TW200837413A - Film optical waveguide - Google Patents

Film optical waveguide Download PDF

Info

Publication number
TW200837413A
TW200837413A TW96136335A TW96136335A TW200837413A TW 200837413 A TW200837413 A TW 200837413A TW 96136335 A TW96136335 A TW 96136335A TW 96136335 A TW96136335 A TW 96136335A TW 200837413 A TW200837413 A TW 200837413A
Authority
TW
Taiwan
Prior art keywords
meth
acrylate
film
optical waveguide
protective layer
Prior art date
Application number
TW96136335A
Other languages
Chinese (zh)
Inventor
Yukio Maeda
Yuuichi Eriyama
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW200837413A publication Critical patent/TW200837413A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/061Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/728Polymerisation products of compounds having carbon-to-carbon unsaturated bonds and having isocyanate or isothiocyanate groups or groups forming isocyanate or isothiocyanate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Disclosed is a film optical waveguide (24) comprising a protective layer (8), a lower cladding layer (10) formed on the upper surface of the protective layer (8), a core portion (18) formed on the upper surface of the lower cladding layer (10) and having a specific width, an upper cladding layer (20) formed on top of the lower cladding layer (10) and the core portion (18), and a protective layer (22) formed on the upper surface of the upper cladding layer (20). The protective layers (8, 22) are formed by photocuring a photocurable resin composition containing a urethane (meth)acrylate oligomer (A), a reactive diluted monomer (B), an unsaturated group-containing (meth)acrylic polymer (C) and a photopolymerization initiator (D). This film optical waveguide (24) is excellent in bending durability and transparency.

