TW200818206A - High-performance flash memory data transfer - Google Patents

High-performance flash memory data transfer Download PDF

Info

Publication number
TW200818206A
TW200818206A TW096114457A TW96114457A TW200818206A TW 200818206 A TW200818206 A TW 200818206A TW 096114457 A TW096114457 A TW 096114457A TW 96114457 A TW96114457 A TW 96114457A TW 200818206 A TW200818206 A TW 200818206A
Authority
TW
Taiwan
Prior art keywords
data
controller
mode
input
flash memory
Prior art date
Application number
TW096114457A
Other languages
Chinese (zh)
Other versions
TWI486964B (en
Inventor
Yishai Kagan
Rizwan Ahmed
Farookh Moogat
Jason Lin
Original Assignee
Sandisk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/379,895 external-priority patent/US7366028B2/en
Priority claimed from US11/379,910 external-priority patent/US7345926B2/en
Priority claimed from US11/424,581 external-priority patent/US7366029B2/en
Priority claimed from US11/424,573 external-priority patent/US7525855B2/en
Priority claimed from US11/458,431 external-priority patent/US7499339B2/en
Priority claimed from US11/458,422 external-priority patent/US7499369B2/en
Application filed by Sandisk Corp filed Critical Sandisk Corp
Publication of TW200818206A publication Critical patent/TW200818206A/en
Application granted granted Critical
Publication of TWI486964B publication Critical patent/TWI486964B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1015Read-write modes for single port memories, i.e. having either a random port or a serial port
    • G11C7/1045Read-write mode select circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • G11C7/1066Output synchronization
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/1093Input synchronization
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/20Memory cell initialisation circuits, e.g. when powering up or down, memory clear, latent image memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits

Landscapes

  • Read Only Memory (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)

Abstract

A flash memory system including a flash memory device and a controller, operable according to an advanced data transfer mode is disclosed. The flash memory device is operable both in a "legacy" mode, in which read data is presented by the memory synchronously with each cycle of a read data strobe from the controller, and in which input data is latched by the memory synchronously with each cycle of a write data strobe from the controller. In the advanced mode, which can be initiated by the controller forwarding an initiation command to the memory, data is read at a higher frequency, for example at twice the frequency, of that available in the normal mode. In the advanced mode, the input data is presented by the controller at a higher frequency than is available in the normal mode. The voltage swing of the data and control signals is reduced from conventional standards, to reduce power consumption.

Description

200818206 九、發明說明: 【發明所屬之技術領域】 本發明係關於快閃記憶體裝置領域,並且具體而言,本 發明係針對在電子系統中介於快閃記憶體裝置與記憶體控 制器之間的資料通信。 【先前技術】 如此項技術所熟知,”快閃”記憶體係電可擦除半導體記 憶體裝置,其可以相對小區塊為單位進行擦除與重寫,而 非如在先前電可擦除可程式唯讀記憶體(eepr〇m)裝置中 以全晶片或大區塊為基礎進行擦除與重寫。就其本身而 論,快閃記憶體已變成特別流行用於經儲存資料之非揮發 性(即,在未供電之後的資料保留)係基本要點、但重寫頻 率相對低的應用中。快閃記憶體之流行應用的實例包括攜 帶型音訊播放器、在計數器電話手機中儲存電話號碼與= 話記錄的&quot;SIM”卡、用於電腦與工作站之&quot;thumbkey,,可卸 除式儲存裝置、用於數位攝影機之儲存裝置與類似物。 在半導體非揮發性記憶體技術中之一項重要新近進展 係:將快閃記憶體單元配置為”NAND&quot;記憶體,而非配置 為’’NOR”記憶體。如此項技術已知,N0R快閃記憶體意指 於一位元線與一源極線之間並聯一行記憶體單元的習知 配置。存取一 NOR行中的一特定記憶體單元的方式係··驅 動該記憶體單元之字線(控制閘極)成為作用中狀態,同時 保持該行中的其他記憶體單元,使得介於位元線與源極線 之間的電流係由該所存取之記憶體單元的狀態予以決定。 120269.doc 200818206 另方面,在一行NAND記憶體中的記憶體單元係串聯連 接於位元線與源極線之間。因此,存取一 NAND行中的一 特疋A fe體單70需要:以作用中字線位準開啟該行中的所 有記憶體單元;以及施加_中間字線位準至待存取之記憶 體單元,使得介於位元線與源極線之間的電流再次係由該 所存取之纪憶體單元的狀態予以決定。如此項技術所熟 知,NAND快閃記憶體之每位元所需的面積大幅小於^〇汉 快閃記憶體之每位元所需的面積,主要原因在於相對於 NOR記憶體,一行NAND記憶體需要較少的導體(並且因此 而要車又:&gt;、的接點),此外,在NAND配置中大量記憶體單元 之間了共用存取電晶體。此外,可輕易地連續存取習知 NAND快閃記憶體,舉例而言,藉由沿行相繼存取記憶體 單元,而非如NOR記憶體之情況中的隨機存取記憶體。因 此’ NAND記憶體尤其極適用於音樂與視訊儲存應用。 在快閃記憶體領域中之另一項重要新近進展在此項技術 稱為多位準程式化記憶體單元(multilevel pr〇gram ; MLC)。根據此項做法,僅僅藉由更精巧地控制記憶體單 元之程式化,使每一記憶體單元可能有兩種以上狀態。在 習知二進制資料儲存器中,每一記憶體單元被程式化成為 或τ狀態。達成讀取此類二進制記憶體單元之方式 為:施加單個控制電壓至經位址記憶體單元的控制閘極, 使得若程式化至”1&quot;狀態則使電晶體導通,但是若處於,,〇,, 狀態則使電晶體關閉;因此,對透過經位址記憶體單元傳 導之感測傳回該記憶體的經程式化狀態。相比之下,根據 120269.doc 200818206 動做法的典型實例,對於每一記憶體單元定義四種可能 之狀恶,典型相對應於二進制值00、〇!、10、n。效用 上,兩種中間狀態對應於介於經完全擦除狀態與經完全程 式化狀態之間的記憶體單元局部程式化的兩種位準。已知 具有每記憶體單元至多八種狀態或三個二進制位元的說 快間3己憶體之一也實施方宏。y- a —貝她方案。在母一記憶體單元上儲存資 料之兩個或三個位元直接使記憶體單元晶片的資料容量加 雙倍或加三倍。MLC快閃記憶體單元與包括此類㈣記憶 體^之記憶體的實例描述料國專利第5,172,338號與美 國專利第 6,747,892 B2辦,;。了石 y ^ 唬彼兩項美國專利案茲此共同讓 渡且以引用方式併入本文中。 MLC技術與NAN_閃記憶體架構之效率的组人已導致 顯著減少對於半導體非揮發性儲存器的每位元成本,並且 導致改良的系統可靠度,以及對於既定外形因數的較高資 料容量與系統功能。但是,儘管這些重要改良,往返於習 知快閃記憶體裝置的資料傳送速率尚未齊步並進。某此現 代化快閃記憶體應用特別易受資料傳送速率之影塑: 係隨著資料容量增大。舉例而言’高效能專業級i位靜物 攝影機的解析度現今可超過1〇百萬像素’對於此 的MLC NAND快閃記憶體之進展受到歡迎。但是,人= 續影像攝取之間的”快門遲滞,,(-⑽取決於自二 至快閃記憶體的影像資料之資料傳送速率。此項介二^ 之間的延遲時晴於攝料使㈣,延料間被視= 立之參數,而非取決於影像解析度)正變成彼等攝影機中 120269.doc 200818206 的項關鍵因素。尤其隨著影像解析度持續大 M S ^trr ^ ία U 辦&gt; 祭 ”貝料傳送時間不足以達成所要的影像間延遲時間。 出=知快閃記憶體的資料傳送時間亦無法與現代磁碟機 資料傳送時間競爭,當然這是關於快閃記憶體的另—所 要新應用。據此,⑽吏快閃記憶體滿足現代高效能數位 靜物攝影機的需求,或使快閃記憶體當作現代高效能電子 系、充中的固態大量儲存器,這將使快閃記憶體變成必須達 成往返於快閃記憶體裝置的更高資料傳送速率。 、。項用於快閃纪憶體的習知資料傳送做法之實例描述於 責料工作表2 GBIT(256 Mx8 BITS) CMOS NAND E2PR〇m 中,零件號碼丁 H58NVG1S3AFT05 (Toshiba,2003年)。此 項習知做法涉及一種八位元式資料匯流排,其中以一讀取 啟用日守脈之每循環,以同步於該讀取啟用時脈之下降邊緣 方式,在每一資料輸出上提供一個位元。再者,如在該資 料工作表中之描述,此項習知做法涉及一項3·3伏邏輯標 準,使得最小高邏輯位準輸出電壓(v〇h)係2 4伏,並且最 大低邏輯位準輸出電壓(v〇l)係〇·4伏。此裝置之最大資料 速率係20 MHz。據信,此資料速率不是符合個人電腦系 統中之大1儲存器所需的資料速率,使得此等習知快閃記 fe體不適合作為磁碟機替代品。 藉由为景貧料’一些習知動態隨機存取記憶體(RAM)實 鉍所谓的雙倍資料速率&quot;(d〇uble data rate ; DDR)的資料 傳送技術。如此項技術已知,料傳送涉及以同步於 相對應之資料選通或時脈之上升邊緣與下降邊緣兩者方式 120269.doc 200818206 傳送一或多個資料位元(取決於匯流排線數)。因此,ddr 資料傳送以習知同步資料傳送(其同步於僅其中一個時脈 邊緣(上升邊緣或下降邊緣))之資料速率的兩倍傳達資料。 此外,習知DDR動態RAM利用來源同步資料選通,其中 RAM裝置本身產生用於讀取自記憶體的資料選通(而外部 電路產生用於寫至記憶體的資料選通)。但是,此加倍的 輸入/輸出切換速率增大資料傳送之功率消耗,接近單資 料速率通信之功率消耗的兩倍。 '200818206 IX. DESCRIPTION OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to the field of flash memory devices, and in particular, the present invention is directed to interfacing between a flash memory device and a memory controller in an electronic system. Information communication. [Prior Art] As is well known in the art, a "flash" memory system electrically erasable semiconductor memory device can be erased and rewritten in units of cell blocks instead of being electrically erasable as before. The read-only memory (eepr〇m) device performs erasing and rewriting on a full-wafer or large-block basis. For its part, flash memory has become particularly popular in applications where the non-volatile nature of stored data (i.e., data retention after unpowered) is a fundamental point, but the rewriting frequency is relatively low. Examples of popular applications for flash memory include a portable audio player, a &quot;SIM&quot; card for storing phone numbers and voice records in a counter phone handset, &quot;thumbkey for computers and workstations, detachable Storage devices, storage devices for digital cameras, and the like. An important recent development in semiconductor non-volatile memory technology: configuring flash memory cells as "NAND" memory instead of configured as ' 'NOR' memory. As is known in the art, N0R flash memory means a conventional configuration in which a row of memory cells is connected in parallel between a bit line and a source line. Accessing a specific one in a NOR line The mode of the memory cell is to drive the word line (control gate) of the memory cell to be in an active state while maintaining other memory cells in the row, such that between the bit line and the source line The current is determined by the state of the accessed memory cell. 120269.doc 200818206 In another aspect, the memory cells in a row of NAND memory are connected in series to the bit line and the source line. Therefore, accessing a special A-body unit 70 in a NAND row requires: opening all memory cells in the row with the active word line level; and applying the _ intermediate word line level to be accessed. The memory unit such that the current between the bit line and the source line is again determined by the state of the accessed memory unit. As is well known in the art, each bit of the NAND flash memory The required area is significantly smaller than the area required for each bit of the flash memory. The main reason is that a row of NAND memory requires fewer conductors than the NOR memory (and therefore the car is: &gt; In addition, in the NAND configuration, a large number of memory cells share a common access transistor. In addition, conventional NAND flash memory can be easily accessed continuously, for example, by successive rows Access memory cells, rather than random access memory in the case of NOR memory. Therefore, 'NAND memory is especially suitable for music and video storage applications. Another important recent in the field of flash memory Progress in this technology Multilevel pr〇gram (MLC). According to this approach, each memory unit may have more than two states by simply controlling the stylization of memory cells. In the conventional binary data storage, each memory unit is programmed into a τ state. The way to read such a binary memory unit is to apply a single control voltage to the control gate of the address memory unit. Thus, if programmed to the "1&quot; state, the transistor is turned on, but if it is, the state, the state turns off the transistor; therefore, the sense of transmission through the address memory unit is returned to the memory. Stylized state. In contrast, according to the typical example of the practice of 120269.doc 200818206, four possible states are defined for each memory cell, typically corresponding to binary values 00, 〇!, 10, n. In effect, the two intermediate states correspond to two levels of localization of the memory cells between the fully erased state and the fully programmed state. It is known that one of the fast-track 3 recalls having up to eight states or three binary bits per memory cell is also implemented. Y-a — her plan. Two or three bits of data stored on the parent-memory unit directly double or triple the data capacity of the memory cell wafer. Examples of MLC flash memory cells and memories including such (4) memory are described in U.S. Patent No. 5,172,338 and U.S. Patent No. 6,747,892 B2. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The combination of MLC technology and the efficiency of the NAN_flash memory architecture has resulted in a significant reduction in the cost per bit for semiconductor non-volatile memories, and has led to improved system reliability, as well as higher data capacity for a given form factor. System functions. However, despite these important improvements, the data transfer rate to and from conventional flash memory devices has not yet progressed. A modernized flash memory application is particularly susceptible to data transfer rates: as data capacity increases. For example, the resolution of high-performance professional-grade i-bit still cameras can now exceed 1 megapixel. The progress of MLC NAND flash memory for this is welcome. However, the person = continues the "shutter lag between image capture," (-(10) depends on the data transfer rate of the image data from the second to the flash memory. The delay between the two is clearer than the shot. (4), the parameters between the extensions are not dependent on the image resolution, which is becoming a key factor in the camera 120269.doc 200818206. Especially as the image resolution continues to be large MS ^trr ^ ία U The "Beet" season is not enough to achieve the desired delay between images. The data transfer time of the flash memory is not compatible with the data transfer time of modern disk drives. Of course, this is another new application for flash memory. Accordingly, (10) 吏 flash memory meets the needs of modern high-performance digital still cameras, or flash memory as a modern high-performance electronic system, full-size solid storage, which will make flash memory a must Achieve higher data transfer rates to and from the flash memory device. ,. An example of a conventional data transfer practice for flash memory is described in the worksheet 2 GBIT (256 Mx8 BITS) CMOS NAND E2PR〇m, part number D58 HVGNVG1S3AFT05 (Toshiba, 2003). The conventional practice involves an octet data bus in which each cycle of the enable day sigmoid is enabled to synchronize the edge of the read enable clock to provide a data output on each data output. Bit. Furthermore, as described in the data sheet, this conventional practice involves a 3.3 volt logic standard such that the minimum high logic level output voltage (v〇h) is 24 volts and the maximum low logic The level output voltage (v〇l) is 〇·4 volts. The maximum data rate for this device is 20 MHz. It is believed that this data rate is not the data rate required for a large storage device in a personal computer system, making such conventional flash registers not suitable as a disk drive replacement. By means of some conventional dynamic random access memory (RAM), the so-called double data rate (DDR) data transfer technology is realized. As is known in the art, the material transfer involves synchronizing the rising edge and the falling edge of the corresponding data strobe or clock. 120269.doc 200818206 Transmitting one or more data bits (depending on the number of bus bars) . Thus, ddr data transfer conveys data at twice the data rate of conventional synchronous data transfer (which is synchronized to only one of the clock edges (rising edge or falling edge)). In addition, conventional DDR dynamic RAM utilizes source synchronous data strobe, wherein the RAM device itself generates data strobes for reading from memory (and external circuitry generates data strobes for writing to memory). However, this doubling of the input/output switching rate increases the power consumption of the data transfer, which is close to twice the power consumption of the single data rate communication. '

但是’在現代電子系統中,功率消耗係一項重大關切事 項’並且在系統中的積體電路裝置之間傳送資料過程中對 匯流排與導體之驅動係整體系統功率消&amp;的重大功率消耗 者。依此項技術之基礎,用於驅動外部導體的輸出驅動器 的功率消耗直接㈣於待驅動之數位訊號的切換速率。因 此’如上域述,增大資料料轉近現代磁錢之資料 傳送需要相對應增大此類資料傳送所消耗的功率,所有其 他參數維持相等。此增大的功率消耗需要較大的驅動器與 接收器裝置’ &amp;良系統應用中的散熱及類似項,這些皆使 整體系統成本增加。即使進行彼等變更,對於攜帶型二子 系統(諸如數位攝影機、膝上型電腦與工作站、無線電話 手機、個人數位音訊播放器及類似電池供電之裝置來 自高速資料傳送的增大功率消耗係非所要的。Λ 藉由進-步背景資料,此項技術中已知— DMA Mode的通信協定,用於 /Ultra 、么r开閃圮憶體+ (唑 COMPACT FLASH或 CF+快閃記 (诸 下X通^。圖丨繪示 120269.doc -10 - 200818206 按照熟知之標準CF+與CompactFlash規格書版本3·0 (2004 年CompactFlash Association)建構與運作之此類習知快閃 記憶體,卡。如圖1所示,快閃記憶體卡2 (在此實例中,快 閃記憶體卡係按照此標準建構為COMPACT FLASH儲存器) 包含一或多個快閃記憶體模組4及單晶片記憶體控制器6。 快閃記憶體模組4透過匯流排dataJ/O以往返於記憶體控制 器6傳達資料且透過匯流排Ctrl以往返於記憶體控制器6發 佈控制號。在此實例中,前文引用之T〇shiba資料工作表 中描述的資料傳送做法對應於介於快閃記憶體模組4與記 憶體控制器6之間透過data一I/O匯流排與Ctrl匯流排之通 信。記憶體控制器6透過主機介面HOST_IF與一主機裝置 (例如’數位攝影機、數位音訊播放器、個人電腦等等)通 訊。前文引用之CF+與CompactFlash規格書描述透過主機 介面HOSTJF通信,包括按照ultra DMA Mode C’UDMA&quot;)。如同此份規格書中之描述,UDMA通信係以 特殊操作模式予以實行,其係藉由要求此類通信的代理 (主機或記憶體卡2)於一控制線(UDMARQ)上驅動一訊號予 以起始。亦如同此份規格書中之描述,UDMA資料傳送係 來源同步,原因在於正在將資料置於匯流排H〇ST jF上的 代理(記憶體卡2或主機系統)亦發佈資料選通訊號。此外, 亦如同此份規格書中之描述,在UDMA操作模式下,在資 料傳送中使用該選通訊號之上升邊沿與下降邊沿兩者。 但是,經觀察,結合本發明,即使對於圖1之快閃記憶 體卡中的主機介面運用UDMA模式,介於記憶體模組4與 120269.doc -11- 200818206 記憶體控制器6之間的杳衩扁w 士 Ί的貝枓傳运速率仍然將限制記憶體卡2 的整體效能。但是,枱昭羽 叙&quot;、、白知技術之介面的資料傳送加速 亦將大幅增加記十咅I# 士 ? # μ丄+ U體卡2内的功率消耗。此外,此項技術 已知對§己憶體積雷* 、 路之輸入/輸出介面的修改將大幅限 制此等積體電路的可用性 J用丨生增加存貨控制與設定常態費用 方面的成本。 【發明内容】 匕本發月的目的旨在提供一種具有高效能資料傳送 模式運作之快閃記憶體模組的用於往返於—記憶體控制器 進行資料傳送之方法。 次本U的進步目的旨在提供_種按照高效能模式進行 :料傳运之方法,其 &gt;肖耗功率之速率實質上不大於習知資 料傳送消耗功率之速率。 本發明的進一步目的旨在捭板 t &amp;供一種方法,其中亦可實施 售里’’資料通信,以提供對習知 ^ T白知貝枓傳送標準的回溯相容 性0 本發明的進一步目的旨在掉I 、… /曰的曰在棱供-種最小化高效能資料傳 运板式中資料扭曲之方法。 已參考本份說明書連同其圖或 1之热悉此項技術者將明白 本發明的其他目的及優點。 二:明二第一態樣可實施於一種具有-多模式資料介 门牛:、體裝置中。在一舊型模式中,該資料介面以 问步於外部產生之資料選通之方 、 心万式提供或接收資料,其中 在該選通之每一循環中傳達每導 ’、 π V體一個位元。在一進階模 120269.doc •12· 200818206 式中,該資料介面係來源同步 於兩種極性之選诵、毐貝枓位兀或字同步 (上升訂降)。料該 ::減小之電屋擺動’藉以減小功率消耗。在引動丄 階模式中’對於命令與控制通信繼續使用該 自動化控^能料該料操作模式提”料逾時與其他But 'in modern electronic systems, power consumption is a major concern' and significant power consumption in the overall system power consumption of the busbars and conductors in the process of transferring data between integrated circuit devices in the system. By. Based on the technology, the power consumption of the output driver used to drive the external conductor is directly (four) the switching rate of the digital signal to be driven. Therefore, as mentioned above, increasing the data transfer to the data of modern magnetic money requires a corresponding increase in the power consumed by such data transfer, and all other parameters remain equal. This increased power consumption requires greater heat dissipation and the like in both the driver and receiver devices & good system applications, which increases overall system cost. Even with these changes, the increased power consumption from high-speed data transfer for portable two-subsystems (such as digital cameras, laptops and workstations, wireless phone handsets, personal digital audio players, and similar battery-powered devices) is not required. Λ 进 背景 背景 背景 背景 DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA DMA ^. Fig. 120269.doc -10 - 200818206 This kind of conventional flash memory card, constructed and operated according to the well-known standard CF+ and CompactFlash specification version 3.0 (2004 CompactFlash Association). As shown, the flash memory card 2 (in this example, the flash memory card is constructed as a COMPACT FLASH memory according to this standard) includes one or more flash memory modules 4 and a single chip memory controller 6. The flash memory module 4 transmits data to and from the memory controller 6 through the bus dataJ/O and transmits control numbers to and from the memory controller 6 through the bus Ctrl. In this example, the foregoing The data transfer method described in the cited T〇shiba data worksheet corresponds to communication between the flash memory module 4 and the memory controller 6 through the data-I/O bus and the Ctrl bus. The controller 6 communicates with a host device (such as a 'digital camera, a digital audio player, a personal computer, etc.) through the host interface HOST_IF. The CF+ and CompactFlash specifications cited above describe the communication through the host interface HOSTJF, including according to the ultra DMA Mode C. 'UDMA&quot;). As described in this specification, UDMA communication is carried out in a special mode of operation by means of a proxy (host or memory card 2) requiring such communication on a control line (UDMARQ). Drive a signal to start. As described in this specification, the UDMA data transfer source is synchronized because the agent (memory card 2 or host system) that is placing the data on the bus H〇ST jF is also Release the data selection communication number. In addition, as described in this specification, in the UDMA operation mode, the rising edge of the selected communication number is used in data transmission. Both edges are dropped. However, it has been observed that, in conjunction with the present invention, even if the UDMA mode is used for the host interface in the flash memory card of Figure 1, the memory module 4 and 120269.doc -11-200818206 memory control The Bellow transport rate between the devices 6 will still limit the overall performance of the memory card 2. However, the data transfer acceleration of the interface of Taizhi Yuxu &quot; Increase the number of ten 咅 I#? # μ丄+ Power consumption in the U body card 2. In addition, the technology is known to modify the input/output interface of § 体积 体积 雷 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 SUMMARY OF THE INVENTION The purpose of the present invention is to provide a method for transferring data to and from a memory controller in a flash memory module operating in a high-performance data transfer mode. The purpose of the sub-U's advancement is to provide a method for mass transfer in accordance with the high-efficiency mode: the rate of power consumption is substantially no greater than the rate at which the conventional data transfer consumes power. A further object of the present invention is to provide a method for the slab t &amp; a method in which the 'information communication' can also be implemented to provide backtracking compatibility with the conventional transmission standard of the prior art. The purpose is to eliminate the method of data distortion in the high-performance data transmission plate type of I, ... /曰. Other objects and advantages of the present invention will become apparent to those skilled in the art from this disclosure. Two: The first aspect of Ming 2 can be implemented in a multi-mode data library: body device. In an old mode, the data interface provides or receives data by means of an externally generated data strobe, wherein each of the strobes conveys a ', π V body. Bit. In an advanced mode 120269.doc •12· 200818206, the data interface is synchronized to two polarity options, mussel 兀 or word sync (rising down). The :: reduced electric house swing ' is used to reduce power consumption. In the 丄 丄 模式 mode, 'for the command and control communication, continue to use the automation control material, the material operation mode to raise the material timeout and other

