substantially the same as the distance between the first wiring portion 221 and the fifth wiring portion 225. Further, a part of the portion other than the semiconductor wafer mounting region ι3 of the jumper wire 211 is not covered by the solder resist layer i12 and is exposed. More specifically, in the outside of the semiconductor wafer mounting region 103, a portion of the first wiring portion f 221, a portion of the fourth wiring portion 224, and a portion of the fifth wiring portion 225 are not covered by the solder resist layer 112. Exposed. Further, both end portions of the first wiring portion 221, all of the second and third wiring portions 222 and 223, and one end portions of the fourth and fifth wiring portions 224 and 225 are covered by the solder resist layer i12. Thereby, the reliability of the above jumper 211 can be improved. The solder resist layer 112 is an example of a pattern protective film. Further, the first wiring portion 22 1 and the inner lead 206 are connected to the bump electrode 205. Fig. 5 is a schematic cross-sectional view taken along line V_V of Fig. 4. The bump electrodes 105 and 205 are formed on the lower surface of the semiconductor wafer 204 (the surface on the side of the flexible substrate 2〇1). Further, the surface of the semiconductor wafer 2〇4 has a rectangular shape. The bump electrode 2A5 connected to the first wiring portion 221 is formed to be slightly offset from the long side of the semiconductor wafer 104. The bump electrode 2A5 connected to the inner lead 206 is formed near the long side under the semiconductor wafer 104. The semiconductor wafer 204 is supplied with a voltage 127707.doc -19-200843070 print driver to a print head (not shown), and a current generated when a voltage is supplied to the print head flows through the inner lead 206 and the jumper 2 11 . . Therefore, the inner leads and the jumper wires 211 are designed to avoid burning due to the above current, and therefore must be designed to sufficiently reduce the wiring size of the resistors. Specifically, the inner leads 2〇6 and the jumper wires 211 are formed of a copper foil having a thickness of 8 μm and a line width of 40 μm. Since the cross-sectional area of the inner lead 206 and the jumper 211 is 32 〇 μηη2, the inner lead 206 and the jumper 211 can be sufficiently prevented from being burned by the current. The inventors discovered by experiment that in the design of a limit having a practical processing current of 0.2 对于 for the semiconductor wafer 2〇4, when considering the wiring line width of 2 times the current 2 A, the cross-sectional area of the wiring is required. 3〇〇gw. Therefore, if the thickness of the current flexible substrate is limited to 1 μm, the wiring line width needs to be 300 μm. On the other hand, if the wiring is thickened, the wiring line width can be reduced, and the wiring used in the conventional Tcp (Tray Carrier Package, Tape Carrier Package) can be wired if a copper foil having a thickness of % is used. The line width is reduced to 6 μηι. Further, in the flexible substrate 201, similarly to the flexible substrate 1〇1, bubbles between the flexible substrate 2〇1 and the semiconductor wafer 2〇4 can be separated from the short side of the lower surface of the semiconductor wafer 204. The discharge is performed outside the semiconductor wafer mounting region 103. Therefore, the flexible substrate 2〇1 has a high bubble discharge effect from the inside of the semiconductor wafer mounting region 1A to the outside of the semiconductor wafer mounting region 103. In the second embodiment, the second wiring portion 222 is formed at a position "outside the opening 113 of the solder resist layer 112, but may be formed at a position inside the opening 113 of the solder resist layer ι2. That is, the second wiring portion 222 may not be covered with the 127707.doc -20-200843070 anti-Ting layer 112. In the second embodiment, the position of the opening 113 outside the opening 113 of the layer 112 is located. That is, the solder resist layer 112 is covered. The third wiring portion 223 is formed to be solder-resistant, but may be formed in the solder resist layer 112. The third wiring portion 223 may not be used. In the second embodiment, the semiconductor device may have an opening covering the solder resist layer 112. 113 resin.