Description

200837413 九、發明說明 【發明所屬之技術領域】 本發明係關於薄膜狀光波導。 【先前技術】 迎接多媒體時代,由光通訊系統或電腦之情報處理的 大容量化及高速化要求,作爲光之傳送媒體之光波導受到 注目。作爲過去的光波導係以石英系光波導爲代表。然而 ,石英系光波導於製造時會因石英膜之堆積而必須進行高 溫下之長時間處理等,製造時間較爲長,形成光波導之圖 型形成中含有使用光阻之步驟,使用危險性較高的氣體之 蝕刻步驟,且,這些步驟中特殊裝置爲必要等,需要多數 複雜之步驟及特殊裝置,更有產率較低等問題。 欲改善這些問題,以削減光波導之步驟數、縮短化製 造時間、增加產率等之生産性提高爲目的,近年來已提出 作爲芯部分與復合層之材料,使用液狀之硬化性組成物的 聚合物系光波導。 作爲其中一例子,由四羧酸二無水物與二胺所得之聚 亞胺作爲構成要素之聚亞胺系光波導中,該聚亞胺爲特定 結構式所示氟化二胺或由含有此之二胺的聚亞胺、又其混 合物爲特徴之聚亞胺系光波導已被提案(特開平4-9807 號公報)。 該聚亞胺系光波導爲具有良好傳送特性(低波導損失 )、優良耐熱性者。 -4- 200837413 又,作爲其他例子,介著(A )尿烷鍵被結合,具有 含自由基聚合性反應基之側鏈部分的構成單位、與含未具 有聚合性之側鏈的構成單位之共聚物、(B )分子内具有 1個以上之乙烯性不飽和基,分子量爲未達1,000,於 O.IMpa之沸點爲130°C以上之化合物、及(C )含有光自 由基聚合啓始劑之光波導用感光性樹脂組成物已被提案( 特開2006- 1 46 1 62號公報)。 藉由該感光性樹脂組成物,可形成形狀精度較高且, 可抑制高溫高濕下的傳送特性降低之光波導。 過去的光波導爲,薄膜狀硬化物(薄膜狀光波導)之 狀態下,使其重複彎曲時,有著產生斷裂或裂痕,無法維 持良好之傳送特性的問題。 一方面,於薄膜狀光波導下面,固定發光元件等其他 構件時,由將薄膜狀光波導自上方透視並添加位置下,可 望薄膜狀光波導具有較高透明性。 【發明內容】 本發明以提供具有優良彎曲耐久性及透明性之薄膜狀 光波導爲目的。 本發明者與解決上述課題而進行詳細檢討結果,對於還 有下部復合層、芯部分、與上部復合層之光波導,於下部 復合層的下面、及上部復合層的上面,設置具有特定成分 組成之光硬化性樹脂組成物所成的保護層,發現可得到彎 曲耐久性與透明性皆優良的薄膜狀光波導,而完成本發明 -5- 200837413 即,本發明爲提供以下〔1〕〜〔5〕者。 〔1〕具有下部復合層、芯部分、與上部復合層之薄 膜狀光波導,以於前記下部復合層及前記上部復合層之各 外表面上,具有將含有下述成分(A) 、( B )、及(D) 之光硬化性樹脂組成物經光硬化所成的硬化膜層爲特徴之 薄膜狀光波導。 (A)尿烷(甲基)丙烯酸酯寡聚物 (B )反應性稀釋單體 (D )光聚合啓始劑 〔2〕成分(A)爲含有(a)多元醇化合物、(b)聚 異氰酸酯化合物、及(c )含烴基之(甲基)丙烯酸酯之 反應生成物的前記〔1〕所記載的薄膜狀光波導。 〔3〕成分(A)爲含有聚異氰酸酯化合物與含烴基之 (甲基)丙烯酸酯之反應生成物之〔2〕所記載的薄膜狀 光波導。 〔4〕更含有成分(C)含有不飽和基之(甲基)丙烯 酸聚合物的前記〔1〕〜〔3〕中任一所記載的薄膜狀光波 導。 〔5〕上述保護層爲厚度10 μ m時,對於405 nm波長 之光,具有80%以上之透過率的前記〔1〕〜〔4〕中任一 所記載的薄膜狀光波導。 本發明的薄膜狀光波導因具備具有特定成分組成之光 硬化性樹脂組成物所成的保護層,故對於重複彎曲亦不會 -6 - 200837413 產生斷裂或裂痕,可維持良好傳送特性。 又,本發明的薄膜狀光波導因具有特定成分組成之光 硬化性樹脂組成物所成的保護層具有高透明性,故固定薄 膜狀光波導與發光元件等其他構件時,透視薄膜狀光波導 ,可容易且,正確地進行添加位置。 實施發明之最佳形態 本發明的薄膜狀光波導爲具有下部復合(clad )層、 芯部分、及上部復合層,且,於下部復合層及上部復合層 之各外表面(具體爲下部復合層的下面、及上部復合層的 上面),具有含有複數種特定成分之光硬化性樹脂組成物 的硬化體所成之保護層者。 首先,對於形成保護層之光硬化性樹脂組成物的成分 (A )等必須成分、及視必要所添加的任意成分做詳細說 明。 〔成分(A)〕 成分(A)爲尿烷(甲基)丙烯酸酯寡聚物。 作爲成分(A)所使用的尿烷(甲基)丙烯酸酯寡聚 物可藉由將例如(a )多元醇化合物、(b )聚異氰酸酯化 合物、及(c)含烴基之(甲基)丙烯酸酯進行反應而製 造。具體爲以下製法1〜製法4中任一方法所製造。 製法1 : 一倂將多元醇化合物、聚異氰酸酯化合物及 含烴基之(甲基)丙烯酸酯裝入後再進行反應之方法。 200837413 製法2 :反應多元醇化合物及聚異氰酸酯化合物,其 次S應含烴基之(甲基)丙烯酸酯之方法。 製法3 :使聚異氰酸酯化合物及含烴基之(甲基)丙 烯酸酯進行反應,其次使多元醇化合物進行反應之方法。 製法4:使聚異氰酸酯化合物及含烴基之(甲基)丙 烯酸酯進行反應,其次使多元醇化合物進行反應,最後再 使含烴基之(甲基)丙烯酸酯化合物進行反應之方法。 以下,對於使用於尿烷(甲基)丙烯酸酯寡聚物的製 造之(a )多元醇化合物、(b )聚異氰酸酯化合物、(c )含烴基之(甲基)丙烯酸酯做詳細說明。 〔(a )多元醇化合物〕 作爲(a )多元醇化合物,可舉出脂肪族聚醚多元醇 、脂環族聚醚多元醇、芳香族聚醚多元醇、聚酯多元醇、 聚碳酸酯多元醇、聚己內酯多元醇等。 作爲脂肪族聚醚多元醇,例如可舉出使至少1種選自 環氧乙烷、環氧丙烷、環氧丁烷、四氫呋喃、2·甲基四氫 呋喃、3 -甲基四氫呋喃、置換四氫呋喃、氧雜環丁烷、置 換氧雜環丁烷、四氫吡喃及氧雜環庚烷之化合物進行開環 (共)聚合後所得者等。作爲這些具體例’可舉出聚乙二 醇、1,2-聚丙二醇、1,3-聚丙二醇、聚四甲二醇、1,2-聚丁 二醇、聚異丁二醇、環氧丙烷與四氫呋喃之共聚物多元醇 、環氧乙烷與四氫呋喃之共聚物多元醇、環氧乙院與環氧 丙烷之共聚物多元醇、四氫呋喃與3 -甲基四氫咲喃之共聚 -8- 200837413 物多元醇、環氧乙院與i,2 -環氧丁院之共聚物多元醇等。 作爲脂環族聚醚多元醇,例如可舉出氫化雙酚A的環 氧乙烷加成二醇、氫化雙酚A的環氧丙烷加成二醇、氫化 雙酚A的環氧丁烷加成二醇、氫化雙酚F的環氧乙烷加成 二醇、氫化雙酚F的環氧丙烷加成二醇、氫化雙酚F的環 氧丁烷加成二醇、二環戊二烯的二羥甲基化合物、三環癸 烷二甲醇等。 作爲脂肪族聚醚多元醇及脂環族聚醚多元醇之販賣品 ,可舉出優尼雪福DC1100、優尼雪福DC1800、優尼雪福 DCB1100、優尼雪福DCB1800 (以上,日本油脂公司製) ;PPTG4000 、 PPTG2000 、 PPTG1000 、 PTG2000 、 PTG3000 、 PTG650 、 PTGL2000 、 PTGL1000 (以上,保土 谷化學公司製);EXENOL4020、EXENOL3020、 EXENOL2020、EXENOL 1 020 (以上,旭硝子公司製); PBG3000、PBG2000、PBG1000、Z3001 (以上,第一工業 製藥公司製);ACCLAIM 2200、320 1、4200、63 00、 8200 (以上,住化拜耳尿烷公司製);NPML-2002、3002 、4002、8002(以上,旭硝子公司製)等。 作爲作爲芳香族聚醚多元醇,例如可舉出雙酚A的環 氧乙烷加成二醇、雙酚A的環氧丙烷加成二醇、雙酚A 的環氧丁烷加成二醇、雙酚F的環氧乙烷加成二醇、雙酚 F的環氧丙烷加成二醇、雙酚F的環氧丁烷加成二醇、對 苯二酚的環氧化物加成二醇、萘醌的環氧化物加成二醇等 。芳香族聚醚多元醇之作爲販賣品者,可舉出優尼歐路 -9 - 200837413 DA400、DA700、DA1000 (以上,日本油脂公司製)等。 作爲聚酯多元醇,例如可舉出乙二醇、聚乙二醇、丙 二醇、聚丙二醇、四甲二醇、聚四甲二醇、1,6 -己烷二醇 、新戊二醇、1,4-環己烷二甲醇、3-甲基-1,5-戊烷二醇、 1,9-壬烷二醇、2-甲基-1,8-辛烷二醇等多價醇、與苯二酸 、異苯二酸、對苯二甲酸、馬來酸、富馬酸、己二酸、癸 二酸等多元酸經反應所得之聚酯多元醇等。作爲販賣品, 可舉出 KURAPOL P-2010、PMIPA、PKA-A、PKA-A2、 PNA-2 0 00 (以上爲KURARAY公司製)等。 作爲聚碳酸酯多元醇,例如可舉出1,6-己烷聚碳酸酯 等。作爲販賣品,例如可舉出DN-980、981、982、983 ( 以上爲日本聚尿烷公司製);PLACCEL-CD20 5、CD-9 8 3 、CD220 (以上爲DAICEL化學工業公司製);PC-8000 ( 美國PPG公司製)等。 作爲聚己內酯多元醇,可舉出ε -己內酯、與乙二醇、 聚乙二醇、丙二醇、聚丙二醇、四甲二醇、聚四甲二醇、 1,2-聚丁二醇、;!,6-己烷二醇、新戊二醇、丨,4-環己烷二甲 醇、1,4-丁二醇等二醇進行反應所得之聚己內酯二醇等。 作爲販賣品,可舉出PLACCCEL205、205AL、212、 212AL、220、220AL (以上,DAICEL·化學工業公司製) 等。 作爲本發明所使用的其他多元醇化合物,可舉出乙二 酉字两一醇、1,4_丁 一醇、1,5-戊院二醇、ι,6-己院二醇、 新戊二醇、1,4-環己烷二甲醇、聚β-甲基-δ_戊內酯、羥基 -10- 200837413 末端聚丁二烯、羥基末端氫化聚丁二烯、蓖麻油變性多元 醇、聚二甲基矽氧烷之末端二醇化合物、聚二甲基矽氧烷 卡必醇變性多元醇等。 前述多元醇化合物之中以聚醚多元醇爲佳,具有環氧 烷結構之脂肪族聚醚多元醇爲更佳。具體以聚丙二醇、環 氧乙烷/環氧丙烷共聚合二醇、環氧乙烷/1,2-環氧丁烷共 聚合二醇、環氧丙烷/四氫呋喃共聚合二醇爲較佳,環氧 乙烷/1,2-環氧丁烷共聚合二醇爲特佳。 (a )多元醇化合物可單獨使用或倂用2種以上。 (a)多元醇化合物之數平均分子量較佳爲100〜 1 5,000,更佳爲 1,000 〜14,000,最佳爲 1,500 〜1 2,000。 (a)多元醇化合物之數平均分子量若未達100時,使組 成物硬化之保護層的常溫及低溫之楊氏模數(Young’s modulus )會上昇,無法得到具有充分彎曲耐久性之薄膜 狀光波導。一方面,數平均分子量若超過15,000時,組 成物之黏度會上昇,塗佈性會惡化。 〔(b)聚異氰酸酯化合物〕 作爲(b)聚異氰酸酯化合物,例如可舉出2,4-甲次苯 基二異氰酸酯、2,6-甲次苯基二異氰酸酯、1,3-伸苯二甲 基二異氰酸酯、1,4-伸苯二甲基二異氰酸酯、1,5-萘二異 氰酸酯、m-伸苯基二異氰酸酯、p-伸苯基二異氰酸酯、 3,3’-二甲基-4,4’-二苯基甲烷二異氰酸酯、4,4’-二苯基甲 烷二異氰酸酯、3,3’-二甲基伸苯基二異氰酸酯、4,4’-雙伸 -11 - 200837413 苯基二異氰酸酯、1,6-己烷二異氰酸酯、異佛爾酮二異氰 酸酯、伸甲基雙(4-環己基異氰酸酯)、2,2,4-三甲基六 伸甲基二異氰酸酯、1,4-六伸甲基二異氰酸酯、雙(2-異 氰酸酯乙基)富馬酸酯、6-異丙基-1,3-苯基二異氰酸酯、 4-二苯基丙烷二異氰酸酯、賴胺酸二異氰酸酯、氫化二苯 基甲烷二異氰酸酯、氫化伸苯二甲基二異氰酸酯、四甲基 伸苯二甲基二異氰酸酯等聚異氰酸酯化合物。其中以氫化 伸苯二甲基二異氰酸酯、異佛爾酮二異氰酸酯、2,4-甲次 苯基二異氰酸酯、2,2,4-三甲基六伸甲基二異氰酸酯等爲 佳。(b )聚異氰酸酯化合物可單獨使用或倂用2種以上 〔(c)含烴基之(甲基)丙烯酸酯〕 作爲(c )含烴基之(甲基)丙烯酸酯化合物,例如 可舉出2-羥基乙基(甲基)丙烯酸酯、2-羥基丙基(甲基 )丙烯酸酯、2-羥基丁基(甲基)丙烯酸酯、2-羥基-3-苯 基羥基丙基(甲基)丙烯酸酯、1,4-丁烷二醇單(甲基) 丙烯酸酯、2-羥基烷基(甲基)丙烯醯基磷酸酯、4-羥基 環己基(甲基)丙烯酸酯、1,6-己烷二醇單(甲基)丙烯 酸酯、新戊二醇單(甲基)丙烯酸酯、三羥甲基丙烷二基 )丙烯酸酯、三羥甲基乙烷二(甲基)丙烯酸酯、季戊四 醇三(甲基)丙烯酸酯、二戊四醇五甲基)丙烯酸酯等。 且,可舉出烷基縮水甘油醚、烯丙基縮水甘油醚、縮水甘 油(甲基)丙烯酸酯等縮水甘油基含有化合物與(甲基) -12- 200837413 丙烯酸之加成反應所得之化合物。其中以2 -羥基乙基(g 基)丙烯酸酯、2-羥基丙基(甲基)丙烯酸酯等爲佳。 (c)含烴基之(甲基)丙烯酸酯可單獨使用或倂用2 種以上。 構成上述尿烷(甲基)丙烯酸酯寡聚物之各原料的添 加比例,例如對於(c )含烴基之(甲基)丙烯酸酯1莫 耳而言,(a)多元醇化合物爲0·5〜2莫耳、(b)聚異 氰酸酯化合物爲1〜2.5莫耳。 又,作爲成分(A),可使用聚異氰酸酯化合物與含 烴基之(甲基)丙烯酸酯之反應物的尿烷(甲基)丙烯酸 酯寡聚物。此時,作爲聚異氰酸酯化合物、含烴基之(甲 基)丙烯酸酯的例子,各可舉出與上述(b)聚異氰酸酯 化合物、(c)含烴基之(甲基)丙烯酸酯同樣者。 作爲成分(A)可單獨使用1種尿烷(甲基)丙烯酸 酯寡聚物或倂用2種以上。 成分(A)由彎曲耐久性之觀點來看,含有(a)多元 醇化合物與(b )聚異氰酸酯化合物與(c )含烴基之(甲 基)丙烯酸酯之反應生成物的尿烷(甲基)丙烯酸酯寡聚 物爲佳。 成分(A)中的(a)多元醇化合物與(b)聚異氰酸 酯化合物與(c )含烴基之(甲基)丙烯酸酯之反應生成 物的尿烷(甲基)丙烯酸酯寡聚物之質量比例,較佳爲5 0 質量%以上,較佳爲60質量%以上。 成分(A )以塗佈性提高的觀點來看’已含有聚異氰 -13- 200837413 酸酯化合物與含烴基之(甲基)丙烯酸酯之反應生成物的 尿烷(甲基)丙烯酸酯寡聚物爲佳。 成分(A)中的聚異氰酸酯化合物與含烴基之(甲基 )丙烯酸酯之反應生成物的尿烷(甲基)丙烯酸酯寡聚物 之質量比例,較佳爲5〜50質量%,較佳爲5〜40質量% 〇 成分(A)的數平均分子量,較佳爲100〜15,000,較 佳爲3 00〜1 2,000。該値若未達100時,組成物之黏度會 過小,塗佈性會劣化。另一方面,若該値超過1 5,000時 ,黏度會提高而難以處理。 光硬化性樹脂組成物中之成分(A )的添加比例,成 分(A)〜(D)之合計量作爲100質量份時,20〜80質 量份爲佳,較佳爲25〜75質量份,特佳爲30〜70質量份 。該添加比例若未達2 0質量份時,硬化組成物所成的保 護層之楊氏模數會上升,難以形成具有充分彎曲耐久性之 薄膜狀光波導。一方面,該添加比例若超過8 0質量份時 ,組成物之黏度會過大,難以形成具有均勻厚度之保護層 〔成分(B)〕 成分(B )爲反應性稀釋單體。本說明書中’所謂反 應性稀釋單體爲,對於可光聚合之其他反應性成分具有稀 釋劑之作用(降低黏度之作用)的單體。 作爲反應性稀釋單體,可舉出(B1)分子内具有1個 -14- 200837413 乙烯性不飽和基之單體(以下亦稱爲單官能單體)、及( B2)分子内具有2個乙烯性不飽和基之單體(以下亦稱爲 多官能單體)。作爲上述乙烯性不飽和基,可舉出(甲基 )丙烯醯基、乙烯基等,以(甲基)丙烯醯基爲較佳。 作爲上述(B 1 )單官能單體,例如可舉出丙烯醯基嗎 啉、二甲基丙烯醯胺、二乙基丙烯醯胺、二異丙基丙烯醯 胺、異冰片基(甲基)丙烯酸酯、二環戊烯基丙烯酸酯、 二環戊基(甲基)丙烯酸酯、二環戊烯基羥基乙基(甲基 )丙烯酸酯、甲基(甲基)丙烯酸酯、乙基(甲基)丙烯 酸酯、環己基甲基丙烯酸酯、二環戊二烯基(甲基)丙烯 酸酯、三環癸基(甲基)丙烯酸酯、二丙酮丙烯醯胺、異 丁氧基甲基(甲基)丙烯醯胺、N-乙烯吡咯烷酮、N-乙烯 己內酯、3-羥基環己基丙烯酸酯、2-丙烯醯基環己基琥珀 酸、苯氧基乙基丙烯酸酯等。 彼等中,亦以丙烯醯基嗎啉、二甲基丙烯醯胺、N-乙 烯吡咯烷酮及N-乙烯己內酯等N-乙烯化合物、及具有碳 數1 0以上之脂肪族烴基的單官能性(甲基)丙烯酸酯爲 佳。其中作爲碳數1 0以上之脂肪族烴基,含有直鏈、支 鏈及脂環式之任一。彼等中以異冰片基(甲基)丙烯酸酯 、異癸基(甲基)丙烯酸酯、月桂基(甲基)丙烯酸酯爲 佳。 作爲(B1 )成分之販賣品,可舉出ABMO、DMAA ( 以上,興人公司製)、New Frontier IBA (第一工業製藥 公司製);IBXA (大阪有機化學公司製);FA511A、 -15- 200837413200837413 IX. Description of the Invention [Technical Field of the Invention] The present invention relates to a film-shaped optical waveguide. [Prior Art] In the era of multimedia, the demand for large-capacity and high-speed processing of information processing by optical communication systems or computers has attracted attention as an optical waveguide for optical transmission media. The conventional optical waveguide system is represented by a quartz-based optical waveguide. However, in the production of a quartz-based optical waveguide, it is necessary to carry out a long-time treatment at a high temperature due to the deposition of the quartz film, and the manufacturing time is long, and the formation of the optical waveguide forms a step of using a photoresist, and the danger of use is employed. The higher gas etching step, and the special devices in these steps are necessary, etc., require most complicated steps and special devices, and have lower yields and the like. In order to improve these problems, in order to reduce the number of steps of the optical waveguide, shorten the manufacturing time, and increase the productivity, the material for the core portion and the composite layer has been proposed in recent years, and a liquid-like curable composition is used. The polymer is an optical waveguide. As an example of the polyimine-based optical waveguide in which a polyimine obtained from a tetracarboxylic acid di-anhydride and a diamine is used as a constituent element, the polyimine is a fluorinated diamine represented by a specific structural formula or contains A polyimine-based optical waveguide having a polydiamine of a diamine and a mixture thereof is proposed (Japanese Patent Laid-Open Publication No. Hei 4-9807). The polyimine-based optical waveguide has excellent transmission characteristics (low waveguide loss) and excellent heat resistance. -4- 200837413 Further, as another example, (A) a urethane bond is bonded, and a constituent unit having a side chain moiety containing a radical polymerizable reactive group and a constituent unit containing a side chain having no polymerizable property a copolymer, (B) having one or more ethylenically unsaturated groups in the molecule, a molecular weight of less than 1,000, a compound having a boiling point of 130 ° C or higher in O.IMpa, and (C) containing photoradical polymerization A photosensitive resin composition for an optical waveguide of a starter has been proposed (JP-A-2006-1461 62). According to the photosensitive resin composition, it is possible to form an optical waveguide having high shape accuracy and suppressing deterioration in transmission characteristics under high temperature and high humidity. In the case where the optical waveguide of the past is in the state of a film-like cured material (thin film optical waveguide), when it is repeatedly bent, cracking or cracking occurs, and it is impossible to maintain good transmission characteristics. On the other hand, when other members such as a light-emitting element are fixed under the film-shaped optical waveguide, it is expected that the film-shaped optical waveguide has high transparency by fluorinating the film-shaped optical waveguide from above and adding the position. SUMMARY OF THE INVENTION The present invention has an object of providing a film-shaped optical waveguide having excellent bending durability and transparency. As a result of detailed review of the above problems, the present inventors have a specific composition of the lower composite layer, the core portion, and the optical waveguide of the upper composite layer on the lower surface of the lower composite layer and the upper surface of the upper composite layer. The protective layer formed of the photocurable resin composition is found to have a film-shaped optical waveguide excellent in both bending durability and transparency, and the present invention is completed in the following [5] to 200837413. 5]. [1] A film-shaped optical waveguide having a lower composite layer, a core portion, and an upper composite layer, which has the following components (A) and (B) on the outer surfaces of the lower composite layer and the upper composite layer. The cured film layer formed by photohardening of the photocurable resin composition of (D) and (D) is a thin film optical waveguide. (A) urethane (meth) acrylate oligomer (B) reactive diluent monomer (D) photopolymerization initiator [2] component (A) contains (a) a polyol compound, (b) a poly The film-shaped optical waveguide described in the above [1] of the reaction product of the isocyanate compound and (c) the hydrocarbon group-containing (meth) acrylate. [3] The component (A) is a film-shaped optical waveguide of [2] containing a reaction product of a polyisocyanate compound and a hydrocarbon group-containing (meth) acrylate. [4] A film-like optical waveguide according to any one of the above [1] to [3], which further contains a component (C) containing an unsaturated group-containing (meth)acrylic acid polymer. [5] The protective film is a film-shaped optical waveguide according to any one of [1] to [4], which has a transmittance of 80% or more for a light having a wavelength of 405 nm. Since the film-shaped optical waveguide of the present invention has a protective layer made of a photocurable resin composition having a specific composition, it is not likely to be broken or cracked by repeated bending, and good transfer characteristics can be maintained. Further, in the film-shaped optical waveguide of the present invention, since the protective layer formed of the photocurable resin composition having a specific component composition has high transparency, when the film-shaped optical waveguide and other members such as a light-emitting element are fixed, the film-like optical waveguide is seen. The location can be added easily and correctly. BEST MODE FOR CARRYING OUT THE INVENTION The film-shaped optical waveguide of the present invention has a lower clad layer, a core portion, and an upper composite layer, and is disposed on each outer surface of the lower composite layer and the upper composite layer (specifically, a lower composite layer) The lower surface of the upper composite layer and the upper composite layer have a protective layer formed of a cured body containing a plurality of specific components of the photocurable resin composition. First, the essential components such as the component (A) which forms the photocurable resin composition of the protective layer, and optional components added as necessary will be described in detail. [Component (A)] The component (A) is a urethane (meth) acrylate oligomer. The urethane (meth) acrylate oligomer used as the component (A) can be obtained by, for example, (a) a polyol compound, (b) a polyisocyanate compound, and (c) a hydrocarbon group-containing (meth)acrylic acid. The ester is produced by reacting. Specifically, it is produced by any of the following Process 1 to Process 4. Process 1 : A method in which a polyol compound, a polyisocyanate compound, and a hydrocarbon group-containing (meth) acrylate are charged and then reacted. 200837413 Process 2: A method of reacting a polyol compound and a polyisocyanate compound, and a second S should contain a hydrocarbon group (meth) acrylate. Process 3: A method in which a polyisocyanate compound and a hydrocarbon group-containing (meth) acrylate are reacted, and then a polyol compound is reacted. Process 4: A method in which a polyisocyanate compound and a hydrocarbon group-containing (meth) acrylate are reacted, and then a polyol compound is reacted, and finally a hydrocarbon group-containing (meth) acrylate compound is reacted. Hereinafter, the (a) polyol compound, (b) polyisocyanate compound, and (c) hydrocarbon group-containing (meth) acrylate which are produced for use in the production of a urethane (meth) acrylate oligomer will be described in detail. [(a) Polyol Compound] Examples of the (a) polyhydric alcohol compound include aliphatic polyether polyols, alicyclic polyether polyols, aromatic polyether polyols, polyester polyols, and polycarbonate polyols. Alcohol, polycaprolactone polyol, and the like. The aliphatic polyether polyol may, for example, be at least one selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, substituted tetrahydrofuran, and oxygen. A compound obtained by ring-opening (co)polymerization of a compound of a heterocyclobutane, a substituted oxetane, a tetrahydropyran, and an oxepane. Examples of these specific examples include polyethylene glycol, 1,2-polypropylene glycol, 1,3-polypropylene glycol, polytetramethylene glycol, 1,2-polybutylene glycol, polyisobutylene glycol, and epoxy. Copolymer polyol of propane and tetrahydrofuran, copolymer polyol of ethylene oxide and tetrahydrofuran, copolymer polyol of epoxy propylene oxide and propylene oxide, copolymerization of tetrahydrofuran and 3-methyltetrahydrofuran-8- 200837413 Polyols, epoxy epoxides and copolymers of i,2-epoxybutylene. Examples of the alicyclic polyether polyol include an ethylene oxide addition diol of hydrogenated bisphenol A, a propylene oxide addition diol of hydrogenated bisphenol A, and a butylene oxide addition of hydrogenated bisphenol A. a diol, an ethylene oxide addition diol of hydrogenated bisphenol F, a propylene oxide addition diol of hydrogenated bisphenol F, a butylene oxide addition diol of hydrogenated bisphenol F, dicyclopentadiene a dimethylol compound, tricyclodecane dimethanol, or the like. As a commercial product of an aliphatic polyether polyol and an alicyclic polyether polyol, for example, Univerford DC1100, Unifolf DC1800, Unocalford DCB1100, and Unifolf DCB1800 (above, Japanese fats and oils) Company system); PPTG4000, PPTG2000, PPTG1000, PTG2000, PTG3000, PTG650, PTGL2000, PTGL1000 (above, Hodogaya Chemical Co., Ltd.); EXINOL4020, EXENOL3020, EXENOL2020, EXENOL 1 020 (above, Asahi Glass Co., Ltd.); PBG3000, PBG2000, PBG1000, Z3001 (above, manufactured by Daiichi Pharmaceutical Co., Ltd.); ACCLAIM 2200, 320 1, 4200, 63 00, 8200 (above, manufactured by Baying Urethane Co., Ltd.); NPML-2002, 3002, 4002, 8002 (above, Asahi Glass Co., Ltd.). Examples of the aromatic polyether polyol include an ethylene oxide addition diol of bisphenol A, a propylene oxide addition diol of bisphenol A, and a butylene oxide addition diol of bisphenol A. , ethylene oxide addition diol of bisphenol F, propylene oxide addition diol of bisphenol F, butylene oxide addition diol of bisphenol F, epoxide addition of hydroquinone An epoxide addition diol of an alcohol or a naphthoquinone. As a seller of the aromatic polyether polyol, Uno road -9 - 200837413 DA400, DA700, DA1000 (above, manufactured by Nippon Oil & Fats Co., Ltd.) and the like can be cited. Examples of the polyester polyol include ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, tetramethyl glycol, polytetramethylene glycol, 1,6-hexanediol, neopentyl glycol, and 1 a polyvalent alcohol such as 4-cyclohexanedimethanol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8-octanediol, A polyester polyol obtained by reacting a polybasic acid such as phthalic acid, isophthalic acid, terephthalic acid, maleic acid, fumaric acid, adipic acid or sebacic acid. KURAPOL P-2010, PMIPA, PKA-A, PKA-A2, PNA-2 0 00 (the above is manufactured by KURARAY Co., Ltd.), etc. are mentioned as a commercial item. The polycarbonate polyol may, for example, be a 1,6-hexane polycarbonate or the like. Examples of the products to be sold include DN-980, 981, 982, and 983 (the above are manufactured by Japan Polyurethane Co., Ltd.); PLACCEL-CD20 5, CD-9 8 3, and CD220 (above, DAICEL Chemical Industry Co., Ltd.); PC-8000 (made by PPG, USA). Examples of the polycaprolactone polyol include ε-caprolactone, ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, tetramethyl glycol, polytetramethylene glycol, and 1,2-polybutylene. A polycaprolactone diol obtained by reacting a diol such as an alcohol, a 6-hexanediol, a neopentyl glycol, a hydrazine, a 4-cyclohexanedimethanol or a 1,4-butanediol. Examples of the products to be sold include PLACCCEL 205, 205AL, 212, 212AL, 220, and 220AL (all manufactured by DAICEL Chemical Industry Co., Ltd.). Other polyhydric alcohol compounds used in the present invention include ethylene dimercapto alcohol, 1,4-butanol, 1,5-pentandiol, iota, 6-hexandiol, and neopentane. Glycol, 1,4-cyclohexanedimethanol, poly-β-methyl-δ-valerolactone, hydroxy-10-200837413 terminal polybutadiene, hydroxyl-terminated hydrogenated polybutadiene, castor oil denatured polyol, A terminal diol compound of polydimethyl siloxane, a polydimethyl siloxane carbitol denatured polyol, or the like. Among the above polyol compounds, a polyether polyol is preferred, and an aliphatic polyether polyol having an alkylene oxide structure is more preferred. Specifically, a polypropylene glycol, an ethylene oxide/propylene oxide copolymerized diol, an ethylene oxide/1,2-butylene oxide copolymerized diol, and a propylene oxide/tetrahydrofuran copolymerized diol are preferred. Ethylene oxide/1,2-butylene oxide copolymerized diol is particularly preferred. (a) The polyol compound may be used singly or in combination of two or more. The number average molecular weight of the (a) polyol compound is preferably from 100 to 15,000, more preferably from 1,000 to 14,000, most preferably from 1,500 to 12,000. (a) When the number average molecular weight of the polyol compound is less than 100, the Young's modulus of the protective layer which hardens the composition increases at room temperature and low temperature, and film-like light having sufficient bending durability cannot be obtained. waveguide. On the other hand, when the number average molecular weight exceeds 15,000, the viscosity of the composition increases, and the coatability deteriorates. [(b) Polyisocyanate compound] Examples of the (b) polyisocyanate compound include 2,4-methylphenyl diisocyanate, 2,6-methylphenyl diisocyanate, and 1,3-extended benzene. Diisocyanate, 1,4-phenylene diisocyanate, 1,5-naphthalene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 3,3'-dimethyl-4 , 4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 3,3'-dimethylphenylene diisocyanate, 4,4'-double stretch-11 - 200837413 phenyl Diisocyanate, 1,6-hexane diisocyanate, isophorone diisocyanate, methyl bis(4-cyclohexyl isocyanate), 2,2,4-trimethylhexamethylene diisocyanate, 1,4 - Hexamethylene diisocyanate, bis(2-isocyanateethyl) fumarate, 6-isopropyl-1,3-phenyl diisocyanate, 4-diphenylpropane diisocyanate, lysine diisocyanate Polyisocyanate such as hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate or tetramethylxylylene diisocyanate Compounds. Among them, hydrogenated xylylene diisocyanate, isophorone diisocyanate, 2,4-methylphenyl diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate and the like are preferred. (b) The polyisocyanate compound may be used singly or in combination of two or more kinds [(c) a hydrocarbon group-containing (meth) acrylate] as (c) a hydrocarbon group-containing (meth) acrylate compound, and examples thereof include 2- Hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenyl hydroxypropyl (meth) acrylate Ester, 1,4-butanediol mono(meth) acrylate, 2-hydroxyalkyl (meth) propylene decyl phosphate, 4-hydroxycyclohexyl (meth) acrylate, 1,6-hexyl Alkanediol mono(meth)acrylate, neopentyl glycol mono(meth)acrylate, trimethylolpropanediyl)acrylate, trimethylolethane di(meth)acrylate, pentaerythritol III (Meth) acrylate, dipentaerythritol pentamethyl acrylate, and the like. Further, a compound obtained by addition reaction of a glycidyl group-containing compound such as alkyl glycidyl ether, allyl glycidyl ether or glycidyl (meth)acrylate with (meth)-12-200837413 acrylic acid may be mentioned. Among them, 2-hydroxyethyl (g-) acrylate, 2-hydroxypropyl (meth) acrylate, etc. are preferred. (c) The hydrocarbon group-containing (meth) acrylate may be used alone or in combination of two or more. The ratio of addition of each raw material constituting the above urethane (meth) acrylate oligomer, for example, (c) the hydrocarbon group-containing (meth) acrylate 1 mol, (a) the polyol compound is 0.5 ~2 moles, (b) polyisocyanate compound is 1 to 2.5 moles. Further, as the component (A), a urethane (meth) acrylate oligomer of a reaction product of a polyisocyanate compound and a hydrocarbon group-containing (meth) acrylate can be used. In this case, examples of the polyisocyanate compound and the hydrocarbon group-containing (meth) acrylate include the same as the above (b) polyisocyanate compound and (c) hydrocarbon group-containing (meth) acrylate. As the component (A), one type of urethane (meth) acrylate oligomer or hydrazine may be used alone or in combination of two or more. The component (A) is a urethane containing a reaction product of (a) a polyol compound and (b) a polyisocyanate compound and (c) a hydrocarbon group-containing (meth) acrylate from the viewpoint of bending durability. Acrylate oligomers are preferred. The quality of the urethane (meth) acrylate oligomer of the reaction product of (a) the polyol compound and (b) the polyisocyanate compound and (c) the hydrocarbon group-containing (meth) acrylate in the component (A) The ratio is preferably 50% by mass or more, preferably 60% by mass or more. The component (A) is a urethane (meth) acrylate oligo which already contains a reaction product of a polyisocyanide-13-200837413 acid ester compound and a hydrocarbon group-containing (meth) acrylate from the viewpoint of improvement in coatability. The polymer is preferred. The mass ratio of the urethane (meth) acrylate oligomer of the reaction product of the polyisocyanate compound and the hydrocarbon group-containing (meth) acrylate in the component (A) is preferably 5 to 50% by mass, preferably The number average molecular weight of the component (A) is from 5 to 40% by mass, preferably from 100 to 15,000, preferably from 30,000 to 12,000. If the enthalpy is less than 100, the viscosity of the composition will be too small and the coatability will deteriorate. On the other hand, if the enthalpy exceeds 15,000, the viscosity will increase and it will be difficult to handle. The ratio of the component (A) to be added to the photocurable resin composition is preferably from 20 to 80 parts by mass, preferably from 25 to 75 parts by mass, based on 100 parts by mass of the total of the components (A) to (D). Particularly preferred is 30 to 70 parts by mass. When the addition ratio is less than 20 parts by mass, the Young's modulus of the protective layer formed by the hardened composition increases, and it is difficult to form a film-shaped optical waveguide having sufficient bending durability. On the other hand, when the addition ratio exceeds 80 parts by mass, the viscosity of the composition is too large, and it is difficult to form a protective layer having a uniform thickness [component (B)] The component (B) is a reactive diluent monomer. The term "reactive dilute monomer" in the present specification is a monomer having a function as a diluent (an effect of lowering the viscosity) for other photopolymerizable reactive components. Examples of the reactive diluent monomer include (B1) a monomer having one-14-200837413 ethylenically unsaturated group in the molecule (hereinafter also referred to as a monofunctional monomer), and (B2) having two in the molecule. A monomer having an ethylenically unsaturated group (hereinafter also referred to as a polyfunctional monomer). Examples of the ethylenically unsaturated group include a (meth)acryl fluorenyl group and a vinyl group, and a (meth) acrylonitrile group is preferred. Examples of the (B 1 ) monofunctional monomer include acryloyl morpholine, dimethyl acrylamide, diethyl acrylamide, diisopropyl acrylamide, and isobornyl (methyl). Acrylate, dicyclopentenyl acrylate, dicyclopentyl (meth) acrylate, dicyclopentenyl hydroxyethyl (meth) acrylate, methyl (meth) acrylate, ethyl (A) Acrylate, cyclohexyl methacrylate, dicyclopentadienyl (meth) acrylate, tricyclodecyl (meth) acrylate, diacetone acrylamide, isobutoxymethyl (A) Base) acrylamide, N-vinylpyrrolidone, N-vinylcaprolactone, 3-hydroxycyclohexyl acrylate, 2-propenylcyclohexyl succinic acid, phenoxyethyl acrylate, and the like. Among them, N-vinyl compounds such as acryloyl morpholine, dimethyl methacrylate, N-vinyl pyrrolidone and N-vinyl caprolactone, and monofunctional groups having an aliphatic hydrocarbon group having a carbon number of 10 or more A (meth) acrylate is preferred. Among them, the aliphatic hydrocarbon group having a carbon number of 10 or more contains any of a linear chain, a branched chain and an alicyclic ring. Among them, isobornyl (meth) acrylate, isodecyl (meth) acrylate, and lauryl (meth) acrylate are preferred. As a commercial item of the (B1) component, ABMO, DMAA (above, manufactured by Xingren Co., Ltd.), New Frontier IBA (manufactured by Daiichi Kogyo Co., Ltd.), IBXA (manufactured by Osaka Organic Chemical Co., Ltd.), FA511A, -15- 200837413