=月之-第—恶樣可實施於—種具有—多模式資料介 同+快閃:己憶體裝置中。在一舊型模式中,該資料介面以 5 V於外部產生之資料選通之方式提供或接收資料,直中 在該選通之每-循環巾傳達每導體—個位元。在—進階模 式中’該資料介面係來源同步’其中一資料位元或字同步 =一選通訊號之-上升與下降邊沿中任—者,其頻率係該 售型操作模式之頻率的兩倍。對於該進階模式提供一減小 之電壓擺動’藉以減小功率消耗。在引動用於資料傳送之 該進階模式中,對於命令與控制通信繼續使用該舊型操作 模式;對於該進階操作模式提供資料逾時與其他自動化控 制功能。 本發明之一第三態樣可實施於一種具有一多模式資料介 面的快閃記憶體裝置中。在一舊型模式中,該資料介面以 同步於外部產生之資料選通之方式提供或接收資料,其中 在該選通之每一循環中傳達每導體一個位元。在該舊型模 式中之一寫入操作中,由一控制器發佈至該記憶體的一寫 入啟用選通訊號計時該控制器提供至該快閃記憶體的每一 資料字;在該舊型模式中之一讀取操作中,由該控制器發 120269.doc -13- 200818206 佈至該記憶體的一讀取啟用選通訊號計時該快閃記憶體提 供至該控制器的每一資料字。在一進階模式中,該資料介 面係來源同步,其中一資料位元或字同步於該讀取啟用選 通與该寫入啟用選通兩個之選通邊沿。在該進階模式中之 一讀取操作中,該快閃記憶體裝置發佈相位彼此不同的讀 取選通與寫入選通,以計時交替的輸出資料字。在該進階 模式中之一寫入操作中,該控制器發佈相位彼此不同的讀 取選通與寫入選通,以計時至該記憶體中的交替之輸入資 料子。對於該進階模式提供一減小之電壓擺動,藉以減小 功率消耗。在引動用於資料傳送之該進階模式中,對於命 令與控制通信繼續使用該舊型操作模式;對於該進階操作 模式提供資料逾時與其他自動化控制功能。 【實施方式】 將結合本發明較佳具體實施例之描述本發明,即,實施 為快閃圮憶體模組、包括此種快閃記憶體模組之子系統及 刼作此種快閃記憶體模組之方法。具體而言,此示範性快 閃記憶體模組係描述為NAND型多位準記憶體單元 level cell ; mlc)快閃記憶體,原因在於預期本發明特別 適用於結合此類快閃記憶體,致使實現在電腦系統中之大 量貧料儲存器中使用固態非揮發性記憶體。但是,預期本 發明將適用於且有益於涉及各種類型之非揮發性固態記憶 體的其他應用巾。據此,應明白,下文說明内容僅藉由實 例而提供,並且非意欲來限制如申請專利範圍之本發明的 真實範疇。 120269.doc •14- 200818206 圖2繪示一種根據本發明較佳具體實施例建構之快閃記 憶體裝置(或模組)1〇的示範性建構。預期典型地將快閃記 憶體裝置1G建構於單個積㈣路中,並且其身可介接若干 記憶體控制器或記憶體控制器邏輯之任—者,#同下文進 一步詳細描述所述。亦預_2所示之快閃記㈣裝置 的架構僅僅係為了理解本發明目的而提出的實例,並且已 參考本份說明書之熟悉此項技術者可輕易地結合不同於圖 2所示之快閃記憶體裝置架構的快閃記憶體裝置架構來實 現本發明。 陕閃Z fe體裝置10的儲存容量駐存於快閃記憶體陣列 中y車列12包括以列與行排列之電可程式化且可擦除記憶 體單疋,如此項技術所熟知。雖然圖2中繪示單個陣列 12仁疋當然預期陣列12可被實現為多個子陣列,每一子 陣列各具有周邊積體電路之一個別例項(instanc匀,諸如, 下文關於圖2之實例進一步詳細描述之位址、資料或控制 電路之部分或全部。預期已參考本份說明書之熟悉此項技 術者將忐夠輕易地結合此種多子陣列架構來實現本發明。 在此貝例中’陣列12的記憶體單元係浮動閘極金屬氧化物 半導體(MOS)電晶體,其經建構使得每一此種電晶體(相對 應於一個記憶體單元)可予以電程式化且亦可予以電擦 除。根據本發明之較佳具體實施例,陣列12之記憶體單元 係多位準記憶體單元(MLC),原因在於彼等記憶體單元可 被程式化至兩種以上資料狀態(即,程式化至兩種以上臨 限電壓中之任一者),使得每一此種記憶體單元儲存一多 120269.doc -15- 200818206 位元數位值。再者’根據本發明之此項較佳具體實施例, 如同將從下文說明内容明瞭,彼等記憶體單元較佳係以熟 知NAND方式予以排%,使得典型地非以隨機$式存取而 疋、序歹〗方式存取彼4㊉憶體單元,丨因在於有助於大量 ,存應用。當然、,亦可結合二元記憶體單元(即,僅儲存 單個數位位TL),且結合&gt;^〇11配置之記憶體單元來運用本 發明。 根據本發明之此項較佳具體實施例,共同輸入/輸出終 端1/01至I/On經提供且連接至輸入/輸出控制電路2〇。如同 NAND型快閃兄憶體技術已知,快閃記憶體裝置丨〇之操作 大部分受控於命令之接收與執行,彼等命令係透過輸入/ 輸出終端1/01至Ι/On作為數位字予以達成且由控制邏輯18 予以執行。就其本身而論,輸入/輸出控制電路2〇接收控 制命令、位址值及輸入資料,並且經由其與輸入/輸出終 端1/01至Ι/On通信的驅動器與接收器電路來呈現狀態資訊 與輸出資料。預期輸入/輸出終端1/〇1至1/〇11之數量η通常 係8或16,然而,當然可提供任何數量之此等終端。此 外,輸入/輸出控制電路20接收電源供應電壓vec_R且以基 於該電壓的邏輯位準來驅動輸入/輸出終端1/〇1至1/〇11。將 於下文詳細描述根據本發明之此項較佳具體實施例,此電 源供應電壓VCC_R處於低於習知快閃記憶體裝置中使用的電 壓’使得減少起因於在輸入/輸出終端1/〇1至1/〇11處之資料 傳送的功率消耗,甚至以較高之切換速率。控制邏輯i 8亦 接收此電源供應電壓Vec-R,其基於該電壓自讀取啟用終端 120269.doc •16- 200818206 RE一驅動較低電壓之輸出控制訊號,等等。 輸入/輸出控制電路20轉遞命令資訊至命令暫存器24, 以藉由控制邏輯18進行解碼與執行,原因在於該控制邏輯 18控制快閃記憶體裝置1〇之操作。在習知方式中,由控制 邏輯18將狀態資訊儲存於狀態暫存器23中。在習知方式 中,由輸入/輸出控制電路20在輸入/輸出終端1/〇1至1/()11 處接收之位址值係於位址暫存器22中予以緩衝;此等位址 之列部分係由列解碼器11予以解碼且行部分係由行解碼器 15予以解碼(每一解碼器典型包括一位址緩衝器),以實現 對在陣列12之一或多個所要記憶體單元之選擇。輸入/輸 出控制電路20亦經由匯流排DATA—Bus與資料暫存器丨斗進 订雙向通信,用以依據待執行之資料傳送方向,轉遞待寫 入之資料至資料暫存器14,且自資料暫存器14輸出資料。 控制邏輯18亦接收來自外部至快閃記憶體裝置1〇的各種直 接控制訊號,包括(舉例而言)下列訊號線:晶片啟用 CE一中令鎖存啟用CLE、位址鎖存啟用ALE、寫入啟用 WE一凟取啟用RE一及寫入保護線WP一。如同此項技術已 知中令鎖存啟用訊號CLE及位址鎖存啟用訊號ALE指示 出輸入/輸出終端1/01至1/〇11上是否有一命令或位址存在, 而寫入啟用訊號WE一及讀取啟用訊號RE一分別用作為寫入 操作與讀取操作中的資料選通。 根據本發明之此項具體實施例,寫入啟用WE一訊號係一 至快閃圮憶體裝置10之輸入。據此,對於經由輸入/輸出 終端1/01至I/〇n傳送資料至快閃記憶體裝置1〇中,作為寫 120269.doc •17- 200818206 入啟用we一訊號載運的寫入資料選通總是源自於在快閃記 憶體裝置ίο外部的裝置,典型源自於傳送資料本身的來 源。但是,亦根據本發明之此項較佳具體實施例且如同下 文進一步詳細描述所述,讀取啟用RE一訊號係雙向。在常 悲操作模式中,外部裝置(即係正在自快閃記憶體陣列12 項取資料之目的地)係讀取資料選通的來源,接著作為一 至丨夬閃兄憶體裝置1 〇的輸入來載運該讀取資料選通以作為 讀取啟用RE一訊號。在根據本發明之較佳具體實施例的進 階操作模式中,如同下文進一步詳細描述所述,控制邏輯 18發佈讀取資料選通以作為讀取啟用RE 一訊號,其同步於 自快閃記憶體陣列12讀取資料且經由資料暫存器14、1/〇 控制電路20與輸入/輸出終端1/〇1至1/〇11傳達資料。 圖3繪示根據本發明較佳具體實施例於快閃記憶體卡 中之快閃記憶體裝置(或模組)10之實施。如圖3所示,快閃 記憶體卡25包括至少快閃記憶體裝置1〇本身且亦包括控制 器30。控制器30提供且管理一至主機系統(諸如高效能數 位攝影機、個人㈣,或諸如數位音訊播放器或行動電話 手機之類的攜帶型裝置或類似物)之外部介面h〇st卩,· 介面h〇STjF#可對應於快閃記憶體卡25 (其建構為可插 入於各式各樣主機系統中之任一種中的_般用途之卡)的 '組外部終端,如此項技術中所已知。預期介面H〇sT, 可按照如此項技術中所已知的習知標準介面運作,或可結 合未來快閃記憶體介面標準或專屬介面協定予以開發。= 上文所述’預期本發明特別有利於提供高速資料傳送,諸 120269.doc 18 200818206 如在高效能數位靜物攝影機之資料傳送速率關鍵應用中。 進一步預期本發明所提供的高資料傳送速率亦可實現使用 快閃記憶體來作為個人電腦中的固態大量儲存裝置,以取 代磁碟機。預期介面H0STJF本身將最佳地具有高速資料 傳迗能力,舉例而言,如前文[先前技術]中提及 標準所預期的高速資料傳送能力。 如圖3所示,快閃記憶體裝置10係以與圖2所示之終端一 方式I禺接至控制器3 0。就^4 一點而言,一輸入/輸出 匯流排係藉由訊號線I/0丨至I/〇n (相對應於快閃記憶體裝 置10之同名之終端)所形成。一控制匯流排CTRL使控制器 30耦接至快閃記憶體裝置1〇,並且包括經連接至圖2所示 之ale、CLE、WP 一與CE—終端的訊號線。預期亦可提供 其他控制線與終端以用於介於快閃記憶體裝置1〇與控制器 3〇之間的通信,並且控制匯流排CTRL係繪示為雙向匯流 排’雖然圖2所示之ALE、CLE、wp 一與CE—終端係作為至 快閃記憶體裝置10的輸入。 為了使此份說明書更明確,圖3繪示與控制匯流排cTRL 分開的兩個控制線RE 一與WE—。根據本發明之此項具體實 轭例、線WE—在寫入操作(自控制器3 〇寫入資料至快閃記 憶體裝置1G)中载送資料選通,並且其本身係連接至快閃 記憶體裝置!之終端WE」_。根據本發明之較佳具體實 施:,在每-操作模式中,線戰―之資料選通係源自於: 制器線RE—載送用於讀取操作(自快閃記憶體裝置1 〇讀 取貧料且將資料傳達至控制器30)之資料選通,並且其本 120269.doc -19- 200818206 身係連接至快閃記憶體裝置10之終端RE—(圖2)。如上文所 、’〔根據本s明之此項較佳具體實施Μ,控制線灿一為雙 /向:而讀取資料選通之來源取決於快閃記憶體裝㈣之現 行操作拉式。在常態操作模式中,控制器30發佈讀取資料 • €通’㈣記憶體裝㈣回應其㈣持作為存在於訊號線 - Ι/〇η上的有效資料。在根據本發明之較佳具體實施 - 例:進階操作模式中,快閃記憶體裝置10係在線RE—上發 ㈣取㈣通,以祕將:#料自㈣記憶體裝請傳送 工器0如同下文進一步詳細描述所述,控制器30透 :fU虎、線1/〇1至1/〇11所傳達之命令同步於訊號線处一上的 .貝取貝料選通來源’而不顧慮快閃記憶體裝置10正在傳送 資料至控制器30的操作模式。 預J將具貝上按照如此項技術所已知的習知快閃記憶體 控▲制器架構來建構控制器3〇,按需要予以修改,以實現本 ^兒月曰中釔合根據本發明較佳具體實施例之快閃記憶體 _ $置1G之進階操作模式中讀取操作之起始、操作與終止所 描述的操作。亦預期已參閱本份說明書之熟悉此項技術者 將於實施彼等進階操作模式的邏輯硬體、程式指令 _ 或其組口。進一步預期熟悉此項技術之讀者將輕易地能夠 f加控制器30之修改,以最佳地適合用於特定實現,而不 需要過度的實驗。 並且’亦如圖3所示,電源供應電壓VeeR連接至且加偏 C於决閃,己憶體裝置1〇與控制器3〇之每一者。此電源供應 電壓Vcc-r處於低於習知快閃記憶體裝置與控制器中使用的 120269.doc -20- 200818206 電壓’使得減少起因於在輸入/輸出終端1/01至1/〇11及各種 控制線處之資料傳送與轉變的功率消耗,甚至以較高之切 換速率,如下文所述。如下文結合特定實例的詳細說明所 述,此電源供應電壓可能係約U0伏之標稱電壓(範圍為約 1.60伏至2·〇〇伏),其實質上小於習知的3·3〇伏標稱電源供 應電壓(範圍為約2·70伏至3.60伏)。 現在參考圖4a至圖4e,現在將按照一常態操作模式且亦 按知一命令傳達模式描述記憶體卡25中快閃記憶體裝置J 〇 組合控制器30之操作。預期彼等操作模式將大致上對應於 用於現代快閃記憶體裝置的習知快閃記憶體介面協定,並 且彼等操作模式本身將用作用於根據本發明較佳具體實施 例之快閃記憶體裝置10之一”舊型”輸入/輸出協定。 圖4a繪示自控制器30至快閃記憶體裝置1〇之一命令之傳 達。如此項技術所已知,且如下文中更詳細說明將描述, 現代快閃記憶體裝置操作以回應控制器所發佈之特定命令 及透過資料輸入/輸出線傳達之特定命令。就其本身= 論,在此實射,實現一命令CMD之傳達之方式為··控制 器30驅動命令鎖存啟用訊號CLE至一高作用中狀態,以及 位址鎖存啟用訊號ALE至一低非作用中狀態,其代表將在 輸入/輸出線1/〇1至1/〇11上傳達一命令(而非一位址)。在習 知方式中使晶片啟用訊號CE一成為作用中低狀態而啟用快 閃記憶體裝置ίο ;如此項技術所已知,如果在卡25内提供 多個快閃記憶體裝置10,則當控制器3〇選擇該等快閃記憶 體裝置10中用於通信之所要快閃記憶體裝置時,其可使用 120269.doc -21 - 200818206 個別晶片啟用訊號CE-。控制器3〇在寫入啟用線WE一上發 佈一作用中低脈衝而選通輸入/輸出線1/〇1至1/〇^上由控制 器30所提供的數位字(相對應於如圖乜所示之命令cmd); 寫入啟用線WE一上之脈衝的上升邊沿促使i/o控制電路加 接收與鎖存於該命令CMD中,最終到達命令暫存器24 (圖 2)接著,控制器30可使命令鎖存啟用訊號CLEs回一非 作用低狀態,終止命令操作。當然,如此項技術所已知, 可以此方式循序傳達多字命令或多個單字命令。 以圖4a所示之方式傳達之命令係用以指示控制器%將傳 達記憶體位址至快閃記憶體裝置1〇的命令(例如,用於讀 取操作的命令晒;用於序列資料輸人程式化或寫入操作 之命令10H)。圖爾示減本發明難具體實施例在常態 與命令#作模式中控制器3〇傳達位址至快閃記憶體装置的 時序。就其本身而論,圖4b所示之操作沿循按照圖^所示 之序列傳達命令00H,其指示出在下一訊號序列中即將傳 輸記憶體位址。 在此常態操作模式中’控制㈣可傳達相對廣泛的命令 至快閃記憶體裝置H)。下列表格中列出在本發明之此項較 佳具體實施例中之示範性命令集。= month - the first - the evil sample can be implemented in - with multi-mode data + flash: in the memory device. In an old mode, the data interface provides or receives data at 5 V in an externally generated data strobe, communicating each conductor-bit in each of the strobes. In the advanced mode, 'the data interface is source synchronized', one of the data bits or word sync = one of the selected communication numbers - the rising and falling edges - the frequency is the frequency of the sales mode of operation Times. A reduced voltage swing is provided for the advanced mode to reduce power consumption. In the advanced mode for stimulating data transfer, the old mode of operation is continued for command and control communication; data timeout and other automated control functions are provided for the advanced mode of operation. A third aspect of the present invention can be implemented in a flash memory device having a multi-mode data interface. In an old mode, the data interface provides or receives data in synchronization with externally generated data strobes, wherein one bit per conductor is communicated in each cycle of the strobe. In one of the old mode write operations, a write enable select communication number issued by a controller to the memory is clocked by the controller to each data word of the flash memory; In one of the read modes, the controller sends 120269.doc -13- 200818206 to the memory to enable a read enable communication number to time the flash memory to provide each data to the controller. word. In an advanced mode, the data interface is source synchronized, wherein a data bit or word is synchronized to the strobe edge of the read enable strobe and the write enable strobe. In one of the read modes, the flash memory device issues read strobes and write strobes that are different in phase from each other to time the alternate output data words. In one of the write operations of the advanced mode, the controller issues read strobe and write strobes that are different in phase from each other to time the alternate input material in the memory. A reduced voltage swing is provided for the advanced mode to reduce power consumption. In the advanced mode for priming data transfer, the old mode of operation is continued for command and control communications; data overtime and other automated control functions are provided for the advanced mode of operation. [Embodiment] The present invention will be described in connection with a preferred embodiment of the present invention, that is, implemented as a flash memory module, a subsystem including such a flash memory module, and a flash memory. The method of the module. Specifically, the exemplary flash memory module is described as a NAND type multi-level memory cell level cell; mlc) flash memory, because the present invention is expected to be particularly suitable for incorporating such flash memory. This results in the use of solid non-volatile memory in a large amount of lean storage in computer systems. However, it is contemplated that the present invention will be applicable to and beneficial to other applications involving various types of non-volatile solid state memories. Accordingly, it is to be understood that the following description is provided by way of example only, and is not intended to limit the true scope of the invention as claimed. 120269.doc • 14- 200818206 FIG. 2 illustrates an exemplary construction of a flash memory device (or module) 1〇 constructed in accordance with a preferred embodiment of the present invention. It is contemplated that the flash memory device 1G is typically constructed in a single product (four) way and that it can interface with a number of memory controllers or memory controller logic, as described in further detail below. The architecture of the flash (4) device shown in the pre-_2 is merely an example for understanding the purpose of the present invention, and those skilled in the art having reference to this specification can easily combine flashes different from those shown in FIG. The flash memory device architecture of the memory device architecture implements the present invention. The storage capacity of the Shaanxi flash device 10 resides in the flash memory array. The y-car array 12 includes electrically programmable and erasable memory cells arranged in columns and rows, as is well known in the art. Although a single array 12 is illustrated in FIG. 2, it is of course contemplated that the array 12 can be implemented as a plurality of sub-arrays, each having an individual instance of a peripheral integrated circuit (instanc, such as the example below with respect to FIG. 2). Part or all of the address, data or control circuitry is described in further detail. It is contemplated that those skilled in the art having reference to this specification will be able to readily implement the present invention in conjunction with such a multi-subarray architecture. The memory cell of array 12 is a floating gate metal oxide semiconductor (MOS) transistor that is constructed such that each such transistor (corresponding to a memory cell) can be electrically programmed and can also be powered Erase. According to a preferred embodiment of the present invention, the memory cells of array 12 are multi-level memory cells (MLCs) because their memory cells can be programmed to more than two data states (ie, Stylized to any of two or more threshold voltages such that each such memory cell stores a value of more than 120269.doc -15 - 200818206 bit digits. Further in accordance with the present invention The preferred embodiment of the present invention, as will be apparent from the following description, the memory cells are preferably arranged in % by the well-known NAND method, so that the memory is typically not accessed in a random manner. Accessing the 4th memory unit, the reason is that it helps a large number of applications, of course, it can also be combined with a binary memory unit (ie, only a single digital bit TL is stored), and combined with &gt; The present invention is applied to a memory unit. According to this preferred embodiment of the invention, the common input/output terminals 1/01 to I/On are provided and connected to the input/output control circuit 2A. It is known that the operation of the flash memory device is mostly controlled by the reception and execution of commands, and the commands are achieved by the input/output terminals 1/01 to Ι/On as digital words. Control logic 18 is executed. As such, input/output control circuit 2 receives control commands, address values, and input data, and drives and receives communications with input/output terminals 1/01 through Ι/On via them. Circuit to present Information and output data. It is expected that the number η of input/output terminals 1/〇1 to 1/〇11 is usually 8 or 16, however, any number of such terminals may of course be provided. Further, the input/output control circuit 20 receives power. Supplying voltage vec_R and driving input/output terminals 1/〇1 to 1/〇11 based on a logic level of the voltage. This preferred embodiment of the present invention will be described in detail below, this power supply voltage VCC_R The voltage used in the conventional flash memory device is such that the power consumption due to data transfer at the input/output terminals 1/〇1 to 1/〇11 is reduced, even at a higher switching rate. The logic i 8 also receives the power supply voltage Vec-R based on the voltage from the read enable terminal 120269.doc •16-200818206 RE, an output control signal that drives a lower voltage, and the like. The input/output control circuit 20 forwards the command information to the command register 24 for decoding and execution by the control logic 18 because the control logic 18 controls the operation of the flash memory device. In the conventional manner, status information is stored by the control logic 18 in the status register 23. In the conventional manner, the address values received by the input/output control circuit 20 at the input/output terminals 1/〇1 to 1/(11) are buffered in the address register 22; these addresses are buffered; The column portion is decoded by column decoder 11 and the row portion is decoded by row decoder 15 (each decoder typically includes a bit address buffer) to effect pair of one or more desired memory cells in array 12. Choice. The input/output control circuit 20 also performs two-way communication with the data buffer via the bus DATA_Bus to forward the data to be written to the data register 14 according to the data transmission direction to be executed, and The data is output from the data register 14. The control logic 18 also receives various direct control signals from the external to the flash memory device, including, for example, the following signal lines: the chip enables the CE one to enable the latch enable CLE, the address latch enable ALE, write Enable WE to enable RE and write protection line WP one. As is known in the art, the latch enable signal CLE and the address latch enable signal ALE indicate whether a command or address exists on the input/output terminals 1/01 to 1/11, and the enable signal WE is written. The read enable signal RE is used as a data strobe in the write operation and the read operation, respectively. In accordance with this embodiment of the invention, the input of the enable WE-signal to the flash memory device 10 is written. Accordingly, for transmitting data to the flash memory device 1 via the input/output terminals 1/01 to I/〇n, as writing 120269.doc • 17-200818206, the write data strobe for enabling the we-signal is enabled. It always originates from a device external to the flash memory device ίο, typically derived from the source of the transmitted data itself. However, also in accordance with this preferred embodiment of the present invention and as described in further detail below, the read enable RE signal is bidirectional. In the constant sad mode of operation, the external device (ie, the destination of the data from the flash memory array 12) is the source of the data strobe, and the input is the input to the 兄 兄 忆 忆 忆 装置 装置The read data strobe is carried to serve as a read enable RE signal. In an advanced mode of operation in accordance with a preferred embodiment of the present invention, control logic 18 issues a read data strobe as a read enable RE signal, which is synchronized to the self-flash memory, as described in further detail below. The volume array 12 reads the data and communicates the data via the data register 14, the 1/〇 control circuit 20, and the input/output terminals 1/〇1 to 1/〇11. 3 illustrates the implementation of a flash memory device (or module) 10 in a flash memory card in accordance with a preferred embodiment of the present invention. As shown in FIG. 3, the flash memory card 25 includes at least the flash memory device 1 itself and also includes the controller 30. The controller 30 provides and manages an external interface h〇st卩, interface h to the host system (such as a high-performance digital camera, a personal (four), or a portable device such as a digital audio player or a mobile phone handset or the like). 〇STjF# may correspond to a 'group external terminal' of the flash memory card 25 (which is constructed as a card for use in any of a wide variety of host systems), as is known in the art. . The interface H〇sT is expected to operate in accordance with conventional standard interfaces known in the art, or may be developed in conjunction with future flash memory interface standards or proprietary interface protocols. = As described above, the present invention is expected to be particularly advantageous for providing high speed data transfer, such as in data transfer rate critical applications for high performance digital still cameras. It is further contemplated that the high data transfer rates provided by the present invention may also enable the use of flash memory as a solid state mass storage device in a personal computer to replace the disk drive. It is expected that the interface H0STJF itself will optimally have high-speed data transfer capabilities, for example, the high-speed data transfer capabilities expected by the standards mentioned in the [Prior Art] above. As shown in FIG. 3, the flash memory device 10 is connected to the controller 30 in a manner similar to the terminal shown in FIG. In the case of ^4, an input/output bus is formed by the signal line I/0丨 to I/〇n (corresponding to the terminal of the same name of the flash memory device 10). A control bus CTRL couples the controller 30 to the flash memory device 1 and includes signal lines connected to the ale, CLE, WP, and CE-terminals shown in FIG. It is contemplated that other control lines and terminals may be provided for communication between the flash memory device 1 and the controller 3, and the control bus CTRL is depicted as a two-way bus' although it is shown in FIG. The ALE, CLE, wp, and CE-terminals serve as inputs to the flash memory device 10. In order to make this description clearer, FIG. 3 shows two control lines RE and WE_ separated from the control bus cTRL. According to this specific embodiment of the invention, the line WE carries a data strobe in a write operation (writing data from the controller 3 to the flash memory device 1G) and is itself connected to the flash Memory device! Terminal WE"_. According to a preferred embodiment of the present invention, in each-operation mode, the data warfare is derived from: the controller line RE - carried for reading operations (from the flash memory device 1 〇 The data strobe is read from the poor material and communicated to the controller 30), and its body is connected to the terminal RE of the flash memory device 10 (Fig. 2). As described above, [in accordance with the preferred embodiment of the present invention, the control line is a dual/direction: and the source of the read data strobe depends on the current operation pull of the flash memory device (4). In the normal mode of operation, the controller 30 issues the read data. • The meter (4) memory pack (4) responds to (4) the valid data present on the signal line - Ι/〇η. In a preferred embodiment of the present invention - an example: in an advanced mode of operation, the flash memory device 10 is an online RE-up (four) fetch (four) pass, and the secret is: #料自(四)Memory loading transport 0, as described in further detail below, the controller 30 transmits: the command transmitted by the fU tiger, line 1/〇1 to 1/〇11 is synchronized with the source of the beetle at the signal line. The flash memory device 10 is transmitting data to the mode of operation of the controller 30. Pre-J will construct the controller 3 according to the conventional flash memory control system known in the art, and modify it as needed to realize the combination according to the present invention. Flash memory of the preferred embodiment _ $ The operation described in the start, operation and termination of the read operation in the advanced mode of operation. It is also expected that the logical hardware, program instructions _ or its group ports that will be implemented in this advanced operating mode will be referred to in this specification. It is further contemplated that those skilled in the art will be able to readily add modifications to controller 30 to best suit a particular implementation without undue experimentation. And as also shown in Fig. 3, the power supply voltage VeeR is connected to and biased C to the flash, and each of the device 1〇 and the controller 3〇. This power supply voltage Vcc-r is lower than the voltage of 120269.doc -20-200818206 used in the conventional flash memory device and controller, so that the reduction is caused by the input/output terminals 1/01 to 1/〇11 and The power consumption of data transfer and transition at various control lines, even at higher switching rates, as described below. As described in detail below in conjunction with the specific examples, this power supply voltage may be at a nominal voltage of about U0 volts (ranging from about 1.60 volts to about 2. volts), which is substantially less than the conventional 3.3 volts. Nominal power supply voltage (ranging from approximately 2.70 volts to 3.60 volts). Referring now to Figures 4a through 4e, the operation of the flash memory device J 组合 combination controller 30 in the memory card 25 will now be described in a normal mode of operation and also in a known command communication mode. It is contemplated that their modes of operation will generally correspond to conventional flash memory interface protocols for modern flash memory devices, and that their operational modes will themselves be used as flash memory for use in accordance with preferred embodiments of the present invention. One of the "old" input/output protocols of the body device 10. Figure 4a illustrates the transmission of a command from the controller 30 to the flash memory device. As is known in the art, and as will be described in more detail below, modern flash memory devices operate in response to particular commands issued by the controller and specific commands communicated through the data input/output lines. In terms of its own, the actual implementation of the command CMD is implemented by the controller 30 driving the command latch enable signal CLE to a high active state, and the address latch enable signal ALE to a low The inactive state, which represents a command (not a single address) on the input/output lines 1/〇1 to 1/〇11. In a conventional manner, the wafer enable signal CE is enabled to be in an active low state to enable the flash memory device. As is known in the art, if a plurality of flash memory devices 10 are provided within the card 25, then when When the flash memory device for communication in the flash memory device 10 is selected, it can use the individual chip enable signal CE-120269.doc -21 - 200818206. The controller 3 发布 issues an active low pulse on the write enable line WE1 and strobes the input/output lines 1/〇1 to 1/〇^ on the digital word provided by the controller 30 (corresponding to the figure The command cmd); the rising edge of the pulse written to the enable line WE causes the i/o control circuit to be received and latched in the command CMD, and finally to the command register 24 (Fig. 2). The controller 30 can cause the command latch enable signal CLEs to return to an inactive low state to terminate the command operation. Of course, as is known in the art, multi-word commands or multiple single-word commands can be sequentially transmitted in this manner. The command communicated in the manner shown in Figure 4a is used to indicate that the controller % will communicate the memory address to the command of the flash memory device 1 (for example, the command for reading operations; for serial data input) Command to program or write operation 10H). The foregoing embodiment of the invention is reduced in the normal state and the command # mode in which the controller 3 communicates the address of the address to the flash memory device. For its part, the operation shown in Figure 4b conveys a command 00H along the sequence shown in Figure 2, which indicates that the memory address is about to be transferred in the next sequence of signals. In this normal mode of operation, 'control (4) can convey a relatively wide range of commands to the flash memory device H). An exemplary set of commands in this preferred embodiment of the invention is set forth in the following table.

120269.doc -22- 200818206120269.doc -22- 200818206

60, D〇 (兩循環命令) 讀取開始 言買取行位址變更 —----—__ 自動區塊擦除 ID讀取60, D〇 (two loop command) Read start Word buy row address change —----—__ Auto block erase ID read

狀態讀取 70 重設 FF 現在請參考圖4b,將描述根據本發明之此項較佳具體實 加例自控制益3 0傳輸記憶體位址至快閃記憶體裝置丨〇。在 此操作中,控制器30驅動命令鎖存啟用訊號CLE至非作用 中低狀態以及位址鎖存啟用訊號ALE至高狀態,其向快閃 纪憶體裝置10指示出將在輸入/輸出線1/〇1至1/〇11上傳達位 址值(而非命令值)。晶片啟用訊號CE-亦被驅動成為作用 中低狀恶’其指示出控制器30正在選擇快閃記憶體裝置j 〇 作為此位址資訊的收件者。在此操作中,控制器3 〇發佈寫 入啟用訊號WE一之作用中低脈衝,每一脈衝指示出當時控 制器3 0在輸入/輸出線1/〇 1至ι/〇η上提供的位址值之一部 分。在本發明之此項具體實施例中,此位址資訊同步於寫 入啟用訊號WE一之上升邊沿(即,作用中低脈衝之結尾), 使得快閃記憶體ίο可使用此邊沿將輸入/輸出線1/01至1/〇11 之當前狀態鎖存於位址暫存器22.(圖2)中以作為所要記憶 體位址之一部分。如圖4b之實例中所示,記憶體位址延伸 跨越多個字(其寬度係按輸入/輸出線1/〇1至Ι/On之數量η予 120269.doc •23· 200818206 '定義)在此|·月况中’ 5己憶體位址包括四個位址字ADD〇 至ADD3,其係同步於WE_的作用中低脈衝予以提供。 繼傳達位址值(如圖4b所示)後,控制㈣可實行寫人資 料至快閃記憶體裝置10或自快閃記憶體裝置1〇讀取資料。 圖4c繪示根據本發明之此項較佳具體實施❹在常態操作 模式(即,&quot;舊型,,模式)中為實現寫人操作所傳達之訊號。 根據圖2之架構,此項資料寫入操作係將資料寫入至資料 暫存器14。就其本身而論’根據本發明之較佳具體實施 例,以圖4a所示之方法來實;見寫入命令(例如,命令值 80H)至資料暫存器’其後由控制器3〇傳達在快閃記憶體裝 置10内的目的地記憶體位址’兩者皆係在現在將參考圖乜 描述的寫入操作之前。冑了實現資料寫入操作,控制器3〇 驅動命令鎖存啟用訊號CLE及位址鎖存啟用訊號副兩者 至非作用中低狀態’其向快閃記憶體裝置1()指示出將在輸 入/輸出線1/01至I/On上傳達的待寫入之輸入資料(即,不 是命令,也不是位址值)。當然,對於此操作,晶片啟用 訊號CE一亦被驅動至作用中低狀態。接著,控制器3〇發佈 寫入啟用訊號WE—之作时低脈衝連同在輸人/輸出線ι/〇ι 至Ι/On上提供的每一位元組或字之資料。在本發明之此項 具體實施例中,如同命令與位址傳輸之情況中,以在每一 脈衝結尾時同步於寫入啟用訊號WE—之上升邊沿方式提供 有效之輸入資料。回應此邊沿,快閃記憶體裝置1〇將輸入 /輸出線1/01至Ι/On之當現狀態(相對應於輸入資料之一字 或位元組)鎖存至1/0控制電路2〇的資料暫存器内,或透過 120269.doc -24- 200818206 匯流排DATA—BUS間接(或最後按可能之情況)鎖存至資料 暫存器14。圖4c繪示以同步於寫入啟用訊號we—之四個 脈衝方式透過輸入/輸出線1/01至1/〇11傳達四個字〇4〇)至 Din(3) 〇 圖4d繪示根據本發明較佳具體實施例在常態操作模式 (即,”舊型”模式)中控制器30與快閃記憶體裝置1〇在實行 貧料讀取操作(自快閃記憶體裝置10至控制器30)中之操 作。如同在資料寫入操作之情況中,在此讀取操作之前, 先前已實行一命令序列(即,如圖4a所示)及一位址序列 (即,如圖4b所示)。在此讀取之前亦可先前已實行一或多 項寫入操作(即,如果對相同於剛剛已寫入之位址進行讀 取的情況中,此項讀取將用作為對先前寫入的驗證),或 可在此讀取操作之後實行寫人操作(例如,如®4e所示), 其形式為對相同記憶體位址的讀取_修改_寫入序列。在讀 取之^回應於傳達之位址,相對應於該位址的記憶體單元 之内容經感測且轉遞至資料暫存器14。就其本身而論,圖 化之讀取操作係對資料暫存器14之目前註解進行讀取。並 且為了實現此項讀取操作,控制器3〇以前文參考圖4a之描 述的方“命令操作中發佈適當命令(例如,命令腿)。 在此#作中’如同資料寫入操作中,控制器30已驅動命 令鎖存啟用訊號CLE及位址鎖存啟用訊號ale兩者至非作 :中Π:!、’ f且已驅動晶片啟用訊物-至作用中低狀 :來Γ°藉由使寫入啟用訊號WE-成為非作用中高狀 “《不所要之讀取操作。在此資料讀取操作中,快閃 120269.doc -25- 200818206 記憶體裝置1 〇回應如控制器30 W座生之碩取啟用訊號RE 之下降邊沿而輸出資料字D_因此,在此常態操作模式Status Read 70 Reset FF Referring now to Figure 4b, a preferred embodiment of the present invention will be described in which the memory address is transferred from the control memory to the flash memory device. In this operation, the controller 30 drives the command latch enable signal CLE to the inactive low state and the address latch enable signal ALE to the high state, which indicates to the flash memory device 10 that it will be on the input/output line 1 The address value (not the command value) is conveyed on /〇1 to 1/11. The wafer enable signal CE- is also driven to function as a low-level erroneous indication that the controller 30 is selecting the flash memory device j 〇 as the recipient of the address information. In this operation, the controller 3 〇 issues the active low pulse of the write enable signal WE, and each pulse indicates the bit provided by the controller 30 on the input/output lines 1/〇1 to ι/〇η. One of the address values. In this embodiment of the invention, the address information is synchronized to the rising edge of the write enable signal WE (ie, the end of the active low pulse), so that the flash memory ίο can use the edge to input / The current state of output lines 1/01 through 1/11 is latched in address register 22 (Fig. 2) as part of the desired memory address. As shown in the example of Figure 4b, the memory address extends across multiple words (the width of which is defined by the number of input/output lines 1/〇1 to Ι/On η120269.doc • 23· 200818206 'defined) here In the month of the month, the '5' memory address includes four address words ADD〇 to ADD3, which are provided in synchronization with the low pulse of WE_. Following the transmission of the address value (as shown in Figure 4b), the control (4) can perform the writing of the information to the flash memory device 10 or the reading of the data from the flash memory device. Figure 4c illustrates the signal conveyed by the preferred embodiment of the present invention in a normal mode of operation (i.e., &quot;old type, mode) for effecting a write operation. According to the architecture of Figure 2, this data write operation writes data to the data register 14. As far as it is concerned, 'in accordance with a preferred embodiment of the present invention, the method shown in Figure 4a is used; see the write command (e.g., command value 80H) to the data register' followed by the controller 3 The destination memory address ' communicated within the flash memory device 10' is preceded by the write operation now described with reference to FIG. In order to implement the data write operation, the controller 3 drives the command latch enable signal CLE and the address latch enable signal pair to the inactive low state 'which indicates to the flash memory device 1 () that it will be The input data to be written transmitted on the input/output lines 1/01 to I/On (ie, not the command, nor the address value). Of course, for this operation, the wafer enable signal CE is also driven to the active low state. Next, the controller 3 〇 issues a low pulse of the write enable signal WE - together with the data of each byte or word provided on the input/output lines ι/〇ι to Ι/On. In this particular embodiment of the invention, as in the case of command and address transmission, valid input data is provided at the end of each pulse in synchronization with the rising edge of the write enable signal WE. In response to this edge, the flash memory device 1 latches the current state of the input/output line 1/01 to Ι/On (corresponding to one word or byte of the input data) to the 1/0 control circuit 2 The data buffer is latched into the data register 14 indirectly via the bus DATA-BUS (or last possible) through the 120269.doc -24-200818206 bus. FIG. 4c illustrates four words 〇4〇) to Din(3) transmitted through the input/output lines 1/01 to 1/11 in a manner of four pulses synchronized with the write enable signal we— FIG. 4d In a normal mode of operation (ie, "old" mode), the controller 30 and the flash memory device 1 are performing a lean reading operation (from the flash memory device 10 to the controller) 30) Operation in the middle. As in the case of a data write operation, a sequence of commands (i.e., as shown in Figure 4a) and an address sequence (i.e., as shown in Figure 4b) have been previously performed prior to this read operation. One or more write operations may have been previously performed prior to this read (ie, if the same is true for the address just written, the read will be used as the verification of the previous write) ), or a write operation (eg, as shown in ® 4e) may be performed after this read operation, in the form of a read_modify_write sequence to the same memory address. In response to the address being communicated, the contents of the memory unit corresponding to the address are sensed and forwarded to the data register 14. For its part, the graphical read operation reads the current annotation of the data register 14. And in order to implement this read operation, the controller 3 hereinafter refers to the party described in FIG. 4a to issue an appropriate command (for example, a command leg) in the command operation. In this case, as in the data write operation, the control The device 30 has driven the command latch enable signal CLE and the address latch enable signal ale to both: middle, !, 'f and the chip has been driven to enable the signal-to-active low: Make the write enable signal WE- become inactive high-order "" unwanted read operation. In this data reading operation, the flash device 120269.doc -25- 200818206 memory device 1 〇 responds to the falling edge of the enable signal RE of the controller 30 W, and outputs the data word D_, therefore, in this normal state Operating mode