(第3實施形態) 圖6係從上方觀看本發明第3實施形態之半導體裝置之要 部概略圖。又,在圖6中,與圖1所示第#施形態之構成 部相同之構成部,肖附上與圖丨之構成部相同之參照號碼 而省略其說明。又,在圖6中省略上述半導體裝置具備之 半導體晶片之圖示。 上述半導體裝置係在跨接線lu之第丨佈線部i2i連接凸 起電極305,此點與第!實施形態不同。 上述半導體晶片係液晶驅動器。而且,在上述半導體晶 片之下面(可撓性基板1〇1側之表面)形成有凸起電極奶、 305。且,上述半導體晶片之下面呈長方形狀。 上述凸起電極305,其形成在半導體晶片1〇4下面稍微偏 離長邊之處。再者,上述凸起電極305之電位為接地電位。 對於近年來由於輸人信號串列化而使動作頻率增高之液 晶驅動晶’高頻電路的設計要素為不可或缺,為使 接地電位穩定化,應將接地電位之電極配置於所需之位 置。因此,將上述凸起電極3〇5形成於半導體晶片之下 127707.doc 200843070 面’並將其連接在跨接線ni之第1佈線部121。 如此,藉由將上述凸起電極305形成於半導體晶片之下 面’並將其連接在跨接線111之第1佈線部121,可提高半 導體裝置之電性功能。 【圖式簡單說明】 圖1係本發明第1實施形態之可撓性基板之要部概略平面 圖。 圖2係本發明第丨實施形態之半導體裝置之概略立體圖。 圖3係圖2之半導體晶片搭載區域之放大圖。 圖4係本發明第2實施形態之半導體裝置之要部概略平面 圖。 圖5係圖4之V-V線之向視剖面圖。 圖6係本發明第3實施形態之半導體裝置之要部概略平面 圖。 圖7係先鈾之COF型半導體裝置之概略立體圖。 圖8係先前之可撓性基板之要部概略平面圖。 圖9係其他的先前之可撓性基板之要部概略平面圖。 【主要元件符號說明】 100 基材 ιοί、201 可撓性基板 102 佈線 103 半導體晶片搭載區域 105、 205、305 凸起電極 106、 206 内引線 127707.doc -22- 200843070 111 、 211 112 121 、 221 122 ^ 222 123 、 223 124 ^ 224 125 、 225 跨接線 抗銲層 第1佈線部 第2佈線部 第3佈線部 第4佈線部 第5佈線部(Embodiment 3) FIG. 6 is a schematic view of a main part of a semiconductor device according to a third embodiment of the present invention as seen from above. It is to be noted that the same reference numerals are given to the same components as those of the components of the drawings, and the description thereof is omitted. Further, in Fig. 6, the illustration of the semiconductor wafer included in the semiconductor device is omitted. In the above semiconductor device, the bump electrode 305 is connected to the second wiring portion i2i of the jumper lu, and this point and the first! The implementation is different. The above semiconductor wafer is a liquid crystal driver. Further, bump electrode milk 305 is formed on the lower surface of the semiconductor wafer (the surface on the side of the flexible substrate 1 〇 1). Further, the lower surface of the semiconductor wafer has a rectangular shape. The above-mentioned bump electrode 305 is formed slightly below the long side of the semiconductor wafer 1?. Furthermore, the potential of the bump electrode 305 is a ground potential. In recent years, the design elements of the liquid crystal drive crystal high frequency circuit in which the operating frequency is increased due to the serialization of the input signal are indispensable, and in order to stabilize the ground potential, the electrode of the ground potential should be placed at the desired position. . Therefore, the above-mentioned bump electrode 3〇5 is formed under the semiconductor wafer 127707.doc 200843070 and connected to the first wiring portion 121 of the jumper ni. Thus, by forming the bump electrode 305 on the lower surface of the semiconductor wafer and connecting it to the first wiring portion 121 of the jumper 111, the electrical function of the semiconductor device can be improved. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic plan view of a principal part of a flexible substrate according to a first embodiment of the present invention. Fig. 2 is a schematic perspective view showing a semiconductor device according to a third embodiment of the present invention. 3 is an enlarged view of a semiconductor wafer mounting region of FIG. 2. Fig. 4 is a schematic plan view of a principal part of a semiconductor device according to a second embodiment of the present invention. Figure 5 is a cross-sectional view taken along line V-V of Figure 4. Fig. 6 is a schematic plan view of a principal part of a semiconductor device according to a third embodiment of the present invention. Fig. 7 is a schematic perspective view of a COF-type semiconductor device of uranium. Fig. 8 is a schematic plan view of a principal part of a conventional flexible substrate. Fig. 9 is a schematic plan view of a principal part of another prior flexible substrate. [Description of main component symbols] 100 substrate ιοί, 201 flexible substrate 102 wiring 103 semiconductor wafer mounting region 105, 205, 305 bump electrodes 106, 206 inner leads 127707.doc -22- 200843070 111 , 211 112 121 , 221 122 ^ 222 123 , 223 124 ^ 224 125 , 225 jumper solder resist layer first wiring portion second wiring portion third wiring portion fourth wiring portion fifth wiring portion
•23- 127707.doc•23- 127707.doc