FA512A、FA513A (以上,日立化成公司製);Light ester Μ、E、BH、TB、IB-X、IB-ΧΑ (以上,共榮化學公 司製);阿羅尼克斯 Μ150、Μ156、ΤΟ1315、ΤΟ1316(& 上,東亞合成公司製);FA544A、512M、512MT、513M (以上,日立化成公司製)等。 作爲上述(B2)多官能單體,以分子内具有2個乙烯 性不飽和基之2官能性單體爲佳,例如可舉出乙二醇二( 甲基)丙烯酸酯、四乙二醇二(甲基)丙烯酸酯、聚乙二 醇二(甲基)丙烯酸酯、1,4-丁烷二醇二(甲基)丙烯酸 酯、1,6-己烷二醇二(甲基)丙烯酸酯、新戊二醇二(甲 基)丙烯酸酯、環氧乙烷加成雙酚A型二(甲基)丙烯酸 酯、環氧乙烷加成四溴雙酚A型二(甲基)丙烯酸酯、環 氧丙烷加成雙酚A型二(甲基)丙烯酸酯、環氧丙烷加成 四溴雙酚A型二(甲基)丙烯酸酯、雙酚a二縮水甘油 醚與(甲基)丙烯酸之環氧基開環反應所得之雙酚A型環 氧基二(甲基)丙烯酸酯、四溴雙酚A二縮水甘油醚與( 甲基)丙烯酸與環氧基開環反應所得之四溴雙酚A型環氧 基二(甲基)丙烯酸酯、雙酚F二縮水甘油醚與(甲基) 丙烯酸之環氧基開環反應所得之雙酚F型環氧基二(甲基 )丙烯酸酯、四溴雙酚F二縮水甘油醚與(甲基)丙烯酸 之環氧基開環反應所得之四溴雙酚F型環氧基二(甲基) 丙烯酸酯等。 其中亦以環氧乙烷加成雙酚A型二(甲基)丙烯酸酯 、環氧乙烷加成四溴雙酚A型二(甲基)丙烯酸酯、雙酚 -16- 200837413 A二縮水甘油醚與(甲基)丙烯酸之環氧基開環反應所得 之雙酚A型環氧基二(甲基)丙烯酸酯、四溴雙酚a型 環氧基二(甲基)丙烯酸酯等爲特佳。 成分(B )之作爲販賣品者,例如可舉出Biscoat # 700、# 540 (以上,大阪有機化學工業公司製);阿羅尼 克斯M-20 8、M-210 (以上,東亞合成公司製);NK酯 BPE-100、BPE-200、BPE-500、A-BPE-4 (以上,新中村 化學公司製);Lite丙嫌酸酯1,6-HX-A、Lite酯BP-4EA 、BP-4PA、環氧基酯 3002M、3002A、3000M、3 000A ( 以上,共榮化學公司製);KAYARAD R-551、R-712(以 上,日本化藥公司製);BPE-4、BPE-10、BR-42M (以上 ,第一工業製藥公司製);LipoXinVR-77、VR-60、VR-90 、 SP-1506 、 SP-1506 、 SP-1507 、 SP-1509 、 SP-1563 ( 以上,昭和高分子公司製);尼歐波耳V779、尼歐波耳 V779MA (日本幽必卡公司製)等。 作爲成分(B),可倂用上述(B1)成分及上述(B2 )成分。 光硬化性樹脂組成物中的成分(B )之添加比例,以 成分(A)〜成分(D)之合計量作爲1〇〇質量份時,15 〜70質量份爲佳,較佳爲20〜60質量份,較佳爲25〜50 質量份。成分(B )之添加比例若未達1 5質量份時,硬化 物之耐濕熱性會降低,薄膜狀光波導於高溫高濕氛圍氣中 使用時,難以維持傳送特性、彎曲耐久性之良好。一方面 ,成分(B )之添加比例若超過70質量份時,組成物之光 -17- 200837413 硬化性會降低’難以形成具有充分機械性特性之 〔成分(C )〕 成分(C)爲含有不飽和基之(甲基)丙烯 ,可與成分(A)及成分(B)進行聚合。 藉由光硬化性樹脂組成物中添加成分(C ) 適度黏度,使塗佈性良好。 成分(C)含有不飽和基之(甲基)丙烯酸 添加比例,將成分(A )〜成分(D )之合計量 質量份時,1〜25質量份爲佳’較佳爲3〜20質 添加比例若未達1質量份時,組成物之黏度變小 會劣化。該添加比例若超過25質量份時,組成 會變大,難以形成具有均勻厚度之保護層。 含有不飽和基之(甲基)丙烯酸聚合物爲含 般式(1 )所示重複單位之聚合物(例如無規共 含有不飽和基之(甲基)丙烯酸聚合物一般亦含 般式(2 )所示重複單位。 R1FA512A, FA513A (above, manufactured by Hitachi Chemical Co., Ltd.); Light ester Μ, E, BH, TB, IB-X, IB-ΧΑ (above, Kyoei Chemical Co., Ltd.); Aronix Μ150, Μ156, ΤΟ1315, ΤΟ1316 (&, manufactured by Toagosei Co., Ltd.); FA544A, 512M, 512MT, 513M (above, manufactured by Hitachi Chemical Co., Ltd.). The (B2) polyfunctional monomer is preferably a bifunctional monomer having two ethylenically unsaturated groups in the molecule, and examples thereof include ethylene glycol di(meth)acrylate and tetraethylene glycol. (Meth)acrylate, polyethylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate , neopentyl glycol di(meth)acrylate, ethylene oxide addition bisphenol A type di(meth)acrylate, ethylene oxide addition tetrabromobisphenol A type di(meth)acrylate , propylene oxide addition bisphenol A type di(meth) acrylate, propylene oxide addition tetrabromobisphenol A type di(meth) acrylate, bisphenol a diglycidyl ether and (meth)acrylic acid The bisphenol A type epoxy di(meth) acrylate obtained by ring opening reaction of epoxy group, tetrabromo bisphenol A diglycidyl ether and tetrabromo group obtained by ring-opening reaction of (meth)acrylic acid with epoxy group Bisphenol obtained by ring-opening reaction of bisphenol A type epoxy di(meth) acrylate, bisphenol F diglycidyl ether and (meth)acrylic acid Tetrabromobisphenol F-type epoxy bis(methyl) obtained by ring-opening reaction of F-type epoxy di(meth) acrylate, tetrabromobisphenol F diglycidyl ether with (meth)acrylic acid ) Acrylate, etc. Among them, ethylene oxide addition bisphenol A type di(meth) acrylate, ethylene oxide addition tetrabromo bisphenol A type di(meth) acrylate, bisphenol-16-200837413 A condensed water The bisphenol A type epoxy di(meth) acrylate obtained by ring-opening reaction of a glyceryl ether and (meth)acrylic acid, and the tetrabromo bisphenol a type epoxy bis (meth) acrylate, etc. are Very good. In the case of the component (B), for example, Biscoat #700, #540 (above, Osaka Organic Chemical Industry Co., Ltd.); Aronix M-20 8 and M-210 (above, manufactured by Toagosei Co., Ltd.) ); NK ester BPE-100, BPE-200, BPE-500, A-BPE-4 (above, manufactured by Shin-Nakamura Chemical Co., Ltd.); Lite propane ester 1,6-HX-A, Lite ester BP-4EA, BP-4PA, epoxy ester 3002M, 3002A, 3000M, 3 000A (above, Coron Chemical Co., Ltd.); KAYARAD R-551, R-712 (above, manufactured by Nippon Kayaku Co., Ltd.); BPE-4, BPE- 10. BR-42M (above, manufactured by First Industrial Pharmaceutical Co., Ltd.); LipoXinVR-77, VR-60, VR-90, SP-1506, SP-1506, SP-1507, SP-1509, SP-1563 (above, Showa Polymer Co., Ltd.); Nio Boer V779, Nio Boer V779MA (made by Japan Seiko Card Co., Ltd.). As the component (B), the component (B1) and the component (B2) described above can be used. The addition ratio of the component (B) in the photocurable resin composition is preferably from 15 to 70 parts by mass, preferably from 20 to 70 parts by mass, based on the total amount of the components (A) to (D). 60 parts by mass, preferably 25 to 50 parts by mass. When the addition ratio of the component (B) is less than 15 parts by mass, the moist heat resistance of the cured product is lowered, and when the film-shaped optical waveguide is used in a high-temperature, high-humidity atmosphere, it is difficult to maintain the transfer property and the bending durability. On the other hand, when the addition ratio of the component (B) exceeds 70 parts by mass, the light of the composition -17-200837413 is lowered, and it is difficult to form the component (C) having sufficient mechanical properties (C). The (meth) propylene which is an unsaturated group can be polymerized with the component (A) and the component (B). The component (C) is added with a moderate viscosity by the photocurable resin composition to improve the coatability. The component (C) contains a (meth)acrylic acid addition ratio of an unsaturated group, and when the total amount of the component (A) to the component (D) is a mass fraction, 1 to 25 parts by mass is preferably 'preferably 3 to 20 mass added. If the ratio is less than 1 part by mass, the viscosity of the composition becomes small and deteriorates. When the addition ratio exceeds 25 parts by mass, the composition becomes large, and it is difficult to form a protective layer having a uniform thickness. The (meth)acrylic polymer containing an unsaturated group is a polymer having a repeating unit represented by the general formula (1) (for example, a (meth)acrylic polymer having a random unsaturated group generally also contains a general formula (2) ) Repeat unit shown. R1

I --CH2—C- | (1)I --CH2—C- | (1)

XX

I R3 R2 --CH2一C- (2)I R3 R2 --CH2 -C- (2)

II

Y (式中,R1及R2各獨立爲氫或甲基,以爲 保護層。 酸聚合物 ,可賦予 聚合物之 作爲1 0 0 量份。該 ,塗佈性 物之黏度 有下述一 聚物)。 有下述一 (甲基) 18- 200837413 丙細酿基經基’ X爲2價有機基,Y爲不具有聚合性之有 機基。) 作爲一般式(1)所示重複單位之較佳例子,可舉出 一般式(3 )所示重複單位 R1 •CH2—C- Ο (3) 〇 N——Η Ζ一R3 (式中’ R1爲氫或甲基,R3爲(甲基)丙烯醯基羥 基’W及Ζ各獨立爲單鍵或2價有機基。) 其中’作爲一般式(3)中之W(2價有機基)的例 子,可舉出下述一般式(4)所示結構、或伸苯基等Y (wherein R1 and R2 are each independently hydrogen or a methyl group, which is a protective layer. The acid polymer can be imparted to the polymer as a component of 100%. The viscosity of the coating property has the following polymer ). There is one of the following (methyl) 18-200837413, and the propyl group is a divalent organic group, and Y is an organic group having no polymerizability. As a preferred example of the repeating unit represented by the general formula (1), a repeating unit R1, CH2 - C- Ο (3) 〇 N - Η Ζ R R3 (in the formula) of the general formula (3) can be cited. R1 is hydrogen or methyl, R3 is (meth)acryloyl hydroxy group 'W and hydrazine is each independently a single bond or a divalent organic group.) wherein 'as a general formula (3) W (divalent organic group) Examples of the structure represented by the following general formula (4), or a phenyl group, etc.

I c=〇 (式中’ R4爲伸甲基或碳數2〜8之伸烷基。) 作爲一般式(3 )中之ζ ( 2價有機基)的例子,可舉 出_(CH2) n-〇_ (式中,n表示丨〜8之整數)等。 作爲一般式(2)中之γ的例子,可舉出下述一般式 (5 )所示結構、苯基、環狀醯胺基、吡啶基等。 -19- 200837413I c = 〇 (wherein R 4 is a methyl group or a C 2 to 8 alkyl group.) As an example of the oxime (divalent organic group) in the general formula (3), _(CH 2 ) N-〇_ (where n represents an integer of 丨8) and the like. Examples of γ in the general formula (2) include a structure represented by the following general formula (5), a phenyl group, a cyclic decylamino group, a pyridyl group and the like. -19- 200837413