中,控制器30能夠藉由下列方式來同步化自快閃記憶體裝 置職收資料··發佈讀取啟用訊號RE_之作用中低脈衝, 並且接收等待-段㈣之存取時間(准許快閃記憶體裝置 10實現涉及感測其記憶體單元之狀態的一些或所有操 作),並且將所感測之狀態轉遞至其資料暫存器14中且轉 出至輸入/輸出線!/01至1/〇11。接著,控制器3〇可將輸入/ 輸出線1/01至I/On之資料狀態鎖存至其輸入緩衝器中,以 接收來自快閃記憶體裝置10之資料。在圖4d之實例中循 序讀取四個資料字D〇ut(0)至D〇ut(3);晶片啟用訊號ce_之 上升邊沿結束此讀取操作,其後快閃記憶體裝置丨〇促使在 I/O控制電路20中的輸出驅動器將輸入/輸出終端至 I/On置於高阻抗(”高-z&quot;)狀態。 根據此項常態操作模式(即,&quot;舊型”模式)之其他操作亦 較佳地可用,此等操作係如此項技術所已知。舉例而言, 在此項常態操作模式中,控制器30可藉由下列方式讀取狀 態暫存器24之内容:沿循圖4a之時序發佈指定之狀態命令 (例如,命令碼70H),並且回應於讀取啟用訊號rE_之作用 中低脈衝之發佈,透過輸入/輸出線1/01至I/〇n接收讀取狀 態暫存器24之内容。 如圖4c與4d所示,對於寫入啟用訊號WE—或讀取啟用訊 號RE一之每一循環傳達一個資料字或位元組(在此說明書中 稱為”資料字&quot;),如同許多情況。並且如圖所示及前文說明 120269.doc -26- 200818206 内容所述’在此項常態操作模式中,控制器3G控制寫入啟 用訊號WE一與讀取啟用訊號RE_。具體而|,根據習知快 己憶體時序需求與效能,在讀取操作中,因為對於讀取 啟用訊號RE—之每一完整循環僅讀取一個資料字,所以控 制器3〇有充分料fa1自行發佈其讀取轉料(寫入啟用 訊號WE」以及接收且鎖存該讀取資料。但是,此效能等 級對於高速使用之快閃記憶體裝置1〇未必足夠,諸如當使 用快閃記憶體卡25作為個人電腦系統中之大量儲存器。此 外,亦預期此,,舊型&quot;操作模式無法跟上自控制器3〇至主機 系統的高速外部介面模式,諸如依據上文提及之υ〇ΜΑ介 面協定。 根據本發明之較佳具體實施例,因此,快閃記憶體裝置 10提供進階較高效能之讀取與寫入操作模式,並且控制器 30、’二建構以利用該進階模式。現在將參考圖“與5b之流程 圖以及圖6a至心之時序圖來詳細描述快閃記憶體裝置⑺與 控制器30利用此進階模式之操作。 圖5a以及圖以至6c繪示快閃記憶體裝置ι〇在實行資料讀 取操作(即,在快閃記憶體卡25中,自快閃記憶體裝置ι〇 至控制器30)過程中之操作。在圖5a之處理程序4〇中,供 電…陕閃圮憶體裝置10與控制器3〇,使該兩個裝置進入常 L操作杈式中(處理程序42),如上文關於圖“至W之描述 所述在處理程序44中,在此常態操作模式(即,&quot;舊型,,模 式)中,實行在此常態模式中的讀取操作與寫入操作(若有 的話)。 120269.doc -27- 200818206 ,入進階讀取操作模式開始於處理程序46,其中控制器 3〇按照常態操作模式發佈記憶體位址值 1〇,如上文關於圖4b之描述所述。在處理程:^ :30所發佈之記憶體位址係在此進階操作模式中將自該處 :取資料的起始記憶體位址,並且較佳係繼傳輸相對應之 項取位址輸人命令之後,如上文所述。在處理程序48中, 控制器3 0發佈”起始資料傳送”或” ID T ”命令序列至快閃記 憶體裝置10。圖6&amp;進一步詳細繪示此項操作。 根據本發明之較佳具體實施例,在處理程序Μ中,控制 器30發佈&quot;IDT”命令至快閃記憶體裝置1〇,以起始進階資 料傳送模式。以類似於上文關於圖钝之描述所述之方式發 佈此命令,其中控制器3〇驅動晶片啟用訊號CE一至作用中 低狀態、驅動位址鎖存啟用訊號ALE至非作用中低狀態及 驅動命令鎖存啟用訊號CLE至作用中高狀態。寫入啟用訊 號WE一之作用中低脈衝之上升邊沿係用作為用於由控制器 3〇驅動至輸入/輸出線1/01至I/On上之IDT命令值IDT CMD (其係二進位字且值不同於其他指派之命令值)的資料選 通。纟k寫入啟用訊號WE—正處於高狀態之後的一特定時間 之後’控制器30使輸入/輸出線1/01至1/〇11成為高阻抗狀 悲。並且’繼寫入啟用訊號WE一之上升邊沿之後的另一歷 時時間trel之後,當選通IDT命令時,接著控制器3〇亦釋放 其對讀取啟用訊號RE一之控制,准許快閃記憶體裝置丨〇之 控制邏輯18驅動相對應於線RE一之狀態(無與控制器30發生 資料競爭之風險)。 120269.doc -28- 200818206 旦IDT命令已被鎖存於快閃記憶體裝置1 〇中且由快閃 1 己憶體裝置1〇予以執行,接著快閃記憶體裝置Η)開始執行 π»速模式a貝取貝料傳送處理程序%。如圖“所示,繼寫入 啟用訊號職-之上升邊沿之後歷時非零存取時間之後,此 5買取資料傳送處理程序開始於快閃記憶體裝置10發佈第— 有效輸出資料字D〇ut(0)。一旦快閃記憶體裝置崎供此第 一輸出資料字IWO),接著其以同步於額外輸出資料字 Dout⑴以及下列等等之方式開始發佈讀取啟用訊號处之 作用中脈衝。根據本發明之此項較佳具體實施例,以同步 於快閃記憶體裝置10本身所驅動的讀取啟用訊號re之每 一邊沿(下降邊沿與上升邊沿)方式發佈一個資料字 D°Ut(k) °在圖^之實例中’每一輸出資料字D〇ut(k)係接在 其選通邊沿之後相差非零存取時間;替代做法為,可於相 對應的有效資料字D_(k)内發佈(或延遲發佈)每一讀取啟 用訊號RE一邊沿至控制器3 〇。 根據本發明之較佳具體實施例,因此,對於快閃記憶體 裝置經由輸人㈣線則至!心提供資料至控制器洲 速率:在此進階模式中的速率實質上快於常態操作模式 (圖4d)中的速率’大約係典型實現中之資料速率的兩倍。 在某種程度上,實現此較高資料速率之方式為:准許快閃 記憶體裝置H)發佈讀取啟用訊號RE_之讀取資料選通邊 沿,其排除若控制器30發佈彼等讀取資料選通邊沿情況下 所涉及的傳播延遲與必然的時序窗。 然而,熟悉此項技術者應明白,在所有其他因數相等之 120269.doc -29- 200818206 情況下’在輸入/輸出線1/〇1至1/〇11上提供輸出資料的增大 速率實質上增大快閃記憶體卡25内的功率消耗,在此讀取 操作中’功率消耗主要源自於快閃記憶體裝置丨〇之1/〇控 制電路20内的輸出驅動電路。隨著資料字寬度(即,輸入/ 輸出線1/01至Ι/On之數量n)增大(此為現代趨勢),使此功 率消耗惡化。根據本發明之較佳具體實施例,現在將描述 藉由減小輸入/輸出線1/〇1至1/〇11上之輸出訊號的電壓擺動 而使此功率消耗大幅減小。 習知快閃記憶體裝置利用熟知的3 ·3伏匯流排標準,其 中使得最小高位準輸出電壓(ν〇Η)係2·4伏並且最大低位準 輸出電壓(v0LHf、(K4伏,並且其標稱電壓擺動係約3.3伏。 如此項技術所已知,根據此標準,彼等電壓係以標稱上為 3·3〇伏的電源供應電壓為基礎,並且其規格範圍係在27〇 伏與3.60伏之間。根據現代快閃記憶體裝置之習知常態操 作模式,輸出資料速率係25 ΜΗζ (即,每4〇奈秒一次資料 轉變),在一既定輸入/輸出線Ι/Ok在每一循環進行一次資 料轉變的最壞情況中,將需要快閃記憶體裝置1〇以125 MHz之頻率對輸入/輸出線1/〇]^之電容進行充電。假設輸入 /輸出線i/〇k的典型線電容係65 pF,則可從下式計算一個 輸入/輸出線I/Ok的電流消耗(以毫安培為單位)··In the following manner, the controller 30 can synchronize the self-flash memory device service data by the following means: • issue the read enable signal RE_ in the middle of the low pulse, and receive the wait-segment (four) access time (permitted fast) The flash memory device 10 implements some or all of the operations involved in sensing the state of its memory cells) and forwards the sensed state to its data register 14 and out to the input/output line! /01 to 1/〇11. Controller 3 can then latch the data status of input/output lines 1/01 through I/On into its input buffer to receive data from flash memory device 10. In the example of FIG. 4d, four data words D 〇 ut (0) to D 〇 ut (3) are sequentially read; the rising edge of the wafer enable signal ce_ ends the reading operation, and then the flash memory device 丨〇 The output driver in the I/O control circuit 20 is caused to place the input/output terminal to I/On in a high impedance ("high-z&quot;" state. According to this normal mode of operation (ie, &quot;old mode" mode) Other operations are also preferably available, and such operations are known in the art. For example, in this normal mode of operation, the controller 30 can read the contents of the state register 24 by issuing the specified state command (eg, command code 70H) along the timing of FIG. 4a, and In response to the release of the low pulse generated by the read enable signal rE_, the contents of the read status register 24 are received through the input/output lines 1/01 to I/〇n. As shown in Figures 4c and 4d, a data word or byte (referred to as "data word" in this specification) is transmitted for each cycle of the write enable signal WE or the read enable signal RE. In the normal operation mode, the controller 3G controls the write enable signal WE and the read enable signal RE_ as shown in the figure and in the foregoing description 120269.doc -26-200818206. Specifically, | According to the conventional fast-recovery timing requirement and performance, in the read operation, since only one data word is read for each complete cycle of the read enable signal RE, the controller 3 has sufficient fa1 to self-publish its Reading the transfer (write enable signal WE) and receiving and latching the read data. However, this performance level is not necessarily sufficient for high speed use of the flash memory device 1 such as when using the flash memory card 25 as A large number of storage devices in the personal computer system. In addition, it is also expected that the old "operating mode" cannot keep up with the high-speed external interface mode from the controller 3 to the host system, such as according to the above mentioned ΑInterface Protocol. In accordance with a preferred embodiment of the present invention, therefore, flash memory device 10 provides an advanced higher performance read and write mode of operation, and controller 30, 'two constructs to utilize the advanced Mode. The operation of the flash memory device (7) and the controller 30 to utilize this advanced mode will now be described in detail with reference to the flowchart of Figure 5 and the timing diagram of Figure 6a to the heart. Figure 5a and Figure 6c show fast The flash memory device operates in the process of performing a data reading operation (i.e., in the flash memory card 25 from the flash memory device to the controller 30). The processing procedure in Fig. 5a is performed. In the power supply, the device 10 and the controller 3 are brought into the normal L operation mode (processing program 42), as described above with respect to the description of the figure "to W". In this normal mode of operation (ie, &quot;old type, mode), the read and write operations (if any) in this normal mode are implemented. 120269.doc -27- 200818206 , The advanced read mode of operation begins with process 46, which The controller 3 outputs the memory address value 1〇 according to the normal operation mode, as described above with respect to FIG. 4b. The memory address issued in the process: ^: 30 will be from this advanced operation mode. Where: the starting memory address of the data is taken, and preferably after transmitting the corresponding entry address input command, as described above. In the processing program 48, the controller 30 issues "starting data transfer". "OR" ID T" command sequence to flash memory device 10. This operation is further illustrated in detail in Figure 6 &amp; In accordance with a preferred embodiment of the present invention, controller 30 issues &quot;IDT "Command to the flash memory device 1" to start the advanced data transfer mode. This command is issued in a manner similar to that described above with respect to the blunt description, in which the controller 3 drives the wafer enable signal CE to the active low state, the drive address latch enable signal ALE to the inactive low state, and the drive. The command latch enables the signal CLE to the active high state. The rising edge of the low-pulse pulse applied to the enable signal WE is used as the IDT command value IDT CMD for driving the controller 3 to the input/output lines 1/01 to I/On (the binary word) Data strobes with values different from other assigned command values.纟k write enable signal WE—after a certain time after being in the high state&apos; The controller 30 makes the input/output lines 1/01 to 1/〇11 high impedance. And after the other elapsed time trre after the rising edge of the write enable signal WE, when the IDT command is strobed, the controller 3 释放 also releases its control of the read enable signal RE, permitting the flash memory. The control logic 18 of the device drives the state corresponding to line RE (there is no risk of data competition with controller 30). 120269.doc -28- 200818206 Once the IDT command has been latched in the flash memory device 1 and executed by the flash 1 memory device, then the flash memory device Η starts to execute the π» speed Mode a takes the beetle transfer handler %. As shown in the figure, after the non-zero access time after the rising edge of the write enable message, the 5 buy data transfer processing program starts from the flash memory device 10 to issue the first valid output data word D〇ut (0). Once the flash memory device is supplied with the first output data word IWO), it then starts to issue the active pulse at the read enable signal in synchronization with the additional output data word Dout(1) and the like. In a preferred embodiment of the present invention, a data word D°Ut (k) is issued in synchronization with each edge (falling edge and rising edge) of the read enable signal re driven by the flash memory device 10 itself. ° In the example of Figure ^, each output data word D〇ut(k) is connected to its strobe edge after the non-zero access time; the alternative is that the corresponding valid data word D_(k Within the release (or delayed release) of each read enable signal RE along the controller 3. In accordance with a preferred embodiment of the present invention, therefore, for the flash memory device via the input (four) line to the heart Provide information to control Device rate: The rate in this advanced mode is substantially faster than the rate in the normal mode of operation (Figure 4d) is approximately twice the data rate in a typical implementation. To some extent, this higher data is achieved. The rate is obtained by permitting the flash memory device H) to issue the read data strobe edge of the read enable signal RE_, which excludes the propagation delay involved if the controller 30 issues the read data strobe edge. And the inevitable timing window. However, those skilled in the art should understand that the output data is provided on the input/output lines 1/〇1 to 1/〇11 in the case of all other factors equal to 120269.doc -29-200818206. The rate of increase substantially increases the power consumption within the flash memory card 25, where the power consumption is primarily derived from the output drive within the 1/〇 control circuit 20 of the flash memory device. The power consumption is degraded as the data word width (i.e., the number n of input/output lines 1/01 to Ι/On) increases (this is a modern trend). According to a preferred embodiment of the present invention, Will now be described by reducing the input / The voltage swing of the output signal on the output lines 1/〇1 to 1/〇11 causes this power consumption to be greatly reduced. Conventional flash memory devices utilize the well-known 3 · 3 volt bus bar standard, which makes the minimum high bit The quasi-output voltage (ν〇Η) is 2.4 volts and the maximum low level output voltage (v0LHf, (K4 volts, and its nominal voltage swing is about 3.3 volts. As is known in the art, according to this standard, they The voltage is based on a nominal supply voltage of 3.3 volts and is specified between 27 volts and 3.60 volts. According to the conventional normal operating mode of modern flash memory devices, the output data The rate is 25 ΜΗζ (ie, every 4 nanoseconds of data transition), and in the worst case where a given input/output line Ι/Ok performs a data transition in each cycle, a flash memory device will be required. The capacitor of the input/output line 1/〇]^ is charged at a frequency of 125 MHz. Assuming a typical line capacitance of the input/output line i/〇k is 65 pF, the current consumption of an input/output line I/Ok (in milliamps) can be calculated from the following equation.

Ik=f*C(V〇H-V〇L) 對於此實例,结果為:Ik=f*C(V〇H-V〇L) For this example, the result is:

Ik=12.5*〇.〇65(3.3)=2.681 毫安培 上式使用介於高資料位準與低資料㈣之間典型的W伏 120269.doc 200818206 擺動。在驅動讀取啟用訊號RE—過程中消耗之電流將係電 机Ik的兩倍,此乃因其必須在每次轉變對其相對應之導體 進行充電。假設有8條輸入/輸出線1/〇1至1/〇8,因此,在 此項實例之習知常態操作模式中所消耗之總電流將係: ^total = 8(2.681)+2(2.681)=26.81 毫安培 根據本發明之較佳具體實施例,匯流排電壓從此習知 3.3伏匯流排位準實質上減小(例如)至約18伏之匯流排電 壓’其定義標稱電壓擺動為h8伏。在此情況中,最小輸 出尚位準電壓V〇h-r限制之實例可係約144伏(標稱電源供 應電壓之80%),並且最大低輸出位準電壓v〇lr之實例可 係約0.36伏(標稱電源供應電壓之2〇%)。在此減小電壓操 作中,彼等、電壓係以標稱上為18〇伏的電源供應電壓為基 礎,並且所准許之範圍係從約16〇伏至約2〇伏。假設最佳 情況(對於資料傳送;對於電流消耗之最壞情況)的資料速 率為50 MHz,輸入/輸出線1/〇1至1/〇11的充電頻率將係25 MHz。因此,可利用下式計算單個輸入/輸出線i/〇k所消耗 的電流Ik : Ιπ25*0·065(1·8)=2·925 毫安培 上式使用介於高資料位準與低資料位準之間典型的18伏 擺動。因此,對於進階操作模式,此每輸入/輸出線之電 流消耗的差異不大,然而提供兩倍之資料速率。但是,讀 取啟用訊號RE—係以相同於㈣操作模式的頻率操作(但是 以每一邊沿(而非僅以上升邊沿)計時一個資料字)。但是, 當然亦減小其電壓擺動,此乃因其亦以18伏匯流排電壓 120269.doc -31 - 200818206 運作;就其本身而論,其消耗之電流相同於該等輸入/輸 出線中之一者消耗之電流。再次假設有8條輪入/輸出線 1/01至1/08,因此,在此項實例之進階操作模式中所消耗 之總電流將係:Ik = 12.5 * 〇. 〇 65 (3.3) = 2.681 mA The above formula uses a typical W volt 120269.doc 200818206 swing between the high data level and the low data (four). The current consumed in driving the read enable signal RE will be twice that of the motor Ik because it must charge its corresponding conductor at each transition. Suppose there are 8 input/output lines 1/〇1 to 1/〇8, so the total current consumed in the conventional normal mode of operation of this example would be: ^total = 8(2.681)+2 (2.681 = 26.81 milliamps, in accordance with a preferred embodiment of the present invention, the busbar voltage is substantially reduced from the conventional 3.3 volt busbar level, for example, to a busbar voltage of about 18 volts, which defines a nominal voltage swing of H8 volts. In this case, the example of the minimum output still level voltage V〇hr limit may be about 144 volts (80% of the nominal power supply voltage), and the example of the maximum low output level voltage v〇lr may be about 0.36 volts. (2% of the nominal power supply voltage). In this reduced voltage operation, the voltage is based on a nominal supply voltage of 18 volts and is permitted from about 16 volts to about 2 volts. Assuming a best case (for data transfer; worst case for current consumption), the data rate is 50 MHz, and the input/output line 1/〇1 to 1/〇11 will be charged at 25 MHz. Therefore, the current Ik consumed by a single input/output line i/〇k can be calculated by the following equation: Ιπ25*0·065(1·8)=2·925 milliamperes. The above formula uses high data level and low data. A typical 18 volt swing between levels. Therefore, for the advanced mode of operation, this difference in current consumption per input/output line is small, but provides twice the data rate. However, the read enable signal RE is operated at the same frequency as the (four) mode of operation (but with one edge per clock (rather than just rising edges)). However, of course, its voltage swing is also reduced, because it also operates at 18 volts bus voltage 120269.doc -31 - 200818206; as such, its current consumption is the same as in the input/output lines. The current consumed by one. Again assume that there are eight wheel input/output lines 1/01 to 1/08, so the total current consumed in the advanced mode of operation of this example would be:

Itotal = 8(2·925)+1(2·925)=26·33毫安培 傳送速率(約大型叢發之資料速率的兩倍)予以Itotal = 8(2·925)+1(2·925)=26·33 mA The transfer rate (about twice the data rate of large bursts)

其稍微小於以3·3伏匯流排電壓運作之習知快閃記憶體卡 消耗之總電流。並且,因為此稱低之電流消耗係以對於輸 入/輸出訊號的較低電壓擺動(1·8伏相對於3·3伏)予以達 成,所以在此進階操作模式中消耗之功率實質上小於習知 快閃記憶體卡中消耗之功率。根據彼等實例,纟常態操作 模式中之習知8 1/0快閃記憶體中消耗之功率將係約Μ毫瓦 特(3·3伏乘26.81毫安培),然而上文所述之本發明較佳且 體實施例之實例消耗之功率將係約47毫瓦特(18伏乘:⑶ 宅安培)。此實質減小之功率消耗係結合實f改良之資料 作兩者中使用較低之匯流排電壓,並It is slightly less than the total current consumed by conventional flash memory cards operating at a 3.3 volt bus voltage. Moreover, since the low current consumption is achieved by a lower voltage swing (1.8 volts versus 3.3 volts) for the input/output signal, the power consumed in this advanced mode of operation is substantially less than The power consumed in conventional flash memory cards. According to their examples, the power consumed in the conventional 8 1/0 flash memory in the normal mode of operation will be approximately megawatts (3.3 volts by 26.81 milliamps), however the invention described above Preferably, the power consumed by the example of the embodiment will be about 47 milliwatts (18 volts multiplication: (3) home amps). This substantially reduced power consumption is combined with the improved data for the use of the lower bus voltage, and

身而論,快閃記憶體裝置10在傳主 ’進階模式與常態操作模式運 電壓,並且亦對於包括命令與 用較低之匯流排電壓。就其本 送資料中消耗之功率低於 120269.doc -32- 200818206 習知快閃記憶體裝置。 如w文所述,在常態操作模式 號。為了 I w 達命令訊號與位址訊 為了易於實施,較佳方式為,用 流排雷厭、傳達彼等訊號之匯 #料在較低匯流排電壓(心 額外減小快閃記憶體卡25之功率消耗。·)ά供 考圖5a,根據本發明之此項具體實施例之快閃 明、置1 〇#夠回應來自控制器3㈣暫停請求。 預期控制器30為了若干原因中任一者(例如,其内 2收貝科.緩衝器已滿)而認、為必須暫停讀取資料傳送。 就其本身而論,圖5a之決策51決定是否需要此一暫停。若 否’則以上文關於圖6a之描述所述的方式,於處理程序% 中繼續進行高速讀取資料傳送。 如果控制器30需要暫停讀取資料傳送(決策51決定&quot;是”), 則其於處理程序52中發佈暫停請求。在此項示範性實施 中,控制器30於讀取傳送操作期間藉由確證(assert)位址鎖 存啟用訊號ALE上之作用中高位準而提出此項請求。圖讣 繪示此暫停操作,其發生於進階模式中之讀取資料傳送期 間(即,已調用進階模式並且已開始資料傳送)。在圖讣之 實例中,於自快閃記憶體裝置10至控制器3〇之資料傳送期 間,控制器30藉由確證位址鎖存啟用訊號ALE而請求資料 傳送暫停。作為回應,快閃記憶體裝置1〇暫停讀取啟用訊 號RE 一(當在低位準(如圖所示)或在高位準時),並且在暫 停讀取啟用訊號RE一之後延遲發佈下一資料字。假定在此 進階模式中讀取啟用訊號RE一與輸入/輸出線1/01至1/〇11之 120269.doc -33- 200818206 迅速切換速率,預期在位址鎖存啟用訊號ALE被驅動至作 用中高狀態以請求暫停之後,快閃記憶體裝置1〇可驅動一 個或兩個額外資料字以及讀取啟用訊號RE 一之相對應邊 沿。在此實例中,於輸出資料字D〇ut(4)期間,控制器3〇已 確證位址鎖存啟用訊號ale,並且於輸出資料字〇。^(6)期 間,快閃記憶體裝置10藉由保持讀取啟用訊號汉£-及輸入/ 輸出線I/O 1至I/On之進一步轉變而作出回應。 此暫停進一步資料傳送持續,直到控制器3〇執行處理程 序54以撤銷啟動位址鎖存啟用訊號ALE,因此結束暫停。 如圖6b所不,在控制器3〇使位址鎖存啟用訊號ale成為非 作用中低狀態後隨即結束此暫停狀態。根據本發明之此項 具體實施例,位址鎖存啟用訊號ALE之此轉變係用作為來 自㈣記憶體裝置10之下一輸出資料字(在此實例中係資 料字D〇ut(7))的f買取資料選通。在此起始暫停後之資料字之 後,快閃記憶體裝置1()藉由確證讀取啟用訊號RE—之轉變 而再次產生讀取選通訊號,如圖所示。在此實例中―,讀取 用訊號RE一之下-轉變係用於繼暫停時期結束之後的第 輸出貝料子Dout(8)的選通。於處理程序%中繼續進行進 階模式讀取資料傳送,如圖讣所示。 請重新參相心繼續進行進階H讀取t料傳送直到In other words, the flash memory device 10 operates in the master 'advance mode' and the normal mode of operation, and also includes a lower bus voltage for command and use. The power consumed in the transmission of the data is less than 120269.doc -32- 200818206 conventional flash memory device. As described in the w text, the mode number is operated in the normal state. In order to facilitate the implementation of the Iw command signal and the address information, it is preferable to use the flow-discharge and communicate the signals of the signals at the lower bus voltage (the heart additionally reduces the flash memory card 25). Power Consumption..) In view of Figure 5a, in accordance with this embodiment of the present invention, flashing, setting 1 够# is sufficient to respond to a request from the controller 3 (4) to suspend. It is contemplated that the controller 30 recognizes that the read data transfer must be suspended for any of a number of reasons (e.g., within it). For its part, decision 51 of Figure 5a determines whether this suspension is required. If no, then in the manner described above with respect to Figure 6a, the high speed read data transfer continues in the handler %. If the controller 30 needs to suspend the read data transfer (decision 51 determines &quot;yes&quot;), it issues a suspend request in the handler 52. In this exemplary implementation, the controller 30 during the read transfer operation This request is made by asserting the address latch enable signal on the enable signal ALE. This pause operation is performed during the read data transfer in the advanced mode (ie, it has been called up). In the example of the figure, during the data transfer from the flash memory device 10 to the controller 3, the controller 30 requests the data by confirming the address latch enable signal ALE. The transfer is paused. In response, the flash memory device 1 pauses the read enable signal RE (when at the low level (as shown) or at the high level) and delays the release after the read enable signal RE is paused. A data word. It is assumed that in this advanced mode, the enable signal RE is read and the input/output lines 1/01 to 1/〇11 are 120269.doc -33- 200818206. The rate is quickly switched, and the enable signal is expected to be latched at the address. ALE After driving to the active high state to request a pause, the flash memory device 1 can drive one or two additional data words and read the corresponding edge of the enable signal RE. In this example, the output data word D〇ut (4) During the period of time, the controller 3 confirms that the address latch enable signal ale, and during the output of the data word 〇. (6), the flash memory device 10 maintains the read enable signal and the input. The output line I/O 1 to I/On responds with a further transition. This pause further data transfer continues until the controller 3 executes the processing program 54 to cancel the start address latch enable signal ALE, thus ending the pause. 6b, the pause state is terminated immediately after the controller 3 causes the address latch enable signal ale to become the inactive low state. According to this embodiment of the invention, the address latch enable signal ALE The transition is used as the f-buy data from the output data word (in this example, the data word D〇ut(7)) from the (4) memory device 10. After the data word after the start of the pause, it is fast. Flash memory device 1 () borrowed Confirming the change of the read enable signal RE- and generating the read select communication number again, as shown in the figure. In this example, the read signal RE is below - the transition is used for the output after the end of the pause period. The strobe of the material Dout (8). Continue to read the data transfer in the advanced mode in the processing program %, as shown in Figure 请. Please re-enter the phase to continue the advanced H read t material transfer until

120269.doc ’其在處理程序58、59中向快 要終止傳送。典型地,在控制 豐裝置10内之頁尾後隨即終止 為了其他原因(例如,在接收 • 34 - 200818206 到用於操作的全部所要資料之後)終止傳送。 祀據此項實例’為了終止此資料傳送,控制器30首先於 處理私序58中發佈暫停,例如,藉由確證位址鎖存啟用訊 號ALE之作用中高位準,如上文所述。圖&amp;繪示終止處理 u序8 59之爲例,圖中繪示在進階讀取資料傳送操作期 門位址鎖存啟用訊號ALE之轉變。控制H3G於暫停操作期 間實行處理料59,使處理程序58之暫停操作變換至終止 進階讀取資料傳送。替代做法為,可於快閃記憶體裝置10 本身決定其輸出資料已抵達頁尾之後實行處理程序59,在 此情況中’快閃記憶體裝置1G本身使讀取㈣訊號re—維 持在其最後位準’並且在輸人/輸出線&quot;⑴至!心上維持現 行(即,最後的)輸出資料字;在此情況中,位址鎖存啟用 訊號ALE仍是維持非作用中低狀態。在圖&amp;所示之此實例 中’控制器30在位址鎖存啟用訊號ALE係處於作用中高位 準時確證命令鎖存啟用訊號CLE上之作用中高位準,而終 止此貪料傳送。回應於此命令鎖存啟用訊號CLE2轉變, 快閃記憶體裝置10控制其輸出驅動器以將輸入/輸出線刪 至Ι/On置於高阻抗狀態,並且亦釋放其對相對應於讀取啟 用訊號RE—的^體之控帝j ,在彼兩種情況中,〉隹許控制器 30在適當時取得對彼等線路之控制,同時避免資料競爭問 題。如圖6c之實例中所示,因為暫停操作與終止操作發生 於讀取啟用訊號RE—處於低位準,所以―旦控制器3〇取得 對讀取啟用訊號RE—之控制,隨即驅動相對應之線路上之 非作用中高位準,導致如圖所示之轉變;如果暫停操作與 120269.doc -35- 200818206 、、S止操作發生於讀取啟用訊號RE—已處於高位準,則當然 在此線路上無任何轉變。 接著,快閃記憶體裝置1 〇返回常態操作模式(,,舊型&quot;模 式),將控制傳回至圖5a之流程圖中的處理程序44。根據 本發明之此項較佳具體實施例,新的進階模式讀取資料傳 送將需要起始處理程序48之另一執行個體(instance)。 進一步,在替代做法中,如果控制器3〇撤銷確證晶片啟 肖訊號CE_’則將發生無條件終止。但是,預期此項無條 件終止可導致在快閃記憶體裝置10及控制器30之内部與外 發生&quot;差錯&quot;及其他假性且未指定的事件。 根據本發明之此項較佳具體實施例,對於自控制器川至 快閃記憶體裝置10之資料傳送(換言之,對於寫入資料傳 C操作)亦提供進階高效能模式。圖5b之流程圖連同圖h 與6d至6e之時序圖繪示此項操作,現在將予以描述。 木^實現進階模式寫入資料傳送,快閃記憶體裝置_ • 操作模式開始,進人處理程序60。如同讀取資料傳送 之情況,在處理程序62中首先實行此常態模式操作(若有 的話)。在處理程序64中,在此常態操作模式中,控制器 - 30發佈位址值至快閃記憶體裝置1(),如上文關於圖之描 .相m於處理程序66中,控制器3G以類似於上文關 :圖㈣述之進階讀取f料傳送所述的實行方式起始進階 斗傳ϋ模式。預期於處理程序66中將於此進階模式中執 打的寫入資料傳送實質上完全相同於讀取資料傳送。就其 本身而論,舉例而言,預期於處理程序66中發佈之命令值 120269.doc -36· 200818206 IDT一CMD對於讀取眘袓屑、 取貝枓傳运刼作與寫入資料傳送操作皆 相同替代做法為,可對於該兩種操作指派彼此不同的命 令值。 在處理程序68中,控制11 3G與快閃記憶體裝置10實行進 P白寫入貝料傳运。圖6構示此項操作(包括處理程序叫之 貝例中的訊號b夺序’其中由控制器3〇發佈命令值 mT—CMD、命令鎖存啟用訊號CLE之作用中高位準與寫入120269.doc' is in the processing of programs 58, 59 to terminate the transfer. Typically, the termination is terminated immediately after the end of the control device 10 for other reasons (e.g., after receiving • 34 - 200818206 to all required materials for operation) to terminate the transfer. In accordance with this example, in order to terminate this data transfer, the controller 30 first issues a pause in the processing private sequence 58, for example, by verifying that the address latch enables the high level of the enable signal ALE, as described above. The figure & illustrates the termination process. The sequence of the sequence 8 59 is shown as an example. The figure shows the transition of the gate address enable signal ALE during the advanced read data transfer operation period. The control H3G executes the processing material 59 during the pause operation to cause the pause operation of the processing program 58 to shift to terminate the advanced read data transfer. Alternatively, the processing program 59 can be implemented after the flash memory device 10 itself determines that its output data has reached the end of the page, in which case the 'flash memory device 1G itself maintains the read (four) signal re- at its end Level 'and in the input / output line &quot; (1) to! The current (i.e., last) output data word is maintained on the heart; in this case, the address latch enable signal ALE remains in the inactive low state. In the example shown in the &&amp;&apos;&apos; controller 30 terminates the high level on the command latch enable signal CLE when the address latch enable signal ALE is at the active high level, and terminates the greedy transfer. In response to this command latch enable signal CLE2 transition, the flash memory device 10 controls its output driver to delete the input/output line to Ι/On in a high impedance state and also release its pair corresponding to the read enable signal. In the two cases, the controller 30 obtains control of its lines when appropriate, while avoiding data competition problems. As shown in the example of FIG. 6c, since the suspend operation and the termination operation occur at the read enable signal RE, which is at a low level, the controller 3 obtains control of the read enable signal RE, and then drives the corresponding The non-active high level on the line leads to the transition as shown; if the pause operation is with 120269.doc -35- 200818206, the S stop operation occurs when the read enable signal RE is already at a high level, then of course There is no change on the line. Next, the flash memory device 1 returns to the normal operation mode (, old type &quot; mode), and the control is passed back to the processing program 44 in the flowchart of Fig. 5a. In accordance with this preferred embodiment of the present invention, the new advanced mode read data transfer will require another execution entity of the initiating process 48. Further, in the alternative, an unconditional termination will occur if the controller 3 revokes the verification of the wafer initiation signal CE_'. However, it is expected that this unconditional termination may result in &quot;error&quot; and other false and unspecified events occurring inside and outside of flash memory device 10 and controller 30. In accordance with this preferred embodiment of the present invention, an advanced high performance mode is also provided for data transfer from the controller to the flash memory device 10 (in other words, for write data transfer operations). The flow chart of Figure 5b, together with the timing diagrams of Figures h and 6d through 6e, illustrates this operation and will now be described. Wood ^ implements advanced mode write data transfer, flash memory device _ • The operation mode starts, and the processing program 60 is entered. This normal mode operation (if any) is first performed in the processing program 62 as is the case with the read data transfer. In the processing program 64, in this normal mode of operation, the controller -30 issues the address value to the flash memory device 1(), as described above with respect to the figure. In the processing program 66, the controller 3G Similar to the above: Figure (4) describes the advanced read f-transfer mode of the implementation of the advanced mode. It is contemplated that the write data transfer performed in this advanced mode in processing 66 is substantially identical to the read data transfer. For its part, for example, the command value issued in the processing program 66 is expected to be 120269.doc -36·200818206 IDT-CMD for reading caution, fetching and writing data transfer operations The same alternative is to assign different command values to each other for the two operations. In the processing program 68, the control 11 3G and the flash memory device 10 perform the P white write bee feed. Figure 6 constructs this operation (including the processing of the signal called b-sequence in the shell example) where the controller 3 〇 issues the command value mT-CMD, the command latch enable signal CLE, the high level and write

用訊號WE一之作用中低脈衝的組合至快閃記憶體裝置 10,因此起始進階模式資料傳送。如同先前之實例,使位 址鎖存啟用訊號AL_持在㈣时低位準,以及使晶片 啟用訊號CE維持在仙中低位準。並且因為此項操作將係 一項貧料寫入操作,所以控制器3〇使讀取啟用訊號re_ (圖中6d未繪不)始終保持在非作肖巾高狀態。在本發明之 此項具體實施例中,因為寫入資料傳送處理程序68仍是在 控制器30之完全控制下,所以介於發佈命令〔靡與 開始寫入資料傳送之間的延時可比讀取資料傳送中一第一輸 出資料字(圖6a)之前的延時短許多。較佳方式為,介於相 對應於起始命令IDT—CMD的寫入啟用訊號貿£ 一之脈衝之上 升邊沿與相對應於第一輸入資料字Din(〇)的寫入啟用訊號 WE—之第一脈衝之下降邊沿之間歷時一指定時間,如圖所 示〇 在本發明之此項較佳具體實施例中,一旦寫入資料傳送 開始,寫入啟用訊號WE 一之上升邊沿與下降邊沿兩者皆用 作為寫入資料選通,由控制器30確證。如圖6d所示,此准 120269.doc -37- 200818206 許控制器3 0以同+认 恭德虹Μ V於寫入啟用訊號WE-之每一邊沿的方式 發佈新的有效寫入資 、枓子Din(k)至輸入/輸出線I/O 1至Ι/〇η 上。結果,對於如π # 、相冋之寫入啟用訊號WE 一頻率,此進階模 式中之寫入資料值、主* 、 杜、&quot;㈣可係常態操作模式寫人操作之資 枓速率的約兩倍。The combination of the medium and low pulses of the signal WE is applied to the flash memory device 10, thus the advanced mode data transfer is initiated. As in the previous example, the address latch enable signal AL_ is held at the (4) low level and the wafer enable signal CE is maintained at the low level. And because this operation will be a poor material write operation, the controller 3 causes the read enable signal re_ (not shown in the figure 6d) to remain in the non-discrete state. In this embodiment of the present invention, since the write data transfer processing program 68 is still under the full control of the controller 30, the delay between the issue command [靡 and the start of the write data transfer can be read. The delay before the first output data word (Fig. 6a) in the data transfer is much shorter. Preferably, the rising edge of the write enable signal corresponding to the start command IDT_CMD and the write enable signal WE corresponding to the first input data word Din(〇) The falling edge of the first pulse lasts for a specified time, as shown in the preferred embodiment of the present invention. Once the write data transfer begins, the rising edge and the falling edge of the enable signal WE are written. Both are used as write data strobes, which are confirmed by the controller 30. As shown in Fig. 6d, the standard 120269.doc -37-200818206 allows the controller 30 to issue a new valid write, in the same manner as the + input of the enable signal WE- Dice (in) to the input/output line I/O 1 to Ι/〇η. As a result, for the frequency of the write enable signal WE such as π # , the write data value, the main *, the du, and the (4) in the advanced mode can be the rate of the normal operation mode of the write operation. About twice.