Ο II 5 IcIο—R (5) (式中,R爲具有碳數1〜20的直鏈狀、支狀或環狀 之碳鏈的基。) 含有不飽和基之(甲基)丙烯酸聚合物以聚苯乙烯換 算之重量平均分子量以5,000〜100,000爲佳,較佳爲 8,000〜70,000,特佳爲1〇, 000〜50, 〇〇〇。該値若未達 5,000時,有著組成物之黏度會變小,無法得到所望之膜 厚等之缺點,該値若超過100, 〇〇〇時,有著組成物之黏度 變大,塗佈性變差等缺點。 作爲含有不飽和基之(甲基)丙烯酸聚合物之製造方 法,例如可舉出將具有(a )烴基之自由基聚合性化合物 、及(b )成分(對應一般式(2 )之自由基聚合性化合物 )於溶劑中進行自由基聚合後,對於所得之共聚物的側鏈 之烴基,加成具有(c)(甲基)丙烯醯基之異氰酸酯的 方法。 對於該方法所使用的化合物(a )〜(c )做說明。 化合物(a )(具有烴基之自由基聚合性化合物)爲 使用於將該化合物中之烴基與化合物(c )中之異氰酸酯 基(_N二C = 〇 )進行反應,使具有含尿烷鍵( -NH-COO-)及來自化合物(c )之(甲基)丙烯醯基的側 鏈部分之構成單位導入成分(A )中時。 作爲化合物(a)之例子,可舉出2-羥基乙基(甲基 -20- 200837413 )丙烯酸酯、2-羥基丙基(甲基)丙烯酸酯、4-羥基丁基 (甲基)丙烯酸酯、羥基甲基(甲基)丙烯酸酯、4-羥基 環己基(甲基)丙烯酸酯等。 化合物(a )可單獨使用1種或組合2種以上。 含有不飽和基之(甲基)丙烯酸聚合物中之來自化合 物(a )之結構單位的含有率以3〜8 0質量%爲佳,較佳 爲7〜60質量%,特佳爲10〜40質量%。 該含有率若未達3質量%時,硬化容易不充分。該含 有率若超過80質量%時,折射率之調整會變困難。 化合物(b )(對應一般式(2 )之結構的化合物)主 要使用於適度控制含有不飽和基之(甲基)丙烯酸聚合物 之機械性特性或折射率上。 作爲化合物(b)之例子,可舉出甲基(甲基)丙烯 酸酯、乙基(甲基)丙烯酸酯、異丙基(甲基)丙烯酸酯 、η-丁基(甲基)丙烯酸酯、sec-丁基(甲基)丙烯酸酯 、t-丁基(甲基)丙烯酸酯等(甲基)丙烯酸烷基酯類; 二環戊基(甲基)丙烯酸酯、環己基(甲基)丙烯酸酯等 (甲基)丙烯酸與環狀烴化合物之酯類;苯基(甲基)丙 烯酸酯、苯甲基(甲基)丙烯酸酯、〇-苯基酚縮水甘油醚 (甲基)丙烯酸酯、P-枯烯基苯氧基乙二醇丙烯酸酯等( 甲基)丙烯酸芳基酯類;三溴酚乙氧基(甲基)丙烯酸酯 、2,2,2-三氟甲基(甲基)丙烯酸酯、2,2,3,3-四氟丙基( 甲基)丙烯酸酯、lH,lH,5H-八氟戊基(甲基)丙烯酸酯 、全氟辛基乙基(甲基)丙烯酸酯等鹵化(甲基)丙烯酸 -21 - 200837413 酯類;苯乙烯、α-甲基苯乙烯、m-甲基苯乙烯、p-甲基 苯乙烯、乙烯甲苯、P -甲氧基苯乙烯等芳香族乙烯類; 1,3-丁二烯、異丁烯、1,4-二甲基丁二烯等共軛二烯烴類 ;丙烯腈、甲基丙烯腈等腈基含有聚合性化合物;丙烯醯 胺、甲基丙烯醯胺等醯胺結合含有聚合性化合物;乙酸乙 烯等脂肪酸乙烯類等。 其中以二環戊基(甲基)丙烯酸酯、甲基(甲基)丙 烯酸酯、η-丁基(甲基)丙烯酸酯、苯乙烯、α-甲基苯乙 烯等爲佳。 化合物(b )可單獨使用1種或組合2種以上。 含有不飽和基之(甲基)丙烯酸聚合物中之來自化合 物(b )之結構單位的含有率以1 5〜92質量%爲佳,較佳 爲25〜84質量%,特佳爲35〜78質量%。 該含有率若未達15質量%時,折射率較難調整。該 含有率若超過92質量%時,硬化容易變得不充分。 作爲化合物(c)(具有(甲基)丙烯醯基之異氰酸 酯)之例子,可舉出、2-甲基丙烯氧乙基異氰酸酯、N-甲 基丙烯醯異氰酸酯、甲基丙烯氧甲基異氰酸酯、2-丙烯氧 乙基異氰酸酯、N-丙烯醯基異氰酸酯、丙烯氧甲基異氰酸 酯等。 含有不飽和基之(甲基)丙烯酸聚合物中來自化合物 (c)之結構單位的含有率以5〜80質量%爲佳,較佳爲9 〜60質量%,特佳爲12〜45質量%。 該含有率若未達5質量%時,硬化容易變的不充分。 -22- 200837413 該含有率若超過80質量%時,折射率難以調整。 含有不飽和基之(甲基)丙烯酸聚合物中可含有 式(1 )、( 2 )所示構成單位以外之構成單位。作爲 於導入如此構成單位之化合物(以下,亦稱爲化合杉 ))的例子,馬來酸二乙酯、富馬酸二乙酯、衣康酸 酯等二羧酸二酯類;氯化乙烯、氯化亞乙烯等含氯聚 化合物等。含有不飽和基之(甲基)丙烯酸聚合物中 化合物(d)之結構單位的含有率以0〜20質量%爲 較佳爲0〜10質量%。 含有不飽和基之(甲基)丙烯酸聚合物之製造過 ,於化合物(c)之加成反應中,可添加熱聚合禁止 保存安定劑、硬化觸媒等各種添加劑。 熱聚合禁止劑的添加可抑制因熱所產生的聚合反 作爲熱聚合禁止劑的例子,可舉出、焦掊酚、苯醌、 二酚、亞甲藍、tert-丁基兒茶酚、單苯甲基醚、甲氧 、戊醌、戊氧基對苯二酚、η-丁基酚、酚、對苯二酚 基醚等。 作爲保存安定劑的例子,可舉出2,6-二-t-丁基-酚、苯醌、P-甲苯醌、P-二甲苯醌、苯基-α -萘基胺等 作爲硬化觸媒之例子,可舉出二月桂基酸二丁基 二月桂基酸二辛基錫、二油酸二丁基錫、二乙酸二丁 、四甲氧基鈦、四乙氧基鈦等。 這些各種添加劑之合計添加量,對於化合物(a (c)之合計量1〇〇質量份而言,一般爲1〇質量份以 一般 使用 5 ( d 二乙 合性 來自 佳, 程中 劑、 應。 對苯 基酚 單丙 P-甲 〇 錫、 基錫 下, -23- 200837413 較佳爲5質量份以下。 作爲含有不飽和基之(甲基)丙烯酸聚合物的製造中 ’化合物(a )、及視必要使用之化合物(b )、化合物( d )之自由基聚合所使用的溶劑,例如可舉出甲醇、乙醇 、乙二醇、二乙二醇、丙二醇等醇類;四氫呋喃、二噁烷 等環狀醚類;乙二醇單甲基醚、乙二醇單乙基醚、乙二醇 二甲基醚、乙二醇二乙基醚、二乙二醇單甲基醚、二乙二 醇單乙基醚、二乙二醇二甲基醚、二乙二醇二乙基醚、二 乙二醇乙基甲基醚、丙二醇單甲基醚、丙二醇單乙基醚等 多價醇之烷基醚類;乙二醇乙基醚乙酸酯、二乙二醇乙基 醚乙酸酯、丙二醇乙基醚乙酸酯、丙二醇單甲基醚乙酸酯 等多價醇之烷基醚乙酸酯類;甲苯、二甲苯等芳香族烴類 ;丙酮、甲基乙基酮、甲基異丁基酮、環己酮、4-羥基- 4-甲基-2-戊酮、二丙酮醇等酮類;乙酸乙酯、乙酸丁基、乳 酸乙基、2-羥基丙酸乙基、2-羥基-2-甲基丙酸乙基、2-羥 基-2-甲基丙酸乙基、乙氧基乙酸乙酯、羥基乙酸乙酯、2_ 羥基-3-甲基丁烷酸甲基、3_甲氧基丙酸甲基、3_甲氧基丙 酸乙基、3 -乙氧基丙酸乙基、3 -乙氧基丙酸甲基等酯類。 其中以環狀醚類、多價醇之烷基醚類、多價醇之烷基 醚乙酸酯類、酮類、酯類等爲佳。 一方面’含有不飽和基之(甲基)丙烯酸聚合物之製 造中’作爲化合物(c )之加成反應時所使用的溶劑,使 用分子内具有烴基者時’化合物(c )會與溶劑進行反應 而不佳。因此,使用於化合物(c )之加成反應的溶劑, -24 - 200837413 較佳爲具有烴基者。作爲不具有烴基之溶劑的例子,可舉 出前述自由基聚合所使用的溶劑之中,不具有烴基者。 又,作爲含有不飽和基之(甲基)丙烯酸聚合物的製 造上所使用的自由基聚合用的觸媒,可使用一般的自由基 聚合啓始劑。作爲自由基聚合啓始劑的例子,可舉出 2,2’·偶氮雙異丁腈、2,2’-偶氮雙(2,4-二甲基戊腈)、 2,2’-偶氮雙(4-甲氧基-2,4-二甲基戊腈)等偶氮化合物; 過氧化苯甲醯、過氧化月桂醯、過氧化t-丁基三甲基乙醯 、1,1’_雙(過氧化t-丁基)環己烷等有機過氧化物;及過 氧化氫等。作爲自由基聚合啓始劑使用過氧化物時,組合 還原劑作爲氧化還原型之啓始劑亦可。 含有不飽和基之(甲基)丙烯酸聚合物之玻璃轉移溫 度以20 °C以上150 °C以下爲佳。此時,玻璃轉移溫度被定 義爲可使用一般的差示掃描熱量計(DSC)進行測定所得 之値。該溫度若未達20 °C時,會有難形成保護層、或附著 於保護層,層合乾燥薄膜時的作業性會變差之情況。相反 地該溫度若超過150 °C時,保護層會變硬、或容易變脆, 使得彎曲耐久性降低。 〔成分(D)〕 成分(D)係爲聚合成分(A)〜成分(C)之活性種 (自由基)可藉由光產生之光聚合啓始劑。 其中所謂光,例如表示紅外線、可見光、紫外線、及 X線、電子線、α線、β線、γ線之游離輻射線。 -25- 200837413 作爲光聚合啓始劑,例如可舉出乙醯苯、乙醯苯苯甲 基酮縮醇、1-羥基環己基苯基酮、2,2-二甲氧基-2-苯基乙 醯苯、咕噸酮、9-芴酮、苯甲醛、芴、蒽醌、三苯基胺、 味唑、3-甲基乙醯苯、4-氯二苯甲酮、4,4’-二甲氧基二苯 甲酮、4,4’-二胺二苯甲酮、米蚩酮、苯偶因丙基醚、苯偶 因乙基醚、苯甲基二甲基酮縮醇、1-(4-異丙基苯基)-2-羥基-2-甲基丙烷-1-酮、2-羥基-2-甲基-1-苯基丙烷-1-酮、 硫咕噸酮、二乙基硫咕噸酮、2-異丙基硫咕噸酮、2-氯硫 咕噸酮、2 -甲基-1 -〔 4 -(甲基硫)苯基〕-2 -嗎啉丙烷-1 -酮、2,4,6-三甲基苯甲醯基二苯基膦氧化物、雙(2,6-二甲 氧基苯甲醯基)-2,4,4-三甲基戊基膦氧化物等。其中1-羥 基環己基苯基酮等由聚合速度、溶液安定性之觀點來看較 佳。 成分(D)之作爲販賣品者,例如可舉出IrgacUrel84 、369 、 379 、 651 、 500 、 819 、 907 、 784 、 2959 、 CGI-1700 ^ -1750、 -1850、 CG24-61、 Darocur 1116、 1173 (以 上,Ciba Specialty Chemicals 公司製);Lucirin ΤΡΟ、 LR8 893、LR8970 (以上,BASF公司製);優貝克力路 P3 6 ( UCB公司製)等。光自由基聚合啓始劑可單獨使用 1種或組合2種以上。 本發明中,可同時使用光聚合啓始劑與光增感劑。作 爲光增感劑,例如可舉出三乙基胺、二乙基胺、N-甲基二 乙醇胺、乙醇胺、4-二甲基胺安息香酸、4-二甲基胺安息 香酸甲基、4-二甲基胺安息香酸乙基、4-二甲基胺安息香 -26- 200837413 酸異戊基等。光增感劑之作爲販賣品者,例如可舉出優貝 克力路P102、103、104、105 (以上,UCB公司製)等。 光硬化性組成物中,成分(D )之比例對於成分(A )〜(D)之合計量100質量份而言,以0.1〜10質量份 爲佳,較佳爲0.2〜7質量份,較佳爲0.5〜5質量份。該 比例若未達〇·1質量份時,硬化無法充分進行,有時難形 成具有充分機械性特性之保護層。又,該比例若超過1 0 質量份時,光聚合啓始劑可能對保護層之長期特性造成壞 影響。 光硬化性樹脂組成物中視必要可再添加作爲成分(E )之有機溶劑。藉由添加有機溶劑,可賦予適當黏度,可 形成具有均勻厚度之保護層。 有機溶劑的種類可依據發明目的、不損害效果之範圍 下做適當選擇,具有大氣壓下之沸點爲5〇〜2〇〇 °C範圍内 的値,且,可均勻地溶解各構成成分者爲佳。 作爲有機溶劑之較佳例子,可舉出醇類、醚類、酯類 、及酮類。作爲有機溶劑之較佳化合物,可舉出至少1種 選自丙二醇單甲基醚乙酸酯、丙二醇單甲基醚、乳酸乙基 、二乙二醇二甲基醚、甲基異丁基酮、甲基戊基酮、甲苯 、二甲苯、及甲醇所成群之溶劑。 有機溶劑之添加量,對於前述成分(A )〜(D )之 合計量100質量份而言,較佳爲5〜500質量份,更佳爲 1〇〜300質量份,特佳爲20〜200質量份。該量若未達5 質量份時,光硬化性樹脂組成物之黏度有時難以調整。該 -27- 200837413 量若超過500質量份時,難以形成具有充分厚度之保護層 〔成分(F )〕 成分(F )爲防靜電劑可視必要添加。作爲成分(F ) 所使用的防靜電劑,可使用作爲高分子材料之防靜電劑的 各種已知材料。 作爲成分(F )所使用的防靜電劑,例如可舉出全氟 乙烷酸鋰、全氟丙烷酸鋰、全氟丁烷酸鋰、全氟戊烷酸鋰 、全氟己烷酸鋰、全氟庚烷酸鋰、全氟辛烷酸鋰、全氟壬 烷酸鋰、全氟癸烷酸鋰、三氟甲烷磺酸鋰、全氟乙烷磺酸 鋰、全氟丙烷磺酸鋰、全氟丁烷磺酸鋰、全氟戊烷磺酸鋰 、全氟己烷磺酸鋰、全氟庚烷磺酸鋰、全氟辛烷磺酸鋰、 全氟壬烷磺酸鋰、鋰雙三氟甲烷磺醯亞胺、鋰雙全氟乙烷 磺醯亞胺、鋰雙全氟乙烷磺醯亞胺、鋰雙全氟丙烷磺醯亞 胺、鋰雙全氟丁烷磺醯亞胺、鋰雙全氟戊烷磺醯亞胺、鋰 雙全氟己烷磺醯亞胺、鋰雙全氟庚烷磺醯亞胺、鋰雙全氟 辛烷磺醯亞胺、鋰雙全氟壬烷磺醯亞胺、鋰雙三氟甲烷碳 醯亞胺、鋰雙全氟乙烷酸亞胺、鋰雙全氟丙烷酸亞胺、鋰 雙全氟丁烷酸亞胺、鋰雙全氟戊烷酸亞胺、鋰雙全氟己烷 酸亞胺、鋰雙全氟庚烷酸亞胺、鋰雙全氟辛烷酸亞胺、鋰 雙全氟壬烷酸亞胺、鋰雙全氟癸烷酸亞胺等鋰鹽系防靜電 劑;具有作爲陽離子所使用之具有吡啶鑰離子、咪唑鑰離 子等之芳香族系離子、或具有三甲基己基銨離子等脂肪族 -28 - 200837413 胺系離子等,作爲陰離子可使用具有no3_、ch3co2-、 BF6_、PF6·等無機離子系、(CF3S02 ) 2Ν·、CF3C02-、 cf3so,等含有氟之有機陰離子等的離子性液體防靜電劑 ;使用4級銨鹽系防靜電劑爲佳。 成分(F )之作爲販賣品者,例如可舉出具有鋰鹽系 防靜電劑與聚合性不飽和基之化合物的混合物,其爲 Sankono1A600 - 5 OR 、 SankonolA600-3OR 、 A600-20R 、 PETA-30R、PETA-20R、A400-20R、MEK-50R (以上,三 光化學工業公司製);離子性液體防靜電劑之IL-P 14、 IL-A2 (以上,廣榮化學工業公司製);4級銨鹽系防靜電 劑之 Elegant264-WAX、SS-100 (以上,日本油脂公司製 )等。防靜電劑可單獨使用1種或組合2種以上。 光波導用塗佈組成物中,成分(F )之添加量對於成 分(A)〜成分(D)、及成分(F)之合計量爲100質量 份而言,以〇·3〜15質量份爲佳,較佳爲0.6〜10質量份 ,特佳爲1〜5質量份。該添加量若未達〇.3質量份時, 防靜電性會降低。又,該添加量若超過1 5質量份時,對 設置使用於硬化光波導用塗佈組成物之防靜電層的薄膜狀 光波導之彎曲耐久性有著壞影響。 本發明的光硬化性樹脂組成物中除前述成分(A )〜 (E )以外,視必要以不損害本發明樹脂組成物之特性範 圍下,例如可添加具有成分(A )〜(C )以外之聚合性反 應基的化合物、或高分子樹脂(例如環氧基樹脂、丙烯酸 樹脂、聚醯胺樹脂、聚醯胺亞胺樹脂、聚尿烷樹脂、聚丁 -29- 200837413 二烯樹脂、聚氯丁二烯樹脂、聚醚樹脂、聚酯樹脂、苯乙 烯-丁二烯嵌段共聚物、石油樹脂、二甲苯樹脂、酮樹脂 、纖維素樹脂、氟系聚合物、聚矽氧系聚合物)等。 且,作爲視必要所添加的各種添加劑,例如可舉出添 加抗氧化劑、紫外線吸收劑、光安定劑、矽烷偶合劑、塗 面改良劑、熱聚合禁止劑、塗平劑、界面活性劑、著色劑 、保存安定劑、可塑劑、滑劑、塡料、無機粒子、老化防 止劑、潤濕性改良劑、防靜電劑等。 調製光硬化性樹脂組成物,可依據常法將前記各成分 進行混合攪拌即可。 作爲使用於形成本發明的薄膜狀光波導之光波導(下 部復合層、芯部分、上部復合層)之材料,由光波導與保 護層之接著性的觀點來看,可適用丙烯酸系光硬化性樹脂 組成物。使用丙烯酸系光硬化性樹脂組成物形成光波導時 ,與上述保護層之接觸面,無須實施表面處理,亦可得到 良好接著性。 作爲使用於形成光波導之放射線硬化性組成物的具體 較佳例子,可舉出1種以上選自(I-a)成分、(I-b)成 分之化合物、與含有(I-c )成分、及(I-d )成分之放射 線硬化性組成物。且,使用於光波導用放射線硬化性組成 物的(I-a )成分,可使用與上述成分(I-c )含有不飽和 基之(甲基)丙烯酸聚合物同樣者,(I-b )成分則可使用 與上述成分(A)尿烷(甲基)丙烯酸酯寡聚物同樣者。 又,(I-c )成分爲與上述成分(A )同樣之反應性稀釋單 -30- 200837413 體,(I-d)成分爲與成分(D)同樣之光聚合啓始劑。 又,作爲視必要添加之各種添加劑,例如可舉出抗氧 化劑、紫外線吸收劑、光安定劑、矽烷偶合劑、塗面改良 劑、熱聚合禁止劑、塗平劑、界面活性劑、著色劑、保存 安定劑、可塑劑、滑劑、塡料、無機粒子、老化防止劑、 潤濕性改良劑、防靜電劑等。 其次,參考圖面對本發明之薄膜狀光波導的一例做說 明。 圖1表示一本發明附有保護層的薄膜狀光波導例子之 模式截面圖。 圖2表示一本發明附有保護層的薄膜狀光波導之製造 方法例子的流程圖。 〔薄膜狀光波導之結構〕 圖1中,薄膜狀光波導2 4係由於保護層8、與保護層 8上面經層合形成之下部復合層1〇、與下部復合層1〇的 上面所形成之具有特定寬的芯部分18、與下部復合層10 及芯部分18上經層合形成之上部復合層20、與上部復合 層20的上面經層合形成之保護層22所成。且,芯部分18 爲埋設於下部復合層1 0及上部復合層2 0的中。 下部復合層、芯部分、及上部復合層之厚度並無特別 限定,例如下部復合層之厚度設定爲1〜200μιη,芯部分 的厚度設定爲3〜200 μηι,上部復合層的厚度設定爲1〜 200μπι。芯部分之寬度並無特別限定,例如!〜2〇〇μπι。 200837413 芯部分之折射率必須比下部復合層及上部復合層之任 一折射率更大。例如對於波長400〜i/O 0nm之光,芯部 分之折射率爲1·420〜1.650,下部復合層及上部復合層之 折射率爲1.400〜1.648,且,芯部分之折射率比2層復合 層之任一折射率至少爲0.1 %之較大値爲佳。 保護層爲具有較高透明性者。 藉由保護層具有較高透明性,於薄膜狀光波導的下面 ,接合面發光雷射等發光元件、或光電二極體等受光元件 ,形成轉換電氣/光信號之聯繫裝置時,薄膜狀光波導由 上方透視,發光元件或受光元件之位置、與薄膜狀光波導 中之芯部分的位置可正確地對合。 又,藉由保護層爲具有較高透明性,可表現對於光信 號所使用的波長區域之光的較高透過率,由發光元件之光 信號通過保護層及復合層後到達芯部分時光之損失、及由 芯部分的光信號通過復合層及保護層後到達受光元件時的 光之損失可變的極小。 又,保護層具有1〇// m之厚度時,對於40 5 nm波長 之光具有80%以上之透過率,較佳爲具有90%以上之透 過率。 保護層之厚度,1〜50#m爲佳’較佳爲1〜25//m’ 特佳爲1〜1 5 // m。 且,保護層至少形成如覆蓋下部復合層下面及上部復 合層上面之全體即可。 -32- 200837413 〔薄膜狀光波導之製造方法〕 本發明的薄膜狀光波導24之製造方法爲,含有形成 保護層8之步驟、形成下部復合層i 〇之步驟、形成芯部 分1 8之步驟、形成上部復合層2 0之步驟、與形成保護層 22之步驟。這些步驟之中,形成保護層8之步驟及形成保 護層22之步驟爲,上述光硬化性樹脂組成物經光照射後 硬化之步驟。 且,形成保護層8之光硬化性樹脂組成物及形成保護 層22之光硬化性樹脂組成物各可簡稱爲下部保護層用組 成物及上部保護層用組成物。又,構成光波導之下部復合 層10、使用於形成芯部分18及上部復合層20的各部之光 硬化性樹脂組成物各可簡稱爲下層用組成物、芯用組成物 及上層用組成物。 (1 )光硬化性樹脂組成物之調製 下部保護層用組成物及上部保護層用組成物之各成分 組成並無特別限定,於經濟上及製造管理上以同一光硬化 性樹脂組成物爲佳。 保護層形成用之光硬化性樹脂組成物的黏度,較佳爲 1 〜10,000cps(25°C),更佳爲 5 〜8,000cps(25°C),特 佳爲10〜5,000cps(25°C)。黏度若爲該範圍外時,光硬 化性樹脂組成物之處理變困難、或難以形成均勻塗膜。且 ,黏度可藉由改變有機溶劑等添加量而做適宜調整。 一方面,下層用組成物、芯用組成物及上層用組成物 -33- 200837413 之各成分組成爲,取決於下部復合層1 〇、芯部分18及上 部復合層20的各部之折射率關係可滿足於光波導所要求 之條件。具體爲調製出折射率的差可爲適宜大小之二種或 三種光硬化性樹脂組成物,其中賦予最高折射率之硬化膜 的光硬化性樹脂組成物作爲芯用組成物,其他光硬化性樹 脂組成物作爲下層用組成物及上層用組成物使用。 且,下層用組成物與上層用組成物爲同一光硬化性樹 脂組成物時,於經濟上及製造管理上較佳。 (2 )基板之準備 如圖2中之(a)所示,準備具有平坦表面之基板2。 作爲該基板2之種類,並無特別限定,例如可使用矽基板 或玻璃基板等。 (3 )保護層之形成步驟 於基板2上面形成保護層8之步驟。具體爲如圖2中 之(b )所示,於基板2的表面上塗佈下部保護層用組成 物’ 燥或預燒烤後形成保護層用薄膜4。於該保護層用 薄膜4上照射光6並使其硬化,形成硬化體之保護層8 ( 參照圖2中之(c )及(d ))。且,保護層8之形成步驟 中’於薄膜全面以光照射,硬化該全體爲佳。 作爲保護層用組成物之塗佈方法,可使用旋轉塗佈法 、浸漬塗佈法、噴霧法、棒塗佈法、輥塗佈法、簾式塗佈 法 凹版印刷法、網版印刷法、噴射塗佈法等任_•方法。 -34- 200837413 其中由可得到均勻厚度之保護層用薄膜的觀點來看,採用 旋轉塗佈法爲佳。 又,由保護層用組成物所成之保護層用薄膜經塗佈後 ,除去有機溶劑等爲目的可因應所需進行50〜i5〇t:溫度 之預燒烤爲佳。 形成保護層8時的光照射量並無特別限定,將波長 200〜450nm,照度1〜5 00m W/cm2之光照射至照射量丨〇〜 5,000mJ/cm2下進行曝光爲佳。 作爲所照射之光種類,可使用可見光、紫外線、紅外 線、X線、α線、β線、γ線等,其中特別以紫外線爲佳。 作爲光之照射裝置,例如可使用高壓水銀燈、低壓水銀燈 、金屬鹵素燈、準分子燈等爲佳。 又,曝光時,視必要可將曝光環境於氮氣流下,進而 可提高硬化性。 又,曝光後可再進行加熱處理(post-baking )。該加 熱條件可依光硬化性樹脂組成物之成分組成等相異,一般 爲30〜250 °C,較佳爲50〜200 °C,更佳爲100〜150 °C下, 例如5分鐘〜7 2小時之加熱時間即可。藉由進行加熱處理 (post-baking),可充分地硬化塗膜全面。 且’保護層8之形成步驟中的組成物之塗佈方法、光 之照射量、種類、及光(紫外線)之照射裝置、預燒烤及 後燒烤之條件等於後述之保護層22的形成步驟中亦相同 -35- 200837413 (4)下部復合層之形成步驟 於保護層8之上面形成下部復合層10之步驟。具體 爲如圖2中之(e)所示,於保護層8之上面塗佈下層用 組成物,經乾燥或預燒烤後形成下層用薄膜。該下層用薄 膜以光照射並使其硬化,形成硬化體之下部復合層1 〇。且 ,下部復合層1 〇的形成步驟中,於薄膜全面以光照射, 硬化該全體爲佳。 其中作爲下層用組成物之塗佈方法,可使用旋轉塗佈 法、浸漬法、噴霧法、棒塗佈法、輥塗佈法、簾式塗佈法 、凹版印刷法、網版印刷法、噴射塗佈法等任一方法。其 中由可得到均勻厚度之下層用薄膜的觀點來看,採用旋轉 塗佈法爲佳。 又,下層用組成物之流變特性係爲對應塗佈方法所得 者,於下層用組成物中可、視必要添加各種塗平劑、觸變 賦予劑、塡料、有機溶劑、界面活性劑等爲佳。 又,由下層用組成物所成之下層用薄膜經塗佈後,除 去有機溶劑等爲目的,進行50〜2 00°C溫度之預燒烤爲佳 〇 且,下部復合層之形成步驟中的塗佈方法、或流變特 性之改良等,於後述芯部分之形成步驟、或上部復合層之 形成步驟中亦相同。 形成下部復合層時的光的照射量,並無特別限定,將 波長200〜450nm,照度1〜5 00mW/cm2之光照射至照射量 爲10〜5,000mJ/cm2而進行曝光爲佳。 -36- 200837413 作爲照射之光種類,可使用可見光、紫外線、 、X線、α線、β線、γ線等,其中特別以紫外線爲 爲光之照射裝置,例如使用高壓水銀燈、低壓水鋇 屬鹵素燈、準分子燈等爲佳。 又,曝光後再進行加熱處理(post-baking)爲 加熱條件依光硬化性樹脂組成物之成分組成等而相 般爲30〜250 °C,較佳爲50〜200 °C,更佳爲100〜 ,例如進行5分鐘〜72小時之加熱時間即可。藉由 熱處理(post-baking),可充分地硬化塗膜全面。 且,下部復合層之形成步驟中的光之照射量、 及光(紫外線)之照射裝置等,於後述之芯部分的 驟、或上部復合層之形成步驟中亦相同。 (5 )芯部分之形成步驟 其次,於下部復合層1 0的上面,如圖2中的 示,塗佈芯用組成物,經乾燥或預燒烤後形成芯用 。其後,如圖2中之(g )所示,對於芯用薄膜12 ,依據所定圖型,例如介著具有所定線路(line ) 光罩14進行光16之照射(曝光)。藉此,芯用: 中僅經光照射之位置會硬化,除此以外之未硬化部 像處理而除去後,如圖2中之(h )所示,下部復· 上可形成由圖型形成之硬化膜所成的芯部分1 8。 本步驟中之顯像處理之詳細說明如下。 顯像處理依據所定圖型進行圖型曝光,對於選 紅外線 “圭。作 燈、金 佳。該 異,一 150°C 下 進行加 種類、 形成步 (f)所 薄膜12 之上面 圖型的 簿膜12 分經顯 合層1〇 擇性硬 -37- 200837413 化之薄膜,利用硬化部分與未硬化部分之溶解差異性,使 用顯像液僅將未硬化部分除去。換言之,圖型曝光後除去 未硬化部分,且留下硬化部分,結果形成芯部分者。 作爲使用於顯像處理之顯像液,可使用有機溶劑。作 爲有機溶劑之例子,可舉出丙酮、甲醇、乙醇、異丙基醇 、乳酸乙酯、丙二醇單甲基醚乙酸酯、甲基戊酮、甲基乙 基酮、環己酮、丙二醇單甲基醚等。 顯像時間一般爲30〜600秒。作爲可採用顯像方法, 液池法、浸漬法、噴淋顯像法等公知方法。顯像後可直接 藉由風乾,除去有機溶劑形成圖型狀之薄膜。 圖型狀薄膜(圖型形成部)形成後,將該圖型形成部 進行加熱處理(post-baking )。該加熱條件取決於光硬化 性樹脂組成物之成分組成等,但一般爲3 0〜2 5 0 °C,較佳 爲50〜20 0°C,更佳爲100〜150°C之加熱溫度下,例如進 行5分鐘〜1 0小時之加熱時間即可。藉由進行加熱處理, 可使塗膜全面充分硬化。 本步驟中,作爲依據所定圖型進行光照射之方法,不 限於使用光透過部與非透過部所成之光罩1 4的方法,例 如可採用以下所不a〜c之任一方法。 a.利用與液晶顯示裝置相同之原理,利用依據所定圖 型將光透過區域與光不透過區域所成之光罩像以電氣光學 性之手段的方法。 b·使用多數光纖維成束而成之導光構件,介著對應該 導光構件中之所定圖型的光纖維並照射光的方法。 -38 - 200837413 C·將藉由雷射光、或鏡片、鏡子等集光性光學系統將 所得之收束性的光,一邊掃描下一邊照射於光硬化性樹脂 組成物之方法。 (6 )上部復合層之形成步驟 芯部分1 8及下部復合層1 0的上面塗佈上層用組成物 ,並經乾燥或預燒烤後形成上層用薄膜。對於該上層用薄 膜,經光照射並使其硬化後形成如圖2中(i )所示的上 部復合層2 0。 且,藉由加熱處理上部復合層20,可使塗膜全面充分 地硬化。該加熱條件一般爲30〜250 °C,較佳爲50〜200 °C ,更佳爲100〜15 0°C下,例如進行5分鐘〜72小時之加 熱時間。 (7 )保護層之形成步驟 於上部復合層20的上面形成保護層22之步驟。具體 爲如圖2中之(j )所示,於上部復合層上面塗佈上部保 護層用組成物,經乾燥或預燒烤後形成保護層用薄膜,該 保護層用薄膜以光照射並使其硬化後,形成硬化體之保護 層22。且,保護層22之形成步驟中,薄膜全面以光照射 ,使該全體硬化爲佳。曝光後可再進行加熱處理(postbaking ) 〇 且,如上述,形成保護層22時,保護層用組成物之 塗佈方法、預燒烤之條件、光照射量及種類、光之照射裝 -39- 200837413 置、後燒烤之條件等與上述保護層8之形成步驟相同。 (8 )基板之剝離 上述(1 )〜(7 )的步驟所製作的硬化物自基板2剝 離後,可得到薄膜狀光波導(參照圖2中之(k ))。 作爲剝離方法,例如可舉出將於矽基板上所製作的光 波導浸漬於溫水或氫氟酸之方法。 【實施方式】 〔實施例〕 以下,藉由實施例對本發明做更具體說明。 〔1 ·準備保護層用光硬化性樹脂組成物〕 作爲成分(A)〜(E),準備以下之材料。 〔成分(A)〕 於具備攪拌機之反應容器中,放入異佛爾酮二異氰酸 酯16·6質量份、數平均分子量爲2,000的聚丙二醇74 7 質量份、2,6-二-t-丁基-Ρ-甲酚〇·〇1質量份,於5〜1〇°c冷 卻。一邊攪拌一邊加入二月桂基酸二-正丁基錫〇·〇5質量 份,一邊調整溫度保持於3 (TC以下,一邊進行2小時攪拌 後,昇溫至50 °C再進行2小時攪拌。繼續滴入2·經基乙 基丙烯酸酯8.7質量份(以上之合計量爲100質羹份), 滴下終了後,於50°C進行1小時反應,再昇溫至65〇c並 進行2小時反應。殘留異氰酸酯爲〇 · 1質量%以下時終止 -40- 200837413 反應,得到化合物A-1。 以同樣方法得到化合物A-2〜A-5。 化合物A-1〜A-5之製造所使用的原料名稱及添加量 如表1所示。 〔表1〕 單位:質量份 A-1 A-2 A-3 A-4 A-5 単體 2-羥基乙基丙烯酸酯 8.7 9 2.2 23.7 57.1 異佛爾酮二異氰酸酯 16.6 麵 塞 麵 甲苯二異氰酸酯 13.5 3.3 35.5 42.8 PPG2000⑴ 74.7 77.5 师 麵 麵 PPG 1 0000(2) _ 94.5 一 DA400(3) - _ - 40.8 讎 (1)聚丙二醇(數平均分子量2,000) (2) 聚丙醇(數平均分子量10, 〇〇〇) (3) 聚環氧乙烷雙酚A醚 〔成分(B)〕 N-乙烯-2-吡咯烷酮(五協産業公司製) 雙酚A EO加成物二丙烯酸酯(大阪有機化學工業公 司製、Biscoat700 ) 異冰片基丙烯酸酯(大阪有機化學工業公司製、 IBXA ) 1,6-己二醇二丙烯酸酯(共榮公司化學公司製、Lite 丙烯酸酯1,6-HX-A) -41 - 200837413 〔成分(c )〕 調製例1 附有乾冰/甲醇迴流器之燒瓶以氮氣取代後,裝入作 爲聚合啓始劑使用2,2,-偶氮雙(2,4-二甲基戊腈)l.5g, 作爲有機溶劑使用甲基異丁基酮90g,攪拌至溶解聚合啓 始劑爲止。繼續,裝入2-羥基乙基甲基丙烯酸酯20g、二 環戊基丙烯酸酯25g、甲基甲基丙烯酸酯40g、及n-丁基 丙烯酸酯1 5g後,開始緩慢攪拌。其後,將溶液之溫度上 升至7 0 °C,以該溫度進行6小時聚合。其後,於所得之溶 液中,裝入二月桂基酸二-η-丁基錫〇.12g、2,6-二-t-丁基一 p_甲酚〇.〇5g,一邊攪拌下一邊滴入溫度維持於6〇°C以下 的2-甲基丙烯氧乙基異氰酸酯23· 7g。滴下終了後,於60 °C進行5小時反應,得到側鏈具有甲基丙烯基之聚合物溶 液。其後,將反應生成物滴入多量己烷中,並凝固反應生 成物。且,再溶解該凝固物與同質量之四氫呋喃,以多量 己烷進行再度凝固。該再溶解-凝固操作進行3次後,將 所得之凝固物以4 0 °C進行4 8小時真空乾燥,得到目的之 共聚物C -1。 調製例2 附有乾冰/甲醇迴流器之燒瓶以氮氣取代後,裝入作 爲聚合啓始劑使用2,2’-偶氮雙異丁腈3g,作爲有機溶劑 使用甲基異丁基酮1 00g,攪拌至溶解聚合啓始劑爲止。繼 續,裝入2-羥基乙基甲基丙烯酸酯20g、甲基丙烯酸l〇g -42- 200837413 、二環戊基丙烯酸酯l〇g、苯乙烯25g、及η -丁基丙烯酸 酯3 5 g後,開始緩慢攪拌。其後,溶液的溫度上升至8 〇。〇 ,以該溫度進行6小時聚合。其後,於所得之溶液中,裝 入二月桂基酸二-η-丁基錫 0.13g、2,6-二-t-丁基-P-甲酣 〇.〇5g,一邊攪拌下一邊滴入溫度維持於60 °C以下的2 -甲 基丙烯氧乙基異氰酸酯23.5g。滴下終了後,於6(TC進行 5小時反應,得到側鏈具有甲基丙烯基之聚合物溶液。其 後,將反應生成物滴入多量己烷中,並凝固反應生成物。 且,再溶解該凝固物與同質量之四氫呋喃,以多量己院使 其再度凝固。該再溶解-凝固操作進行3次後,將所得之 凝固物於4(TC下進行48小時真空乾燥,得到目的之共聚 物 C-2。 將於共聚物C-l、C-2的製造上所使用的前述原料名 及添加量以表2表示。 〔表2〕 單位:g C-1 C-2 單體 2-羥基乙基甲基丙烯酸酯 20 20 甲基丙烯酸 10 二環戊基丙烯酸酯 25 10 苯乙烯 一 25 η·丁基丙烯酸酯 15 35 甲基甲基丙烯酸酯 40 反應性付與成分 2·甲基丙烯氧乙基異氰酸酯 23.7 23.5 〔成分(D )〕 光自由基聚合啓始劑(商品名「Irgacure3 69」、Cib -43- 200837413Ο II 5 IcIο-R (5) (wherein R is a group having a linear, branched or cyclic carbon chain having 1 to 20 carbon atoms.) A (meth)acrylic polymer containing an unsaturated group The weight average molecular weight in terms of polystyrene is preferably 5,000 to 100,000, preferably 8,000 to 70,000, particularly preferably 1 〇, 000 to 50, 〇〇〇. If the crucible is less than 5,000, the viscosity of the composition will become small, and the shortcomings such as the desired film thickness cannot be obtained. If the crucible exceeds 100, the viscosity of the composition becomes large and the coating is applied. Disadvantages such as poor sex. Examples of the method for producing the (meth)acrylic acid polymer containing an unsaturated group include a radical polymerizable compound having (a) a hydrocarbon group, and a component (b) (a radical polymerization corresponding to the general formula (2) After the radical polymerization is carried out in a solvent, a method of adding (c) (meth)acrylonitrile-based isocyanate to the hydrocarbon group of the side chain of the obtained copolymer is carried out. The compounds (a) to (c) used in the method will be described. The compound (a) (a radical polymerizable compound having a hydrocarbon group) is used for reacting a hydrocarbon group in the compound with an isocyanate group (_N 2 C = hydrazine) in the compound (c) to have a urethane-containing bond (- When NH-COO-) and the constituent unit of the side chain moiety derived from the (meth)acryloyl group of the compound (c) are introduced into the component (A). Examples of the compound (a) include 2-hydroxyethyl (methyl-20-200837413) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. And hydroxymethyl (meth) acrylate, 4-hydroxycyclohexyl (meth) acrylate, and the like. The compound (a) may be used alone or in combination of two or more. The content of the structural unit derived from the compound (a) in the unsaturated group-containing (meth)acrylic polymer is preferably from 3 to 80% by mass, preferably from 7 to 60% by mass, particularly preferably from 10 to 40% by weight. quality%. When the content is less than 3% by mass, the curing tends to be insufficient. When the content exceeds 80% by mass, the adjustment of the refractive index becomes difficult. The compound (b) (a compound corresponding to the structure of the general formula (2)) is mainly used for moderately controlling the mechanical properties or refractive index of the (meth)acrylic polymer containing an unsaturated group. Examples of the compound (b) include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, and η-butyl (meth) acrylate. (meth)acrylic acid alkyl esters such as sec-butyl (meth) acrylate and t-butyl (meth) acrylate; dicyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate An ester of a (meth)acrylic acid such as an ester and a cyclic hydrocarbon compound; a phenyl (meth) acrylate, a benzyl (meth) acrylate, a hydrazine-phenyl phenol glycidyl ether (meth) acrylate, (ethyl) aryl acrylates such as P- cumenyl phenoxyethylene glycol acrylate; tribromophenol ethoxy (meth) acrylate, 2, 2, 2-trifluoromethyl (methyl) Acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, lH, lH, 5H-octafluoropentyl (meth) acrylate, perfluorooctylethyl (methyl) Halogenated (meth)acrylic acid such as acrylate-21 - 200837413 Ester; styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, vinyl toluene And aromatic vinyls such as P-methoxystyrene; conjugated diolefins such as 1,3-butadiene, isobutylene and 1,4-dimethylbutadiene; and nitriles such as acrylonitrile and methacrylonitrile The base contains a polymerizable compound; a guanamine such as acrylamide or methacrylamide contains a polymerizable compound; a fatty acid such as vinyl acetate or the like; Among them, dicyclopentyl (meth) acrylate, methyl (meth) acrylate, η-butyl (meth) acrylate, styrene, α-methyl styrene, etc. are preferred. The compound (b) may be used alone or in combination of two or more. The content of the structural unit derived from the compound (b) in the unsaturated group-containing (meth)acrylic polymer is preferably from 15 to 92% by mass, preferably from 25 to 84% by mass, particularly preferably from 35 to 78. quality%. If the content is less than 15% by mass, the refractive index is difficult to adjust. When the content is more than 92% by mass, the curing tends to be insufficient. Examples of the compound (c) (isocyanate having a (meth) acrylonitrile group) include 2-methyl propylene oxyethyl isocyanate, N-methyl propylene sulfonium isocyanate, and methacryloxymethyl isocyanate. 2-propoxyethyl isocyanate, N-propylene decyl isocyanate, propylene oxymethyl isocyanate, and the like. The content of the structural unit derived from the compound (c) in the (meth)acrylic polymer containing an unsaturated group is preferably from 5 to 80% by mass, preferably from 9 to 60% by mass, particularly preferably from 12 to 45% by mass. . When the content is less than 5% by mass, the curing tends to be insufficient. -22- 200837413 If the content exceeds 80% by mass, the refractive index is difficult to adjust. The (meth)acrylic polymer containing an unsaturated group may contain constituent units other than the constituent units represented by the formulae (1) and (2). Examples of the compound (hereinafter, also referred to as "chemical cedar") introduced into such a constituent unit are dicarboxylic acid diesters such as diethyl maleate, diethyl fumarate, and itaconate; and ethylene chloride; A chloropoly compound such as vinyl chloride or the like. The content of the structural unit of the compound (d) in the unsaturated group-containing (meth)acrylic polymer is 0 to 20% by mass, preferably 0 to 10% by mass. The (meth)acrylic acid polymer containing an unsaturated group is produced. In the addition reaction of the compound (c), various additives such as a thermal polymerization prohibiting storage stabilizer and a curing catalyst may be added. The addition of the thermal polymerization inhibiting agent can suppress the polymerization reaction by heat as an example of the thermal polymerization inhibiting agent, and examples thereof include pyrogallol, benzoquinone, diphenol, methylene blue, tert-butylcatechol, and single Benzyl ether, methoxy, pentamidine, pentyl hydroquinone, η-butyl phenol, phenol, hydroquinone ether, and the like. Examples of the storage stabilizer include 2,6-di-t-butyl-phenol, benzoquinone, P-toluene, P-xylene, phenyl-α-naphthylamine, and the like as a hardening catalyst. Examples thereof include dioctyltin dilaurate dilaurate, dibutyltin dioleate, dibutyl diacetate, titanium tetramethoxide, and titanium tetraethoxide. The total addition amount of these various additives is generally 1 part by mass for the total amount of the compound (a (c) of 1 part by mass to be used in general 5 (d-diacetyl is derived from the best, the process agent, should P-Phenylphenol monopropene P-forminin, under tin, -23-200837413 is preferably 5 parts by mass or less. As a (meth)acrylic polymer containing an unsaturated group, 'compound (a) is produced. And a solvent used for radical polymerization of the compound (b) and the compound (d) which are used, for example, an alcohol such as methanol, ethanol, ethylene glycol, diethylene glycol or propylene glycol; tetrahydrofuran or dioxane; Cyclic ethers such as alkane; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethyl Polyvalent alcohol such as diol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether Alkyl ethers; ethylene glycol ethyl ether acetate, diethylene glycol ethyl ether acetate, propylene glycol ethyl ether An alkyl ether acetate of a polyvalent alcohol such as an acid ester or propylene glycol monomethyl ether acetate; an aromatic hydrocarbon such as toluene or xylene; acetone, methyl ethyl ketone, methyl isobutyl ketone, or cyclohexane Ketones, ketones such as 4-hydroxy-4-methyl-2-pentanone and diacetone; ethyl acetate, butyl acetate, ethyl lactate, ethyl 2-hydroxypropionate, 2-hydroxy-2-methyl Ethyl propyl propionate, ethyl 2-hydroxy-2-methylpropanoate, ethyl ethoxyacetate, ethyl hydroxyacetate, 2-hydroxy-3-methylbutanoic acid methyl, 3-methoxypropane An ester of acid methyl, 3-methoxypropionic acid ethyl, 3-ethoxypropionic acid ethyl, 3-ethoxypropionic acid methyl, etc. Among them, a cyclic ether, an alkyl group of a polyvalent alcohol Ethers, alkyl ether acetates of polyvalent alcohols, ketones, esters, etc. are preferred. On the one hand, in the manufacture of a (meth)acrylic acid polymer containing an unsaturated group, it is added as a compound (c). When the solvent used in the reaction is a compound having a hydrocarbon group in the molecule, it is not preferable that the compound (c) is reacted with a solvent. Therefore, the solvent used for the addition reaction of the compound (c) is preferably -24 - 200837413. have In the case of the solvent which does not have a hydrocarbon group, the solvent which does not have a hydrocarbon group among the solvents used for the radical polymerization is mentioned. Moreover, as a manufacturing of the (meth)acrylic- As the catalyst for radical polymerization to be used, a general radical polymerization initiator can be used. Examples of the radical polymerization initiator include 2,2'-azobisisobutyronitrile, 2,2' -Azo compound such as azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile); benzoic acid peroxide An organic peroxide such as ruthenium, ruthenium peroxide, t-butyltrimethylacetonitrile peroxide, 1,1'-bis(t-butylperoxy)cyclohexane; and hydrogen peroxide. When a peroxide is used as a radical polymerization initiator, a combination reducing agent may be used as a redox type initiator. The glass transition temperature of the (meth)acrylic polymer containing an unsaturated group is preferably 20 ° C or more and 150 ° C or less. At this time, the glass transition temperature is defined as a enthalpy which can be measured using a general differential scanning calorimeter (DSC). If the temperature is less than 20 °C, it may be difficult to form a protective layer or adhere to a protective layer, and workability in laminating a dried film may be deteriorated. On the contrary, if the temperature exceeds 150 ° C, the protective layer becomes hard or easily becomes brittle, so that the bending durability is lowered. [Component (D)] The component (D) is an active species (radical) of the polymerization component (A) to the component (C) which is a photopolymerization initiator which can be produced by light. The term "light" means, for example, infrared rays, visible light, ultraviolet rays, and X-rays, electron lines, alpha rays, beta rays, and gamma rays. -25- 200837413 Examples of the photopolymerization initiator include acetophenone, acetophenone ketal, 1-hydroxycyclohexyl phenyl ketone, and 2,2-dimethoxy-2-benzene. Ethyl benzene, xanthone, 9-fluorenone, benzaldehyde, hydrazine, hydrazine, triphenylamine, azole, 3-methyl acetophenone, 4-chlorobenzophenone, 4, 4' -dimethoxybenzophenone, 4,4'-diamine benzophenone, Michler's ketone, benzoin propyl ether, benzoin ethyl ether, benzyl dimethyl ketal, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, thioxanthone, Diethyl thioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinepropane -1 -ketone, 2,4,6-trimethylbenzimidyldiphenylphosphine oxide, bis(2,6-dimethoxybenzylidene)-2,4,4-trimethyl Amylphosphine oxide and the like. Among them, 1-hydroxycyclohexyl phenyl ketone or the like is preferred from the viewpoints of polymerization rate and solution stability. As the seller of the component (D), for example, IrgacUrel84, 369, 379, 651, 500, 819, 907, 784, 2959, CGI-1700^-1750, -1850, CG24-61, Darocur 1116, 1173 can be cited. (The above, manufactured by Ciba Specialty Chemicals Co., Ltd.); Lucirin®, LR8 893, LR8970 (above, manufactured by BASF Corporation); Ubeckoli Road P3 6 (manufactured by UCB Corporation). The photoradical polymerization initiator may be used alone or in combination of two or more. In the present invention, a photopolymerization initiator and a photosensitizer can be used at the same time. Examples of the photosensitizer include triethylamine, diethylamine, N-methyldiethanolamine, ethanolamine, 4-dimethylamine benzoic acid, 4-dimethylamine benzoic acid methyl group, and 4 - Dimethylamine benzoic acid ethyl, 4-dimethylamine benzoin-26-200837413 Acid isopentyl and the like. The light sensitizer is, for example, a Ubex road P102, 103, 104, 105 (above, UCB company). In the photocurable composition, the ratio of the component (D) to the total amount of the components (A) to (D) is 100 parts by mass. 1 to 10 parts by mass is preferred, preferably 0. 2 to 7 parts by mass, preferably 0. 5 to 5 parts by mass. If the ratio is less than 1 part by mass, the hardening cannot be sufficiently performed, and it may be difficult to form a protective layer having sufficient mechanical properties. Further, if the ratio exceeds 10 parts by mass, the photopolymerization initiator may adversely affect the long-term characteristics of the protective layer. An organic solvent as the component (E) may be further added to the photocurable resin composition as necessary. By adding an organic solvent, an appropriate viscosity can be imparted, and a protective layer having a uniform thickness can be formed. The type of the organic solvent can be appropriately selected according to the object of the invention and the range which does not impair the effect, and has a boiling point in the range of 5 〇 to 2 〇〇 ° C at atmospheric pressure, and it is preferable that the constituent components can be uniformly dissolved. . Preferable examples of the organic solvent include alcohols, ethers, esters, and ketones. Preferred examples of the organic solvent include at least one selected from the group consisting of propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, diethylene glycol dimethyl ether, and methyl isobutyl ketone. a solvent in which methyl amyl ketone, toluene, xylene, and methanol are grouped. The amount of the organic solvent to be added is preferably from 5 to 500 parts by mass, more preferably from 1 to 300 parts by mass, even more preferably from 20 to 200, based on 100 parts by mass of the total of the components (A) to (D). Parts by mass. When the amount is less than 5 parts by mass, the viscosity of the photocurable resin composition may be difficult to adjust. When the amount of the -27-200837413 exceeds 500 parts by mass, it is difficult to form a protective layer having a sufficient thickness. [Component (F)] The component (F) may be added as an antistatic agent as necessary. As the antistatic agent used for the component (F), various known materials which are antistatic agents for polymer materials can be used. Examples of the antistatic agent used as the component (F) include lithium perfluoroethaneate, lithium perfluoropropaneate, lithium perfluorobutanoate, lithium perfluoropentanoate, and lithium perfluorohexane. Lithium perfluoroheptanoate, lithium perfluorooctanoate, lithium perfluorodecanoate, lithium perfluorodecanoate, lithium trifluoromethanesulfonate, lithium perfluoroethanesulfonate, lithium perfluoropropane sulfonate, Lithium perfluorobutane sulfonate, lithium perfluoropentane sulfonate, lithium perfluorohexane sulfonate, lithium perfluoroheptane sulfonate, lithium perfluorooctane sulfonate, lithium perfluorodecane sulfonate, lithium double Trifluoromethanesulfonimide, lithium bisperfluoroethane sulfonimide, lithium bis perfluoroethane sulfonimide, lithium bis perfluoropropane sulfoximine, lithium bis perfluorobutane sulfonimide, lithium bis perfluorine Pentane sulfonimide, lithium bis perfluorohexane sulfonimide, lithium bis perfluoroheptane sulfonimide, lithium bis perfluorooctane sulfonimide, lithium bis perfluorodecane sulfonimide, lithium bis Fluoromethane carbamide, lithium bisperfluoroethane imidate, lithium bis perfluoropropane acid imide, lithium bis perfluorobutyric acid imide, lithium bis perfluoropentanoic acid imide, lithium bis perfluorohexane acid imide Lithium double a lithium salt-based antistatic agent such as fluoroheptanoic acid imide, lithium bisperfluorooctanoic acid imide, lithium bisperfluorodecanoic acid imide, lithium bisperfluorodecanoic acid imide, or the like, having a pyridine key as a cation An aromatic ion such as an ion or an imidazole key, or an aliphatic -28 - 200837413 amine ion such as a trimethylhexylammonium ion, or an inorganic ion such as no3_, ch3co2-, BF6_ or PF6. An ionic liquid antistatic agent such as (CF3S02) 2Ν·, CF3C02-, cf3so, or the like containing an organic anion such as fluorine; and a 4-stage ammonium salt-based antistatic agent is preferably used. The component of the component (F) is, for example, a mixture of a compound having a lithium salt-based antistatic agent and a polymerizable unsaturated group, which is Sankono 1A600 - 5 OR , Sankonol A600-3OR , A600-20R , PETA-30R , PETA-20R, A400-20R, MEK-50R (above, Sanko Chemical Industry Co., Ltd.); ionic liquid antistatic agent IL-P 14, IL-A2 (above, manufactured by Kwong Wing Chemical Industry Co., Ltd.); The ammonium salt-based antistatic agent is Elegant264-WAX, SS-100 (above, manufactured by Nippon Oil Co., Ltd.). The antistatic agent may be used alone or in combination of two or more. In the coating composition for an optical waveguide, the amount of the component (F) to be added is 100 parts by mass, and the total amount of the component (A) to the component (D) and the component (F) is 〜3 to 15 parts by mass. Preferably, it is preferably 0. 6 to 10 parts by mass, particularly preferably 1 to 5 parts by mass. If the amount added is not up to 〇. When it is 3 parts by mass, the antistatic property is lowered. In addition, when the amount is more than 15 parts by mass, the bending durability of the film-shaped optical waveguide for use in the antistatic layer for curing the coating composition for an optical waveguide is adversely affected. In addition to the components (A) to (E), the photocurable resin composition of the present invention may contain, for example, components (A) to (C), as long as the properties of the resin composition of the present invention are not impaired. a compound of a polymerizable reactive group or a polymer resin (for example, an epoxy resin, an acrylic resin, a polyamide resin, a polyimide resin, a polyurethane resin, a polybutylene -29-200837413 diene resin, a poly Chloroprene resin, polyether resin, polyester resin, styrene-butadiene block copolymer, petroleum resin, xylene resin, ketone resin, cellulose resin, fluorine polymer, polyoxynene polymer )Wait. Further, as various additives to be added as necessary, for example, an antioxidant, a UV absorber, a photostabilizer, a decane coupling agent, a coating surface modifier, a thermal polymerization inhibitor, a coating agent, a surfactant, and a coloring may be mentioned. Agent, preservation stabilizer, plasticizer, slip agent, skimmer, inorganic particles, aging inhibitor, wettability improver, antistatic agent, and the like. The photocurable resin composition can be prepared by mixing and stirring the components of the former according to a usual method. As a material for forming the optical waveguide (lower composite layer, core portion, and upper composite layer) of the film-shaped optical waveguide of the present invention, acrylic photocurability can be applied from the viewpoint of adhesion between the optical waveguide and the protective layer. Resin composition. When the optical waveguide is formed using the acrylic photocurable resin composition, the surface contact with the protective layer does not require surface treatment, and good adhesion can be obtained. Specific preferred examples of the radiation curable composition for forming an optical waveguide include one or more compounds selected from the group consisting of (Ia) and (Ib), and (Ic) and (Id). Radiation hardening composition. Further, the component (Ia) used for the radiation curable composition for an optical waveguide may be the same as the (meth)acrylic polymer containing the unsaturated group in the component (Ic), and the component (Ib) may be used as described above. The component (A) urethane (meth) acrylate oligomer is the same. Further, the component (I-c) is a reactive diluent -30-200837413 similar to the component (A), and the component (I-d) is a photopolymerization initiator similar to the component (D). Moreover, examples of various additives to be added as necessary include an antioxidant, an ultraviolet absorber, a photostabilizer, a decane coupling agent, a coating surface modifier, a thermal polymerization inhibitor, a coating agent, a surfactant, a colorant, and The stabilizer, the plasticizer, the slip agent, the skimmer, the inorganic particles, the aging preventive agent, the wettability improver, the antistatic agent, and the like are stored. Next, an example of the film-shaped optical waveguide of the present invention will be described with reference to the drawings. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic cross-sectional view showing an example of a film-like optical waveguide with a protective layer of the present invention. Fig. 2 is a flow chart showing an example of a method of manufacturing a film-like optical waveguide with a protective layer of the present invention. [Structure of Film-Shaped Optical Waveguide] In Fig. 1, the film-shaped optical waveguide 24 is formed by laminating the protective layer 8 and the upper surface of the protective layer 8 to form the lower composite layer 1〇 and the upper surface of the lower composite layer 1〇. The core portion 18 having a specific width is formed by laminating the upper composite layer 10 and the core portion 18 to form the upper composite layer 20 and the protective layer 22 formed by laminating the upper surface of the upper composite layer 20. Further, the core portion 18 is buried in the lower composite layer 10 and the upper composite layer 20. The thickness of the lower composite layer, the core portion, and the upper composite layer is not particularly limited. For example, the thickness of the lower composite layer is set to 1 to 200 μm, the thickness of the core portion is set to 3 to 200 μm, and the thickness of the upper composite layer is set to 1 to 1. 200μπι. The width of the core portion is not particularly limited, for example! ~2〇〇μπι. 200837413 The refractive index of the core portion must be greater than any of the lower composite layer and the upper composite layer. For example, for a light having a wavelength of 400 to i/O 0 nm, the refractive index of the core portion is 1.420 to 1. 650, the lower composite layer and the upper composite layer have a refractive index of 1. 400~1. 648, and the refractive index of the core portion is at least 0. 1% larger is better. The protective layer is one with high transparency. The protective layer has high transparency, and a light-emitting element such as a light-emitting laser or a light-receiving element such as a photodiode is formed on the lower surface of the film-shaped optical waveguide, and a light-emitting element such as a photodiode is formed to form a light-emitting device. The waveguide is seen from above, and the position of the light-emitting element or the light-receiving element and the position of the core portion in the film-shaped optical waveguide can be correctly aligned. Moreover, since the protective layer has high transparency, it can express a high transmittance of light in a wavelength region used for the optical signal, and the optical signal of the light-emitting element passes through the protective layer and the composite layer and reaches the core portion. And the loss of light when the optical signal of the core portion passes through the composite layer and the protective layer and reaches the light receiving element is extremely small. Further, when the protective layer has a thickness of 1 Å/m, it has a transmittance of 80% or more for light having a wavelength of 40 5 nm, and preferably has a transmittance of 90% or more. The thickness of the protective layer is preferably 1 to 50 #m, preferably 1 to 25//m', and particularly preferably 1 to 1 5 // m. Further, the protective layer may be formed at least so as to cover the entire lower surface of the lower composite layer and the upper surface of the upper composite layer. -32-200837413 [Manufacturing method of film-shaped optical waveguide] The method of manufacturing the film-shaped optical waveguide 24 of the present invention includes the steps of forming the protective layer 8, forming the lower composite layer i, and forming the core portion 18. The step of forming the upper composite layer 20 and the step of forming the protective layer 22. Among these steps, the step of forming the protective layer 8 and the step of forming the protective layer 22 are a step of hardening the photocurable resin composition after light irradiation. Further, each of the photocurable resin composition forming the protective layer 8 and the photocurable resin composition forming the protective layer 22 may be simply referred to as a composition for the lower protective layer and a composition for the upper protective layer. Further, the photocurable resin composition constituting the lower portion of the optical waveguide lower layer 10 and the respective portions for forming the core portion 18 and the upper composite layer 20 may be simply referred to as a composition for the lower layer, a composition for the core, and a composition for the upper layer. (1) Preparation of Photocurable Resin Composition The composition of the composition for the lower protective layer and the composition for the upper protective layer is not particularly limited, and it is preferable to use the same photocurable resin composition economically and in manufacturing management. . The viscosity of the photocurable resin composition for forming a protective layer is preferably from 1 to 10,000 cps (25 ° C), more preferably from 5 to 8,000 cps (25 ° C), particularly preferably from 10 to 5,000 cps (25 °). C). When the viscosity is outside this range, the treatment of the photohardenable resin composition becomes difficult, or it is difficult to form a uniform coating film. Further, the viscosity can be appropriately adjusted by changing the amount of addition such as an organic solvent. On the one hand, the composition of the lower layer, the composition for the core, and the components of the composition for the upper layer -33-200837413 are composed, depending on the refractive index relationship of the portions of the lower composite layer 1 , the core portion 18 and the upper composite layer 20 . Satisfied with the conditions required for the optical waveguide. Specifically, the difference in refractive index may be two or three kinds of photocurable resin compositions of a suitable size, wherein the photocurable resin composition of the cured film having the highest refractive index is used as a core composition, and other photocurable resins. The composition is used as a composition for the lower layer and a composition for the upper layer. Further, when the composition for the lower layer and the composition for the upper layer are the same photocurable resin composition, it is preferable in terms of economy and manufacturing management. (2) Preparation of substrate As shown in (a) of Fig. 2, a substrate 2 having a flat surface was prepared. The type of the substrate 2 is not particularly limited, and for example, a tantalum substrate or a glass substrate can be used. (3) Step of forming a protective layer A step of forming a protective layer 8 on the substrate 2 is carried out. Specifically, as shown in Fig. 2(b), the protective layer film 4 is formed by applying a composition for the lower protective layer on the surface of the substrate 2 to dry or pre-bake. The protective layer 4 is irradiated with light 6 and cured to form a protective layer 8 of a hardened body (see (c) and (d) in Fig. 2). Further, in the step of forming the protective layer 8, the film is entirely irradiated with light, and it is preferable to harden the whole. As a coating method of the composition for a protective layer, a spin coating method, a dip coating method, a spray method, a bar coating method, a roll coating method, a curtain coating method, a gravure printing method, a screen printing method, or the like can be used. Spray coating method and other methods. -34- 200837413 Among them, a spin coating method is preferred from the viewpoint of obtaining a film for a protective layer having a uniform thickness. Further, it is preferable that the film for a protective layer formed of the composition for a protective layer is applied, and an organic solvent or the like is removed for the purpose of performing a pre-bake at a temperature of 50 to 500 Torr. The amount of light irradiation when the protective layer 8 is formed is not particularly limited, and it is preferred to irradiate light having a wavelength of 200 to 450 nm and an illuminance of 1 to 500 mW/cm 2 to an irradiation amount of 5,000 5,000 mJ/cm 2 . As the kind of light to be irradiated, visible light, ultraviolet rays, infrared rays, X-rays, α-rays, β-rays, γ-rays, or the like can be used, and among them, ultraviolet rays are particularly preferable. As the light irradiation device, for example, a high pressure mercury lamp, a low pressure mercury lamp, a metal halide lamp, an excimer lamp or the like can be preferably used. Further, at the time of exposure, the exposure environment can be made to flow under a nitrogen atmosphere as necessary, and the curability can be improved. Also, post-baking can be performed after exposure. The heating condition may be different depending on the composition of the photocurable resin composition, and is usually 30 to 250 ° C, preferably 50 to 200 ° C, more preferably 100 to 150 ° C, for example, 5 minutes to 7 2 hours of heating time. By performing post-baking, the coating film can be sufficiently cured. Further, the method of applying the composition in the step of forming the protective layer 8, the amount of irradiation of light, the type, and the irradiation device of light (ultraviolet rays), the pre-bake and the post-baking are equal to the formation step of the protective layer 22 to be described later. The same is true - 35 - 200837413 (4) The step of forming the lower composite layer The step of forming the lower composite layer 10 on the protective layer 8 is carried out. Specifically, as shown in Fig. 2(e), the composition for the lower layer is applied onto the protective layer 8, and dried or pre-baked to form a film for the lower layer. The lower layer is irradiated with light by a film and hardened to form a composite layer 1 之下 under the hardened body. Further, in the step of forming the lower composite layer 1 , the film is entirely irradiated with light, and it is preferable to harden the whole. Among them, as a coating method of the composition for the lower layer, a spin coating method, a dipping method, a spray method, a bar coating method, a roll coating method, a curtain coating method, a gravure printing method, a screen printing method, or a jetting method can be used. Any method such as coating method. Among them, a spin coating method is preferred from the viewpoint of obtaining a film for a layer having a uniform thickness. Further, the rheological properties of the composition for the lower layer are obtained by the corresponding coating method, and various coating agents, thixotropic agents, tanning agents, organic solvents, surfactants, etc. may be added to the composition for the lower layer as necessary. It is better. Further, for the purpose of removing the organic solvent or the like by the lower layer composition, the pre-baking at a temperature of 50 to 200 ° C is preferably carried out for the purpose of removing the organic solvent, and the coating in the step of forming the lower composite layer. The cloth method, the improvement of the rheological property, and the like are also the same in the step of forming the core portion described later or the step of forming the upper composite layer. The amount of light to be irradiated when forming the lower composite layer is not particularly limited, and it is preferred to irradiate light having a wavelength of 200 to 450 nm and an illuminance of 1 to 500 mW/cm 2 to an irradiation amount of 10 to 5,000 mJ/cm 2 . -36- 200837413 As the type of light to be irradiated, visible light, ultraviolet light, X-ray, α-line, β-line, γ-ray, etc., in which ultraviolet light is used as a light irradiation device, for example, a high-pressure mercury lamp or a low-pressure water genus can be used. Halogen lamps, excimer lamps, and the like are preferred. Further, after the exposure, the post-baking is preferably 30 to 250 ° C, preferably 50 to 200 ° C, more preferably 100, depending on the composition of the photocurable resin composition. ~ For example, a heating time of 5 minutes to 72 hours can be performed. By post-baking, the coating film can be fully cured. Further, the irradiation amount of light and the irradiation device for light (ultraviolet rays) in the step of forming the lower composite layer are the same in the step of forming the core portion to be described later or the step of forming the upper composite layer. (5) Step of forming the core portion Next, on the upper surface of the lower composite layer 10, as shown in Fig. 2, the composition for the core is coated, and dried or pre-baked to form a core. Thereafter, as shown in (g) of FIG. 2, the core film 12 is irradiated (exposed) by the light 16 in accordance with a predetermined pattern, for example, via a predetermined line mask 14. Thereby, in the core: only the position where the light is irradiated is hardened, and after the uncured portion is removed by the image processing, as shown in (h) of FIG. 2, the lower portion can be formed by the pattern. The core portion 18 formed by the cured film. The detailed description of the development processing in this step is as follows. The development process is based on the pattern, and the pattern is exposed. For the selection of the infrared rays, the lamp is used as the lamp, and the gold is used. The difference is the pattern of the top pattern of the film 12 formed at 150 ° C. The film 12 is divided into a film of the selective layer-selective hard-37-200837413, and the uncured portion is removed by using the developing solution by using the difference in dissolution between the hardened portion and the uncured portion. In other words, the pattern is removed after exposure. An unhardened portion, and a hardened portion is left, and a core portion is formed. As the developing solution used for the development treatment, an organic solvent can be used. Examples of the organic solvent include acetone, methanol, ethanol, and isopropyl. Alcohol, ethyl lactate, propylene glycol monomethyl ether acetate, methyl pentanone, methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether, etc. The development time is generally 30 to 600 seconds. The development method is a well-known method such as a liquid pool method, a dipping method, or a shower development method. After development, the film can be directly removed by air drying to form a pattern-like film. The pattern-shaped film (pattern forming portion) is formed. After that, the figure The forming portion is subjected to post-baking. The heating condition depends on the composition of the photocurable resin composition, etc., but is generally 30 to 250 ° C, preferably 50 to 20 0 ° C, and more. Preferably, the heating time is from 100 to 150 ° C, for example, heating time of from 5 minutes to 10 hours. By heat treatment, the coating film can be sufficiently cured in a comprehensive manner. In this step, as a basis of the predetermined pattern The method of light irradiation is not limited to the method of using the photomask 14 formed by the light transmitting portion and the non-transmitting portion, and for example, any of the following methods a to c may be employed. A method of electrically and optically using a mask image formed by a light-transmitting region and a light-impermeable region in accordance with a predetermined pattern is used in the same principle as that of a liquid crystal display device. b. A light guiding member in which a plurality of optical fibers are bundled, and a method of irradiating light to the optical fiber of a predetermined pattern in the light guiding member. -38 - 200837413 C. A method in which the obtained convergent light is irradiated onto the photocurable resin composition by scanning light, or a collecting optical system such as a lens or a mirror. (6) Step of forming the upper composite layer The upper layer composition is coated on the upper surface of the core portion 18 and the lower composite layer 10, and dried or pre-baked to form a film for the upper layer. The upper layer film is irradiated with light and hardened to form an upper composite layer 20 as shown in Fig. 2(i). Further, by heating the upper composite layer 20, the coating film can be sufficiently sufficiently cured. The heating condition is usually 30 to 250 ° C, preferably 50 to 200 ° C, more preferably 100 to 15 ° C, for example, a heating time of 5 minutes to 72 hours. (7) Step of Forming Protective Layer A step of forming the protective layer 22 on the upper surface of the upper composite layer 20. Specifically, as shown in (j) of FIG. 2, a composition for an upper protective layer is applied onto the upper composite layer, and after drying or pre-baking, a film for a protective layer is formed, and the protective layer is irradiated with light and made After hardening, a protective layer 22 of a hardened body is formed. Further, in the step of forming the protective layer 22, the film is entirely irradiated with light, and the entire hardening is preferably performed. After the exposure, heat treatment (postbaking) may be performed, and as described above, when the protective layer 22 is formed, the coating method of the protective layer composition, the conditions of the pre-bake, the amount of light irradiation and the type, and the irradiation of light-39- 200837413 The conditions for setting and post-roasting are the same as the steps of forming the protective layer 8 described above. (8) Peeling of the substrate The cured product produced in the above steps (1) to (7) is peeled off from the substrate 2 to obtain a film-shaped optical waveguide (see (k) in Fig. 2). As the peeling method, for example, a method in which the optical waveguide produced on the ruthenium substrate is immersed in warm water or hydrofluoric acid can be mentioned. [Embodiment] [Embodiment] Hereinafter, the present invention will be more specifically described by way of examples. [1. Preparation of Photocurable Resin Composition for Protective Layer] As the components (A) to (E), the following materials were prepared. [Component (A)] In a reaction vessel equipped with a stirrer, 16 parts by mass of isophorone diisocyanate, 7 parts by mass of polypropylene glycol having a number average molecular weight of 2,000, and 2,6-di-t-butyl are placed. 1 part by mass of hydrazino-cresol hydrazide, cooled at 5 to 1 ° C. 5 parts by mass of di-n-butyltin ruthenium dilaurate was added thereto while stirring, and while maintaining the temperature at 3 (TC or less), the mixture was stirred for 2 hours, and then heated to 50 ° C and stirred for 2 hours. 2. Peroxyethyl acrylate 8. 7 parts by mass (the total amount of the above is 100 parts by mass), and after the completion of the dropwise addition, the reaction was carried out at 50 ° C for 1 hour, and the temperature was further raised to 65 ° C and the reaction was carried out for 2 hours. When the residual isocyanate is 〇·1 mass% or less, the reaction of -40-200837413 is terminated to obtain a compound A-1. Compounds A-2 to A-5 were obtained in the same manner. The names of the raw materials and the amounts of the materials used in the production of the compounds A-1 to A-5 are shown in Table 1. [Table 1] Unit: parts by mass A-1 A-2 A-3 A-4 A-5 Steroid 2-hydroxyethyl acrylate 8. 7 9 2. 2 23. 7 57. 1 isophorone diisocyanate 16. 6 face plug surface toluene diisocyanate 13. 5 3. 3 35. 5 42. 8 PPG2000(1) 74. 7 77. 5 division face PPG 1 0000(2) _ 94. 5 a DA400(3) - _ - 40. 8 雠(1) polypropylene glycol (number average molecular weight 2,000) (2) polypropanol (number average molecular weight 10, 〇〇〇) (3) polyethylene oxide bisphenol A ether [ingredient (B)] N-ethylene- 2-Pyrrolidone (manufactured by K.K.) bisphenol A EO adduct diacrylate (Biscoat 700, Osaka Organic Chemical Industry Co., Ltd.) Isobornyl acrylate (IBXA, Osaka Organic Chemical Industry Co., Ltd.) 1,6- Diol diacrylate (Lite acrylate 1,6-HX-A, manufactured by Kyoei Chemical Co., Ltd.) -41 - 200837413 [Component (c)] Preparation Example 1 A flask with a dry ice/methanol reflux was replaced with nitrogen. , used as a polymerization initiator, 2,2,-azobis(2,4-dimethylvaleronitrile). 5 g, 90 g of methyl isobutyl ketone was used as an organic solvent, and stirred until the polymerization initiator was dissolved. Further, 20 g of 2-hydroxyethyl methacrylate, 25 g of dicyclopentyl acrylate, 40 g of methyl methacrylate, and 15 g of n-butyl acrylate were charged, and then stirring was started slowly. Thereafter, the temperature of the solution was raised to 70 ° C, and polymerization was carried out at this temperature for 6 hours. Thereafter, in the resulting solution, di-n-butyltin strontium dilaurate is charged. 12g, 2,6-di-t-butyl-p-cresol. 5 g of 2-methylpropoxyethyl isocyanate (2.3 g) having a temperature maintained at 6 ° C or lower was added dropwise while stirring. After the completion of the dropwise addition, the reaction was carried out at 60 ° C for 5 hours to obtain a polymer solution having a methacryl group in the side chain. Thereafter, the reaction product was dropped into a large amount of hexane, and the reaction product was solidified. Further, the coagulum was redissolved with tetrahydrofuran of the same mass, and re-solidified with a large amount of hexane. After the re-dissolution-solidification operation was carried out 3 times, the obtained coagulum was vacuum dried at 40 ° C for 48 hours to obtain a desired copolymer C -1 . Preparation Example 2 A flask equipped with a dry ice/methanol reflux vessel was substituted with nitrogen, and then charged with 2 g of 2,2'-azobisisobutyronitrile as a polymerization initiator, and methyl isobutyl ketone as an organic solvent was used. Stir until the polymerization initiator is dissolved. Continuing, loading 20 g of 2-hydroxyethyl methacrylate, l〇g -42-200837413 methacrylate, l〇g of dicyclopentyl acrylate, 25 g of styrene, and 5 g of η-butyl acrylate After that, start stirring slowly. Thereafter, the temperature of the solution rose to 8 〇. 〇, polymerization was carried out at this temperature for 6 hours. Thereafter, in the resulting solution, di-n-butyltin dilaurate was charged. 13g, 2,6-di-t-butyl-P-formamidine 〇. 〇 5g, while stirring, 2 - methyl propylene oxyethyl isocyanate having a temperature maintained below 60 ° C was added. 5g. After the completion of the dropwise addition, the reaction was carried out for 5 hours at 6 (TC) to obtain a polymer solution having a methacryl group in the side chain. Thereafter, the reaction product was dropped into a large amount of hexane, and the reaction product was solidified. The coagulum and the same mass of tetrahydrofuran were re-solidified in a large amount. After the re-dissolution-solidification operation was carried out 3 times, the obtained coagulum was vacuum dried at 4 (TC for 48 hours to obtain a copolymer of interest). C-2. The above-mentioned raw material names and addition amounts used in the production of the copolymers Cl and C-2 are shown in Table 2. [Table 2] Unit: g C-1 C-2 Monomer 2-hydroxyethyl group Methacrylate 20 20 Methacrylic acid 10 Dicyclopentyl acrylate 25 10 Styrene-25 η·Butyl acrylate 15 35 Methyl methacrylate 40 Reactive component 2·Methyl propylene oxyethyl Isocyanate 23. 7 23. 5 [Component (D)] Photoradical polymerization initiator (trade name "Irgacure 3 69", Cib -43- 200837413