根據本發明$ Ι_μ % θ A ^ 、 項/、體實施例,請重新參考圖5b,進階 模式寫入資料傳送中亦實行暫停決策69。典型地,僅由控 制器3〇決定對於寫入暫停之需求,其預期快閃記憶體裝置 &quot;依此貝料速率接收輸人資料而無緩衝H溢位等等。如 、—:要暫# (决策69決定&quot;否&quot;),則於處理程序Μ中繼續 進订貝料傳达。如果控制器30要求暫停(決策69決定”是&quot;), 則於處理程序7G中實現寫人f料傳送之暫停。在此實例 中控制器30視需要延長寫入啟用訊號戮―而簡單地實現 暫停處理私序70。可在任一狀態(寫入啟用訊號we一保持 高㈣或保持低狀態)中實行此暫停;® 6d繪示於寫入資 料字Din(2)之持續期間的暫停處理程序7(),其中使寫入啟 用訊號WE—保持低狀_。當然,在暫停處理程序7帽間, &amp;制器30不發佈額外寫入資料字〜⑻。控制器僅僅驅 動寫入啟用訊號WE—之轉變連同下一有效寫入資料字According to the present invention, Ι_μ % θ A ^ , term /, embodiment, please refer back to Figure 5b, and the pause mode decision 69 is also implemented in the advanced mode write data transfer. Typically, only the controller 3 determines the need for a write pause, which expects the flash memory device to &quot; receive input data at this rate without buffering H overflow and so on. For example, --: to suspend # (decision 69 decides &quot;no&quot;), then continue to feed the bedding in the processing program. If the controller 30 requests a pause (decision 69 decides to be &quot;), a pause in the write transfer is implemented in the handler 7G. In this example, the controller 30 extends the write enable signal as needed - and simply Implementing a suspend processing private sequence 70. This pause can be implemented in either state (the write enable signal we remain high (four) or remain low); ® 6d is depicted as a pause during the duration of the write data word Din(2) Program 7(), in which the write enable signal WE is kept low_. Of course, the &amp; controller 30 does not issue an extra write data word ~(8) between the pause handlers 7. The controller only drives the write enable. Signal WE-transformation along with the next valid write data word

Din(3)(在圖6d所示之實例中)而實現暫停時期結束,以繼續 進行寫入資料傳送(處理程序72)。 並且,如同讀取資料傳送之情況,資料訊號與控制訊號 之電壓位準(輸入/輸出線I/Oi至I/〇n,及用於寫入啟用訊 號WE一之線路)較佳係低於習知位準的電壓位準,舉例而 120269.doc -38- 200818206 言,具有介於高邏輯位準與低邏輯位準之間的18伏&quot;擺動&quot;。 如上文詳細論述所述,在二分之一資料速率下,此較低電 壓f匯流排將使此進階寫入資料傳送模式所消耗之功率維 持等於或小於在常態操作模式中運作之習知快閃記憶體系 • 統中消耗之功率。 清重新參考圖5bJ*結合圖6e,以完全相同於終止讀取資 料傳送之方式實現終止寫入資料傳送。纟處理程序74中, ㈣器3()在處理程序74中確證位址鎖存啟用訊號ALE至作 帛中高㈣以暫停傳送’並且接著在處理程序76中確證命 令鎖存啟用訊號CLE至作用中高位準(同時使位址鎖存啟用 訊號ALE維持高位準),其接著終止寫人資料傳送。圖以繪 示終止寫入資料傳送過程中各種訊號之時序。寫入啟用訊 號WE 一保持在高位準(如圖6e所示),或在已鎖存最後資料 字Din(5)(在此實财)之後自低位準轉為高位準。繼終止 進階模式寫人資料傳i罐由使絲鎖存制訊號A l E與命 • 7鎖存啟用訊號CLE*別保持高位準達指定脈衝寬度而實 現)之後’接著再次進入快閃記憶體裝置1()與控制器3〇之 常態操作模式。 -在此貝例中,寺慮到需要執行命令以調用進階模式,並 =慮到在資料傳送終止時㈣記憶體裝置ig之運作返回 U喿作模式(即’不需要執行命令),常態操作模式實際 上係”預設&quot;操作模式。替代做法為,可組態快閃記憶體裝 置10,使得需要執行命令才能進入進階資料傳送模式與常 態操作模式兩者,致使一旦快閃記憶體裝置10係處於進階 120269.doc -39- 200818206 資料傳送模式中, 一常態操作丄;::;:::式:’直到控制器- 命令為止。备妒f、閃圮彳思體裝置10執行該 用。 此㈣㈣及命令序列本質上的額外耗 作模弋了r在θ代做法中,快閃記憶體裝置丨〇之,,預設,,摔 有==料傳!模式,致使在一二 10進入常離摔作模30發佈命令以使快閃記憶體裝置 施例,-ΓΓ。根據本發明之此項替代具體實 成次料值 記憶體裝置10係處於常態操作模式,則完 式[运將導致快閃記憶體裝置10返回進階資料傳送模 圖7綠示根據本發明替 憶體裳置Η)的操作H又土 例建構之快閃記 机” # 、 、 /、中進階貧料傳送模式實際上係,,預 2拉式。在處理程序80中,供電給快閃記憶體裝置^與 = 或以其他方式完成重設操作,並且在處理程序 進入進階操作模式(實際上作為預設條件),而不需要 發=2行命令。於處理程序84中,在進階資料傳送操作 果式中只打讀取操作與寫入操作,實際上如上文關於圖牝 ㈣之描述所述。舉例而言’在此進階模式中’預期可如 上文關㈣6e之描述所述實行暫停操作及類似操作;進一 步預期其他操作(諸如位址、命令與狀態通信操作)仍然可 遵循常態操作模式做法(若希望)。 在處理程序86中’根據本發明此項較佳具體實施例之快 閃記憶體卡25準備常態(或&quot;舊型&quot;)模式方式為:由控制器 120269.doc 200818206 %發佈位址值至快閃記憶體裝置1(),該位址值指示出常態 操作模式傳送的開始記憶體位址。在處理程序以中,控: 器30發佈命令序列以起始常態操作模式;預期此命令序列 實質上對應於上文關於圖6a之描述所述,而該命令序列本 - 綠佳係按照常態操作模式運作(預期命令碼值係單個位 ' 讀值)。回應於命令88,快閃記憶體裝置職據資料傳 • &amp;之方向而實行f 11操作模式讀取或寫人資料傳送操作, @如’如上文關於,與★插述所述。在本發明之此項 I體實施財,較佳方式為,控制器3G發佈讀取資料選通 控制訊號與寫人資料選通控制訊號兩者,如上文所述。 並且,根據本發明之此項替代較佳具體實施例,在完成 資料傳送後隨即退出常態操作模式。在圖7之實例中,類 似於如上文關於圖5a與5b之描述所述。在處理程序%中,、 控制器30發佈暫停訊號(例如,位址鎖存啟用訊號上的作 用中位準)而終止資料傳送,其後在處理程序㈣,控制 鲁器、30終止傳送(例如,藉由發佈命令鎖存啟用訊號之作用 中位準)。根據本發明之此項較佳具體實施你】,在終止常 恝操作模式資料傳送之後,控制返回處理程序Μ,其中再 .次進入進階資料傳送操作模式,並且在處理程序8/中按需 要實行讀取與寫入資料傳送操作。 而 已參閱此份說明書的熟悉此項技術者應明白,除了本發 明之此項替代較佳具體實施例以夕卜,預期尚有進人與Μ 快閃記憶體裝置10之各種操作模式的替代做法,並且亦應 明白,彼等及此類其他替代實施方案皆歸屬於如申請專利 120269.doc -41 . 200818206 範圍之本發明範疇内。 現在請參考圖8a至圖8e,現在將詳細說明在根據本發明 之第二較佳具體實施例的快閃記憶體卡25背景中介於快閃 記憶體裝置10與控制器30之間的訊號之時序。在根據本發 明之第二較佳具體實施例的進階模式期間,進入與退出操 作的整體處理程序較佳係遵循上文關於圖5a之讀取操作所 述的處理程序及關於圖5&amp;之寫入操作所述的處理程序。就 其本身而論,此處在結合圖8a至圖8e之描述將不重複彼等 處理程序之詳細描述。 如上文關於本發明之第一較佳具體實施例之描述所述, 快閃記憶體裝置10與控制器30在經供電後皆處於常態操作 模式(或舊型模式)。就其本身而論,由使用者按需要實 仃在此常態模式中的讀取操作與寫入操作(若有的話)。接 著’在常態操作模式中由控制器30發佈記憶體位址值(其 相對應於在此進階操作模式中將自該處讀取資料的起始記 憶體位址)至快閃記憶體裝置丨〇,以實行進入讀取操作的Din (3) (in the example shown in Figure 6d) implements the end of the pause period to continue the write data transfer (process 72). Moreover, as in the case of reading data transmission, the voltage level of the data signal and the control signal (input/output lines I/Oi to I/〇n, and the line for writing the enable signal WE1) are preferably lower than A known level of voltage level, for example, 120 269.doc -38- 200818206, with an 18 volt &quot;swing&quot; between a high logic level and a low logic level. As discussed in detail above, at a data rate of one-half, this lower voltage f bus will maintain the power consumed by this advanced write data transfer mode equal to or less than the normal operation in the normal mode of operation. Flash memory system • Power consumed in the system. Referring back to Figure 5bJ* in conjunction with Figure 6e, the termination of the write data transfer is accomplished in exactly the same manner as terminating the read data transfer. In the processing program 74, the (4) device 3() confirms the address latch enable signal ALE to the middle high (four) to suspend the transfer in the processing program 74 and then confirms the command latch enable signal CLE in the processing program 76 to the active state. The high level (while the address latch enable signal ALE remains high), which in turn terminates the write data transfer. The figure shows the timing of the various signals during the termination of the write data transfer. The write enable signal WE remains at a high level (as shown in Figure 6e) or transitions from a low level to a high level after the last data word Din(5) has been latched. After the termination of the advanced mode, the data is transmitted by the wire latching signal A l E and the life of the 7 latch enable signal CLE* to keep the high level up to the specified pulse width) and then enter the flash memory again. The normal operation mode of the body device 1() and the controller 3. - In this case, the temple considers that it needs to execute the command to call the advanced mode, and = it is considered that when the data transfer is terminated (4) the operation of the memory device ig returns to the U mode (ie, 'no need to execute the command), the normal state The operation mode is actually a "preset" operating mode. Alternatively, the flash memory device 10 can be configured so that a command needs to be executed to enter both the advanced data transfer mode and the normal operation mode, so that once the flash memory is restored The body device 10 is in the advanced 120269.doc -39-200818206 data transfer mode, a normal operation 丄;::;::: formula: 'until the controller - command. 妒 f, flashing body device 10 Execution of this use. (4) (4) and the additional consumption of the command sequence in essence, the r is in the θ generation, the flash memory device, the preset, the drop == material transmission! mode, resulting in At the first and second 10, the command is issued to the flash module 30 to apply the flash memory device to the flash memory device. In accordance with the present invention, the replacement of the specific secondary memory device 10 is in the normal mode of operation. Finishing The device 10 returns to the advanced data transfer mode. FIG. 7 shows the operation of the memory device according to the present invention, and the flash memory machine constructed by the soil case is constructed. The #, , /, medium and advanced lean material transfer mode is actually , pre-2 pull. In the processing program 80, power is supplied to the flash memory device ^ and = or otherwise reset, and the processing program enters the advanced operation mode (actually as a preset condition) without the need to send = 2 lines command. In the processing program 84, only the read operation and the write operation are performed in the advanced data transfer operation, as described above with reference to Fig. 4 (4). For example, 'in this advanced mode' is expected to perform a suspend operation and the like as described in the above description of (4) 6e; it is further expected that other operations (such as address, command and status communication operations) can still follow the normal operation mode practice. (if hope). In the processing program 86, the flash memory card 25 in accordance with the preferred embodiment of the present invention prepares a normal (or &quot;old type&quot;) mode mode: the address value is issued by the controller 120269.doc 200818206% To the flash memory device 1 (), the address value indicates the start memory address transmitted in the normal operation mode. In the processing program, the controller 30 issues a command sequence to start the normal mode of operation; it is expected that the command sequence substantially corresponds to the description above with respect to Figure 6a, and the command sequence - Green is operating according to the normal state Mode operation (expected command code value is a single bit 'read value'). In response to the command 88, the flash memory device performs the f 11 mode of operation reading or the person data transfer operation in the direction of the data transmission, @如' as described above, and the description of the ★. In the implementation of the present invention, the controller 3G issues both the read data strobe control signal and the write data strobe control signal, as described above. Moreover, in accordance with this alternative embodiment of the present invention, the normal mode of operation is exited upon completion of the data transfer. In the example of Figure 7, it is similar to that described above with respect to Figures 5a and 5b. In the handler %, the controller 30 issues a pause signal (eg, an active level on the address latch enable signal) to terminate the data transfer, and then in the processing routine (4), the control device, 30 terminates the transmission (eg, , by issuing a command to latch the enable signal level. According to the preferred embodiment of the present invention, after the termination of the normal operation mode data transmission, the control returns to the processing program, wherein the advanced data transfer operation mode is entered again, and in the processing program 8/ as needed The read and write data transfer operations are performed. Those skilled in the art having access to this specification will appreciate that in addition to the preferred embodiment of the present invention, it is contemplated that there are alternatives to the various modes of operation of the flash memory device 10. It is also to be understood that these and other alternative embodiments are within the scope of the invention as set forth in the application of the patent application No. 120269.doc-41.200818206. Referring now to Figures 8a through 8e, the signal between the flash memory device 10 and the controller 30 in the context of the flash memory card 25 in accordance with the second preferred embodiment of the present invention will now be described in detail. Timing. During the advanced mode in accordance with the second preferred embodiment of the present invention, the overall processing of the entry and exit operations preferably follows the processing described above with respect to the read operation of FIG. 5a and with respect to FIG. 5 &amp; Write the handler described in the operation. As such, the detailed description of the processing procedures will not be repeated herein in connection with the description of Figures 8a through 8e. As described above with respect to the first preferred embodiment of the present invention, the flash memory device 10 and the controller 30 are both in the normal mode of operation (or the old mode) after being powered. For its part, the user performs the read and write operations (if any) in this normal mode as needed. Then 'the memory address value is issued by the controller 30 in the normal mode of operation (which corresponds to the starting memory address from which the data is to be read in this advanced mode of operation) to the flash memory device. To perform the read operation

進^操作模式。如上文所述,結合位址鎖存啟用訊號ALE 上的作用中位準,將此記憶體位址置於輸入/輸出線1/01至 Ι/On 上。 在傳達記憶體位址後,控制器3〇藉由使晶片啟用訊號 CE—成為作用中低狀態、使位址鎖存啟用訊號ALE成為非 作用中低狀態及使命令鎖存啟用訊號CLe成為作用中高狀 悲’而發佈一「起始資料傳送」(或「IDT」)命令序列至 快閃C憶體裝置丨〇,如上文所述。圖8a繪示此項操作。寫 120269.doc •42- 200818206 入啟用訊號WE一之作用中低脈衝之上升邊沿係用作為用於 由控制器30驅動至輸入/輸出線1/〇1至I/〇n上之IDT命令值 IDT—CMD (其係二進位字且值不同於其他指派之命令值) 的資料選通。繼寫入啟用訊號WE_正處於高狀態之後的一 特定時間之後’控制器30使輸入/輸出線1/〇1至^加成為高 阻抗狀態。 根據本發明之此項第二較佳具體實施例,快閃記憶體裝 置10將取得對讀取啟用訊號RE—之控制且驅動讀取啟用訊 號RE一。據此,如圖8a示,在選通1〇丁命令的寫入故用訊 唬WE—之上升邊沿後歷時時間trei之後,控制器3〇隨即釋放 其對項取啟用訊號RE一之控制。接著,快閃記憶體裝置j 〇 的控制邏輯1 8驅動相對應之線RE一的狀態,而不需要與控 制器30競爭。接著,快閃記憶體裝置1〇開始實行高速進階 模式讀取資料傳送。根據本發明之此項第二較佳具體實施 例,如圖8a示,快閃記憶體裝置1〇結合較高頻率之讀取啟 用訊號RE一(高於舊型模式中可取得之頻率),以較高資料 速率(高於舊型模式中之資料速率)提供來自經位址記憶體 單元的資料。 舉例而言,在此進階模式中,快閃記憶體裝置1〇結合以 舊型杈式中讀取啟用訊號之頻率的兩倍之頻率驅動讀取啟 用訊號RE—,以舊型模式中提供資料之頻率的兩倍之頻率 在輸入/輸出線1/01至Ι/On處提供輸出資料。對於在舊型模 式中最大可用資料速率與讀取選通頻率係25 MHz的實例 中,進階模式資料速率及讀取啟用訊號RE—之頻率可係高 120269.doc -43- 200818206 達5〇 MHz。因為快閃記憶體裝置1〇本身正在發佈讀取啟 用訊號RE一且亦發佈資料字,所以快閃記憶體裝置1〇產生 彼4訊號的頻率係不在控制器3 〇之直接控制下。 圖8a繪示此項進階模式讃取操作。繼寫入啟用訊號we_ 之上升邊沿之後歷時非零存取時間之後,讀取資料傳送處 理程序開始於快閃記憶體裝置10發佈第一有效輸出資料字 D〇ut(〇)。在快閃記憶體裝置10提供第一輸出資料字D。以〇) 之後,接著其以同步於額外輸出資料字DqJ〗)以及下列等 等之方式開始發佈讀取啟用訊號RE—之作用中脈衝。根據 本發明之此項較佳具體實施例,以同步於讀取啟用訊號 RE一之每一完整循環方式發佈一個資料字。在圖“ 之實例中,讀取啟用訊號RE 一之下降邊沿係與其同步之資 料子的訊號邊沿;當然,讀取啟用訊號RE—(即,讀取啟 用訊號”RE”)之上升邊沿可作為替代地作為操作邊沿。如 圖8a示,每一輸出資料字D()ut(k)係接在其相對應之讀取啟 用訊號RE 一之下降邊沿之後相差非零存取時間。替代做法 為,可於相對應的有效資料字Dcut(k)内發佈(或延遲發佈) ”貝取啟用訊號RE一之每一下降邊沿至控制器3 〇。 根據本發明之此項第二較佳具體實施例,因此,對於快 閃圮憶體裝置ίο經由輸入/輸出線1/〇1至I/〇n提供資料至控 制器30的速率:在此進階模式中的速率實質上快於常態操 作模式(圖4d)中的速率,大約係典型實現中之資料速率的 兩倍。在某種程度上,實現此較高資料速率之方式為:准 許快閃圮憶體裝置1 〇發佈讀取啟用訊號RE—之讀取資料選 I20269.doc •44· 200818206 通邊沿,其排除若控制器30發佈彼等讀取資料選通邊沿情 況下所涉及的傳播延遲與必然的時序窗。此外,如上文關 於本發明之弟一較佳具體實施例之描述所述,藉由使用資 料訊號之經減小電壓擺動(以及讀取啟用訊號RE 一之經減小 電壓擺動,若需要),達成在輸入/輸出線1/〇1至I/〇n處的 增加之資料速率,而不會急遽增加快閃記憶體裝置丨〇及控 制器30的功率消耗。如上文所述,彼等線路之標稱匯流排 電壓從此習知3·3伏匯流排位準實質上減小(例如)至約i ·8〇 伏之匯流排電壓。 對於介於快閃記憶體裝置10與控制器3〇之間的一 16位元 輸入/輸出匯流排介面(即,有16條輸入/輸出線1/〇1至1/〇11) 之實例,本發明之此項第二較佳具體實施例所涉及的功率 消耗僅稍微多於本發明之第一較佳具體實施例所涉及的功 率消耗。如上文所述,根據本發明之此項較佳具體實施 例,以50 MHz之資料速率,用於輸入/輸出線1/〇1至1/(^ 的充電頻率將係25 MHz。因此,可利用下式計算用於單 個輸入/輸出線Ι/Ok所消耗的電流ik : 1^~~25*0.065(1.8)=2.925 ιηΑ 上式使用介於高資料位準與低資料位準之間典型的18伏 擺動。但是,因為讀取啟用訊號RE—係在常態操作模式中 及本發明第一較佳具體實施例中在該頻率的兩倍之頻率運 作’並且其電流消耗本身將係單個輸入/輸出線之電流 消耗的兩倍:Enter the operation mode. As described above, this memory address is placed on the input/output lines 1/01 to Ι/On in conjunction with the active bit on the address latch enable signal ALE. After the memory address is transmitted, the controller 3 becomes the active low state by making the wafer enable signal CE-, the address latch enable signal ALE becomes the inactive low state, and the command latch enable signal CLe becomes the active high. "Sorrowful" and issue a "start data transfer" (or "IDT") command sequence to the flash C memory device, as described above. Figure 8a illustrates this operation. Write 120269.doc • 42- 200818206 The enable edge of the enable signal WE is used as the rising edge of the low pulse for use as the IDT command value for driving by the controller 30 to the input/output lines 1/〇1 to I/〇n. Data strobe for IDT-CMD (which is a binary word with a different value than other assigned command values). The controller 30 causes the input/output lines 1/〇1 to ^ to be added to the high impedance state after a certain time after the write enable signal WE_ is in the high state. In accordance with this second preferred embodiment of the present invention, the flash memory device 10 will take control of the read enable signal RE and drive the read enable signal RE. Accordingly, as shown in Fig. 8a, after strobing the rising edge of the signal 唬WE_, the controller 3 释放 then releases its control of the item enable signal RE. Next, the control logic 18 of the flash memory device j 驱动 drives the state of the corresponding line RE one without competing with the controller 30. Next, the flash memory device 1 starts the high-speed advanced mode read data transfer. According to the second preferred embodiment of the present invention, as shown in FIG. 8a, the flash memory device 1 is combined with the higher frequency read enable signal RE (higher than the frequency available in the old mode). Data from the address memory unit is provided at a higher data rate (higher than the data rate in the old mode). For example, in this advanced mode, the flash memory device 1 is coupled with the frequency of reading the enable signal RE twice at the frequency of reading the enable signal in the old type, and is provided in the old mode. The frequency of twice the frequency of the data is provided at the input/output lines 1/01 to Ι/On. For the example of the maximum available data rate and the read strobe frequency of 25 MHz in the old mode, the advanced mode data rate and the read enable signal RE can be as high as 120269.doc -43 - 200818206 up to 5〇 MHz. Since the flash memory device 1 itself is issuing the read enable signal RE and also issuing the data word, the frequency at which the flash memory device 1 generates the four signals is not under the direct control of the controller 3. Figure 8a illustrates this advanced mode capture operation. After the non-zero access time has elapsed after the rising edge of the write enable signal we_, the read data transfer process begins with the flash memory device 10 issuing the first valid output data word D〇ut(〇). A first output material word D is provided at the flash memory device 10. After 〇), it then starts issuing the active pulse RE-reading pulse in the same manner as the additional output data word DqJ) and the following. In accordance with this preferred embodiment of the present invention, a data word is issued in a manner that is synchronized to the read enable signal RE. In the example of the figure, the edge of the signal of the data edge synchronized with the falling edge of the enable signal RE is read; of course, the rising edge of the read enable signal RE (ie, the read enable signal "RE") can be used as a rising edge. Alternatively, as an operational edge, as shown in Figure 8a, each output data word D() ut(k) is connected to a falling edge of its corresponding read enable signal RE by a non-zero access time. , can be issued (or delayed release) within the corresponding valid data word Dcut (k) "Bei take enable signal RE one each falling edge to controller 3 〇. According to this second preferred embodiment of the present invention, therefore, for the flash memory device, the rate at which data is supplied to the controller 30 via the input/output lines 1/〇1 to I/〇n: here The rate in the order mode is substantially faster than the rate in the normal mode of operation (Fig. 4d), which is approximately twice the data rate in a typical implementation. To some extent, the way to achieve this higher data rate is to allow the flash memory device 1 to issue the read enable signal RE - read the data selection I20269.doc • 44 · 200818206 pass edge, which excludes The controller 30 issues the propagation delays and inevitable timing windows involved in reading the data strobe edge. Moreover, as described above with respect to a preferred embodiment of the present invention, the voltage swing is reduced by using the data signal (and the voltage swing is read by the read enable signal RE, if needed), The increased data rate at the input/output lines 1/〇1 to I/〇n is achieved without rushing to increase the power consumption of the flash memory device and controller 30. As noted above, the nominal busbar voltages of their lines are substantially reduced, for example, to a busbar voltage of about i.8 volts from the conventional 3&lt;3 volt busbar level. For an example of a 16-bit input/output bus interface (ie, 16 input/output lines 1/〇1 to 1/〇11) between the flash memory device 10 and the controller 3〇, The power consumption of the second preferred embodiment of the present invention is only slightly more than the power consumption involved in the first preferred embodiment of the present invention. As described above, in accordance with this preferred embodiment of the present invention, at a data rate of 50 MHz, the charging frequency for the input/output lines 1/〇1 to 1/(^ will be 25 MHz. Calculate the current consumed by a single input/output line Ι/Ok using the following formula: 1^~~25*0.065(1.8)=2.925 ιηΑ The above equation is typically between a high data level and a low data level. 18 volt swing. However, because the read enable signal RE is operating in the normal mode of operation and at twice the frequency of the frequency in the first preferred embodiment of the invention 'and its current consumption itself will be a single input / twice the current consumption of the output line:

Ire—50*0.065( 1 ·8)=2*2·925 毫安培=5.850 毫安培 120269.doc -45- 200818206 據此,對於有16條輸入/輸出線I/Oi至1/016之情況,因此 在用於此項實例的進階操作模式中所消耗之總電流將係··Ire—50*0.065( 1 ·8)=2*2·925 mA = 5.850 mA 120269.doc -45- 200818206 According to this, for the case of 16 input/output lines I/Oi to 1/016, Therefore, the total current consumed in the advanced mode of operation for this example will be

Itotai—16(2·925)+5·850 = 52·65 宅安培 其稍微多於根據本發明之第一較佳具體實施例所消耗的電 流(即,49.73毫安培)。遵循上文所述,對於一 16位元j/〇 匯流排之情況,習知資料傳送所消耗之總電流將係:Itotai-16 (2.925) + 5·850 = 52·65 Home Anesthesia It is slightly more than the current consumed according to the first preferred embodiment of the present invention (i.e., 49.73 milliamperes). Following the above, for a 16-bit j/〇 bus, the total current consumed by the conventional data transfer will be:

It〇tai= 16 (2.6 81)+2(2.6 81)=48.62毫安培 其稍微低於根據本發明之根據本發明之此項第二較佳具體 實施例所消耗的電流52.65毫安培。但是,即使根據本發 明之此項較佳具體實施例所消耗的電流稍微高於習知實施 方案,但是此電流位準係以對於輸入/輸出訊號的較低電 壓擺動(1.8伏相對於3.3伏)予以達成。結果,在此進階操 作模式中消耗之功率實質上小於習知快閃記憶體卡中消耗 之功率。根據彼等實例,在該常態操作模式中之一習知16 I/O快閃記憶體中消耗之功率將係約16〇毫瓦特(3 3伏乘 = •62毫安培)’然而上文所述之本發明較佳具體實施例之 實例消耗之功率將係約95毫瓦特(1.8伏乘52 65毫安培)。 此功率消耗之實質減小係結合諸傳送速率(接近用°於大 型叢發之資料速率的兩倍)之實質改良予以達成。 如上文所述,舉例而言,如 (來自快閃記憶體裝置10)填滿, 5己憶體裝置1 〇。圖8b中繪示快尽 清求之操作。控制器30於镇石 ,如果控制器30之輸入緩衝器It 〇 tai = 16 (2.6 81) + 2 (2.6 81) = 48.62 mA It is slightly lower than the current consumed by the second preferred embodiment according to the present invention, which is 52.65 mA. However, even though the current consumed in accordance with this preferred embodiment of the present invention is slightly higher than conventional embodiments, this current level is oscillated at a lower voltage for the input/output signal (1.8 volts versus 3.3 volts). ) to be reached. As a result, the power consumed in this advanced mode of operation is substantially less than the power consumed in conventional flash memory cards. According to their examples, the power consumed in one of the normal operating modes of the conventional 16 I/O flash memory will be approximately 16 〇 milliwatts (3 3 volts = • 62 mA). The power consumed by the examples of the preferred embodiment of the invention will be about 95 milliwatts (1.8 volts by 52 65 milliamperes). This substantial reduction in power consumption is achieved by combining substantial improvements in the transmission rate (close to twice the data rate of the large burst). As described above, for example, if (from the flash memory device 10) is filled, the 5 memory device 1 is 〇. The operation of the quick release is illustrated in Figure 8b. The controller 30 is in the town, if the input buffer of the controller 30