Specialty Chemicals 公司製) 〔成分(E )〕 甲基異丁基酮 〔成分(F )〕 鋰鹽系防靜電劑(三榮化學工業公司製、 SankonolA600-50R ) 4級銨鹽系防靜電劑(日本油脂公司製、EleSant264-WAX ) 離子性液體防靜電劑(廣榮化學工業公司製、1L-A2 〔保護層用光硬化性樹脂組成物之調製〕 以表3所示添加比例,將上述成分(A )(化合物A-1〜A-5)、及成分(B)〜(F)均勻混合,得到保護層用 光硬化性樹脂組成物J-1〜J-9。 -44 - 200837413 〔表3〕 單位:質量份 J-l J-2 J-3 J-4 J-5 J-6 J-7 J-8 J-9 成分A A-1 32 一 華 麵 32 32 32 A-2 • 32 30 30 麵 • 一 義 A-3 3 3 3 3 3 3 3 A-4 10 10 10 10 睡 細 10 10 10 A-5 13 13 12 12 _ 13 13 13 成分B N-乙烯-2-卩比略垸酮 9 9 8 8 23 9 9 9 9 雙酚A EO加成物二丙烯酸酯 14 14 13 13 36 14 14 14 14 異冰片基丙烯酸酯 9 9 8 8 23 9 9 9 9 1,6-己二醇二丙烯酸酯 7 7 6 6 18 7 7 7 7 成分C C-1 麵 一 10 画 58 两 • 擊 C-2 麵 10 麵 • 成分D Irgacure369 3 3 3 3 3 3 3 3 3 成分E 甲基異丁基酮 . 25 25 • 25 25 25 成分F Sankonol A600-50R 幽 細 3 一 • Elegant 264-WAX 3 _ IL-A2 3 合計 100 100 128 128 103 100 131 131 131 〔2.準備光波導用光硬化性樹脂組成物〕 ί乍爲下部及上部復合層形成用之光硬化性樹脂組成物 ,準備下述(I-a)〜(l-e)成分,以(i-a)成分;1〇〇 質量份、(I-b)成分;43質量份、(I-c)成分:43質量 份、(I-d)成分:3質量份、(I-e)成分;95質量份之 添加比例混合,得到復合層用硬化性組成物。 〔(I-a)成分〕 附有乾冰/甲醇迴流器之燒瓶以氮氣取代後,裝入作 爲聚合啓始劑使用2,2,-偶氮雙(2,4-二甲基戊腈)1.5g, -45- 200837413 作爲有機溶劑使用丙二醇單甲基醚乙酸酯115g,攪拌至溶 解聚合啓始劑爲止。繼續,裝入羥基乙基甲基丙烯酸酯 20g、二環戊基甲基丙儲酸酯25g、甲基甲基丙嫌酸酯40g 、及η- 丁基丙烯酸酯1 5 g後,開始緩慢攪拌。其後,將溶 液之溫度上升至70 °C,以該溫度進行6小時聚合。其後, 於所得之溶液中,裝入二月桂基酸二-η-丁基錫0.12 g、 2,6-—-卜丁基1-甲酣0.05§,一邊攪梓下一邊滴入溫度維 持於60°C以下的2-甲基丙烯氧乙基異氰酸酯23.7g。滴下 終了後,於60 °C進行5小時反應,得到側鏈具有甲基丙烯 基之聚合物溶液。其後,將反應生成物滴入多量己烷中, 並凝固反應生成物。且,再溶解該凝固物與同質量之四氫 呋喃,以多量己烷使其再度凝固。該再溶解-凝固操作進 行3次後,將所得之凝固物於40°C下進行48小時真空乾 燥,得到作爲(I - a )之目的共聚物。 〔(I-b )成分〕 於具備攪拌機之反應容器中,裝入異佛爾酮二異氰酸 酯13.6質量份、數平均分子量爲2,000的聚丙二醇81.7 質量份、2,6-二-t-丁基-P-甲酚〇.〇1質量份,冷卻於5〜10 °C。一邊攪拌一邊加入二月桂基酸二-η-丁基錫〇·〇5質量 份,調整溫度保持於3 0 °C以下同時攪拌2小時後,昇溫至 5 〇°C後再攪拌2小時。繼續滴入2-羥基乙基丙烯酸酯4.7 質量份(以上之合計量爲1 0 0質量份),滴下終了後於5 0 〜7 0 °C下進行1小時反應。殘留異氰酸酯至〇·1質量%以 -46 - 200837413 下時終止反應,得到(I - b )成分。 〔(I-c)成分〕 三羥甲基丙烷三丙烯酸酯(大阪有機化學工業公司製 〔(I-d)成分〕 光自由基聚合啓始劑(商品名「Irgacure369」、Ciba Specialty Chemicals 公司製) 〔(I-e)成分(有機溶劑)〕 丙二醇單甲基醚乙酸酯 作爲芯形成用之光硬化性樹脂組成物準備下述(II-a )〜(ΙΙ-e )成分,以(ΙΙ-a)成分;100質量份、(II-b )成分;43質量份、(II-c)成分:43質量份、(II-d) 成分:3質量份、(ΙΙ-e)成分;90質量份之添加比例進 行混合,得到芯形成用硬化性組成物。 〔(II-a)成分〕 附有乾冰/甲醇迴流器之燒瓶以氮氣取代後,裝入作 爲聚合啓始劑使用2,2’-偶氮雙異丁腈3g,作爲有機溶劑 使用丙二醇單甲基醚乙酸酯1 1 5 g,攪拌至溶解聚合啓始劑 爲止。繼續,裝入羥基乙基甲基丙烯酸酯20g、二環戊基 甲基丙烯酸酯30g、苯乙烯25g、及η -丁基丙烯酸酯25g -47- 200837413 後,開始緩慢攪拌。其後,提高溶液之溫度: 溫度進行6小時聚合。 其後,於所得之溶液中,裝入二月桂基 0.13g、2,6-二-t· 丁基-P-甲酚 0.05g,一邊攪 溫度維持於60°C以下的2-甲基丙烯氧乙基勇 。滴下終了後,於60 °C進行5小時反應,得 基丙烯基之聚合物溶液。其後,將反應生成 烷中,並凝固反應生成物。且,再溶解該凝 之四氫呋喃,以多量己烷使其再度凝固。| 操作進行3次後,將所得之凝固物於40°C T 真空乾燥,得到目的共聚物。 〔(II-b )成分〕 於具備攪拌機之反應容器中,裝入異佛 酯13.6質量份、數平均分子量爲2,000的; 質量份、2,6 -二-t-丁基-P-甲酚0.01質量份, °C。一邊攪拌一邊加入二月桂基酸二-η· 丁基 份,調整溫度保持於3 0 °C以下同時進行2小 溫至50 °C再進行2小時攪拌。繼續滴入2_ 酸酯4.7質量份(以上的合計量爲1〇〇質量 了後,於5 0〜7 0 °C下反應1小時。殘留異氰 量%以下時終止反應’得到(I-b )成分。 〔(II-c )成分〕 8〇°C,以該 酸二-η-丁基錫 拌下一邊滴入 [氰酸酯23.7g 到側鏈具有甲 物滴入多量己 固物與同質量 ^再溶解-凝固 ‘進行48小時 爾酮二異氰酸 聚丙二醇8 1.7 冷卻至5〜1 〇 錫0.0 5質量 時攪拌後,昇 羥基乙基丙烯 份),滴下終 酸酯至〇. 1質 -48- 200837413 三羥甲基丙烷三丙烯酸酯(大阪有機化學工業公司製 〔(ΙΙ-d)成分〕 光自由基聚合啓始劑(商品名「Irgacure369」、Ciba Specialty Chemicals 公司製) 〔(ΙΙ-e )成分(有機溶劑)〕 丙二醇單甲基醚乙酸酯 〔3.薄膜狀光波導之形成〕 〔實施例1〕 (1 )保護層之形成 將保護層用光硬化性樹脂組成物J-1於矽基板上面以 轉動塗佈機進行塗佈,其次於光硬化性樹脂組成物1所 成的塗膜上,以波長3 65nm,照度20mW/cm2之紫外線進 行1 〇〇秒照射,使其光硬化後作爲厚度1 0 // m之保護層。 (2 )下部復合層之形成 將復合層形成用光硬化性樹脂組成物於保護層上面以 轉動塗佈機進行塗佈,使用加熱板進行100 °C,10分鐘之 條件的預燒烤。其次於復合層形成用光硬化性樹脂組成物 所成的塗膜上,以波長3 65nm,照度20mW/cm2之紫外線 照射75秒,使其光硬化。然後將該硬化膜以150°C,1小 -49- 200837413 時之條件下進行,並燒烤後作爲厚度1 0 // m之下部 (3 )芯部分之形成 將芯形成用光硬化性樹脂組成物於下部復合層 動塗佈機進行塗佈,以100 °C,1〇分鐘之條件下進 烤。其此於芯形成用光硬化性樹脂組成物所成的厚, //m之塗膜上,介著具有寬50//m之線路(line) 的光罩,以波長365nm、照度20mW/cm2之紫外線丨 秒,並使其光硬化。然後將具有經硬化塗膜的基板 所成的顯像液中浸漬,溶解塗膜之未曝光部。其 1 5 0 °C,1小時的條件下進行後燒烤,形成具有寬 之線路(line )狀圖型之芯部分。 (4)上部復合層之形成 於具有芯部分之下部復合層的上面,將復合層 光硬化性樹脂組成物以轉動塗佈機進行塗佈,使用 於10 0 °C,10分鐘的條件下進行預燒烤。其後,於 形成用光硬化性樹脂組成物所成的塗膜上,以波長 ,照度20mW/cm2之紫外線進行75秒照射並使其 ,形成自芯部分上面的厚度爲l〇//m之上部復合層 (5 )保護層之形成 將保護層用光硬化性樹脂組成物J-1於上部復 復合層 上以轉 行預燒 f 50 狀圖型 裔射75 於丙酮 後,於 5 0 // m 形成用 加熱板 復合層 3 6 5 nm 光硬化 合層的 -50- 200837413 上面,以轉動塗佈機進行塗佈,其次於光硬化性樹脂組成 物J-1所成的塗膜,以波長365nm,照度20mW/cm2之紫 外線照射1 00秒並使其光硬化,作爲厚度1 0 // m之保護層 (6 )基板之剝離 將由上述(1 )〜(5 )的步驟所形成之硬化物,自基 板剝離後,得到層、下部復合層、芯部分、上部復合層、 及保護層之順序層合所成之薄膜狀光波導。 〔實施例2〜7、比較例1〜3〕 使用於形成保護層之光硬化性樹脂組成物如表4改變 以外,與實施例1相同下形成薄膜狀光波導。 〔4 ·薄膜狀光波導之評估〕 薄膜狀光波導(實施例1〜7、比較例1〜3 )依據如 下進行評價。 〔1·彎曲耐久性〕 對於製作的薄膜狀光波導(寬lcm,長10cm,厚度 90//m),進行溫度23°C,濕度50%之環境下的彎曲試驗 。試驗條件爲,彎曲半徑2mm,彎曲角度±135°,彎曲速 度100次/分鐘,荷重100g。且,彎曲回數爲自開始的〇 度位置(薄膜狀光波導爲水平狀態),往+ 1 3 5度之位置 -51 - 200837413 彎曲,再次經由0度之位置往-1 3 5度之位置彎曲後,回複 製0度位置的動作作爲1次。測定薄膜狀光波導上產生斷 裂之次數,彎曲次數即使超過10萬次亦不會產生斷裂或 裂痕時爲「〇」,彎曲次數於10萬次以内產生斷裂或裂 痕時爲「X」。 〔2.透明性〕 保護層(厚度:1 0 // m )之透明性以分光光度計所測 定。405 nm波長下的光透過率爲80%以上時爲「〇」,未 達80%時爲「X」。 〔3 ·防靜電性〕 對於所製作的薄膜狀光波導之保護層所形成的面,於 溫度23°C,濕度50%之環境下,依據JISK69 1 1 ( 1 995年 版)之 5.13的電阻率之欄所規定的測定方法使用 Hight · Resistance ·測定器(Agilent · technology (股)製 Agilent 4 3 3 9 B ) 、及 Resistivity · Cell 1 6008B (Specialty Chemicals Co., Ltd. [Component (E)] Methyl isobutyl ketone [Component (F)] Lithium salt antistatic agent (Sankonol A600-50R, manufactured by Sanei Chemical Industry Co., Ltd.) 4-grade ammonium salt-based antistatic agent ( Manufactured by Nippon Oil Co., Ltd., EleSant 264-WAX) ionic liquid antistatic agent (manufactured by Kwong Wing Chemical Industry Co., Ltd., 1L-A2 [Preparation of photocurable resin composition for protective layer] (A) (Compounds A-1 to A-5) and the components (B) to (F) are uniformly mixed to obtain photocurable resin compositions J-1 to J-9 for protective layers. -44 - 200837413 [Table 3] Unit: part by mass Jl J-2 J-3 J-4 J-5 J-6 J-7 J-8 J-9 Ingredient A A-1 32 One surface 32 32 32 A-2 • 32 30 30面 • 一义 A-3 3 3 3 3 3 3 3 A-4 10 10 10 10 Sleeping fine 10 10 10 A-5 13 13 12 12 _ 13 13 13 Composition B N-Ethylene-2-indole fluorenone 9 9 8 8 23 9 9 9 9 Bisphenol A EO adduct diacrylate 14 14 13 13 36 14 14 14 14 Isobornyl acrylate 9 9 8 8 23 9 9 9 9 1,6-hexanediol diacrylate Ester 7 7 6 6 18 7 7 7 7 Composition C C-1 Face to 10 58 2 • C-2 face 10 face • Ingredient D Irgacure369 3 3 3 3 3 3 3 3 3 Ingredient E Methyl isobutyl ketone. 25 25 • 25 25 25 Ingredient F Sankonol A600-50R 细细3 One• Elegant 264-WAX 3 _ IL-A2 3 Total 100 100 128 128 103 100 131 131 131 [2. Preparing a photocurable resin composition for an optical waveguide] A photocurable resin composition for forming a lower and upper composite layer Prepare the following (Ia) to (le) components, (ia) component; 1 〇〇 mass part, (Ib) component; 43 parts by mass, (Ic) component: 43 parts by mass, (Id) component: 3 mass And (Ie) component; 95 parts by mass of the addition ratio is mixed to obtain a curable composition for a composite layer. [(Ia) component] A flask with a dry ice/methanol refluxer is substituted with nitrogen, and charged as a polymerization start. 2,2,-azobis(2,4-dimethylvaleronitrile) 1.5 g, -45-200837413 was used as an organic solvent, 115 g of propylene glycol monomethyl ether acetate was used, and stirred until the polymerization initiator was dissolved. . Continuing to charge 20 g of hydroxyethyl methacrylate, 25 g of dicyclopentylmethyl propyl acrylate, 40 g of methyl methacrylate, and 15 g of η-butyl acrylate, and then slowly stirred. . Thereafter, the temperature of the solution was raised to 70 ° C, and polymerization was carried out at this temperature for 6 hours. Thereafter, 0.12 g of di-n-butyltin dilaurate and 2,6---dibutyl 1-methyl hydrazine 0.05 § were placed in the obtained solution, and the temperature was maintained at 60 ° C while stirring. The following 2-methylpropoxyethyl isocyanate 23.7 g. After the completion of the dropwise addition, the reaction was carried out at 60 ° C for 5 hours to obtain a polymer solution having a methacryl group in the side chain. Thereafter, the reaction product was dropped into a large amount of hexane, and the reaction product was solidified. Further, the coagulum was redissolved with tetrahydrofuran of the same mass, and it was coagulated again with a large amount of hexane. After the re-dissolution-solidification operation was carried out three times, the obtained coagulum was vacuum-dried at 40 ° C for 48 hours to obtain a copolymer of interest as (I - a ). [Component (Ib)] In a reaction vessel equipped with a stirrer, 13.6 parts by mass of isophorone diisocyanate and 81.7 parts by mass of polypropylene glycol having a number average molecular weight of 2,000 and 2,6-di-t-butyl-P were charged. - cresol oxime. 1 part by mass, cooled at 5 to 10 °C. While stirring, 5 parts by mass of di-n-butyltin ruthenium dilaurate was added, and the temperature was kept at 30 ° C or lower while stirring for 2 hours, and then the temperature was raised to 5 ° C and stirred for 2 hours. 4.7 parts by mass of 2-hydroxyethyl acrylate was further added dropwise (the total amount of the above was 100 parts by mass), and after the completion of the dropwise addition, the reaction was carried out at 50 to 70 ° C for 1 hour. The reaction was terminated when the residual isocyanate reached 1·1% by mass to -46 - 200837413, and the component (I - b) was obtained. [(Ic) component] Trimethylolpropane triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd. [(Id) component] Photoradical polymerization initiator (trade name "Irgacure 369", manufactured by Ciba Specialty Chemicals Co., Ltd.) [(Ie Component (organic solvent)] propylene glycol monomethyl ether acetate as the photocurable resin composition for core formation, the following (II-a) to (ΙΙ-e) components are prepared, and the (ΙΙ-a) component is used; 100 parts by mass, (II-b) component; 43 parts by mass, (II-c) component: 43 parts by mass, (II-d) component: 3 parts by mass, (ΙΙ-e) component; 90 parts by mass of addition ratio The mixture was mixed to obtain a curable composition for forming a core. [(II-a) component] A flask equipped with a dry ice/methanol reflux vessel was replaced with nitrogen, and then charged as a polymerization initiator using 2,2'-azobis. 3 g of isobutyronitrile, 1 155 g of propylene glycol monomethyl ether acetate was used as an organic solvent, and stirred until the polymerization initiator was dissolved. Thereafter, 20 g of hydroxyethyl methacrylate and dicyclopentylmethyl group were charged. Acrylate 30g, styrene 25g, and η-butyl acrylate 25g -47- 200837413 Slow stirring was started. Thereafter, the temperature of the solution was raised: the temperature was polymerized for 6 hours. Thereafter, 0.13 g of dilauryl, 2,6-di-t-butyl-P-cresol was charged in the obtained solution. 0.05 g, 2-methylpropenyloxyethyl group maintained at a temperature of 60 ° C or lower while stirring. After the completion of the dropwise addition, the reaction was carried out at 60 ° C for 5 hours to obtain a polymer solution of the propylene group. Thereafter, the reaction was carried out. The alkane is formed and the reaction product is solidified, and the condensed tetrahydrofuran is redissolved and re-solidified by a large amount of hexane. | After the operation is carried out three times, the obtained coagulum is dried under vacuum at 40 ° CT to obtain a desired copolymerization. [(II-b) component] In a reaction vessel equipped with a stirrer, 13.6 parts by mass of isophor and a number average molecular weight of 2,000 are charged; parts by mass, 2,6-di-t-butyl-P- 0.01 parts by mass of cresol, ° C. While stirring, di-n-butylate dilaurate was added, and the temperature was kept at 30 ° C or lower while stirring at 2 hours to 50 ° C for 2 hours. 4.7 parts by mass of 2_ acid ester was added (the total amount of the above is 1 〇〇 mass, after 50 to 70 ° C The reaction was carried out for 1 hour. When the residual amount of isocyanide was less than or equal to %, the reaction was terminated to obtain the component (Ib). [(II-c) component] 8 〇 ° C, the acid was mixed with di-n-butyltin and the [cyanate ester was added dropwise. 23.7g to the side chain with a substance dropping into a large amount of solids and the same mass ^ redissolving - solidification '48 hours of ketone diisocyanate polypropylene glycol 8 1.7 cooling to 5~1 〇 tin 0.0 5 mass stirring, Ethyl hydroxyethyl propylene), the final acid ester was added dropwise to 〇. 1 质-48- 200837413 Trimethylolpropane triacrylate (Osaka Organic Chemical Industry Co., Ltd. [(ΙΙ-d) component] Photoradical polymerization started (product name "Irgacure 369", manufactured by Ciba Specialty Chemicals Co., Ltd.) [(ΙΙ-e ) component (organic solvent)] propylene glycol monomethyl ether acetate [3. Formation of film-shaped optical waveguide] [Example 1] ( 1) Formation of Protective Layer The protective layer is coated with a photocurable resin composition J-1 on a top surface of a substrate by a spin coater, followed by a coating film formed of the photocurable resin composition 1, at a wavelength 3 65nm, illuminating 20mW/cm2 of ultraviolet light for 1 〇〇 second irradiation, After hardening the light, it acts as a protective layer with a thickness of 10 // m. (2) Formation of lower composite layer The composite layer-forming photocurable resin composition was applied onto a protective layer by a spin coater, and preheated at 100 ° C for 10 minutes using a hot plate. Next, the coating film formed of the photocurable resin composition for forming a composite layer was irradiated with ultraviolet rays having a wavelength of 3 to 65 nm and an illuminance of 20 mW/cm 2 for 75 seconds to be photocured. Then, the cured film is subjected to a condition of 150 ° C, 1 small -49 to 200837413, and is baked to form a core portion formed by a light-hardening resin having a thickness of 10 0 / m below the (3 ) core portion. The coating was applied to a lower composite layer coater and baked at 100 ° C for 1 minute. This is made thicker by the photocurable resin composition for core formation, and a mask having a width of 50/m is applied to the coating film of //m at a wavelength of 365 nm and an illuminance of 20 mW/cm 2 . UV rays and harden the light. Then, the developing solution formed of the substrate having the cured coating film is immersed to dissolve the unexposed portion of the coating film. It was post-baked at 150 ° C for 1 hour to form a core portion having a wide line pattern. (4) The upper composite layer is formed on the upper surface of the composite layer having the lower portion of the core portion, and the composite layer photocurable resin composition is applied by a spin coater and used at 10 ° C for 10 minutes. Pre-baked. Thereafter, the coating film formed of the photocurable resin composition was irradiated with ultraviolet rays having a wavelength of illuminance of 20 mW/cm 2 for 75 seconds, and the thickness of the upper surface of the core portion was l〇//m. The upper composite layer (5) is formed by a protective layer. The protective layer is coated with a photocurable resin composition J-1 on the upper composite layer to be pre-fired by a f 50-shaped pattern of 75, after acetone, at 50% // m Forming a heating plate composite layer 3 6 5 nm Photohardenable layer -50-200837413 Above, coating with a rotary coater, followed by a coating film of photocurable resin composition J-1, at wavelength 365 nm, ultraviolet light having an illuminance of 20 mW/cm 2 was irradiated for 100 seconds and hardened by light, and as a protective layer of thickness 10 0 / m, the peeling of the substrate would be a cured product formed by the above steps (1) to (5). After peeling off from the substrate, a film-shaped optical waveguide formed by laminating the layer, the lower composite layer, the core portion, the upper composite layer, and the protective layer in this order is obtained. [Examples 2 to 7 and Comparative Examples 1 to 3] A film-shaped optical waveguide was formed in the same manner as in Example 1 except that the photocurable resin composition for forming a protective layer was changed as shown in Table 4. [4. Evaluation of film-shaped optical waveguide] Film-shaped optical waveguides (Examples 1 to 7 and Comparative Examples 1 to 3) were evaluated as follows. [1. Bending durability] A bending test in an environment of a temperature of 23 ° C and a humidity of 50% was carried out on the produced film-shaped optical waveguide (width lcm, length 10 cm, thickness 90/m). The test conditions were a bending radius of 2 mm, a bending angle of ±135°, a bending speed of 100 times/min, and a load of 100 g. Moreover, the number of bending backs is from the initial twist position (the film-shaped optical waveguide is in a horizontal state), and is bent to a position of -1 3 5 degrees -51 - 200837413, and again passes through the position of 0 degrees to a position of -1 3 5 degrees. After bending, the action of copying the 0 degree position is repeated once. The number of occurrences of cracks in the film-shaped optical waveguide was measured. If the number of times of bending exceeded 100,000 times, the number of times of cracking or cracking was not "crack", and when the number of times of bending occurred within 100,000 times, "X" was generated when cracks or cracks occurred. [2. Transparency] The transparency of the protective layer (thickness: 10 // m) was measured by a spectrophotometer. When the light transmittance at a wavelength of 405 nm is 80% or more, it is "〇", and when it is less than 80%, it is "X". [3. Antistatic property] The surface formed by the protective layer of the film-shaped optical waveguide to be produced has a resistivity of 5.13 according to JIS K69 1 1 (1995 edition) under an environment of a temperature of 23 ° C and a humidity of 50%. The measurement method specified in the column uses the Hight · Resistance · measuring instrument (Agilent 4 3 3 9 B manufactured by Agilent Technologies) and Resistivity · Cell 1 6008B (

Agilent · technology (股)製),測定外加電壓100V之條 件下的表面電阻率(Ω/[!)。 薄膜狀光波導之表面抵抗率爲ΐχΐ〇12Ω/□以下時爲「 〇」,超過ΐχΐο12Ω/□,未達ΐχΐ〇14Ω/□時爲「△」, 1χ1014Ω/□以上時爲「X」。 以上的結果如表4所示。 -52- 200837413 〔表4〕 實施例 1 實施例 2 實施例 3 實施例 4 實施例 5 實施例 6 實施例 7 比較 例1 比較 例2 比較 例3 保護層形成 用光硬化性 樹脂組成物 J-1 J-2 J-3 J-4 J-7 J-8 J-9 J-5 J-6 無保 護層 彎曲耐久性 〇 〇 〇 〇 〇 〇 〇 X X X 透明性 〇 〇 〇 〇 〇 〇 〇 〇 〇 / 防靜電性 / / 〇 〇 〇 / / / 由表4得知,本發明的薄膜狀光波導(實施例1〜7 ) 具有優良的彎曲耐久性。又,本發明的薄膜狀光波導之保 護層具有優良的透明性。又,得知本發明之薄膜狀光波導 (實施例5〜7 )更具有優良的防靜電性。另一方面,得知 未含成分(A)之比較例1、2的薄膜狀光波導其彎曲耐久 性不佳。又,不具有保護層之比較例3的薄膜狀光波導之 彎曲耐久性亦不佳。 【圖式簡單說明】 第1圖表示以模型方式表示本發明的附有保護層之薄 膜狀光波導一例子截面圖。 第2圖表示本發明的附有保護層之薄膜狀光波導的一 製造方法例子的流程圖。 【主要元件符號說明】 1 〇 :下部復合層 8 :保護層 -53- 200837413 24 :薄膜狀光波導 1 8 :芯部分 20 :上部復合層 22 :保護層 -54Agilent · technology (manufacturing)), measuring the surface resistivity (Ω/[!) under the applied voltage of 100V. When the surface resistivity of the film-shaped optical waveguide is ΐχΐ〇12 Ω/□ or less, it is “〇”, and when it is less than ΐχΐο12 Ω/□, it is “Δ” when it is less than 14 Ω/□, and “X” when it is 1χ1014 Ω/□ or more. The above results are shown in Table 4. -52-200837413 [Table 4] Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Comparative Example 1 Comparative Example 2 Comparative Example 3 Photocurable resin composition for forming a protective layer J- 1 J-2 J-3 J-4 J-7 J-8 J-9 J-5 J-6 Unprotected layer bending durability 〇〇〇〇〇〇〇 透明 〇〇〇〇〇〇〇〇〇 〇〇〇〇〇〇〇〇〇 / Antistatic property / / / / / From Table 4, the film-shaped optical waveguide of the present invention (Examples 1 to 7) has excellent bending durability. Further, the protective layer of the film-shaped optical waveguide of the present invention has excellent transparency. Further, it was found that the film-shaped optical waveguide of the present invention (Examples 5 to 7) has excellent antistatic properties. On the other hand, it was found that the film-shaped optical waveguides of Comparative Examples 1 and 2 which did not contain the component (A) had poor bending durability. Further, the film-like optical waveguide of Comparative Example 3 having no protective layer was also inferior in bending durability. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing an example of a thin film optical waveguide with a protective layer of the present invention in a model manner. Fig. 2 is a flow chart showing an example of a manufacturing method of the film-form optical waveguide with a protective layer of the present invention. [Description of main component symbols] 1 〇 : lower composite layer 8 : protective layer -53- 200837413 24 : film-shaped optical waveguide 1 8 : core portion 20 : upper composite layer 22 : protective layer -54