120269.doc 丨牙疋保作期間藉由確證 之作用中高位準而提出暫 -46- 200818206 卜明求。回應此項請求,快閃記憶體裝置ι〇暫停讀取啟用 訊_-(當在高位準(如圖所示)或在低位準時),並且= 遲,取啟用訊號RE—之下一循環。因為高資料速率傳送, 所以一個或兩個額外資料字(及讀取啟用訊號RE—之相蔚應 循壤)可能已在快閃記憶體裝置1〇的輸出,,管線,,中,使^可 在快閃記憶體裝置10對暫停報告作出反應之前輸出彼二 對應,資料字。在此實例中,於輸出資料字DQut(4)期間, =制器30已確證位址鎖存啟用訊號ale,並且於輸出資料 字D〇ut(6)期間,快閃記憶體裝置1〇藉由保持讀取啟用訊號 RE—之進一步循環及輸入/輸出線1/01至I/On之轉變而作出 回應。 、圖8c繪示根據本發明之此項較佳具體實施例終止進階模 式问速讀取資料傳送。如上文所述,控制器3〇首先藉由確 祖位址鎖存啟用訊號ALE之作用中高位準來發佈暫停報 告,藉此終高速資料傳送。在暫停請求期間,控制器3〇在 位址鎖存啟用訊號ALE係處於作用中高位準時藉由確證命 令鎖存啟用訊號CLE上之作用中高位準,而終止資料傳送 操作作為回應,快閃$己憶體裝置1 〇促使其輸出驅動器將 輸入/輸出線1/01至I/On置於高阻抗狀態,並且亦釋放其對 相對應於讀取啟用訊號RE—的導體之控制。現在,若適合 下一操作,則控制器30可取得對彼等線路之控制。 現在將參考圖8d與圖8e來說明根據本發明之此項第二較 佳具體實施例的進階模式中寫入操作。如同讀取資料傳送 之情況,在快閃記憶體裝置1〇與控制器3〇已運作於常態 120269.doc •47- 200818206 舊型&amp;式中之後進人進階模^。進人寫人操作之進階 二料傳达模式之實行方式類似於上文關於圖“描述之進階 口貝取貝料傳送所述的實行方式。如圖8d所示 合命令鎖存啟用訊號CLE上之作用中高位準及寫入啟用;: ^ —之作用中低脈衝而發佈進階模式命令值IDT_CMD。 如上文所述,使位址鎖存啟用訊號ALE維持在非作用中低 位準,以及使晶片啟用訊號CE維持在作用中低位準。控制 器30在整個資料寫入操作期間使讀取啟用訊號RE (圖8d + ,繪示)維持在非作用中高狀態,來指示出對於資料寫 入操作進人進階模式。接著,准許介於對應起始命令 咖一復1)的寫人啟用訊號we—之脈衝之上升邊沿與相對應 於第-輸入資料字Din(〇)的寫入啟用訊號戦—之第一脈衝 之下降邊沿之間歷時一指定時間。 根據本發明之此項第二較佳具體實施例,在此進階模式 寫入貝料傳运期間,使寫入啟用訊號WE一之循環的頻率增 _ 加至在常態模式中寫人時使用的寫人啟用訊號則9 之循環的頻率之兩倍。在此實例中,寫人啟用訊號WE—的 下降邊沿係用作為寫入資料選通。而且,在此進階模式中 及在W板式中,控制器3〇結合控制器3〇在輸入/輸出線 1/01至I/On上驅動的資料值來確證寫人啟用訊號WE—。如 圖8d所不,控制器3〇以同步於寫入啟用訊號一之每一下 降邊沿的方式發佈新的有效寫入資料字Din(k)至輸入/輸出 線1/01至I/On上。在此實例中,因為寫入啟用訊號、之 頻率加倍,所以此進階模式中之寫入資料傳送速率可係常 120269.doc -48- 200818206 態操作模式寫人操作之資料速率的約兩倍。舉例而言,如 果最大寫入資料傳送速率及寫入啟用訊號頻率係μ mhz,則在根據本發明之此項第二較佳具體實施例的進階 模式中,可使資料傳送速率及寫入啟用訊號頻率增加高達 50 MHz。根據本發明之此項具體實施例建構快閃記憶體 裝置10,使得其能夠以該較高速率接收及處理資料。當 然,控制器30可依據系統應用及控制器30本身處理資料的 速率,使用低於最大頻率(例如,5〇 MHz)的實際寫入啟用 訊號頻率及資料速率頻率。 再者’根據本發明之此項具體實施例,可將暫停插入於 進階模式寫入資料傳送中。如上文所述,在此實例中,控 制器30藉由視需要延長寫入啟用訊號we—而簡單地暫停寫 入資料傳送。如圖8d所示。可在任一狀態(寫入啟用訊號 一保持高狀態或保持低狀態)中實行此暫停。當然,在 此暫停時期期間,不發佈新的資料字Din(k)。控制器30驅 動寫入啟用訊號WE-之下一循環連同下一有效寫入資料字 Din(3)(在圖8d所示之實例中)而結束暫停時期,以繼續進行 寫入資料傳送。 並且,如同讀取資料傳送之情況,資料訊號與控制訊號 之電壓位準(輸入/輸出線1/01至Ι/On,及用於寫入啟用訊 號WE—之線路)較佳係低於習知位準的電壓位準,舉例而 言,具有介於高邏輯位準與低邏輯位準之間的1.8伏&quot;擺動,,。 如上文詳細論述所述,在二分之一資料速率下,此較低電 壓之匯流排將使此進階寫入資料傳送模式所消耗之功率維 120269.doc -49- 200818206 持等於或小於在常離掘你 承^耜作叙式中運作之f知 統中消耗之功率。 為失關m糸 現在請參考圖Se,進 n , 式寫入資料傳送之實行方式相 同於根據本發明之此項第二 料傳送》控制器30驅動位址鎖㈣階讀取資 %動位址鎖存啟用訊號ALE至作用中高 ο^Γ停寫入傳送而終止進階模式,在此期間,控制器 鎖鎖存啟用訊號CLE至作用中高位準(同時使位址 = 號仰維持高位準)以終止寫人資料傳送。寫入 啟用訊號WE保掊力古y、准 t、 一、回準,或在已鎖存最後資料字 欠 例中)之後轉為高位準。繼終止進階模式寫入 口貝料傳送(藉由使位址鎖存啟用訊號ale與命令鎖存啟用訊 唬CLE刀別保持咼位準達指定脈衝寬度而實現)之後,接薯 再次進人㈣記憶㈣置_控制H30之常態操作模式。 因此,根據本發明之此項第二較隹具體實施例,可藉由 准許使用較局頻率之選通訊號來增加資料速率,以替代方 j實行高速資料傳送操作模式。預期根據本發明之第二較 ’、體灵施例的此項操作可更相容於一些快閃記憶體應用 中的所要操作。 請重新參考圖2,1且根據本發明t第三較佳具體實施 例,續取啟用訊號RE—與寫入啟用訊號WE一兩者皆是雙 向。對於常態操作模式中之讀取操作,外部裝置(即係正 在自快閃記憶體陣列12讀取資料之目的地)係讀取資料選 通的來源,接著作為一至快閃記憶體裝置1〇的輸入來載運 該讀取資料選通以作為讀取啟用RE-訊號。在此常態操作 120269.doc 200818206 模式中的寫入操作,正在提供輸入資料的外部裝置以同步 於將輸入資料置於輸入/輸出線1/〇1至1/〇11處之方式發佈寫 入貧料選通以作為寫入啟用WE一訊號。在根據本發明之較 佳具體實施例的進階操作模式中之讀取操作中,如下文中 的進步洋細說明所述,控制邏輯18發佈兩個讀取資料選 通(彼此相移),該等讀取資料選通中之一者係讀取啟用 RE一訊號,另一者係寫入啟用WE一訊號。彼等訊號之每一 者的邊沿或轉變將同步於自快閃記憶體陣列12讀取資料且 經由貧料暫存器14、I/O控制電路2〇與輸入/輸出終端1/〇1 至Ι/On傳達資料。同樣地,藉由使用讀取啟用re_訊號與 寫入啟用WE—訊號兩者作為寫入資料選通(由資料來源發 佈至快閃記憶體裝置10),在進階操作模式中實行寫入操 作。 在本發明之此項第三較佳具體實施例中,請參考圖3, 線RE_載送用於舊型模式讀取操作(自快閃記憶體裝置⑺讀 取資料且將資料傳達至控制器3〇)之資料選通,並且其本 身係連接至快閃記憶體裝置i之終端]1£_(圖2)。如上文所 述,根據本發明之此項第三較佳具體實施例,控制線RE— 為雙向,而讀取資料選通之來源取決於快閃記憶體裝置ι〇 之現行操作模式。在常態操作模式中,控制器3g發佈讀取 資料選通,快閃記憶體裝置_應其而維持作為存在於訊 號線1/01至Ι/On上的有效資料。在根據本發明之較佳具體 實施例的進階操作模式中,快閃記憶體裝置1σ係在線RE 上發佈讀取資料選通,以用於將資料自快閃記憶體裝置10 120269.doc -51 - 200818206 二:器30。並且亦如下文中的進-步詳細說明所 :’於進階拉式寫入操作期間,控制器3。亦將選通線 -。因此’類似於線呢-,在根據本發明較佳具體實施 例之進階資料傳送模式中 般貫施 ^ 貝取刼作與寫入操作兩者中雲 要控制線RE ,以接供筐-知必扭 — 徒供弟一相移選通訊號,該第二相移選 通訊號係用於在讀取操作與寫入操作兩者中 料字。 貝120269.doc During the period of guaranty, the period was confirmed by the high level of confirmation. In response to this request, the flash memory device ι pauses the read enable message (when at the high level (as shown) or at the low level), and = late, the enable signal RE - the next cycle. Because of the high data rate transfer, one or two additional data words (and the read enable signal RE) should be already in the output of the flash memory device, pipeline, and The second correspondence, the data word, can be output before the flash memory device 10 reacts to the pause report. In this example, during the output data word DQut(4), the controller 30 has confirmed that the address latch enable signal ale, and during the output data word D〇ut(6), the flash memory device 1 borrows The response is made by the further loop of the read enable signal RE and the transition of the input/output lines 1/01 to I/On. Figure 8c illustrates the termination of the advanced mode rate reading data transfer in accordance with this preferred embodiment of the present invention. As described above, the controller 3 first issues a pause report by asserting the ancestor address latch enable signal ALE to a high level, thereby enabling final high speed data transfer. During the pause request, the controller 3 终止 when the address latch enable signal ALE is at the active high level, by confirming the command to latch the high level on the enable signal CLE, and terminating the data transfer operation as a response, flashing $ The memory device 1 causes its output driver to place the input/output lines 1/01 to I/On in a high impedance state and also release its control of the conductor corresponding to the read enable signal RE. Now, if suitable for the next operation, controller 30 can take control of their lines. The write operation in the advanced mode of this second preferred embodiment of the present invention will now be described with reference to Figs. 8d and 8e. As in the case of reading the data transfer, after the flash memory device 1 and the controller 3 have been operated in the normal state of the old mode &amp; The implementation of the advanced two-pass communication mode of the human-writer operation is similar to the implementation described above with respect to the description of the advanced mouth-to-mouth transfer. The command-lock enable signal CLE is shown in Figure 8d. The upper level of the upper level and the write enable; : ^ - the role of the low pulse and the release of the advanced mode command value IDT_CMD. As described above, the address latch enable signal ALE is maintained at the inactive low level, and The wafer enable signal CE is maintained at an active low level. The controller 30 maintains the read enable signal RE (Fig. 8d+, depicted) in an inactive high state during the entire data write operation to indicate that the data is written. The operation enters the advanced mode. Then, the rising edge of the pulse enabling signal we_ between the corresponding start command and the write corresponding to the first input data word Din(〇) is enabled. The signal 戦—the falling edge of the first pulse lasts for a specified time. According to the second preferred embodiment of the present invention, the write enable signal WE is written during the advanced mode write to the bead transport. One cycle frequency The _ is added to twice the frequency of the loop of the writer enable signal used when writing in the normal mode. In this example, the falling edge of the writer enable signal WE is used as the write data strobe. Moreover, in this advanced mode and in the W-plate type, the controller 3 确 combines the data values driven by the controller 3 on the input/output lines 1/01 to I/On to confirm the write enable signal WE. 8d, the controller 3 发布 issues a new valid write data word Din(k) to the input/output lines 1/01 to I/On in synchronization with each falling edge of the write enable signal. In this example, because the write enable signal is doubled, the write data transfer rate in this advanced mode can be approximately twice the data rate of the 120269.doc -48-200818206 mode of operation. For example, if the maximum write data transfer rate and the write enable signal frequency are μ mhz, the data transfer rate and write can be made in the advanced mode according to the second preferred embodiment of the present invention. The enable signal frequency is increased by up to 50 MHz. According to the invention This embodiment constructs the flash memory device 10 such that it can receive and process data at the higher rate. Of course, the controller 30 can use less than the maximum frequency depending on the system application and the rate at which the controller 30 itself processes the data. The actual write enable signal frequency and data rate frequency (e.g., 5 〇 MHz). Further, in accordance with this embodiment of the invention, the pause can be inserted into the advanced mode write data transfer. In this example, the controller 30 simply suspends the write data transfer by extending the write enable signal we as needed. As shown in Figure 8d, it can be in either state (the write enable signal remains high or remains). This pause is implemented in the low state). Of course, during this timeout period, the new material word Din(k) is not released. The controller 30 drives the write enable signal WE-lower cycle along with the next valid write data word Din(3) (in the example shown in Figure 8d) to end the pause period to continue the write data transfer. Moreover, as in the case of reading data transmission, the voltage level of the data signal and the control signal (input/output line 1/01 to Ι/On, and the line for writing the enable signal WE) are preferably lower than the Xi The known voltage level, for example, has a 1.8 volt &quot;swing, between the high logic level and the low logic level. As discussed in detail above, at a data rate of one-half, this lower voltage bus will cause the power dimension consumed by this advanced write data transfer mode to be equal to or less than 120269.doc -49 - 200818206 Often digging away from the power consumed by you in the operation of the system. For the sake of loss, please refer to the figure Se, enter n, and write the data transfer in the same way as the second material transfer according to the invention. The controller 30 drives the address lock (four) order reading capital movement The address latch enable signal ALE to the active high ο^ stop write transfer and terminate the advanced mode. During this period, the controller locks the latch enable signal CLE to the active high level (while the address = number is maintained at a high level) ) to terminate the transfer of the writer's data. The enable signal WE is guaranteed to be high, y, y, y, y, or after the last data word has been latched. After terminating the advanced mode write port transfer (by enabling the address latch enable signal ale and the command latch enable signal CLE knife to keep the clamp to the specified pulse width), the potato is reintroduced (4) Memory (4) Set_Controls the normal operation mode of H30. Therefore, in accordance with this second, more specific embodiment of the present invention, the data rate can be increased by permitting the use of the selected communication number of the local frequency to perform the high speed data transfer mode of operation instead of the party j. It is contemplated that this second operation in accordance with the present invention may be more compatible with the desired operation in some flash memory applications. Referring again to Figures 2, 1 and in accordance with a third preferred embodiment of the present invention, the continuation enable signal RE - and the write enable signal WE are both bidirectional. For the read operation in the normal operation mode, the external device (ie, the destination that is reading data from the flash memory array 12) is the source of the read data strobe, and the work is one to the flash memory device. Input to carry the read data strobe as a read enable RE-signal. In this normal operation, the write operation in the mode 120269.doc 200818206, the external device that is providing input data is issued to write the poor in synchronization with placing the input data on the input/output lines 1/〇1 to 1/〇11. The material strobe is used as a write enable WE signal. In a read operation in an advanced mode of operation in accordance with a preferred embodiment of the present invention, control logic 18 issues two read data strobes (phase shifts from each other) as described in the following detailed description. One of the read data strobes reads the enable RE signal, and the other writes the enable WE signal. The edges or transitions of each of the signals will be synchronized to the read data from the flash memory array 12 and via the lean register 14, the I/O control circuit 2, and the input/output terminal 1/〇1 to Ι/On conveys the information. Similarly, writing is performed in the advanced mode of operation by using both the read enable re_signal and the write enable WE-signal as write data strobes (published to the flash memory device 10 by the data source). operating. In the third preferred embodiment of the present invention, referring to FIG. 3, the line RE_ is carried for the old mode read operation (reading data from the flash memory device (7) and transmitting the data to the control The data strobe of the device 3) is itself connected to the terminal of the flash memory device i] 1 £ (Fig. 2). As described above, in accordance with this third preferred embodiment of the present invention, the control line RE is bidirectional, and the source of the read data strobe depends on the current mode of operation of the flash memory device. In the normal mode of operation, the controller 3g issues a read data strobe, which is maintained as valid data present on the signal lines 1/01 to Ι/On. In an advanced mode of operation in accordance with a preferred embodiment of the present invention, the flash memory device 1 sigma issues a read data strobe on the line RE for use in the data from the flash memory device 10 120269.doc - 51 - 200818206 Two: 30. And also as described in detail below, as follows: 'In the advanced pull write operation, the controller 3. Will also be strobed line -. Therefore, 'similar to the line', in the advanced data transfer mode according to the preferred embodiment of the present invention, the cloud control line RE is uniformly applied to the basket and the write operation It must be twisted—the discretion of the phase-shift communication number, which is used to read the word in both the read operation and the write operation. shell

同下文進-步詳細描述所述,控制器3〇透過訊號線 I/O 1至Ι/Οη所傳達之命令同步於訊號線I上的讀取資料 選通來源,而^顧慮㈣記憶體裝置難在傳送資料至控 制器3 0的操作模式。 因此,根據本發明之較佳具體實施例,快閃記憶體裝置 10提供進階較高效能之讀取與寫人操作模式,並且控制器 30經建構以利用該進階模式。現在將參考圖㈣仏之流程 圖以及圖9a至9e之時序圖來詳細描述根據本發明之此項第As described in the detailed description below, the command transmitted by the controller 3 through the signal lines I/O 1 to Ι/Οη is synchronized with the source of the read data strobe on the signal line I, and the concern (4) the memory device It is difficult to transfer the data to the operation mode of the controller 30. Thus, in accordance with a preferred embodiment of the present invention, flash memory device 10 provides an advanced higher performance read and write mode of operation, and controller 30 is configured to utilize the advanced mode. The item according to the present invention will now be described in detail with reference to the flow chart of Fig. 4 (d) and the timing chart of Figs. 9a to 9e.

三較佳具體實施例快閃記憶體裝置1〇與控制器3〇利用此進 階模式之操作。 圖5a以及圖9a至9c繪示快閃記憶體裝置1〇在實行資料讀 取操作(即,在快閃記憶體卡25中,自快閃記憶體裝置1〇 至控制器30)過程中之操作。在圖5a之處理程序4〇中,供 電給快閃記憶體裝置1〇與控制器3〇,使該兩個裝置進入常 態操作模式中(處理程序42),如上文關於圖乜至牝之描述 所述。在處理程序44中,在此常態操作模式(即,,,舊型,,模 式)中’實行在此常態模式中的讀取操作與寫入操作(若有 120269.doc •52· 200818206 的話)。 進入進p白項取操作模式開始於處理程序46,其中控制器 30按知Φ _作模式發佈記憶體位址值至快閃記憶體裝置 10如上文關於圖4b之描述所述。在處理程序46中由控制 器30所發佈之記憶體位址係在此進階操作模式中將自該處 讀取資料的起始記憶體位址,並且較佳係繼傳輸相對應之 讀取位址輸入命令之後,如上文所述。在處理程序48中, 控制器30發佈&quot;起始資料傳送&quot;或&quot;mT&quot;命令序列至快閃記 憶體裝置10。圖9a進一步詳細繪示此項操作。 根據本發明之較佳具體實施例,在處理程序48中,控制 器30發佈&quot;IDT讀取,,命令至快閃記憶體裝置1〇,以起始進 階貧料傳送模式。以類似於上文關於圖乜之描述所述之方 式發佈此命令,其中控制器30驅動晶片啟用訊號CE-至作 用中低狀態、驅動位址鎖存啟用訊號ALE至非作用中低狀 態及驅動命令鎖存啟用訊號0:1^£至作用中高狀態。寫入啟 用訊號WE一之作用中低脈衝之上升邊沿係用作為用於由控 制器30驅動至輸入/輸出線1/〇1至1/〇11上之IDT命令值 IDT一RD—CMD (其係二進位字且值不同於其他指派之命令 值)的資料選通。繼寫入啟用訊號WE一正處於高狀態之後 的一特定時間之後,控制器30使輸入/輸出線1/〇1至1/〇11成 為高阻抗狀態。並且,繼寫入啟用訊號WE_之上升邊沿之 後的另一歷時時間trel之後,當選通IDT讀取命令時,接著 控制器30亦釋放其對讀取啟用訊號RE_之控制,准許快閃 記憶體裝置10之控制邏輯18驅動相對應於線RE_之狀態(無 120269.doc -53- 200818206 與控制器30發生資料競爭之風險)。根據本發明之此項較The third preferred embodiment flash memory device 1 and controller 3 utilize the operation of this advanced mode. 5a and 9a to 9c illustrate the flash memory device 1 in performing a data reading operation (i.e., in the flash memory card 25, from the flash memory device 1 to the controller 30). operating. In the processing routine 4 of Figure 5a, power is supplied to the flash memory device 1 and the controller 3 to bring the two devices into the normal mode of operation (process 42), as described above with respect to Figure 乜Said. In the processing program 44, the read operation and the write operation in this normal mode are performed in this normal operation mode (ie, the old type, the mode) (if there is 120269.doc • 52·200818206) . The entry into the white entry operation mode begins in process 46 where controller 30 issues the memory address value to the flash memory device 10 as described above with respect to Figure 4b. The memory address issued by the controller 30 in the processing program 46 is the starting memory address from which the data will be read in this advanced mode of operation, and preferably the corresponding read address is transmitted. After entering the command, as described above. In the processing program 48, the controller 30 issues a &quot;start data transfer&quot; or &quot;mT&quot; command sequence to the flash memory device 10. This operation is illustrated in further detail in Figure 9a. In accordance with a preferred embodiment of the present invention, in process 48, controller 30 issues an &quot;IDT read,&quot; command to flash memory device 1 to initiate an advanced lean mode. This command is issued in a manner similar to that described above with respect to the diagram, wherein the controller 30 drives the wafer enable signal CE- to the active low state, the drive address latch enable signal ALE to the inactive low state, and the drive. The command latch enables the signal 0:1^£ to the active high state. The rising edge of the low-pulse pulse applied to the enable signal WE is used as the IDT command value IDT_RD_CMD for driving to the input/output lines 1/〇1 to 1/〇11 by the controller 30 (its A data strobe that is a binary word with a different value than the other assigned command values. After a certain time after the write enable signal WE is in the high state, the controller 30 causes the input/output lines 1/〇1 to 1/〇11 to become a high impedance state. Moreover, after the other duration trel after the rising edge of the enable signal WE_ is written, when the strobe IDT read command is followed, the controller 30 also releases its control of the read enable signal RE_, permitting the flash memory. The control logic 18 of the body device 10 drives the state corresponding to the line RE_ (there is no risk of data competition with the controller 30 at 120269.doc -53-200818206). According to the present invention

佳具體實㈣卜錢人進階資料傳送模式後隨即藉由IDT 命令之值來建置進階模式資料傳送之方向(即,寫入或讀 取),、准許在貝料傳达本身巾使用讀取啟用訊號虹―與寫 入啟用訊號WE一兩個,如下文所述。 替代做法為,進人進階f料傳送模式,以及在此模式中 待實行讀取或寫入操作的指示,可用其他方式自控制器3〇 傳達至快閃記憶體裝置1〇;舉例而言,特定之控制訊號轉 夂序列(例如,控制匯流排CTRL之一或多個線路上的控制 λ號包括連接至ALE、CLE、wp—與ce—線路的訊號線 中之一或多者’連同讀取啟用訊號RE_與寫人啟用訊號 WE」。㈣已參閱本份說明書之熟悉此項技術者將明瞭 用於實施進人讀取操作與寫人操作中任—者或兩者之進階 資料傳送模式的彼等與其他替代做法。 一旦IDT讀取命令已被鎖存於快閃記憶體裝置1〇中且由 陕閃Z 1:¾體裝置1G予以執行,接著快閃記憶體裝置i 〇開始 執行高速模式讀取資料傳送處理程序5〇。如圖%示,繼寫 啟用訊號WE一之上升邊沿之後歷時非零存取時間之後, 此靖取資料傳送處理程序開始於快閃記憶體裝置1 〇發佈第 一有效輸出資料字D〇ut(0)。一旦快閃記憶體裝置1〇提供此 第輸出資料子D〇iit(〇),接著其以同步於額外輸出資料字 Dout(l)以及下列等等之交替者之方式開始發佈讀取啟用訊 號RE 一與寫入啟用訊號WE 一兩者之作用中脈衝。根據本發 明之此項較佳具體實施例,讀取啟用訊號RE一與寫入啟用 120269.doc -54- 200818206 訊號WE一彼此不同相,以每一者的相同邊沿(例如,在此 實例中,係下降邊沿,然而當然可替代地使用上升邊沿) 計時一相對應之資料字。如圖9a示,在此進階模式讀取操 作中,寫入啟用訊號WE一與讀取啟用訊號RE一相對於彼此 180°異相位。此互補式相位關係非屬根據本發明此項較佳 具體實施例之操作的必要項,此乃因在下一交替下降邊沿 (每當其發生時)後將隨即發生輸出資料字之選通;但是, 為了以最快的指定程度最大化資料傳送速率,互補式相位 關係為吾人所要的。如圖9a示,以同步於快閃記憶體裝置 1 〇本身所驅動的讀取啟用訊號RE一與寫入啟用訊號WE一之 每一下降邊沿方式發佈一個資料字D(mt(k)。在圖%之實例 中,每一輸出資料字Dout(k)係接在其相對應的選通邊沿之 後相差非零存取時間;替代做法為,可於相對應的有效資 料字D_(k)内發佈(或延遲發佈)每一讀取啟用訊號re一與 寫入啟用訊號WE一下降邊沿至控制器3 〇。 根據本發明之較佳具體實施例,因此,對於快閃記憶體 裝置10經由輸入/輸出線I/O丨至I/〇n提供資料 速率:在此繼式中的速率實質上快於常態 (圖4d)中的速率,大約係典型實現中之資料速率的兩倍。 在某種程度上,實現此較高資料速率之方式為:准許快閃 記憶體裝置10發佈讀取啟用訊號RE_與寫人啟用訊號呢 之讀取資料選通邊沿’其排除若控制器3〇發佈彼等讀取資 料選通邊沿情況下所涉及的傳播延遲與必然的時序窗。此 外,該兩個訊號之下降選通邊沿的頻率可接近單個訊號之 120269.doc -55- 200818206 下降選通邊沿的頻率之兩件力 千^Μα在此碩取操作中可使用寫入 啟用訊號WE ,此乃因眘祖捕1 &gt; 一 ,口貝枓傳廷之方向係藉由IDT讀取命 令值予以設定。Good concrete (4) After the advanced data transmission mode, the money transfer mode is used to establish the direction of the advanced mode data transmission (ie, writing or reading), and the use of the bedding material to convey the towel itself. Read enable signal rainbow - one or two with write enable signal WE, as described below. Alternatively, the advanced transfer mode, and the indication of the read or write operation to be performed in this mode, can be communicated from the controller 3 to the flash memory device 1 in other ways; for example a specific control signal transfer sequence (eg, control λ number on one or more lines of the control bus CTRL includes one or more of the signal lines connected to the ALE, CLE, wp- and ce-line' together with Read the enable signal RE_ and the writer enable signal WE". (4) Those who are familiar with this specification who have read this manual will understand the advanced steps for implementing the read operation and the write operation. These and other alternatives of the data transfer mode. Once the IDT read command has been latched in the flash memory device 1 and executed by the Shan-Zero Z 1:3⁄4 device 1G, then the flash memory device i 〇 Start executing the high-speed mode read data transfer processing program 5〇. As shown in the figure, after the non-zero access time after the rising edge of the write enable signal WE, the capture data transfer processing program starts in the flash memory. Device 1 〇 released A valid output data word D〇ut(0). Once the flash memory device 1 provides the first output data sub-D〇iit(〇), it is synchronized with the extra output data word Dout(l) and the following, etc. The alternate mode begins to issue a pulse in the action of both the read enable signal RE and the write enable signal WE. According to the preferred embodiment of the present invention, the read enable signal RE and the write enable 120269 are read. .doc -54- 200818206 The signals WE are out of phase with each other, with the same edge of each (for example, in this example, the falling edge, but of course the rising edge is used instead) to time a corresponding data word. 9a shows that in the advanced mode read operation, the write enable signal WE and the read enable signal RE are 180° out of phase with respect to each other. This complementary phase relationship is not specifically preferred according to the present invention. The necessity of the operation of the embodiment, because the strobe of the output data word will occur immediately after the next alternate falling edge (when it occurs); however, in order to maximize the data transfer rate with the fastest degree of designation, mutual The phase relationship is as desired. As shown in Fig. 9a, a data word is issued in synchronization with the read enable signal RE and the write enable signal WE driven by the flash memory device 1 itself. D(mt(k). In the example of Figure %, each output data word Dout(k) is connected to its corresponding gating edge and differs by a non-zero access time; alternatively, it can be corresponding The valid data word D_(k) is issued (or delayed) for each read enable signal re and the write enable signal WE to a falling edge to the controller 3. In accordance with a preferred embodiment of the present invention, therefore, The flash memory device 10 provides a data rate via input/output lines I/O 丨 to I/〇n: the rate in this sequence is substantially faster than the rate in the normal state (Fig. 4d), which is approximately in a typical implementation. Double the data rate. To some extent, the way to achieve this higher data rate is to allow the flash memory device 10 to issue the read enable signal RE_ and the write enable signal to read the data strobe edge 'its excluded if the controller 3 〇 Release the propagation delays and inevitable timing windows involved in the case of their read data strobe edges. In addition, the frequency of the falling gate edges of the two signals can be close to the single signal 120269.doc -55-200818206 Two pieces of the frequency of the falling gate edge can be used in this master operation. WE, this is because of the ancestor capture 1 &gt; First, the direction of the mouth of the mouth is set by the IDT read command value.

主然而’㉟悉此項技術者應明白,在所有其他因數相等之 情況下’在輸人/輸线刪題加上提供輸出賴的增大 速率實質上増大快閃記憶體卡2 5内的功率消耗,在此讀取 操作中’功率消耗主要源自於快閃記憶體裝置lG之1/〇控 制電路20内的輸出驅動電路。隨著資料字寬度(即,輸入/ 輸出線1/01至Ι/On之數量η)增大(此為現代趨勢),使此功 率消耗惡化。根據本發明之較佳具體實施例,現在將描述 藉由減小輸入/輸出線1/01至1/〇11上之輸出訊號的電壓擺動 而使此功率消耗大幅減小。 省知快閃記憶體裝置利用熟知的3 ·3伏匯流排標準,其 中使得最小高位準輸出電壓(V〇H)係2·4伏並且最大低位準 輸出電壓(V0L)係0·4伏,並且其標稱電壓擺動係約3.3伏。 如此項技術所已知,根據此標準,彼等電壓係以標稱上為 3·30伏的電源供應電壓為基礎,並且其規格範圍係在2 伏與3.60伏之間。 根據本發明之較佳具體實施例,匯流排電壓從此習知 3.3伏匯流排位準實質上減小(例如)至約18伏之匯流排電 壓,其定義標稱電壓擺動為1·8伏。在此情況中,最小輸 出南位準電壓V0H-R限制之實例可係約ι ·44伏(標稱電源供 應電壓之80%),並且最大低輸出位準電壓v〇L_Ri實例可 係約0.36伏(標稱電源供應電壓之2〇%)。在此減小電壓操 120269.doc -56- 200818206 作中’彼等電壓係以標稱上為180伏的電源供應電壓為基 礎’並且所准許之範圍係從約1.60伏至約2·0伏。可輕易地 計算出:即使資料速率較高,在此進階操作模式中消耗之 電流實質上不會較高於(且可能稍微低於)電壓擺動較高的 ; 常態操作模式中消耗之電流。原因在於在每一輸出處資料 轉變而必須對寄生電容充電所到達的電壓低於電壓擺動較 局的常態操作模式中之電壓。但是,輸入/輸出訊號之較 低電壓擺動導致此進階操作模式中的功率消耗實質上低於 習知快閃記憶體卡中消耗之功率。此實質減小之功率消耗 係結合實質改良之資料傳送速率(約大型叢發之資料速率 的兩倍)予以達成。 因此,根據本發明之較佳具體實施例,其中以較低匯流 排電壓(相對於習知快閃記憶體裝置)執行進階讀取資料傳 运在進階模式中消耗之電流不會比習知快閃記憶體裝置 在常態操作模式中消耗之電流更槽。並且,在根據本發明 • 冰貝較佳具體實施例中,其中快閃記憶體裝置10亦且有 以常態操作模式運作之能力,進階模式與常態操作模式運 作兩者中使用較低之匯流排電壓,並且亦對於包括命令盘 ,㈣值之傳達的其他操作使用較低之匯流排電壓。就其本 纟而論’快閃記憶體裝置1G在傳送資料中消耗之功率低於 習知快閃記憶體裝置。 ' 如前文所述,在常態操作模式中傳達命令訊號與位址訊 號。為了易於實施,較佳方式為,用於傳達彼等訊號之匯 流排電壓亦維持在較低匯流排電壓(例如,18伏),其提供 120269.doc •57· 200818206 額外減小快閃記憶體卡25之功率消耗。 請重新參考圖5a,根據本發明之此項呈The master, however, should understand that the technology in the case of all other factors being equal 'in the input/transmission line plus the increase rate of the output provided is substantially larger than the flash memory card 2 5 Power consumption, in this read operation, 'power consumption is mainly derived from the output drive circuit in the 1/〇 control circuit 20 of the flash memory device 1G. As the data word width (i.e., the number η of input/output lines 1/01 to Ι/On) increases (this is a modern trend), this power consumption is deteriorated. In accordance with a preferred embodiment of the present invention, it will now be described that this power consumption is substantially reduced by reducing the voltage swing of the output signals on the input/output lines 1/01 to 1/11. The known flash memory device utilizes the well-known 3 · 3 volt bus bar standard, in which the minimum high level output voltage (V 〇 H) is 2·4 volts and the maximum low level output voltage (V0L) is 0·4 volts. And its nominal voltage swing is about 3.3 volts. As is known in the art, according to this standard, their voltages are based on a nominal supply voltage of 3.30 volts and are specified between 2 volts and 3.60 volts. In accordance with a preferred embodiment of the present invention, the busbar voltage is substantially reduced from the conventional 3.3 volt busbar level, e.g., to a busbar voltage of about 18 volts, which defines a nominal voltage swing of 1.8 volts. In this case, the example of the minimum output south level voltage V0H-R limit may be about ι 44 volts (80% of the nominal power supply voltage), and the maximum low output level voltage v 〇 L_Ri instance may be about 0.36 Volt (2% of the nominal power supply voltage). In this reduced voltage operation, the voltage is based on a nominal supply voltage of 180 volts and the permitted range is from about 1.60 volts to about 2.0 volts. . It can be easily calculated that even if the data rate is high, the current consumed in this advanced mode of operation will not be substantially higher (and possibly slightly lower) than the higher voltage swing; the current consumed in the normal mode of operation. The reason is that the voltage at which the parasitic capacitance must be charged at each output is lower than the voltage in the normal operating mode of the voltage swing. However, the lower voltage swing of the input/output signals causes the power consumption in this advanced mode of operation to be substantially lower than the power consumed in conventional flash memory cards. This substantially reduced power consumption is achieved in conjunction with a substantially improved data transfer rate (about twice the data rate of a large burst). Therefore, in accordance with a preferred embodiment of the present invention, the current consumed by the advanced read data transfer at a lower bus voltage (relative to a conventional flash memory device) in the advanced mode is not It is known that the flash memory device consumes more current in the normal mode of operation. Moreover, in a preferred embodiment of the iceberg according to the present invention, wherein the flash memory device 10 also has the ability to operate in a normal mode of operation, the lower mode is used in both the advanced mode and the normal mode of operation. The voltage is discharged, and the lower bus voltage is also used for other operations including the command disk, (iv) value transmission. As far as it is concerned, the flash memory device 1G consumes less power in transmitting data than conventional flash memory devices. As described above, the command signal and the address signal are transmitted in the normal operation mode. For ease of implementation, it is preferred that the bus voltage for communicating their signals is also maintained at a lower bus voltage (eg, 18 volts), which provides 120269.doc • 57· 200818206 additional reduction of flash memory The power consumption of the card 25. Please refer back to FIG. 5a again, according to the present invention.