Claims (1)

200837413 十、申請專利範圍 1· 一種薄膜狀光波導,其爲具有下部復合層、芯部 分、與上部復合層之薄膜狀光波導,其特徵爲於該下部復 合層及該上部復合層之各外表面上,具有將含有下述成分 (A ) 、( B )、及(D )之光硬化性樹脂組成物經光硬化 所成的硬化膜層之薄膜狀光波導; (A) 尿烷(甲基)丙烯酸酯寡聚物 (B) 反應性稀釋單體 (D)光聚合啓始劑。 2 ·如申請專利範圍第1項之薄膜狀光波導,其中成 分(A)爲含有(a)多元醇化合物、(b)聚異氰酸酯化 合物、及(c)含烴基之(甲基)丙烯酸酯的反應生成物 〇 3 .如申請專利範圍第2項之薄膜狀光波導,其中成 分(A)爲含有聚異氰酸酯化合物與含烴基之(甲基)丙 烯酸酯之反應生成物。 4. 如申請專利範圍第1項至第3項中任一項之薄膜 狀光波導,其中更含有成分(C)含有不飽和基之(甲基 )丙烯酸聚合物。 5. 如申請專利範圍第1項至第4項中任一項之薄膜狀 光波導,其中該保護層爲厚度10#m時’對於405ηι^波 長之光具有80%以上之透過率。 -55-200837413 X. Patent Application No. 1. A film-shaped optical waveguide which is a film-shaped optical waveguide having a lower composite layer, a core portion and an upper composite layer, and is characterized in that the lower composite layer and the upper composite layer are external a film-like optical waveguide having a cured film layer formed by photohardening a photocurable resin composition containing the following components (A), (B), and (D); (A) urethane (A) Acrylate oligomer (B) Reactive diluent monomer (D) photopolymerization initiator. 2. The film-shaped optical waveguide of claim 1, wherein component (A) is (a) a polyol compound, (b) a polyisocyanate compound, and (c) a hydrocarbon group-containing (meth) acrylate. The film-form optical waveguide of claim 2, wherein the component (A) is a reaction product containing a polyisocyanate compound and a hydrocarbon group-containing (meth) acrylate. 4. The film-shaped optical waveguide according to any one of claims 1 to 3, which further comprises (C) a (meth)acrylic polymer containing an unsaturated group. 5. The film-shaped optical waveguide according to any one of claims 1 to 4, wherein the protective layer has a transmittance of 80% or more for light having a wavelength of 405 nm by a thickness of 10 #m. -55-
TW96136335A 2006-09-29 2007-09-28 Film optical waveguide TW200837413A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006268205 2006-09-29

Publications (1)

Publication Number Publication Date
TW200837413A true TW200837413A (en) 2008-09-16

Family

ID=39230263

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96136335A TW200837413A (en) 2006-09-29 2007-09-28 Film optical waveguide

Country Status (3)

Country Link
JP (1) JPWO2008038838A1 (en)
TW (1) TW200837413A (en)
WO (1) WO2008038838A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6644434B2 (en) * 2014-09-25 2020-02-12 第一工業製薬株式会社 Curable resin composition, cured product, and laminate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156882A (en) * 2003-11-25 2005-06-16 Kyocera Corp Polymer optical waveguide film
JP2006058831A (en) * 2004-03-29 2006-03-02 Jsr Corp Photosensitive resin composition for optical waveguide and optical waveguide
JP4449075B2 (en) * 2004-04-07 2010-04-14 日立化成工業株式会社 Optical waveguide and method for manufacturing the same
JP4388867B2 (en) * 2004-07-22 2009-12-24 日東電工株式会社 Optical waveguide with protective layer
JP4894995B2 (en) * 2004-10-21 2012-03-14 Jsr株式会社 Photosensitive resin composition for optical waveguide, optical waveguide and method for producing the same
JP2006152289A (en) * 2004-11-08 2006-06-15 Mitsubishi Chemicals Corp Radiation-curable composition and cured product thereof, and laminated form of the cured product
JP4577559B2 (en) * 2004-11-30 2010-11-10 日立化成工業株式会社 Method for manufacturing flexible optical waveguide

Also Published As

Publication number Publication date
JPWO2008038838A1 (en) 2010-01-28
WO2008038838A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
EP1772754B1 (en) Radiation-sensitive resin composition for optical waveguides, optical waveguide, and method for manufacturing optical waveguide
TWI382993B (en) Photosensitive resin composition for optical waveguides, and optical waveguide and manufacturing method thereof
JP4518089B2 (en) Photosensitive resin composition for optical waveguide, dry film, optical waveguide and method for producing the same
JP2011039165A (en) Alkali-soluble photocurable composition, cured coating film using the composition and transparent member
JP4840586B2 (en) Photosensitive resin composition for optical waveguide, optical waveguide and method for producing the same
JP5309992B2 (en) Dry film for forming optical waveguide, optical waveguide and method for producing the same
JP2006058831A (en) Photosensitive resin composition for optical waveguide and optical waveguide
JP4935648B2 (en) Film optical waveguide
JP5327053B2 (en) Film optical waveguide
JP4385818B2 (en) Photosensitive resin composition and optical waveguide
JP2019129280A (en) Photocuring resin composition for imprint molding
JP4893934B2 (en) Manufacturing method of optical waveguide film
JP2007293241A (en) Photosensitive resin composition for photo spacer formation
JP2009157125A (en) Film-like optical waveguide
TW200837413A (en) Film optical waveguide
JP4682955B2 (en) Manufacturing method of optical waveguide
JP2008164854A (en) Film-like light waveguide
CN109100918B (en) Photosensitive resin composition and preparation method and application thereof
JP2006039154A (en) Photosensitive resin composition, optical waveguide and method for manufacturing the same
JP5115057B2 (en) Film-shaped optical waveguide and photosensitive resin composition for film-shaped optical waveguide
KR102069199B1 (en) Photosensitive resin composition for transparent pixel
JP4151508B2 (en) Photosensitive resin composition for optical waveguide and optical waveguide
JP2008116971A (en) Optical waveguide
JP2009244627A (en) Film-like optical waveguide
JP6506175B2 (en) Active energy ray-curable resin composition, spacer for display element using the same, and / or color filter protective film