^ /、體實知*例之他BA 圯憶體裝置10能夠回應來自控制器30的暫停請 、 發明,預期控制器3G為了若干原因中任 根據本 Λ f (例如,其内 :接收資料緩衝器已滿)而認為必須暫停讀取資料傳送。 就其本身而論,圖5a之決策51決定是否需要此一暫停^若 否,則以上文關於圖9a之描述所述的方式,於處理程序% 中繼續進行高速讀取資料傳送。 如果控制器30需要暫停讀取資料傳送(決策51決定&quot;是&quot;), 則其於處理程序52中發佈暫停請求。在此項示範性&amp;實施 中,控制器30於讀取傳送操作期間藉由確證位址鎖存啟用 訊號ALE上之作用中高位準而提出此項請求。圖%繪示此 暫停操作,其發生於進階模式中之讀取資料傳送期間 (即,已調用進階模式並且已開始資料傳送)。在圖9b之實 例中,於自快閃記憶體裝置10至控制器3〇之資料傳送期 間,控制器30藉由確證位址鎖存啟用訊號ale而請求資料 傳送暫停。作為回應,快閃記憶體裝置1〇暫停讀取啟用訊 號RE 一與寫入啟用訊號WE—(當在低位準或在高位準時, 如圖所示),並且因此在暫停讀取啟用訊號RE_與寫入啟用 訊號WE—之後延遲發佈下一資料字。假定在此進階模式中 讀取啟用訊號RE—、寫入啟用訊號WE_與輸入/輸出線1/01 至I/On之迅速切換速率,預期在位址鎖存啟用訊號ALE被 驅動至作用中高狀態以請求暫停之後,快閃記憶體裝置10 可驅動一個或兩個額外資料字以及讀取啟用訊號RE_與寫 120269.doc -58- 200818206 入啟角訊號WE一之相對應邊沿。在此實例中,於輸出資料 字D〇ut(4)期間,控制器30已確證位址鎖存啟用訊號ALE, 並且於輸出資料字Dout(6)期間,快閃記憶體裝置1〇藉由保 持讀取啟用訊號RE—、寫入啟用訊號WE-及輸入/輸出線 1/01至I/On之進一步轉變而作出回應。 此暫停進一步資料傳送持續,直到控制器3〇執行處理程 序54以撤銷啟動位址鎖存啟用訊號ale,因此結束暫停。 如圖9b所示,在控制器30使位址鎖存啟用訊號ale成為非 作用中低狀態後隨即結束此暫停狀態。根據本發明之此項 具體實施例,位址鎖存啟用訊號ALE之此轉變係用作為來 自快閃記憶體裝置10之下一輸出資料字(在此實例中係資 料字〇_(7))的讀取資料選通。在此起始暫停後之資料字之 後’快閃記憶體裝置1 〇藉由確證讀取啟用訊號RE—與寫入 啟用訊號WE 一之轉變而再次產生讀取選通訊號,如圖所 示。寫入啟用訊號WE一之下一運作轉變係用於繼暫停時期 結束之後的第二輸出資料字D〇ut(8)的選通,並且讀取啟用 訊號RE—之下一運作轉變係用於在暫停時期之後的第三輸 出資料字Dout(9)的選通。於處理程序56中繼續進行進階模 式讀取資料傳送,如圖9b所示。 請重新參考圖5a,繼續進行進階模式讀取資料傳送直到 控制器30想要終止傳送之時,其在處理程序58、59中向快 閃記憶體裝置10指示出其想要終止傳送。典型地,在控制 器30決定正在抵達快閃記憶體裝置1〇内之頁尾後隨即終止 此傳送’然而控制器30亦可為了其他原因(例如,在接收 120269.doc -59- 200818206 到用於操作的全部所要資料之後)終止傳送。 =據此項實例’ 4 了終止此資料傳送,控制器财先於 處理程序58中發佈暫停,例如 、 號ALE之作时高 収=址鎖存啟用訊 上文所述。圖9c繪示終止處理 ^序8 1之實例,时㈣在進階讀取諸傳送操作期 鎖存啟用訊號似之轉變。控制器3G於暫停操作期 、貝二處理¥序59’使處理程序58之暫停操作變換至終止 進階項取資料傳送。替代做法為,可於快閃記憶體裝置10 本身決定其輸出資料已抵達頁尾之後實行處理程㈣,在 此情況中,快閃記憶㈣㈣本身使讀取啟用訊號re-與 寫入啟用訊號WE_維持在其最後位準,並且在輸入/輸出 線1/〇1至I/On上維持現行(即,最後的)輸出資料字;在此 情況中,位址鎖存啟用訊號ALE仍是維持非作用中低狀 態。在圖9c所示之此實例中,控制器3〇在位址鎖存啟用訊 號ALE係處於作用中高位準時確證命令鎖存啟用訊號cLE 上之作用中高位準,而終止此資料傳送。回應於此命令鎖 存啟用訊號CLE之轉變,快閃記憶體裝置丨〇控制其輸出驅 動器以將輸入/輸出線1/01至I/On置於高阻抗狀態,並且亦 釋放其對相對應於讀取啟用訊號RE—與寫入啟用訊號WE_ 的導體之控制,在彼兩種情況中,准許控制器3 〇在適當時 取得對彼等線路之控制,同時避免資料競爭問題。如圖9c 之實例中所示,因為暫停操作與終止操作發生於讀取啟用 訊號RE-與寫入啟用訊號WE__處於低位準,所以一旦控制 器30取得對讀取啟用訊號11£__與寫入啟用訊號WE_之控 120269.doc -60- 200818206 制,隨即驅動相對應之線路上之非作用中高位準 =所不之轉變;如果暫停操作與終止操作發生於彼等訊號 中任一者或兩者已處於高位準’則當然在 轉變。 〃、、仕何 ..接著’快閃記憶體裝置10返回常態操作模式(&quot;舊型&quot;模 .式),將控制傳回至圖5a之流程圖中的處理程序料。根據 树明之此項較佳具體實施例,新的進階模式讀取資料傳 达將需要起始處理程序48之另一執行個體。 • 進-步’在替代做法中’如果控制器3。撤銷確證晶片啟 用訊號%,則將發生無條件終止。但是,預期此項益條 件終止可導致在快閃記憶體裝置1〇及控制器⑼之内部與外 部發生&quot;差錯&quot;及其他假性且未指定的事件。 根據本發明之此項較佳具體實施例,對於自控制器⑽至 快閃記憶體裝置10之資料傳送(換言之,對於寫入資料傳 送操作)亦提供進階高效能模式。圖讣之流程圖連同圖% 鲁肖9d至9e之時序圖㈣此項操作,現在料以描述。 ,為了實現進階模式寫人資料傳送,快閃記憶體裝置_ 常態操作模式開始,進入處理程序6〇。如同讀取資料傳送 - H在處理程序62中首先實行此常態模式操作(若有 ㈣)。在處理程序64中,在此常態操作模式中控制器 3〇發佈位址值至快閃記憶體裝置1〇,如上文關於圖仆之描 述所述。並且於處理程序66中,控制器66以類似於上文關 2圖9&amp;描述之進階讀取資料傳送所述的實行方式起始進階 :貝料傳送模式。預期於處理程序66中將於此進階模式中執 120269.doc -61 - 200818206 行的寫人資料傳送實f上完全相同於讀取f料傳送,惟使 用不同的命令值IDT_WR_CMD除外,該命令值指示出進 階模式資料傳送係寫入操作(控制器30至快閃記憶體裝置 1〇),而非讀取。此不同值准許在寫人傳送内使用寫二啟 用訊號WE 一與讀取啟用訊號RE 一兩者,如下文所述。 在處理程序68中,控制器30與快閃記憶體裝置1〇實行進 階寫入資料傳送。圖9d繪示此項操作(包括處理程序66)之 實例中的訊號時序,其中由控制器3〇發佈命令值 IDT一WR一CMD、命令鎖存啟用訊號CLE之作用中高位準與 寫入啟用訊號WE 一之作用中低脈衝的組合至快閃記憶體裝 置1〇,因此起始進階模式資料傳送。如同先前之實例,使 位址鎖存啟用訊號ALE維持在非作用中低位準,以及使晶 片啟用訊號CE維持在作用中低位準。並且因為此項操作將 係一項資料寫入操作,所以控制器3〇使讀取啟用訊號re_ (圖中9d未繪示)始終保持在非作用中高狀態。在本發明之 此項具體實施例中,因為寫入資料傳送處理程序68仍是在 控制器30之完全控制下,所以介於發佈命令 IDT—WR一CMD與開始寫入資料傳送之間的延時可比讀取 貝料傳送中第一輸出資料字(圖9a)之前的延時短許多。較 佳方式為,介於相對應於起始命令IDT一WR—CMD的寫入 啟用訊號WE—之脈衝之上升邊沿與相對應於第一輸入資料 子Din(〇)的寫入啟用訊號WE—(或讀取啟用訊號尺幻之第一 脈衝之下降邊沿之間歷時一指定時間,如圖所示。 在本發明之此項較佳具體實施例中,一旦寫入資料傳送 120269.doc -62 - 200818206 開始,寫入啟用訊號WE一與讀取啟用訊號RE一之下降邊沿 係用作為寫入資料選通,由控制器30確證。當然,可替代 地使用彼等訊號的上升邊沿。此外,如同讀取資料傳送之 十月況’藉由具有彼此異相位關係(為了最大化資料傳送速 ; 率,較佳係180。相位關係)的寫入啟用訊號WE一與讀取啟用 訊唬RE一來增加此寫入操作中的資料傳送速率。如圖% 示’此准許控制器3〇以同步於寫入啟用訊號貿£ 一與讀取啟 _ 用訊號RE-兩者之每一下降邊沿的方式發佈新的有效寫入 貧料字Din(k)至輸入/輸出線1/〇1至1/〇11上。結果,對於寫 入啟用訊號WE 一與讀取啟用訊號RE 一之頻率相同於常態(舊 型)操作模式中之頻率,此進階模式中之寫入資料傳送速 率可係常態操作模式寫入操作之資料速率的約兩倍。 根據本發明之此項具體實施例,請重新參考圖讣,進階 模式寫入資料傳送中亦可實行暫停決策69。典型地,僅由 控制器30決定對於寫入暫停之需求,其預期快閃記憶體裝 • 置1〇可依此資料速率接收輸入資料而無緩衝器溢位等等。 如果不需要暫停(決策69決定”否,,),則於處理程序72中繼 續進行資料傳送。如果控制器30要求暫停(決策69決定 • ”是”),則於處理程序70中實現寫入資料傳送之暫停。在 • 此實例中,控制器30視需要延長寫入啟用訊號WE—與讀取 啟用訊號RE 一而簡單地實現暫停處理程序7〇。可在任一狀 態(寫入啟用訊號WE 一與讀取啟用訊號RE 一保持高狀態或保 持低狀態)中實行此暫停,·圖9d繪示於寫入資料字〇以2)之 持續期間的暫停處理程序70,其中使寫入齡 # τ 乂咼八啟用訊號WE_保 120269.doc •63· 200818206 持低狀態及使讀取啟用訊號RE_保持高狀態。當然,在暫 停處理程序7G期間,控制器3G不發佈額外寫人資料字 Dln(k)。控制器3()僅僅驅動寫人啟用訊號或讀取啟用 S號E_之下降邊沿轉變連同下一有效寫入資料字Din(3) (在圖d所示之只例中)而實現暫停時期結束,以繼續進行 寫入資料傳送(處理程序72)。^ /, the body knows * the example of his BA memory device 10 can respond to the suspension request from the controller 30, the invention, the controller 3G is expected to be based on a number of reasons (for example, within: receiving data buffer The device is full and it is considered that the data transfer must be suspended. For its part, decision 51 of Figure 5a determines if this pause is required. If no, then in the manner described above with respect to Figure 9a, the high speed read data transfer continues in the handler %. If the controller 30 needs to suspend the read data transfer (decision 51 determines &quot;yes&quot;), it issues a pause request in the handler 52. In this exemplary &amp; implementation, the controller 30 makes this request during the read transfer operation by verifying that the address latch enables the mid-high level on the enable signal ALE. Figure % shows this pause operation, which occurs during the read data transfer in advanced mode (ie, advanced mode has been called and data transfer has started). In the example of Fig. 9b, during data transfer from the flash memory device 10 to the controller 3, the controller 30 requests the data transfer pause by confirming the address latch enable signal ale. In response, the flash memory device 1 suspends the read enable signal RE and the write enable signal WE—(when at a low level or at a high level, as shown), and thus suspends the read enable signal RE_ Delay the release of the next data word after writing the enable signal WE. Assuming that the fast switching rate of the enable signal RE_, the write enable signal WE_, and the input/output lines 1/01 to I/On is read in this advanced mode, it is expected that the address latch enable signal ALE is driven to function. After the medium high state is requested to be paused, the flash memory device 10 can drive one or two additional data words and the corresponding edge of the read enable signal RE_ and the write 120269.doc -58-200818206 into the start signal WE. In this example, during output of the data word D〇ut(4), the controller 30 has confirmed the address latch enable signal ALE, and during the output of the material word Dout(6), the flash memory device 1 A further transition of the read enable signal RE—, the write enable signal WE-, and the input/output lines 1/01 to I/On is maintained in response. This pause further data transfer continues until the controller 3 executes the processing routine 54 to revoke the start address latch enable signal ale, thus ending the pause. As shown in Figure 9b, the pause state is terminated immediately after the controller 30 causes the address latch enable signal ale to become inactive low. According to this embodiment of the invention, the transition of the address latch enable signal ALE is used as an output data word from the underlying flash memory device 10 (in this example, the data word 〇_(7)) Read data strobe. After the start of the data word after the pause, the flash memory device 1 generates the read selection communication number again by confirming the change of the read enable signal RE and the write enable signal WE, as shown in the figure. The write enable signal WE is used to switch the second output data word D〇ut(8) after the end of the pause period, and the read enable signal RE is used. The strobe of the third output material word Dout(9) after the pause period. Advanced mode read data transfer continues in process 56, as shown in Figure 9b. Referring again to Figure 5a, the advanced mode read data transfer continues until the controller 30 wants to terminate the transfer, which in the processing programs 58, 59 indicates to the flash memory device 10 that it wants to terminate the transfer. Typically, the transfer is terminated immediately after the controller 30 determines that it is reaching the end of the flash memory device 1'. However, the controller 30 may also be used for other reasons (eg, receiving 120269.doc -59-200818206) The transfer is terminated after all the required information of the operation. = According to this example '4', the data transfer is terminated, and the controller pays a pause in the processing program 58 first, for example, when the ALE is high, the address is latched and enabled. Figure 9c illustrates an example of terminating the process, which is (4) latching the enable signal-like transition during the advanced read transfer operations. The controller 3G shifts the pause operation of the processing program 58 to the termination advanced item fetch data transfer during the pause operation period, the second processing, and the sequence 59'. Alternatively, the processing procedure (4) may be performed after the flash memory device 10 itself determines that its output data has reached the end of the page. In this case, the flash memory (4) (4) itself causes the read enable signal re- and the write enable signal WE. _maintained at its last level and maintains the current (ie, last) output data word on input/output lines 1/〇1 to I/On; in this case, the address latch enable signal ALE is still maintained Non-active low state. In the example shown in Figure 9c, the controller 3 terminates the data transfer when the address latch enable signal ALE is asserted at the active high level to assert the high level on the command latch enable signal cLE. In response to this command latching the enable of the signal CLE, the flash memory device controls its output driver to place the input/output lines 1/01 to I/On in a high impedance state, and also releases its pair corresponding to Reading the control of the enable signal RE - and the conductor of the write enable signal WE_, in both cases, allows the controller 3 to obtain control of their lines when appropriate, while avoiding data contention issues. As shown in the example of FIG. 9c, since the suspend operation and the termination operation occur at the read enable signal RE- and the write enable signal WE__ are at a low level, once the controller 30 obtains the read enable signal 11£__ and Write enable signal WE_ control 120269.doc -60- 200818206 system, then drive the corresponding non-active high level on the line = no change; if the pause operation and the termination operation occur in any of their signals Of course, the two or the two are already at a high level. Then, the flash memory device 10 returns to the normal operation mode (&quot;old type&quot; mode), and the control is returned to the processing program in the flowchart of Fig. 5a. According to this preferred embodiment of Shuming, the new advanced mode read data transfer will require another execution individual of the start handler 48. • Go-step' in an alternative practice' if controller 3. If the verification chip enable signal % is revoked, an unconditional termination will occur. However, it is expected that termination of this benefit condition will result in &quot;error&quot; and other false and unspecified events occurring inside and outside of the flash memory device 1 and controller (9). In accordance with this preferred embodiment of the present invention, an advanced high performance mode is also provided for data transfer from the controller (10) to the flash memory device 10 (in other words, for write data transfer operations). The flow chart of Figure 连同 together with the diagram of the diagram of the % Lushaw 9d to 9e (4), this operation is now described. In order to realize the advanced mode writer data transmission, the flash memory device _ normal operation mode starts, and enters the processing program 6〇. As with the read data transfer - H, this normal mode operation is first performed in the processing program 62 (if there is (4)). In the processing program 64, the controller 3 〇 issues the address value to the flash memory device 1 in this normal mode of operation, as described above with respect to the servant description. And in the processing program 66, the controller 66 initiates the advanced mode in a manner similar to the advanced read data transfer described above with respect to Figure 9 &amp; It is expected that in the processing program 66, the write data transfer of the line 120269.doc -61 - 200818206 in this advanced mode is exactly the same as the read f transfer, except that a different command value IDT_WR_CMD is used, the command value The advanced mode data transfer operation is indicated (controller 30 to flash memory device 1) instead of reading. This different value permits the use of both the write enable signal WE and the read enable signal RE in the write transfer, as described below. In the processing program 68, the controller 30 and the flash memory device 1 perform advanced write data transfer. Figure 9d shows the signal timing in the example of this operation (including the processing program 66), wherein the controller 3 〇 issues the command value IDT - WR - CMD, the command latch enable signal CLE, the high level and the write enable The combination of the signal WE and the low pulse is applied to the flash memory device 1〇, so the advanced mode data transmission is started. As in the previous example, the address latch enable signal ALE is maintained at the inactive low level and the wafer enable signal CE is maintained at the active low level. And because this operation will be a data write operation, the controller 3 causes the read enable signal re_ (not shown in Fig. 9d) to remain in the inactive high state at all times. In this embodiment of the invention, since the write data transfer handler 68 is still under full control of the controller 30, there is a delay between issuing the command IDT_WR_CMD and starting the write data transfer. The delay before reading the first output data word (Fig. 9a) in the batting transmission is much shorter. Preferably, the rising edge of the pulse corresponding to the write enable signal WE corresponding to the start command IDT-WR-CMD and the write enable signal WE corresponding to the first input data sub-Din(〇) are (Or reading between the falling edges of the first pulse of the enable signal scale for a specified time, as shown. In this preferred embodiment of the invention, once the data transfer 120269.doc-62 is written - Beginning with 200818206, the falling edge of the write enable signal WE and the read enable signal RE is used as the write data strobe, which is confirmed by the controller 30. Of course, the rising edges of their signals can be used instead. As with the October issue of reading data transmission, the write enable signal WE and the read enable signal RE are provided by mutually different phase relationships (in order to maximize the data transfer speed; rate, preferably 180. phase relationship). To increase the data transfer rate in this write operation. As shown in Figure #, this allows the controller 3 to synchronize with each of the falling edge of the write enable signal and the read signal RE. Way to post a new valid write The poor word Din(k) is input to the input/output line 1/〇1 to 1/〇11. As a result, the frequency of the write enable signal WE and the read enable signal RE is the same as the normal (old type) operation mode. The frequency of the write data in this advanced mode may be about twice the data rate of the normal operation mode write operation. According to this embodiment of the present invention, please refer back to the figure, advanced mode. A pause decision 69 can also be implemented in the write data transfer. Typically, only the controller 30 determines the need for a write pause, which expects the flash memory device to receive input data at this data rate without buffering. Overflow, etc. If no pause is required (decision 69 decides no), then data transfer continues in process 72. If controller 30 requests a pause (decision 69 decides • "is"), then processing The suspension of the write data transfer is implemented in the program 70. In this example, the controller 30 simply extends the write enable signal WE as needed to read the enable signal RE, and simply implements the pause processing routine. (This write is performed in the write enable signal WE and the read enable signal RE remains high or low), and FIG. 9d illustrates the pause processing routine 70 during the duration of the write data word 2). Wherein the write age # τ 乂咼 eight enable signal WE_保120269.doc • 63· 200818206 hold the low state and keep the read enable signal RE_ high. Of course, during the pause handler 7G, the controller 3G does not The additional write data word Dln(k) is issued. The controller 3() only drives the write enable signal or the read enable edge of the S number E_ along with the next valid write data word Din(3) (in Figure d The only example shown is the end of the pause period to continue the write data transfer (process 72).

並且如同頃取貢料傳送之情況,資料訊號與控制訊號 之電壓位準(輸入/輸出線職至·,及用於寫入啟用訊 號WE_與讀取啟用訊號RE_之線路)較佳係低於習知位準的 電壓位準,舉例而言,具有介於高邏輯位準與低邏輯位準 之間的U伏”擺動&quot;。如上文詳細論述所述,在二分之一資 料速率下,此較低電壓之匯流排將使此進階寫人資料傳送 模式所消耗之功率料等於或小於在常態操作模式中運作 之習知快閃記憶體系統中消耗之功率。 請重新參考圖5b且結合_,以完全相同於終止讀取資 料傳送之方式實現终止寫入資料傳送。在處理程序%中, 控制,30在處理程序Μ中確證位址鎖存啟用訊號似至作 用中间位準以暫停傳送,並且接著在處理程序%中確證命 令鎖存啟用訊號CLE至作用中高位準(同時使位址鎖存啟用 訊號仙維持高位準),其接著終止寫人資料傳送。圖㈣會 =止!入資料傳送過程中各種訊號之時序。寫入啟用訊 ㈣取啟用訊號RE_保持在高位準(如圖%所示), =已鎖存最後資料字Din(5)(在此實例中)之後驅動至高 準。繼終止進階模式寫入資料傳送(藉由使位址鎖存啟 120269.doc -64 * 200818206 用訊5虎ALE與命令鎖在啟田 準達指 體裝置 p 7鋇孖啟用訊號CLE分別保持高位 定脈衝寬度而實jg_ 貝現)之後,接著再次進入快閃記憶 10與控制器30之常態操作模式。 在匕實例中考慮到需要執行命令以調用進階模式,並 且考慮到在資料傳送終止時快閃記憶體裝置U)之運作返回 呆作核式(即’不需要執行命令),常態操作模式實際 上係&quot;預設&quot;操作模式。替代做法為,可組態快閃記憶體^And as if the tributary is being transmitted, the voltage level of the data signal and the control signal (input/output line to, and the line for writing the enable signal WE_ and the read enable signal RE_) are better. A voltage level lower than a conventional level, for example, having a U volt "swing" between a high logic level and a low logic level. As discussed in detail above, in one-half of the data At the rate, this lower voltage bus will cause the power consumed by this advanced write data transfer mode to be equal to or less than the power consumed in the conventional flash memory system operating in the normal mode of operation. Figure 5b, in conjunction with _, terminates the write data transfer in exactly the same way as terminating the read data transfer. In the handler %, the control, 30 in the handler 确 confirms that the address latch enable signal appears to the middle bit The transfer is suspended, and then the command latch enable signal CLE is asserted in the handler % to the active high level (while the address latch enable signal remains high), which then terminates the write data transfer. Figure (4) will = stop! Enter the timing of various signals during the data transmission. Write enable (4) take the enable signal RE_ remain at the high level (as shown in Figure %), = the last data word Din (5) is latched ( In this example) drive to Micro Motion. Following the termination of the advanced mode write data transfer (by making the address latch open 120269.doc -64 * 200818206 with 5 ALE and command lock in the Kaitian Zhuoda After the device p 7 钡孖 enable signal CLE respectively maintains the high fixed pulse width and then the real jg_ 现, then enters the normal operation mode of the flash memory 10 and the controller 30 again. In the 匕 example, it is considered that the command needs to be executed to call in. The mode, and considering that the operation of the flash memory device U) returns to the core mode when the data transfer is terminated (ie, 'no need to execute the command'), the normal operation mode is actually the "preset" operating mode. The practice is that configurable flash memory ^

置10 ’使得f要執行命令才能進人進階資料傳送模式與常 態操作模式兩者,致使—旦快閃記憶體裝置1G係處於進階 資料傳送模式中’則其仍是處於該模式中,直到控制器30 發佈返回¥恕操作模式之命令且快閃記憶體裝置i峨行該 命令為止。當然,此種做法涉及命令序列本質上的額外耗 用。 進一步,在替代做法中,快閃記憶體裝置10之&quot;預設,,操 作模式可係進階資料傳送模式,致使在進階模式中實現所 有資料傳送’直到控制器30發佈命令以使快閃記憶體叢置 10進入系悲操作模式為止。在此情況中,預期控制器3〇可 指示出是否係讀取或寫入進階模式操作,以准許讀取啟用 訊號與寫入啟用訊號兩者選通資料,如上文所述。根據本 發明之此項替代具體實施例,一旦快閃記憶體裝置10係處 於#怨操作模式,則完成資料傳送將導致快閃記憶體裝置 10返回進階資料傳送模式。 已參閱此份說明書的熟悉此項技術者應明白,預期尚有 進入與退出快閃記憶體裝置10之各種操作模式的替代做 120269.doc -65- 200818206 法,並且亦應明白,彼等及此類其他替代實施方案皆歸屬 於如申請專利範圍之本發明範疇内。 因此’根據本發明之較佳具體實施例之快閃記憶體裝置 10、控制器30及快閃記憶體卡25提供優於習知裝置及系統 的重要優點。本發明實現高資料傳送速率(接近習知裝置 及系統的兩倍)’同時仍然提供與不具有進階能力之,,舊型&quot; 裝置的命令與訊號相容性。此外,進階資料傳送模式中所Set 10' so that f wants to execute the command to enter both the advanced data transfer mode and the normal operation mode, so that the flash memory device 1G is in the advanced data transfer mode, then it is still in the mode, Until the controller 30 issues a command to return to the operating mode and the flash memory device i executes the command. Of course, this approach involves the extra cost of the command sequence. Further, in an alternative, the &quot;preset, operation mode of the flash memory device 10 can be an advanced data transfer mode, so that all data transfer is implemented in the advanced mode until the controller 30 issues a command to make it faster. The flash memory cluster 10 enters the sad operation mode. In this case, it is contemplated that the controller 3 can indicate whether to read or write an advanced mode operation to permit both the read enable signal and the write enable signal to be gated, as described above. In accordance with this alternative embodiment of the present invention, once the flash memory device 10 is in the #怨操作 mode, completing the data transfer will cause the flash memory device 10 to return to the advanced data transfer mode. Those skilled in the art who have referred to this specification should understand that it is expected that there will be alternatives to the various modes of operation for entering and exiting the flash memory device 10, and that the method of 120269.doc-65-200818206 should be understood and that they should Such other alternative embodiments are within the scope of the invention as set forth in the claims. Thus, flash memory device 10, controller 30 and flash memory card 25 in accordance with a preferred embodiment of the present invention provide significant advantages over conventional devices and systems. The present invention achieves a high data transfer rate (close to twice the size of conventional devices and systems) while still providing command and signal compatibility with legacy, non-advanced devices. In addition, in the advanced data transfer mode

涉及的較低匯流排電壓訊號使整體裝置與系統電流與功率 消耗維持在接近(或甚至低於)習知快閃記憶體裝置與系統 的電流與功率消耗。 結果,襲本發明可㈣㈣於f料傳送速率尤其關鍵 的數位系統應用中。如上文所述,—項此種應用係在高效 能數位靜物攝影機。在此種攝影機中,影像解析度(且因 此每影像攝取之資料)現在超過10百萬像素,現在市售有 高於12.4百萬像素攝影機。但是’由於自影像感測器至快 間記憶體的資料傳送速率係可攝取影像之速率(攝影機使 用者通常感受到的,,快門遲滯&quot;)的直接因素,所以此資料傳 送速率係屬關鍵。並且,攝影機使用者首要關㈣受到的 絕對延遲(即’與每-影像中獲取的資料量無關),所以隨 著影像解析度增加,使對資料傳送速率的負荷更加惡化。 此高資料傳送速率的另—潛在應用在於使用固態快閃記憶 體作為電腦系統中的大量儲存媒體,其實質上取代習用的 -些或所有磁碟機大量儲存器。預期使用固態記憶體(而 不使用磁碟機)的能力實現電腦系統之進一步微型化及攜 120269.doc -66 - 200818206 帶性,並j·亦大幅增加現代攜帶型與手持型系'统的功能。 雖然已根據本發明之較佳具體實施例來說明本發明,但 是當然預期已參閱此份說明書的熟悉此項技術者應明白彼 等具體實施例之修改與替代方案,此等修改與替代方案獲 得本發明之優點與利益。預期此等修改與替代方案均屬於 如本文隨後申請專利範圍中的本發明範轉。 【圖式簡單說明】 圖1繚示習知記憶體上的電方塊圖。 圖2繪示一種根據本發明較佳具體實施例建構之記憶體 模組的電方塊圖。 圖3繪示根據本發明較佳具體實施例將圖2之記憶體模組 結合單晶片記憶體控制器實作成為一系統或子系統的電方 塊圖。 圖4a至圖4d繪示根據本發明較佳具體實施例圖2與圖3之 快閃記憶體模組在常態操作模式中且在傳達命令中之操作 的時序圖。 圖5a與圖5b分別繪示根據本發明較佳具體實施例之進階 模式讀取資料傳送速率與寫入資料傳送之操作的流程圖。 圖6a至圖6e繪示根據本發明第一較佳具體實施例之圖 與圖5b之操作所涉及之訊號的時序圖。 圖7繪示根據本發明第二較佳具體實施例之進階模式資 料傳送之操作的流程圖。 圖8a至圖8e繪示根據本發明第二較佳具體實施例之圖。 與圖5b之操作所涉及之訊號的時序圖。 120269.doc -67- 200818206 5a 圖9a至圖9e繪示根據本發明第三較佳具體實施例之圖 與圖5b之操作所涉及之訊號的時序圖。 【主要元件符號說明】The lower bus voltage signals involved maintain the overall device and system current and power consumption close to (or even below) the current and power consumption of conventional flash memory devices and systems. As a result, the present invention can be used in digital system applications where the transfer rate of f material is particularly critical. As mentioned above, this application is based on a high-performance digital still camera. In this type of camera, the image resolution (and therefore the data per image capture) is now over 10 megapixels, and now there are commercially available cameras above 12.4 megapixels. However, because the data transfer rate from the image sensor to the fast memory is a direct factor of the rate at which images can be taken (the shutter user is usually perceived by the camera, the shutter lag is lag), this data transfer rate is critical. . Moreover, the camera user's primary (4) absolute delay (i.e., irrespective of the amount of data acquired in each image) increases the load on the data transfer rate as the resolution of the image increases. Another potential application for this high data transfer rate is the use of solid state flash memory as a mass storage medium in a computer system that substantially replaces some or all of the disk drive's mass storage. It is expected that the use of solid-state memory (without the use of a magnetic disk drive) will enable further miniaturization of the computer system and the adoption of the band, and also greatly increase the modern portable and handheld systems. Features. Although the present invention has been described in terms of the preferred embodiments of the present invention, it will be understood that modifications and alternatives to the specific embodiments thereof Advantages and benefits of the present invention. It is intended that such modifications and alternatives are within the scope of the invention as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows an electrical block diagram on a conventional memory. 2 is an electrical block diagram of a memory module constructed in accordance with a preferred embodiment of the present invention. 3 is a block diagram showing the operation of the memory module of FIG. 2 in conjunction with a single-chip memory controller as a system or subsystem in accordance with a preferred embodiment of the present invention. 4a-4d are timing diagrams showing the operation of the flash memory module of FIGS. 2 and 3 in a normal mode of operation and in a communication command in accordance with a preferred embodiment of the present invention. 5a and 5b are respectively a flow chart showing an operation of reading data transfer rate and writing data transfer in an advanced mode according to a preferred embodiment of the present invention. Figures 6a through 6e are timing diagrams of signals involved in the operation of the first preferred embodiment of the present invention and the operation of Figure 5b. Figure 7 is a flow chart showing the operation of the advanced mode data transfer in accordance with the second preferred embodiment of the present invention. 8a-8e are diagrams showing a second preferred embodiment of the present invention. A timing diagram of the signals involved in the operation of Figure 5b. 120269.doc -67- 200818206 5a Figures 9a through 9e are timing diagrams of signals involved in the operation of the third preferred embodiment of the present invention and the operation of Figure 5b. [Main component symbol description]

2 快閃記憶體卡 4 快閃記憶體裝置(模組) 6 記憶體控制器 10 快閃記憶體裝置(模組) 11 列解碼器 12 快閃記憶體陣列 13 感測放大器 14 資料暫存器 15 行解碼器 18 控制邏輯 20 輸入/輸出控制電路 22 位址暫存器 23 狀態暫存器 24 命令暫存器(狀態暫存器) 25 快閃記憶體卡 30 控制器 ADD0 至 ADD3 位址字 ALE 位址鎖存啟用(訊號) CE_ 晶片啟用(訊號) CLE 命令鎖存啟用(訊號) CMD 命令 120269.doc -68 - 2008182062 Flash Memory Card 4 Flash Memory Device (Module) 6 Memory Controller 10 Flash Memory Device (Module) 11 Column Decoder 12 Flash Memory Array 13 Sense Amplifier 14 Data Scratchpad 15 row decoder 18 control logic 20 input/output control circuit 22 address register 23 status register 24 command register (status register) 25 flash memory card 30 controller ADD0 to ADD3 address word ALE Address Latch Enable (Signal) CE_ Chip Enable (Signal) CLE Command Latch Enable (Signal) CMD Command 120269.doc -68 - 200818206

CTRL 控制匯流排 DATA_BUS 匯流排 Din 資料字 D〇Ut 資料字 HOST_IF 主機介面(外部介面) Ik 單個輸入/輸出線所消耗的電流 Ire 讀取啟用訊號RE_所消耗的電流 11 〇 t a 1 消耗的總電流 I/Ol 至 I/On 共同輸入/輸出(訊號線) IDT 起始資料傳送 IDT 一 CMD, IDT命令值 IDT_RD_CMD, IDT_WR_CMD RE_ 讀取啟用(終端,控制線,訊號) vcc_R 電源供應電壓 V〇h 最小高(邏輯)位準輸出電壓 V OH-R 最小輸出高位準電壓 V〇L 最大低(邏輯)位準輸出電壓 V 〇l-r 最大低輸出位準電壓 WE_ 寫入啟用(終端,控制線,訊號) WP_ 寫入保護線 data_I/0 匯流排 Ctrl 匯流排 trel 歷時時間 120269.doc -69-CTRL Control Bus DATA_BUS Bus Din Data Word D〇Ut Data Word HOST_IF Host Interface (External Interface) Ik Current consumed by a single input/output line Ire Read current consumed by enable signal RE_11 〇ta 1 Total consumed Current I/Ol to I/On Common input/output (signal line) IDT Start data transfer IDT-CMD, IDT command value IDT_RD_CMD, IDT_WR_CMD RE_ Read enable (terminal, control line, signal) vcc_R Power supply voltage V〇h Minimum high (logic) level output voltage V OH-R minimum output high level voltage V〇L maximum low (logic) level output voltage V 〇lr maximum low output level voltage WE_ write enable (terminal, control line, signal WP_ write protection line data_I/0 bus Ctrl bus trel duration 120269.doc -69-

Claims (1)

200818206 十、申請專利範圍: ▲操作&amp;閃記憶體裝置以與一快閃記憶體控制器通 ^之方法’其包括下列步驟: 碎在「常態操作模式中,回應於接收來自該控制器的— ❹資料選通訊號之-第一極性之轉變,在輸入/輪出線 上提供資料字至該控制器; 執行一接收來自該控制器的命令,以起始一進階資 傳送模式;、 接著驅動該讀取資料選通訊號至該控制器;及 同步於該讀取資料選通訊號之一第一與一第二極性兩 者之轉變且在該進階資料傳送模式中,相對應於該快閃 記憶體裝置中儲存之資料,在輸入/輸出線上提供資料字 至該控制器。200818206 X. Patent application scope: ▲ Operation &amp; flash memory device to communicate with a flash memory controller's method includes the following steps: Broken in the "normal operation mode, in response to receiving from the controller – ❹ data selection communication number - the first polarity transition, providing the information word to the controller on the input/round line; performing a command from the controller to initiate an advanced transfer mode; Driving the read data selection communication number to the controller; and synchronizing with the transition of the first and second polarity of one of the read data selection communication numbers and corresponding to the advanced data transfer mode The data stored in the flash memory device provides a data word to the controller on the input/output line. 如明求項1之方法’其中該常態操作模式對應於用於介 於快閃記㈣裝置與控制器之㈣通信之標準化規格, ,等標準化規格包括H壓規格,該第—電壓規格 定義用於該讀取資料選通訊號及在該等輸入/輸出線上之 該等資料字的高與低邏輯位準; 並且其中該提供步驟、該驅動步驟與該提供步驟係使 用一第二指定電壓規格μ實行,該第二指定電壓規格 定義用於該讀取資料選通訊號及在該等輸入/輸出線上之 該等資料字的高與低邏輯位準,該第二指定電壓規格中 之該等南與低邏輯位準定義的一電壓擺動實質上小於藉 由該第一指定電壓規格中之該等高與低邏輯位準定義= 120269.doc 200818206 電壓擺動。 …j項2之方法’其中藉由該第一指定電壓規格中之 忒等呵與低邏輯位準定義的該電壓擺動標稱上係約3 3 伏, 耝中藉由該第m壓規格中之料高與低邏 '定義的該電壓擺動標稱上係約1.8伏。 4.如請求項丨之方法’其進一步包括:The method of claim 1 wherein the normal mode of operation corresponds to a standardized specification for (4) communication between the flash device and the controller, and the standardized specification includes a H-voltage specification, the first-voltage specification is defined for The read data selects a communication number and a high and a low logic level of the data words on the input/output lines; and wherein the providing step, the driving step, and the providing step use a second specified voltage specification Executing, the second specified voltage specification is defined for the read data selection communication number and the high and low logic levels of the data words on the input/output lines, the south of the second specified voltage specifications A voltage swing defined with a low logic level is substantially less than a voltage swing defined by the high and low logic levels in the first specified voltage specification = 120269.doc 200818206. The method of [j2] wherein the voltage swing defined by the first specified voltage specification and the low logic level is nominally about 3 3 volts, by means of the mth voltage specification The voltage swing defined by the material high and low logic is nominally about 1.8 volts. 4. The method of claim ’ further includes: ^執行步驟之後,接收來自該控制器的寫入資料選 遇訊說; 回應於接收該寫入資料選通訊號之一第一與一第二極 兩者之轉變,鎖存在該等輸入/輸出線上之資料字以用 於儲存於該快閃記憶體裝置中;及 在:常態操作模式中’回應於接收來自該控制器的該 二二貝枓選通訊號之一第一極性之轉變,鎖存在該等輸 1線上之貝料字以用於儲存於該快閃記憶體 中。 .:未項1之方法,其中實行該執行步驟係回應於在該 j輸入/輸出線上接收到-起始命令值,其係結合來自該 工制益之一寫入資料選通訊號之一第一極性之一轉變, 亚且結合接收來自該控制器之—命令鎖存啟用訊號; 並且進一步包括: 在該進階資料傳送模式中提供資料字至該控制器之 二驟期間,並且回應於接收到來自該控制器之一暫停 明求,保持該等輸入/輸出線上之一資料字之一值,並且 120269.doc 200818206 保持該讀取啟用訊號之一現行狀態;及 回應於接收到來自該控制器之該暫停請求之一結 束’重新繼續在該進階資料傳送模式巾提供資料字至該 控制器之該步驟及驅動該讀取資料選通訊號之該步驟。 6·如請求項5之方法’纟中該暫停請求對應於接收到來自 該控制器之一控制訊號之一轉變; 並且進一步包括: 在該進階資料傳送模式巾提供資料字至該控制器之 該步驟及驅動該讀取資料選通訊號之該步驟之前,結合 來自該控制器之一寫入資料選通訊號之一第一極性之一 轉變’並且結合接收來自該控制器之—位址鎖存啟用訊 號,在該等輸入/輸出線上接收來自該控制器之一記憶體 位址; 其中該暫停請求對應於在該進階資料傳送模式中提供 ^料子至該控制器之該步驟期間該位址鎖存啟用訊號之 一轉變; 並且其中該暫停請求之該結束對應於該位址鎖存啟用 訊號之一第二轉變。 7· —種操作一快閃記憶體裝置以與一快閃記憶體控制器通 “之方法,其包括下列步驟: 在一進階資料傳送操作模式中: 焉區動該讀取資料選通訊號至該控制器,並且同步於 該讀取資料選通訊號之一第一與一第二極性兩者之轉 變;及 120269.doc 200818206 相對應於該快閃記憶體裝置中儲存之資料,在輸入/ 輸出線上提供資料字至該控制器; 執行一接收來自該控制器的命令,以起始一常態操作 模式;及 接著回應於接收來自該控制器的一讀取資料選通訊號 之一第一極性之轉變,在輸入/輸出線上提供資料字至該 控制器。After performing the step, receiving a write data selection from the controller; responding to receiving the transition of the first and second poles of one of the write data selection signals, latching in the input/output a data word on the line for storage in the flash memory device; and in a normal mode of operation 'responding to receiving a change in the first polarity of one of the second and second selection communication numbers from the controller, the lock There are bedding words on the input 1 line for storage in the flash memory. The method of claim 1, wherein the executing the step is in response to receiving a start command value on the j input/output line, which is combined with one of the data from the work order. One of a polarity transitions, the combination of receiving a command latch enable signal from the controller; and further comprising: providing a data word to the controller during the second data transfer mode, and responding to the receiving Suspending the request from one of the controllers, maintaining one of the data words on one of the input/output lines, and 120269.doc 200818206 maintaining the current state of one of the read enable signals; and responding to receipt from the control One of the pause requests of the device ends 're-continues the step of providing the data word to the controller in the advanced data transfer mode towel and the step of driving the read data selection communication number. 6. The method of claim 5, wherein the pause request corresponds to receiving a transition from one of the control signals of the controller; and further comprising: providing the data word to the controller in the advanced data transfer mode towel The step and the step of driving the read data selection communication number are combined with one of the first polarity from one of the controllers to write the data selection communication number and combined with receiving the address lock from the controller Storing an enable signal, receiving a memory address from the controller on the input/output line; wherein the pause request corresponds to the address during the step of providing the material to the controller in the advanced data transfer mode One of the latch enable signals transitions; and wherein the end of the pause request corresponds to a second transition of the one of the address latch enable signals. 7. A method of operating a flash memory device to communicate with a flash memory controller, the method comprising the steps of: in an advanced data transfer mode of operation: the read data selection communication number Go to the controller and synchronize with the transition of the first and second polarity of one of the read data selection communication numbers; and 120269.doc 200818206 corresponds to the data stored in the flash memory device, at the input Providing a data word to the controller on the output line; executing a command from the controller to initiate a normal mode of operation; and then responding to receiving a read data from the controller The change in polarity provides a data word to the controller on the input/output line. 如#求項7之方法,其中該常態操作模式對應於用於介 於複數個快閃記憶體裝置與複數個控制器之間的通信之 枯準化規格,該等標準化規格包括一第一電壓規格,該 第電壓規格定義用於該讀取資料選通訊號及在該等輸 入/輸出線上之該等資料字的高與低邏輯位準; J 並且其中該驅動步驟與該提供步驟係使用一第二指定 電壓規格予以實行,該第二指定電壓規格定義該讀 料選通訊號及在該等輸入/輸出線上之該等資料字的高與 低邏:位準,該第二指定電壓規格中之該等高與低邏輯 位準疋義一電壓擺動實質上小於藉由該 格中之兮笙一 Λ 《曰疋晃壓規 〜專同與低邏輯位準定義的電壓擺動。 :々月士項8之方法’其中藉由該第一指定電壓規格中之 該等阿與低邏輯位準定義的該電壓擺動標稱上係約3 3 伏, _ 並且其中猎由該第二指定電壓規格中之該等高與 位準定義的該電壓擺動標稱上係約1·8伏。 A 10·如明求項7之方法,其進一步包括: 120269.doc 200818206 在進階資料傳送模式中,接收來自該控制器的寫入資 料選通訊號; ' 回應於接收該寫入資料選通訊號之一第一肖一第二極 卜兩者之轉I,鎖存在該等輸人/輸is線上之資料字以用 ·· 於儲存於該快閃記憶體裝置中;及 ' I該常態操作模式中,回應於接收來自該控制器的該 寫入資料選通訊號之—第—極性之轉變,鎖存在該等輸 輸出線上之貪料字以用於儲存於該快閃記憶體裝置 響 中。 ▲種操作肖閃s己憶體裝置以與一快閃記憶體控制器通 信之方法,其包括下列步驟: 在一常態操作模式中,回應於接收來自該控制器的一 讀^㈣選通訊號之-所選極性之轉變,在輸入/輸出線 上提供貝料子至該控制器,在該常態操作模式中,該讀 取資料選通訊號具有一最大可用頻率; # &amp;行-接收來自該㈣H的命令,以起始—進階資料 傳送模式; 接著驅動該讀取資料選通訊號至該控制器;及 同步於該讀取資料選通訊號之一所選極性之轉變且在 h進P白貝料傳达权式中,相對應於該快閃記憶體裝置中 館存之資料,在輸入/輸出線上提供資料字至該控制器; 其中在該進階資料傳送模式中該讀取資料選通訊號之 頻率高於在該常態操作模式中該讀取資料選通訊號之該 最大可用頻率。 120269.doc 200818206 12. ::二項11之方法’其中該常態操作模式對應於用於介 决閃δ己憶體裝置與控制器之間的通信之標準化規格, =標準化規格包括1-電壓規格,該第-電壓驗 二用於該讀取資料選通訊號及在該等輸入/輸出線上之 該專貝料字的高與低邏輯位準; j且其中該提供步驟、該驅動步驟與該提供步驟係使 ;弟二指,電壓規袼予以實行,該第二指定電壓規格 疋用於該讀取資料選通訊號及在該等輸入之 該等資財的高與低邏輯位準,該第二衫電 之:等回與低邏輯位準定義的電壓擺動實質上小於藉由 該第&amp;定電壓規格中之該等高與低邏輯位準定義的電 壓擺動。 13. 如請Μ 12之方法,其中藉由該第—指定電壓規格中之 該等间與低邏輯位準定義的該電壓擺動標稱上係約3 3 伏; 中藉由該第二指定電壓規格中之該等高與低邏 輯位準定義的該電壓擺動標稱上係約1.8伏。 14·如請求項U之方法,其進一步包括: 在該執仃步驟之後,接收來自該控制器的寫入資料選 通訊號; 回應於接收該寫入資料選通訊號之一所選極性之轉 變鎖存在該等輸入/輸出線上之資料字以用於儲存於該 快閃§己憶體裝置中;及 在該常態操作模式中,回應於接收來自該控制器的該 120269.doc 200818206 寫入資料選通訊號之一第一 ^ 11之轉&amp;,鎖存在該等輪 入/輸出線上之資料字以用 储存於该快閃記憶體裝置 中, 其中在該常態操作模式中, -最大可用頻率; μ人貝料選通訊號具有 並且其中在該進階資料傳送模一 ^ ^ ^ ^- 、飞中該寫入貧料選通訊 號之頻率南於在該常態操作 衩式中該寫入資料選通訊號 之該最大可用頻率。 其中實行該執行步驟係回應於在該 等輸入/輸出線上接收到-起始命令值,其係結合來自該 控制器之-寫入資料選通訊號之一第一極性之一轉變, 並且結合接收來自該控制器之—命令鎖存啟用訊^ 並且進一步包括: 在該進階資料傳送模式中提供資料字至該控制器之 該步驟期間,並且喊於接㈣來自該控制之一暫停 请求’保持該等輸入/輸出線上之一資料字之一值,並且 保持該讀取啟用訊號之一現行狀態;及 回應於接收到來自該控制器之該暫停請求之一結 束,重新繼續在該進階資料傳送模式中提供資料字至= 控制ι§之該步驟及驅動該讀敌咨粗、择 勒茨項取貝科選通訊號之該步驟。 16.如請求項15之方法,其中該暫停請求對應於接收到來自 該控制器之一控制訊號之一轉變; 並且進一步包括: 在該進階資料傳送模式中提供資料字至該控制器之 120269.doc 200818206 違步驟及驅動該讀取資料選通訊號之該步驟之前,結合 來自該控制器之一寫入資料選通訊號之一第一極性之一 轉备’並且結合接收來自該控制器之一位址鎖存啟用訊 #ϋ ’在該等輸入/輸出線上接收來自該控制器之一記憶體 位址; 其中該暫停請求對應於在該進階資料傳送模式中提供 ,、斗子至該控制器之該步驟期間該位址鎖存啟用訊號之 一轉變;The method of claim 7, wherein the normal mode of operation corresponds to a normalization specification for communication between a plurality of flash memory devices and a plurality of controllers, the standardized specifications including a first voltage a specification, the first voltage specification defining a high and low logic level for the read data selection communication number and the data words on the input/output lines; J and wherein the driving step and the providing step are used a second specified voltage specification is defined, the second specified voltage specification defining the read selection communication number and the high and low logic: levels of the data words on the input/output lines, the second specified voltage specification The voltage swing of the contour and the low logic level is substantially smaller than the voltage swing defined by the 压 压 〜 专 专 专 专 专 专 专 专 专 专 专 专 专 专 专 专 。 。 。 。 。. The method of 々月士项8, wherein the voltage swing defined by the A and the low logic levels in the first specified voltage specification is nominally about 3 3 volts, _ and wherein the second is hunted by the second The voltage swing defined by the contour and level in the specified voltage specification is nominally about 1.8 volts. A10. The method of claim 7, further comprising: 120269.doc 200818206 in the advanced data transfer mode, receiving a write data selection communication number from the controller; 'responsive to receiving the write data selection communication One of the first one, the second, the second, and the second, the data word latched on the input/output is line is stored in the flash memory device; and 'I the normal state In the operation mode, in response to receiving a transition from the controller to the first data polarity of the write data selection number, latching the corrupted words on the output output lines for storage in the flash memory device in. ▲ a method of operating a flash memory device to communicate with a flash memory controller, comprising the steps of: in a normal mode of operation, in response to receiving a read from the controller (four) selected communication number - a transition of the selected polarity, providing a material to the controller on the input/output line, in which the read data selection communication number has a maximum available frequency; # &amp; line - receiving from the (four) H The command is to start-advance data transfer mode; then drive the read data to select the communication number to the controller; and synchronize with the selected polarity of the selected data to select the polarity change and enter the P white In the shell material transfer right, the data word is provided on the input/output line to the controller corresponding to the data stored in the flash memory device; wherein the read data is selected in the advanced data transfer mode The frequency of the communication number is higher than the maximum available frequency of the read data selection communication number in the normal operation mode. 120269.doc 200818206 12. The method of the second item 11 wherein the normal mode of operation corresponds to a standardized specification for mediating communication between the flash memory device and the controller, = standardized specifications including 1-voltage specifications The first voltage test is used for the read data selection communication number and the high and low logic levels of the special beet word on the input/output lines; j and wherein the providing step, the driving step and the Providing a step-by-step; the second finger, the voltage specification is implemented, and the second specified voltage specification is used for the read data selection communication number and the high and low logic levels of the inputs at the input, the first The voltage swing of the equal-back and low logic levels is substantially less than the voltage swing defined by the high and low logic levels in the first &amp; fixed voltage specification. 13. The method of claim 12, wherein the voltage swing defined by the first and the low logic levels in the first-specified voltage specification is nominally about 3 3 volts; wherein the second specified voltage is The voltage swing defined by the contour and the low logic level in the specification is nominally about 1.8 volts. 14. The method of claim U, further comprising: receiving, after the performing step, a write data selection communication number from the controller; responding to receiving a change in polarity selected by one of the write data selection communication numbers A data word latched on the input/output lines for storage in the flash CMOS device; and in the normal mode of operation, in response to receiving the 120269.doc 200818206 write data from the controller Selecting one of the communication numbers, the first &lt;11&gt;, and the data words latched on the wheeled/output lines are stored in the flash memory device, wherein in the normal mode of operation, the maximum available frequency The μ human shell material selection communication number has and the frequency of the writing of the poor material selection communication number is in the advanced data transmission mode, and the writing data is in the normal operation mode. Select the maximum available frequency for the communication number. The step of executing the execution is in response to receiving a start command value on the input/output lines, which is combined with one of the first polarities of one of the write data selection communication numbers from the controller, and is combined with the reception. a command latch enable message from the controller and further comprising: during the step of providing the data word to the controller in the advanced data transfer mode, and shouting (4) from one of the control pause requests 'keep One of the data words on the input/output lines, and maintaining one of the current status of the read enable signal; and in response to receiving the end of the pause request from the controller, resuming the advanced data The step of providing the data word to the control mode in the transfer mode to the control ι§ and the step of driving the read enemy and the selection of the becket selection communication number. 16. The method of claim 15, wherein the suspend request corresponds to receiving a transition from one of the control signals of the controller; and further comprising: providing a data word to the controller in the advanced data transfer mode 120269 .doc 200818206 In violation of the step and the step of driving the read data selection communication number, combined with one of the first polarities from one of the controllers to write the data selection communication number, and combined with receiving from the controller a bit latch enable message #ϋ 'receives a memory address from the controller on the input/output lines; wherein the pause request corresponds to being provided in the advanced data transfer mode, the bucket to the controller The one bit of the address latch enable signal transition during the step; 並且其中該暫停請求之該結束對 訊號之一第二轉變 種操作&amp; Ρα] δ己憶體裝置以與—快pj記憶體控制器通 信之方法,包括下列步驟: 在一進階資料傳送操作模式中: ^驅動讀取資料選通訊號至該控制器,並且同步於該 項取 &gt; 料選通訊號之一所選極性之轉變;及 相對應於該快閃記憶體装置中儲存之資料,在輸入/ 輸出線上提供資料字至該控制器; 執行一接收來自該控制器的命令,以 模式;及 1%^作 接著回應於接收來自該控制器的一讀 貝料選通訊缺 之一所選極性之轉變,在輸入/輸出線上提供次 JU 控制器; ^、貝,、予至該 其中在該常態操作模式中 一最大可用頻率; ,該讀取資料選 通訊號具有 120269.doc 200818206 中該讀取資料選 該讀取資料選通訊 並且其中在該進階資料傳送模式 號之頻率高於在該常態操作模式中 之該最大可用頻率。 18.如請求項17之方法,其中該常態操作模式 於快閃記憶體裝置與控制器之間的通信之樑:於用於介 该等標準化規袼包括一第一電壓規格,該第=規才° 2義該讀取資料選通訊號及在該等輸入/輪出線== 資料子的高與低邏輯位準;And wherein the method of ending the pause request to the second conversion operation &amp; Ρα] δ 忆 体 device to communicate with the fast pj memory controller comprises the following steps: in an advanced data transfer operation In the mode: ^ drive to read the data selection communication number to the controller, and synchronize with the selected polarity of the selected one of the selected communication numbers; and the data corresponding to the flash memory device Providing a data word to the controller on the input/output line; performing a command to receive the command from the controller in a mode; and 1%^ then responding to receiving a readout from the controller The selected polarity is changed, and the secondary JU controller is provided on the input/output line; ^, scalar, and to the maximum available frequency in the normal operation mode; the read data selection communication number has 120269.doc 200818206 The read data selects the read data selection communication and wherein the frequency of the advanced data transmission mode number is higher than the maximum available frequency in the normal operation mode18. The method of claim 17, wherein the normal mode of operation is a beam of communication between the flash memory device and the controller: the standard specification for including the first voltage specification, the first The value of the data is selected and the high and low logic levels in the input/round line == data; 亚且其中該驅動步驟與該提供步驟係使用一―一 電f規格予以實行,該第二敎電壓規袼定義 取貝料選通訊號及在該等輸人/輸出線上之該等資料字的 高與低邏輯位準’該第二指定電壓規格中之該等高盘低 邏輯位準定義一電壓擺動’其實質上小於該第_指:電 19. 壓規格中之該等高與低邏輯位準定義的電壓擺動。 如請求項18之方法,其中藉由該第—指定電壓規格中之 該等高與低邏輯位準定義的該電壓擺動標稱上係約3 3 伏; 、· 。並且其中藉由該第二指定電壓規格中之該等高與低邏 輯位準定義的該電壓擺動標稱上係約1.8伏。 20· 一種操作一快閃記憶體裝置以與一快閃記憶體控制器通 信之方法,其包括下列步驟: 在〶I操作模式中,回應於接收來自該控制器的一 項取資料選通訊號,在輸入/輸出線上提供資料字至該控 制器; ' 120269.doc 200818206 在該常態操作模# φ,π ^ 、 回應於接收來自該控制器一 寫入資料選通訊號,儲在A 储存在該等輸入/輸出線上接收自辞 控制器的資料字; ^ 回應於接收來自該控制器的一進階模式訊號而起始一 進階讀取資料傳送模式; Q 接著驅動該讀取資料選通訊號與該寫入資料選通訊號 至該控制,該讀取資料選通訊… 號相對於彼此異相位;及 4入貝枓選通訊 同步於該讀取資料選诵 4 s 、通訊號與該寫入資料選通訊諕之 檐%’在該進階讀取資料傳 u 記恃辦鞋番由… 傳式中,相對應於該快閃 ‘ G體裝置中儲存J, 枓,在輸入/輸出線上提供資料字 至該控制器。 貝丁卞子 21·如請求項20之方法,其中 於該吊恶刼作模式對應於用於介 於快閃記憶體裝置與控制$ 、 ^^ ,e % y J15之間的通信之標準化規格, 該專標準化規格包括 g 〜塞 電壓規格,該第一電壓類妹 在該等幹…1 該寫入資料選通訊號及 你邊寺輸入/輸出線上之該等 龙日甘A /寺貝枓子的鬲與低邏輯位準; 並且其中該提供步騾、哕 用-第4驅動步驟與該提供步驟係使 定義哕綠而次上丨⑪ 该弟一心定電壓規格 心我逆續取貧料選通訊號、 等輪入/輸~ ”貝料選通訊號及在該 輸出線上之該等資料字的 該第二指定電®規格中之今等K W立準,措由 麼擺動實-…兹: 低邏輯位準定義-電 也動只貝上小於藉由該第一 與低邏輯位準定義的電壓擺動。以規格令之該等高 120269.doc 200818206 22·如請求項21之方法,苴中蕤, ^ 八甲猎由該弟一指定電壓規袼中之 該等高與低邏輯位準定義的贫 千疋我们落電壓擺動標稱上係 伏; J 錄::二:猎由4第二指定電壓規袼中之該等高與低邏 輯位準疋義的該電壓擺動標稱上係約18伏。 23·如請求項20之方法,其中該起始步驟包括: 結合來自該控制器之該寫入資料選通訊號之一轉變, 並結合接收來自該控制器之_命令鎖存啟用訊號,在 該等輸入/輸出線上接收到一起始讀取命令值,·及 接著執行,Ρ令,以起始該進階讀取資料傳送模式。 24·如請求項23之方法,其進一步包括: 、 在該進階資料傳送模式中提供資料字至該控制器之該 步驟期間’並且回應於接收到來自該控制器之—暫停請 求,保持該等輸入/輸出線上之一資料字之一值,並且保 持該讀取啟用訊號與該寫入啟用訊號之一現行狀態;及 回應於接收到來自該控制器之該暫停請求之一結束, 重新繼續在該進階資料傳送模式中提供資料字至該控制 器之該步驟以及驅動該讀取資料選通訊號與該寫入資料 選通訊號之該步驟。 25.如請求項23之方法,其中該暫停請求對應於接收到來自 該控制器之一控制訊號之一轉變; 並且進一步包括: 在該進階資料傳送模式中提供資料字至該控制器之 該步驟以及驅動該讀取資料選通訊號與該寫入資料選通 120269.doc -11 - 200818206 訊號之該步驟之前,結合來自該控制器之該寫入資料選 通訊號之一轉變,並且結合接收來自該控制器之一位址 鎖存啟用訊號,在該等輸入/輸出線上接收來自該控制器 之一兄憶體位址; 其中該暫停請求對應於在該進階資料傳送模式中提供 資料字至該控制器之該步驟期間該位址鎖存啟用訊號之 一轉變;And wherein the driving step and the providing step are performed using a one-to-one electrical specification, the second voltage regulation defining a material selection communication number and the information words on the input/output lines High and low logic levels 'the second specified voltage specification of the high disk low logic level defines a voltage swing 'which is substantially smaller than the first _ finger: electricity 19. The high and low logic in the voltage specification The voltage swing defined by the level. The method of claim 18, wherein the voltage swing defined by the contour and the low logic level in the first specified voltage specification is nominally about 3 3 volts; And wherein the voltage swing defined by the contour and low logic levels in the second specified voltage specification is nominally about 1.8 volts. 20. A method of operating a flash memory device to communicate with a flash memory controller, the method comprising the steps of: in the 〒I mode of operation, in response to receiving a data selection communication number from the controller Providing a data word to the controller on the input/output line; '120269.doc 200818206 In the normal mode of operation mode #φ, π^, in response to receiving a message from the controller, the data is stored in A and stored in The input/output lines receive the data word of the self-talking controller; ^ in response to receiving an advanced mode signal from the controller, starting an advanced read data transfer mode; Q then driving the read data selection communication No. and the written data selection communication number to the control, the reading data selection communication... The numbers are out of phase with respect to each other; and the 4 input selection communication is synchronized with the reading data selection 4 s, the communication number and the writing Into the data selection communication 諕 檐 ' ' 在 该 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' provide Data word to the controller. The method of claim 20, wherein the spoofing mode corresponds to a standardized specification for communication between the flash memory device and the control $, ^^, e % y J15, Specialized specifications include g ~ plug voltage specifications, the first voltage class sister in the dry ... 1 The data is written to select the communication number and your side of the temple input / output line of the dragons Gan / A / Temple Bell鬲 and low logic level; and wherein the step of providing, the fourth driving step and the providing step are so that the definition is green and the second is the first step, the younger one is determined by the voltage specification. No., etc. Involvement/transmission ~ "Bei material selection communication number and the second specified electric product specification of the data words on the output line are the same as the current KW standard. The logic level definition - the electric current is only less than the voltage swing defined by the first and lower logic levels. The specification is such that the height is 120269.doc 200818206 22 · as in the method of claim 21, , ^ Bajia hunting by the brother of a specified voltage gauge With the low logic level defined by the lean, we fall the voltage swing nominally on the volt; J:: 2: Hunting the voltage swing of the high and low logic levels in the second specified voltage gauge The method of claim 20, wherein the initial step comprises: combining one of the write data selection signals from the controller, and receiving the _ from the controller The command latches the enable signal, receives a start read command value on the input/output lines, and then executes, Ρ, to initiate the advanced read data transfer mode. 24. The method of claim 23 And further comprising: during the step of providing the data word to the controller in the advanced data transfer mode and responding to receiving a pause request from the controller, maintaining one of the input/output lines a value of one of the words, and maintaining the current state of the read enable signal and the write enable signal; and in response to receiving the end of the pause request from the controller, resuming at the advanced data transfer The step of providing a data word to the controller in the mode and the step of driving the read data selection communication number and the write data selection communication number. 25. The method of claim 23, wherein the suspension request corresponds to receiving One of the control signals from the controller transitions; and further comprising: the step of providing the data word to the controller in the advanced data transfer mode and driving the read data selection communication number and the write data strobe 120269.doc -11 - 200818206 Before this step of the signal, combined with the one of the write data selection communication numbers from the controller, and in combination with receiving an address from the controller, the latch enable signal is at the input Receiving, on the output line, a brother memory address from the controller; wherein the pause request corresponds to one of the address latch enable signals during the step of providing the data word to the controller in the advanced data transfer mode ; 並且其中該暫停請求之該結束對應於該位址鎖存啟用 訊號之一第二轉變。 从:請求項20之方法,其中在該進階資料傳送模式中提供 貧料字係同步於該讀取資料選通訊號之—第—極性及該 寫入資料選通訊號之一第一極性。 27.如請求項20之方法,其進一步包括: 回應於接收來自該控制器的一進階模式訊號而起始一 進階寫入資料傳送模式; 接者接收來自该控制器之該讀取資料選通訊號與該寫 入資料選通訊號’該讀取資料選通訊號與該寫入資料選 通訊號相對於彼此異相位;及 同步於該讀取資料選通訊號與該寫入資料選通訊號之 仙,在該進階寫人資料傳送模式中,儲存在輸入/輸出 線上接收自該控制器的資料字於該快閃記憶體裝置中。 種操作-快閃記憶體裝置以與一快閃記憶體控制器通 “之方法,其包括下列步驟·· 在一進階讀取資料傳送操作模式中: 120269.doc •12- 200818206 驅動一讀取資料選通訊號與一寫入資料選通訊號至 該控制器,該讀取資料選通訊號相對於該寫入資料選通 訊號異相位;及 同步於該讀取資料選通訊號與該寫入資料選通訊號 之每一者之一所選極性之一轉變,相對應於該快閃記憶 - 體裝置中儲存之資料,在輸入/輸出線上提供資料字至該 ^ 控制器; 執行一接收來自該控制器的命令,以起始一常態操作 • 模式; 接著回應於接收來自該控制器的該讀取資料選通訊號 之一所選極性之轉變,在輸入/輸出線上提供資料字至該 控制器;及 在該執行步驟之後,回應於接收來自該控制器的該寫 入資料選通訊號之一所選極性之轉變,儲存在該等輸入/ 輸出線上接收自該控制器的資料字。 • 29.如請求項28之方法,其中該常態操作模式對應於用於介 於快閃記憶體裝置與控制器之間的通信之標準化規格, 該等標準化規格包括-第—電壓規格,該第—電壓規格 ,定義用於該讀取資料選通訊號、該寫人資料選通訊號及 • 纟該等輸入/輸出線上之該等資料字的高與低邏輯位準; 並且其中該驅動步驟與該提供步驟 電壓規格予以實行,㈣二減電壓規格定義 取貝枓選通訊號、該寫入資料選通訊號及在該等輸入/輸 出線上之該等資料字的高與低邏輯位準,該第二指定電 120269.doc •13- 200818206 屢規格中之該等高與低邏輯位準 小於藉由該第-指定雷心… 擺動實質上 ^ Μ ^ ^ ^ 、秸中之該等高與低邏輯位準 疋義的電壓擺動。 科m早 3〇·如請求項29之方法, 兮望一心 Τ糟由該弟一指定電壓規袼中之 β 亥荨南與低邏輯位^ 伏; 丰疋義的該電壓擺動標稱上係約3.3And wherein the end of the pause request corresponds to a second transition of the address latch enable signal. The method of claim 20, wherein the poor material word is provided in the advanced data transfer mode in synchronization with the first polarity of the read data selection communication number - the first polarity and the write data selection communication number. 27. The method of claim 20, further comprising: initiating an advanced write data transfer mode in response to receiving an advanced mode signal from the controller; receiving the read data from the controller Selecting the communication number and the writing data selection communication number 'the reading data selection communication number and the writing data selection communication number are out of phase with each other; and synchronizing with the reading data selection communication number and the writing data selection communication In the advanced write data transfer mode, the data word received from the controller on the input/output line is stored in the flash memory device. Operation - a method in which a flash memory device is coupled to a flash memory controller, which includes the following steps: in an advanced read data transfer mode of operation: 120269.doc • 12- 200818206 Driver's first reading Selecting the data selection communication number and a writing data selection communication number to the controller, the reading data selection communication number is out of phase with respect to the writing data selection communication number; and synchronizing with the reading data selection communication number and writing One of the selected polarities of each of the data selection communication numbers is changed, corresponding to the data stored in the flash memory device, and the data word is provided on the input/output line to the controller; a command from the controller to initiate a normal operation mode; then responding to receiving a change in polarity selected from one of the read data selection communication numbers from the controller, providing a data word on the input/output line to the a controller; and, after the performing step, responding to receiving a change in polarity selected by one of the write data selection communication numbers from the controller, stored on the input/output lines The information word of the controller. The method of claim 28, wherein the normal mode of operation corresponds to a standardized specification for communication between the flash memory device and the controller, the standardized specifications including - a first-voltage specification, the first-voltage specification, defined for the read data selection communication number, the writer data selection communication number, and the high and low logic levels of the data words on the input/output lines And wherein the driving step is performed with the voltage step of the providing step, and (4) the second voltage reducing specification defines a bus selection communication number, the written data selection communication number, and the high of the data words on the input/output lines. With the low logic level, the second designated power 120269.doc • 13- 200818206 in the repeated specifications of the contour and the low logic level is smaller than by the first-specified thunder heart... swinging substantially ^ Μ ^ ^ ^, straw The voltage swing of the contour and the low logic level is the same as the low logic level. The method of claim 29 is as long as the method of claim 29, and the hope of one of the voltages is determined by the younger one. Logical bit ^ volt; The voltage swing of the derogatory is nominally about 3.3. 31· 並且其中藉由該第二指定電壓規格中之該等 輯位準定義的該電職動標稱上係約1.8伏。 一種快閃記憶體裝置,其包括·· 高與低邏 其係由以列與行排列的非揮發性 至少一記憶體陣列 吞己憶體單元所組成,· 一 H暫存H,詩儲存相對應於該至少—記憶體陣 列中之該等記憶體單元之經儲存狀態的資料;及31. And wherein the electrical activity defined by the equal level of the second specified voltage specification is approximately 1.8 volts. A flash memory device comprising: a high and a low logic system consisting of a non-volatile memory array arranged in columns and rows, and a H memory unit, a H temporary storage H, poetry storage phase Corresponding to at least the stored state of the memory cells in the memory array; and 控制電路,其麵接至該資料暫存器、麵接至輸入/輸出 終端且㈣至複數㈣制終端,詩回應於在該等輸入/ 輸出終端處接收到之控制訊號,在一常態操作模式中與 一進階模式中,接收來自該等輸入/輸出終端之資料及提 供資料至該等輸入/輸出終端,並控制該裝置之操作; 其中,在該常態操作模式中,該控制電路回應於在該 複數個控制終端中之一第一者處接收的一讀取資料選通 訊號之一第一極性之轉變,在該等輸入/輸出終端處提供 資料字; 並且其中,在該進階操作模式中,該控制電路回應於 該頌取資料選通訊號之該第一極性與一第二極性兩者之 120269.doc -14- 200818206 轉變,在該複數個控制終端中之該者處提供讀取資料選 通訊號’並且在該等輸入/輸出終端處提供資料字。 32·如請求項31之裝置,其進一步包括: 一命令暫存器,其耦接至該控制電路; 其中該控制電路回應於在該複數個控制終端中之一第 二者處接收的一寫入資料選通訊號之一轉變,將在該等 輸入/輸出終端處接收的一命令值儲存至該命令暫存号 中; 。 並且其中該控制電路回應於相對應於起始該進階模式 之該命令值,自該常態操作模式進入該進階操作模式。 33·如請求項31之裝置,其進一步包括: 一命令暫存器,其耦接至該控制電路; 其中該控制電路回應於在該複數個控制終端中之一第 二者處接收一寫入資料選通訊號之一轉變,將在該等輸 入/輪出終端處接收的一命令值儲存至該命令暫存器中; 並且其中該控制電路回應於相對應於起始該常態模式 之該命令值,自該進階操作模式進入該常態操作模式。 34·如凊求項31之装置,其中該常態操作模式對應於用於介 於夬閃„己憶體裝置與控制器之間的通信之標準化規格, 該等軚準化規格包括一第一電壓規格,該第一電壓規格 疋義用於該凟取資料選通訊號及在該等輸入/輸出終端處 之該等資料字的高與低邏輯位準; 並且其中該控制電路按照一第二指定電壓規格來提供 資料予與該項取資料選通訊號,該第二指定電壓規格定 120269.doc -15- 200818206 2一實質上較低電壓,以使電壓擺動實質上小於藉由該 弟一指定電壓規格中之該等高與低邏輯位準定義的電壓 擺動。 :用长項34之装置’纟中藉由該第一指定電壓規格中之 該等高與低邏輯位準定義的該電壓擺動標稱上係約3.3 。並且,中藉*該第二指定電壓規格中之該等高與低邏 輯位準定義的該電壓擺動標稱上係約1·8伏。 36·如凊求項31之裝置,其中,在該進階操作模式中,該控 制電路回應於在該複數個控制終端中之—第二者處接收 的寫入貝料選通訊號之一第一極性與一第二極性兩者 之轉變另字在該等輸入/輸出終端處接收之資料字鎖存於 該資料暫存器中; 並且其中,在該常態操作模式中,該控制電路回應於 在該複數個控制終端中之該第二者處接收的該寫入資料 選通訊號之該第一極性之轉變,將在該等輸入/輸出終端 處接收之資料字鎖存於該資料暫存器中。 37·如請求項31之裝置,其進一步包括: 一命令暫存器,其耦接至該控制電路; 其中該控制電路回應於在該複數個控制終端中之一第 二者處接收一寫入資料選通訊號之一轉變,結合在該複 數個控制終端中之一第三者處接收的一命令鎖存啟用訊 號,將在該等輸入/輸出終端處接收的一命令值儲存至該 命令暫存器中; 120269.doc -16- 200818206 其中該控制電路回應於相對應於起始該進階模式之該 命令值,自該常態操作模式進入該進階操作模式; 其中在a亥進階操作模式中,該控制電路回應於在該複 數個控制終端中之-者處接收—暫停請求訊號,在該等 :輸人/輸出終端處歸-㈣字之—現行值及在該複數個 控制終端中之該第—者處保持該讀取啟用訊號之一 ' 狀態; • 社其中該控制電路回應於接收到來自該控制器之該暫停 請求之-結纟,重新繼續在該進階資料傳送模式中提供 資料子至該控制器以及驅動該讀取資料選通訊號; 其中該控制電路結合來自該控制器之一寫入資料選通 :號之-第一極性之一轉變,並且結合接收來自該控制 ϋ之-位址鎖存啟用訊號’在該等輸入/輸出線上接收來 自該控制器之記憶體位址; β並且其中該暫停請求對應於在該進階資料傳送模式中 • 提供資料字至該控制器期間該位址鎖存啟用訊號之一轉 變。 38.如請求項31之裝置,其中該快閃記憶體裝置係實施於一 ' 十夬閃記憶體子系統中,該快閃記憶體子系統進一步包 — 括* 决閃记憶體控制器,其具有用於介接一主機系統之 一主機介面; …w 一資料匯流排,其耦接至該快閃記憶體控制器;及 複數個控制線,其耦接至該快閃記憶體控制器; 120269.doc -17- 200818206 其中該快閃記憶體裝置之該控制電路被耦接至該資料 匯流排及該複數個控制線,並且該控制電路係用於回應 於接收自該等控制線的控制訊號,在一常態操作模式中 與一進階模式中,接收來自該資料匯流排之資料及提供 資料至該資料匯流排、以及控制該裝置之操作。 39· —種快閃記憶體裝置,其包括: 至少一記憶體陣列,其係由以列與行排列的非揮發性 記憶體單元所組成; 一貧料暫存器,用於儲存相對應於該至少一記憶體陣 列中之該等記憶體單元之經儲存狀態的資料;及 控制電路,其麵接至該資料暫存器、耦接至輸入/輸出 、,’;端且耦接至複數個控制終端,用於回應於在該等輸入/ 輸出終端處接收到之控制訊號,在—操作模式中與 一進階模式中,接收來自該等輸入/輸出終端之資料及提 供資料至該等輸入/輸出終端,並控制該裝置之操作; 其中,在該常態操作模式中,該控制電路回應於在該 複數個控辦端巾之—第—者處接㈣—讀取資料選通 «之-所選極性之轉變,在該等輸人/輸出終端處提供 貝料子在該韦恕操作模式中,該讀取資料選通訊號具 有一最大可用頻率; ^ 其中,在該進階操作模式中,該控制電路回應於該讀 取資料選通訊號之-所選極性之轉變,在該複數個控制 終端中之該者處提供讀取f料選通訊號,並且在該等輸 入/輸出終端處提供資料字· 120269.doc -18- 200818206 並且其中在該進階資料傳送模式中該讀取資料選通訊 號之頻率高於在該常態操作模式中該讀取資料選通訊號 之該最大可用頻率。 40.如請求項39之裝置,其進一步包括: 一命令暫存器,其耦接至該控制電路; 其中該控制電路回應於在該複數個控制終端中之一第 二者處接收一寫入資料選通訊號之一轉變,將在該等輪 入/輸出終端處接收的一命令值儲存至該命令暫存器中; 並且其中該控制電路回應於相對應於起始該進階模式 之該命令值,自該常態操作模式進入該進階操作模式。 41·如請求項39之裝置,其進一步包括: 一命令暫存器,其耦接至該控制電路; 其中該控制電路回應於在該複數個控制終端中之一第 一者處接收的一寫入資料選通訊號之一轉變,將在該等 輸入/輸出終端處接收的一命令值儲存至該命令暫存器 中; 並且其中該控制電路回應於相對應於起始該常態模式 之該命令值,自該進階操作模式進入該常態操作模式。 42·如請求項39之裝置,其中該常態操作模式對應於用於介 於快閃記憶體裝置與控制器之間的通信之標準化規格, 該等標準化規格包括一第一電壓規格,該第一電壓規格 定義用於該讀取資料選通訊號及在該等輸入/輸出終端處 之該等資料字的高與低邏輯位準; 並且其中該控制電路按照一第二指定電壓規格來提供 120269.doc •19- 200818206 選通訊號,該第二指定電壓規格定 ,以使電壓擺動實質上小於藉由該 之該等高與低邏輯位準定義的電壓 43.如請求項42之裝置,其中藉由該第一指定電壓規格中之 該等尚與低邏輯位準定義的該電麼擺動標稱上係約33 伏;a control circuit that is connected to the data register, is connected to the input/output terminal, and is connected to the (four) to the complex (four) terminal, and the poem responds to the control signal received at the input/output terminals in a normal operation mode. And in an advanced mode, receiving data from the input/output terminals and providing data to the input/output terminals, and controlling operation of the device; wherein, in the normal operation mode, the control circuit is responsive to a first polarity transition of a read data selection communication number received at a first one of the plurality of control terminals, providing a data word at the input/output terminals; and wherein, in the advanced operation In the mode, the control circuit responds to the 120269.doc -14-200818206 transition of the first polarity and the second polarity of the data selection communication number, and provides reading at the one of the plurality of control terminals Take the data selection communication number ' and provide the data word at the input/output terminals. 32. The device of claim 31, further comprising: a command register coupled to the control circuit; wherein the control circuit is responsive to a write received at a second one of the plurality of control terminals Entering one of the data selection communication numbers, and storing a command value received at the input/output terminals into the temporary storage number of the command; And wherein the control circuit enters the advanced operation mode from the normal operation mode in response to the command value corresponding to the start of the advanced mode. 33. The apparatus of claim 31, further comprising: a command register coupled to the control circuit; wherein the control circuit is responsive to receiving a write at a second one of the plurality of control terminals Transmitting, by one of the data exchange numbers, a command value received at the input/rounding terminal is stored in the command register; and wherein the control circuit is responsive to the command corresponding to the initiation of the normal mode The value enters the normal mode of operation from the advanced mode of operation. 34. The device of claim 31, wherein the normal mode of operation corresponds to a standardized specification for communication between the device and the controller, the first specification comprising a first voltage a specification, the first voltage specification is used for the data selection communication number and the high and low logic levels of the data words at the input/output terminals; and wherein the control circuit follows a second designation The voltage specification is to provide information to the data selection communication number, and the second specified voltage specification is 120269.doc -15-200818206 2 a substantially lower voltage, so that the voltage swing is substantially smaller than the specified by the brother The voltage swing defined by the contour and the low logic level in the voltage specification: the voltage swing defined by the apparatus of the long term 34 藉 by the high and low logic levels in the first specified voltage specification The nominal value is about 3.3. And, the voltage swing defined by the high and low logic levels in the second specified voltage specification is nominally about 1.8 volts. 36. Device in which the advanced In the mode, the control circuit responds to the transition between the first polarity and the second polarity of one of the write-selected communication signals received at the second of the plurality of control terminals. The data word received at the input/output terminal is latched in the data register; and wherein, in the normal mode of operation, the control circuit is responsive to the second one received at the second of the plurality of control terminals Writing a change in the first polarity of the data selection communication number, the data word received at the input/output terminal is latched in the data register. 37. The apparatus of claim 31, further comprising: a command register coupled to the control circuit; wherein the control circuit is responsive to one of the plurality of control terminals to receive a write data selection message number change, combined in the plurality of Controlling, by a third party at the terminal, a command latch enable signal, storing a command value received at the input/output terminals into the command register; 120269.doc -16- 200818206 wherein The control circuit enters the advanced operation mode from the normal operation mode in response to the command value corresponding to the start of the advanced mode; wherein in the a-hi-order operation mode, the control circuit responds to the plurality of controls Receiving a pause request signal in the terminal, at the input/output terminal, returning the - (four) word - the current value and maintaining the read enable signal at the first of the plurality of control terminals a 'state'; wherein the control circuit responds to the receipt of the pause request from the controller, and resumes providing the data to the controller and driving the read in the advanced data transfer mode Data selection communication number; wherein the control circuit combines a data strobe from one of the controllers: a one of the first polarity transitions, and in combination with receiving an address from the control port, the latch enable signal is in the Waiting for the input/output line to receive the memory address from the controller; β and wherein the pause request corresponds to in the advanced data transfer mode • during the provision of the data word to the controller One of the address latch enable signals changes. 38. The device of claim 31, wherein the flash memory device is implemented in a 'ten flash memory subsystem, the flash memory subsystem further comprising a *flash memory controller, The device has a host interface for interfacing with a host system; a data bus that is coupled to the flash memory controller; and a plurality of control lines coupled to the flash memory controller 120269.doc -17- 200818206 wherein the control circuit of the flash memory device is coupled to the data bus and the plurality of control lines, and the control circuit is responsive to receiving from the control lines The control signal, in a normal mode of operation and an advanced mode, receives data from the data bus and provides data to the data bus and controls operation of the device. 39. A flash memory device, comprising: at least one memory array consisting of non-volatile memory cells arranged in columns and rows; a lean register for storing corresponding Data of the stored state of the memory cells in the at least one memory array; and a control circuit that is coupled to the data register, coupled to the input/output, and is coupled to the plurality Control terminals for responding to control signals received at the input/output terminals, receiving data from the input/output terminals and providing data to the in-operation mode and an advanced mode Input/output terminal, and controlling operation of the device; wherein, in the normal operation mode, the control circuit responds to the data access in the plurality of control terminals (four) - a transition of the selected polarity at which the feedstock is provided. In the Weishou mode of operation, the read data selection communication number has a maximum available frequency; ^ wherein, in the advanced mode of operation The control circuit is responsive to the transition of the selected polarity of the read data selection communication number, providing a read f-selection communication number at the one of the plurality of control terminals, and providing at the input/output terminals The data word 120260.doc -18- 200818206 and wherein the frequency of reading the data selection communication number in the advanced data transmission mode is higher than the maximum available frequency of the reading data selection communication number in the normal operation mode. 40. The apparatus of claim 39, further comprising: a command register coupled to the control circuit; wherein the control circuit is responsive to receiving a write at a second one of the plurality of control terminals Transmitting, by one of the data exchange numbers, a command value received at the wheel input/output terminals is stored in the command register; and wherein the control circuit is responsive to the corresponding start mode The command value enters the advanced operation mode from the normal operation mode. 41. The device of claim 39, further comprising: a command register coupled to the control circuit; wherein the control circuit is responsive to a write received at a first one of the plurality of control terminals Transmitting, by one of the data selection communication numbers, a command value received at the input/output terminals is stored in the command register; and wherein the control circuit is responsive to the command corresponding to the initiation of the normal mode The value enters the normal mode of operation from the advanced mode of operation. 42. The device of claim 39, wherein the normal mode of operation corresponds to a standardized specification for communication between the flash memory device and the controller, the standardized specification comprising a first voltage specification, the first The voltage specification defines a high and low logic level for the read data selection communication number and the data words at the input/output terminals; and wherein the control circuit provides 120269 according to a second specified voltage specification. Doc • 19- 200818206 selects a communication number, the second specified voltage specification such that the voltage swing is substantially less than the voltage defined by the high and low logic levels. 43. The electrical swing defined by the first and lower logic levels in the first specified voltage specification is nominally about 33 volts; 錄Γί其中藉由該第m壓規袼中之該等高與低邏 輯位準定義的該電壓擺動標稱上係w 8伏。 44·如請求項39之裝置,其中,在該進階操作模式中,該控 制電路回應於在該複數個控制終端中之—第二者處接收 的一寫人資料選通㈣之-所選極性之轉變,將在該等 輸入/輸出終端處接收之f料字鎖存於該f料暫存器中. 其中,在該常態操作模式中,該寫入資料選通訊號具 有一最大可用頻率;The voltage swing defined by the high and low logic levels in the mth gauge is nominally w 8 volts. 44. The apparatus of claim 39, wherein, in the advanced mode of operation, the control circuit is responsive to a selected one of the plurality of control terminals - a second person receiving the strobe (4) a change in polarity, latching a f-type word received at the input/output terminals in the f-memory register. wherein, in the normal mode of operation, the write data selection communication number has a maximum available frequency ; 資料子與該讀取資料 義一實質上較低電壓 第一指定電壓規格中 擺動。 其中在該進階資料傳送模式中該寫入資料選通訊號之 頻率商於在該常態操作模式巾該寫人資料選通訊號之該 最大可用頻率; 人 並且其中,在該常態操作模式中,該控制電路回應於 在該複數個控制終財之㈣:者處接收的該寫入資料 選通訊號之ϋ性之轉變,將在該等輸人/輸出終端 處接收之資料子鎖存於該資料暫存器中。 45·如請求項39之裝置,其進一步包括: 命令暫存器,其耦接至該控制電路; 120269.doc 200818206 其中4控制電路回應於在該複數個控制終端中之一第 妾收寫入資料選通訊號之一轉變,結合在該複 數個控制終端中之一第三者處接收的—命令鎖存啟用訊 號將在該等輪入/輸出終端處接收的一命令值儲存至該 命令暫存器中; 其中該控制電路回應於相對應於起始該進階模式之該 命令值’自該常態操作模式進入該進階操作模式; 其中在該進階操作模式中,該控制電路回應於在該複 數個控制終端中《一者處接收的一暫停請求訊號 ’在該 等輸入/輸出終端處保持一資料字之一現行值及在該複數 個控制終&amp;中之該第一者處保持該讀取啟用訊號之一現 行狀態; 其中该控制電路回應於接收到來自該控制器之該暫停 凊求之一結束,重新繼續在該進階資料傳送模式中提供 二貝料予至該控制器以及驅動該讀取資料選通訊號; 其中該控制電路結合來自該控制器之一寫入資料選通 訊號之一第一極性之一轉變,並且結合接收來自該控制 态之一位址鎖存啟用訊號,在該等輸入/輸出線上接收來 自該控制器之記憶體位址; 並且其中該暫停請求對應於在該進階資料傳送模式中 提供資料字至該控制器期間該位址鎖存啟用訊號之一轉 變。 46.如請求項39之装置,其中該快閃記憶體裝置係實施於一 快閃記憶體子系統中,該快閃記憶體子系統進一步包 120269.doc -21 - 200818206 括: 一快閃記憶體控制器,其具有用於介接一主機系統之 一主機介面; 一資料匯流排,其耦接至該快閃記憶體控制器;及 複數個控制線,其耦接至該快閃記憶體控制器; ,其中該快閃記憶體裝置之該控制電路被耦接至該資料 匯流排及該複數個控制線,並且該控制電路係用於回應 於接收自該等控制線的控制訊號,在一常態操作模式中 ® 與一進階模式中,接收來自該資料匯流排之資料及提供 資料至該資料匯流排,以及控制該裝置之操作。 47. —種快閃記憶體裝置,其包括: 至少一記憶體陣列,其係由以列與行排列的非揮發性 記憶體單元所組成; 一育料暫存器,用於儲存相對應於該至少一記憶體陣 列中之該等記憶體單元之經儲存狀態的資料;及 _ 控制電路,其耦接至該資料暫存器、耦接至輸入/輸出 n端且耦接至複數個控制終端,用於回應於在該等控制 終端處接收到之控制訊號,在一常態操作模式中與一進 ’ k杈式中,接收來自該等輸入/輸出終端之資料及提供資 料至該等輸入/輸出終端,並控制該裝置之操作; 、其中,在該常態操作模式中,該控制電路回應於在該 複數個控制終端巾之—第_者處接收的-讀取資料選通 訊唬,在該等輸入/輸出終端處提供資料字; 八中’在該常態操作模式中,該控制電路回應於在該 120269.doc -22· 200818206 的一寫入資料選通 之資料字鎖存於該 複數個控制終端中之該第二者處接收 訊號,將在該等輸入/輸出終端處接收 資料暫存器中;The data sub-and the read data are substantially lower than the voltage in the first specified voltage specification. The frequency of the write data selection communication number in the advanced data transmission mode is the maximum available frequency of the communication data selection communication number in the normal operation mode; and in the normal operation mode, The control circuit is responsive to a transition of the write data selection communication number received at the (4): the plurality of control final funds, and the data received at the input/output terminal is latched in the In the data register. 45. The apparatus of claim 39, further comprising: a command register coupled to the control circuit; 120269.doc 200818206 wherein the 4 control circuit is responsive to one of the plurality of control terminals One of the data selection communication numbers is converted, and the command latch enable signal received at one of the plurality of control terminals stores a command value received at the wheel input/output terminals to the command temporary In the memory, wherein the control circuit enters the advanced operation mode from the normal operation mode in response to the command value corresponding to the start of the advanced mode; wherein in the advanced operation mode, the control circuit responds to And a pause request signal received by the one of the plurality of control terminals maintains an active value of one of the data words at the input/output terminal and the first one of the plurality of control terminals Maintaining an active state of one of the read enable signals; wherein the control circuit resumes the transfer of the advanced data in response to receiving one of the pause requests from the controller Providing two materials to the controller and driving the read data selection communication number; wherein the control circuit is combined with one of the first polarities from one of the controllers to write the data selection communication number, and combined with receiving An address from the control state latching enable signal, receiving a memory address from the controller on the input/output lines; and wherein the pause request corresponds to providing a data word in the advanced data transfer mode to The address latches one of the enable signals during the controller. 46. The device of claim 39, wherein the flash memory device is implemented in a flash memory subsystem, the flash memory subsystem further comprising 120269.doc -21 - 200818206 comprising: a flash memory a body controller having a host interface for interfacing with a host system; a data bus coupled to the flash memory controller; and a plurality of control lines coupled to the flash memory a controller; wherein the control circuit of the flash memory device is coupled to the data bus and the plurality of control lines, and the control circuit is configured to respond to control signals received from the control lines, In a normal mode of operation, in an advanced mode, receiving data from the data bus and providing data to the data bus, and controlling the operation of the device. 47. A flash memory device, comprising: at least one memory array consisting of non-volatile memory cells arranged in columns and rows; a nurturing register for storing corresponding The storage state of the memory cells in the at least one memory array; and a control circuit coupled to the data register, coupled to the input/output n-side and coupled to the plurality of controls The terminal is configured to receive the control signals received at the control terminals, and receive information from the input/output terminals and provide data to the inputs in a normal operation mode and an input mode. / outputting a terminal and controlling the operation of the device; wherein, in the normal mode of operation, the control circuit is responsive to a read data selection message received at a plurality of control terminals The data word is provided at the input/output terminals; in the normal operation mode, the control circuit is latched in the complex in response to a data word of the write data strobe at the 120269.doc-22.200818206 Control terminal of the second signal are received at the receive data register in such an input / output terminal; 其中,在該進階操作模式中,對於一讀取傳送,該控 制電路回應於該讀取資料選通訊號與該寫入資料選通: 號之每一者之一所選轉變,在該複數個控制終端之對應 者處提供讀取資料選通訊號與寫人㈣選通訊號,並: 在該等輸入/輸出終端處提供資料字,該等寫入資料選通 訊號相對於該等讀取資料選通訊號異相位。 48.如請求項47之裝置,其進一步包括·· 〒令暫存器’其耦接至該控制電路; 其中該控制電路回應於在該複數個控制終端中之一對 應者處接收的一寫入資料選通訊號之一轉變,將在該等 輸入/輸出終端處接收的一命令值儲存至該命令暫=器 中; 。 _ 並且其中該控制電路回應於相對應於起始該進階模式 之該命令值,自該常態操作模式進入該進階操作模式, 該命令值亦指示出是否待實施一進階模式讀取傳送或一 ' 實施進階模式寫入傳送。 • 49·如請求項47之裝置,其進一步包括: 一命令暫存器,其耦接至該控制電路; 其中該控制電路回應於在該複數個控制終端中之一對 應者處接收的一寫入資料選通訊號之一轉變,將在該等 輸入/輸出終端處接收的一命令值儲存至該命令暫存器 120269.doc •23 - 200818206 中; 之兮^、中該控制電路回應於相對應於起始該常態模 50 ^值’自錢階操作模式進人該常態操作模式。 ^ 其中該常態操作模式對應於用於介 於快閃記憶體裝置鱼&amp; ~控制器之間的通信之標準化規格, 該4標準化規格包括一 — 弟一電壓規格,該第一電壓規格 在兮堂於該項取貝料選通訊號、該寫人資料選通訊號及 t輸人/輸出終端處之該等資料字的高與低邏輯位 準; 次並亡其中該控制電路按照-第二指定電壓規格來提供 貝::、該碩取資料選通訊號與該寫入資料選通訊號, 該第-&amp;疋電壓規格^義―實質上較低電壓,以使電壓 擺動實質上小於藉由該第—指定電壓規格中之該等高與 低邏輯位準定義的電壓擺動。 二用求項50之裝置,其中藉由該第一指定電壓規袼中之 • 該等高與低邏輯位準定義的該電壓擺動標稱上係約3 3 伏; ' 並且其中藉由該第二指定電壓規格中之該等高與低邏 輯位準定義的該電壓擺動標稱上係約1 ·8伏。 52.如請求項47之裝置,其進一步包括: 中令暫存器,其麵接至該控制電路; 其中該控制電路回應於在該複數個控制終端中之—第 二者處接收的一寫入資料選通訊號之一轉變,結合在該 複數個控制終端中之一第三者處接收的一命令鎖存啟用 120269.doc -24- 200818206 一命令值儲存至 訊號,將在該等輸入/輸出終端處接收的 該命令暫存器中; 其中该控制電路回應於相 命令值,自該常態操作模式 令值亦指示出是否待實施一 模式寫入傳送; 對應於起始該進階模式之該 進入該進階操作模式,該命 進階模式讀取傳送或一進階In the advanced operation mode, for a read transfer, the control circuit responds to the read data selection communication number and the write data strobe: one of each of the selected transitions, in the plural The corresponding person of the control terminal provides the reading data selection communication number and the writing person (four) selection communication number, and: providing information words at the input/output terminals, and the writing data selection communication numbers are relative to the reading The data selection communication number is out of phase. 48. The device of claim 47, further comprising: a buffer register coupled to the control circuit; wherein the control circuit is responsive to a write received at a corresponding one of the plurality of control terminals Entering one of the data selection communication numbers, and storing a command value received at the input/output terminals into the command temporary device; And wherein the control circuit responds to the command value corresponding to the start of the advanced mode, and enters the advanced operation mode from the normal operation mode, the command value also indicating whether an advanced mode read transfer is to be implemented. Or a 'implemented advanced mode write transfer. The device of claim 47, further comprising: a command register coupled to the control circuit; wherein the control circuit is responsive to a write received at a corresponding one of the plurality of control terminals Entering one of the data selection communication numbers, storing a command value received at the input/output terminals into the command register 120269.doc • 23 - 200818206; wherein the control circuit responds to the phase Corresponding to the initial normal mode 50 ^ value 'from the money level operation mode into the normal mode of operation. ^ wherein the normal mode of operation corresponds to a standardized specification for communication between the flash memory device fish &amp; ~ controller, the 4 standard specification includes a - one voltage specification, the first voltage specification is The high and low logic levels of the information items in the item selection, the communication number of the writer and the input/output terminal of the item; the second and the second of which the control circuit follows the second Specify the voltage specification to provide the following::, the master data selection communication number and the write data selection communication number, the first-&amp;疋 voltage specification ^ meaning substantially lower voltage, so that the voltage swing is substantially less than the borrowing The voltage swing defined by the high and low logic levels in the first specified voltage specification. The apparatus of claim 50, wherein the voltage swing defined by the height and low logic levels in the first specified voltage gauge is nominally about 3 3 volts; and wherein The voltage swing defined by the contour and low logic levels in the two specified voltage specifications is nominally about 1.8 volts. 52. The device of claim 47, further comprising: a mediator register flanked by the control circuit; wherein the control circuit is responsive to a write received at the second of the plurality of control terminals Incoming one of the data selection communication numbers, combined with a command latch received at one of the plurality of control terminals to enable 120269.doc -24-200818206 a command value stored to the signal, will be in the input / The command register is received by the output terminal; wherein the control circuit is responsive to the phase command value, and the value is also indicated from the normal operation mode to indicate whether a mode write transfer is to be performed; corresponding to starting the advanced mode Entering the advanced mode of operation, the progressive mode read transfer or an advanced 其中在該進階操作模式中,該控制電路回應於在該複 數個控制終端中之—者處接收—暫停請求訊號,在該等 輸入/輸出終端處保持-資料字之—現行值及在該複數個 控制、、端中之該第_者處保持該讀取資料選通訊號與該 寫入資料選通訊號之一現行狀態; 其中該控制電路回應於接收到來自該控制器之該暫停 請求之一結束,重新繼續在該進階資料傳送模式中提供 貝料子至該控制器以及驅動該讀取資料選通訊號與該寫 入資料選通訊號; ^ ^ 其中該控制電路結合來自該控制器之一寫入資料選通 訊號之一所選極性之一轉變,並且結合接收來自該控制 器之一位址鎖存啟用訊號,在該等輸入/輸出線上接收來 自該控制器之記憶體位址; 並且其中該暫停請求對應於在該進階資料傳送模式中 提供貧料字至該控制器期間該位址鎖存啟用訊號之一轉 變。 53·如請求項47之裝置,其中該快閃記憶體裝置係實施於一 快閃記憶體子系統中,該快閃記憶體子系統進一步包 120269.doc -25- 200818206 括: -快閃記憶體控制器,其具有用於介接一主機系統之 一主機介面; 資料匯流排,其耦接至該快閃記憶體控制器;及 複數個控制線,其耦接至該快閃記憶體控制器; 其中該快閃記憶體裝置之該控制電路被裁接至該資料 匯流排及該複數個控制線,並且該控制電路係用於回應 於接收自該等控制線的控制訊號,在一常態操作模式中 ® 與一進階模式中,接收來自該資料匯流排之資料及提供 資料至該資料匯流排、以及控制該裝置之操作。 120269.doc 26·In the advanced mode of operation, the control circuit receives a pause request signal in response to the plurality of control terminals, and maintains at the input/output terminals - the current value of the data word and the The plurality of controls, the first one of the terminals maintains an active state of the read data selection communication number and the write data selection communication number; wherein the control circuit is responsive to receiving the suspension request from the controller One of the ends, resumes providing the material in the advanced data transfer mode to the controller and drives the read data selection communication number and the write data selection communication number; ^ ^ where the control circuit is combined with the controller One of the selected data selects one of the selected polarity of the communication number transition, and in combination with receiving an address latch enable signal from the controller, receiving a memory address from the controller on the input/output line; And wherein the pause request corresponds to one of the address latch enable signals transitions during the provision of the lean word to the controller in the advanced data transfer mode. 53. The device of claim 47, wherein the flash memory device is implemented in a flash memory subsystem, the flash memory subsystem further comprising 120269.doc -25-200818206: - flash memory a body controller, configured to interface with a host interface of a host system; a data bus, coupled to the flash memory controller; and a plurality of control lines coupled to the flash memory control The control circuit of the flash memory device is spliced to the data bus and the plurality of control lines, and the control circuit is configured to respond to the control signals received from the control lines in a normal state. In the operating mode ® and an advanced mode, receiving data from the data bus and providing data to the data bus and controlling the operation of the device. 120269.doc 26·
TW096114457A 2006-04-24 2007-04-24 High-performance flash memory data transfer method and device TWI486964B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US11/379,895 US7366028B2 (en) 2006-04-24 2006-04-24 Method of high-performance flash memory data transfer
US11/379,910 US7345926B2 (en) 2006-04-24 2006-04-24 High-performance flash memory data transfer
US11/424,581 US7366029B2 (en) 2006-04-24 2006-06-16 High-performance flash memory data transfer
US11/424,573 US7525855B2 (en) 2006-04-24 2006-06-16 Method of high-performance flash memory data transfer
US11/458,431 US7499339B2 (en) 2006-07-19 2006-07-19 High-performance flash memory data transfer
US11/458,422 US7499369B2 (en) 2006-07-19 2006-07-19 Method of high-performance flash memory data transfer

Publications (2)

Publication Number Publication Date
TW200818206A true TW200818206A (en) 2008-04-16
TWI486964B TWI486964B (en) 2015-06-01

Family

ID=38627002

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096114457A TWI486964B (en) 2006-04-24 2007-04-24 High-performance flash memory data transfer method and device

Country Status (6)

Country Link
EP (1) EP2011122A2 (en)
JP (1) JP5226669B2 (en)
KR (1) KR101458381B1 (en)
CN (1) CN101479804B (en)
TW (1) TWI486964B (en)
WO (1) WO2007127678A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455150B (en) * 2010-07-06 2014-10-01 Winbond Electronics Corp Memory devices and memory chips

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5106219B2 (en) 2008-03-19 2012-12-26 株式会社東芝 Memory device, host device, memory system, memory device control method, host device control method, and memory system control method
KR101087195B1 (en) * 2008-05-26 2011-11-29 주식회사 하이닉스반도체 Non volatile memory device
WO2010002943A1 (en) 2008-07-01 2010-01-07 Lsi Corporation Methods and apparatus for interfacing between a flash memory controller and a flash memory array
JP5266589B2 (en) * 2009-05-14 2013-08-21 ルネサスエレクトロニクス株式会社 Nonvolatile semiconductor memory device
JP5449032B2 (en) * 2009-05-28 2014-03-19 パナソニック株式会社 Memory system
JP2011058847A (en) * 2009-09-07 2011-03-24 Renesas Electronics Corp Semiconductor integrated circuit device
EP4053840A1 (en) * 2010-02-23 2022-09-07 Rambus Inc. Methods and circuits for dynamically scaling dram power and performance
JP2012198965A (en) * 2011-03-22 2012-10-18 Toshiba Corp Nonvolatile semiconductor storage device
US9053066B2 (en) 2012-03-30 2015-06-09 Sandisk Technologies Inc. NAND flash memory interface
KR102130171B1 (en) * 2014-01-13 2020-07-03 에스케이하이닉스 주식회사 Semiconductor device and semiconductor system
US9385721B1 (en) 2015-01-14 2016-07-05 Sandisk Technologies Llc Bulk driven low swing driver
US9792994B1 (en) 2016-09-28 2017-10-17 Sandisk Technologies Llc Bulk modulation scheme to reduce I/O pin capacitance
JP6894459B2 (en) * 2019-02-25 2021-06-30 華邦電子股▲ふん▼有限公司Winbond Electronics Corp. Pseudo-static random access memory and how it works

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696917A (en) * 1994-06-03 1997-12-09 Intel Corporation Method and apparatus for performing burst read operations in an asynchronous nonvolatile memory
KR100252057B1 (en) * 1997-12-30 2000-05-01 윤종용 Semiconductor memory device usable in SDR and DDR
JP2000067577A (en) * 1998-06-10 2000-03-03 Mitsubishi Electric Corp Synchronous semiconductor memory
JP3416083B2 (en) * 1999-08-31 2003-06-16 株式会社日立製作所 Semiconductor device
US6466491B2 (en) * 2000-05-19 2002-10-15 Fujitsu Limited Memory system and memory controller with reliable data latch operation
TWI228259B (en) * 2000-05-22 2005-02-21 Samsung Electronics Co Ltd Method and circuit for inputting and outputting data, and system using semiconductor memory device including the same
JP2002007200A (en) * 2000-06-16 2002-01-11 Nec Corp Memory controller and operation switching method and interface device and semiconductor integrated chip and recording medium
US7370168B2 (en) * 2003-04-25 2008-05-06 Renesas Technology Corp. Memory card conforming to a multiple operation standards
US6961269B2 (en) * 2003-06-24 2005-11-01 Micron Technology, Inc. Memory device having data paths with multiple speeds
KR100521049B1 (en) * 2003-12-30 2005-10-11 주식회사 하이닉스반도체 Write circuit of the Double Data Rate Synchronous DRAM
DE102004026808B4 (en) * 2004-06-02 2007-06-06 Infineon Technologies Ag Backwards compatible memory chip
KR100546418B1 (en) * 2004-07-27 2006-01-26 삼성전자주식회사 Non-volatile memory device performing double data rate operation in reading operation and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455150B (en) * 2010-07-06 2014-10-01 Winbond Electronics Corp Memory devices and memory chips

Also Published As

Publication number Publication date
KR20090026267A (en) 2009-03-12
EP2011122A2 (en) 2009-01-07
CN101479804A (en) 2009-07-08
WO2007127678A3 (en) 2008-02-07
JP2009534785A (en) 2009-09-24
JP5226669B2 (en) 2013-07-03
WO2007127678A2 (en) 2007-11-08
KR101458381B1 (en) 2014-11-07
TWI486964B (en) 2015-06-01
CN101479804B (en) 2013-05-01

Similar Documents

Publication Publication Date Title
TW200818206A (en) High-performance flash memory data transfer
US7366029B2 (en) High-performance flash memory data transfer
US7366028B2 (en) Method of high-performance flash memory data transfer
US7525855B2 (en) Method of high-performance flash memory data transfer
US7499369B2 (en) Method of high-performance flash memory data transfer
US7345926B2 (en) High-performance flash memory data transfer
US20080019196A1 (en) High-Performance Flash Memory Data Transfer
KR101260632B1 (en) Memory with output control
US8959326B2 (en) Memory device initiate and terminate boot commands
TW200814087A (en) Memory system and memory chip
US20120072647A1 (en) Different types of memory integrated in one chip by using a novel protocol
US20090259873A1 (en) Non-volatile semiconductor memory device with power saving feature
JP2009534785A5 (en)
TW201120886A (en) A novel NAND-based hybrid NVM design that integrates NAND and NOR in 1-die with serial interface
US8825939B2 (en) Semiconductor memory device suitable for interconnection in a ring topology
WO2008067659A1 (en) Apparatus and method for capturing serial input data
US7454644B2 (en) Integrated circuit with low current consumption having a one wire communication interface
CN114141291A (en) Memory, memory control method and system
US11626149B2 (en) SPI NOR memory with optimized read and program operation
CN105989884B (en) Semiconductor memory device and method of operating the same