TW200814087A - Memory system and memory chip - Google Patents

Memory system and memory chip Download PDF

Info

Publication number
TW200814087A
TW200814087A TW096128455A TW96128455A TW200814087A TW 200814087 A TW200814087 A TW 200814087A TW 096128455 A TW096128455 A TW 096128455A TW 96128455 A TW96128455 A TW 96128455A TW 200814087 A TW200814087 A TW 200814087A
Authority
TW
Taiwan
Prior art keywords
memory
power consumption
output
circuit
internal
Prior art date
Application number
TW096128455A
Other languages
Chinese (zh)
Inventor
Hiroshi Sukegawa
Original Assignee
Toshiba Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Kk filed Critical Toshiba Kk
Publication of TW200814087A publication Critical patent/TW200814087A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3215Monitoring of peripheral devices
    • G06F1/3225Monitoring of peripheral devices of memory devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0625Power saving in storage systems
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3237Power saving characterised by the action undertaken by disabling clock generation or distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3275Power saving in memory, e.g. RAM, cache
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3293Power saving characterised by the action undertaken by switching to a less power-consuming processor, e.g. sub-CPU
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0629Configuration or reconfiguration of storage systems
    • G06F3/0634Configuration or reconfiguration of storage systems by changing the state or mode of one or more devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/0679Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2206/00Indexing scheme related to dedicated interfaces for computers
    • G06F2206/10Indexing scheme related to storage interfaces for computers, indexing schema related to group G06F3/06
    • G06F2206/1014One time programmable [OTP] memory, e.g. PROM, WORM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Read Only Memory (AREA)
  • Power Sources (AREA)
  • Memory System (AREA)

Abstract

A memory system includes a memory 3 which asserts a high-power-consumption operation output when an amount of the power consumption is high in internal operations in respective operations, and a controller 2 which has an interface function between a host and the memory 3 and receives the high-power-consumption operation output. The controller 2 switches an operation mode thereof to a low power consumption mode when the high-power-consumption operation output is asserted.

Description

200814087 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種藉由(例如) u夕』如)一自動指令執行一内部操 作的記憶體(例如快閃記憶體), ^蔽),且關於一種記憶系統與一 種記憶晶片(其均包括該記憶體)。 【先前技術】 在一错由自動指令執行內部搞 丁円邵刼作之記憶體(例如快閃記 憶體)之情況下,在一自動据 軔备作中串聯或並列執行複數個 序列,且所執行序列間之功率消耗量不同。 一記憶系統係經組態心包括—控制器,其係提供於記 憶晶片外部。控制器之功率消耗在若干操作間也不同。於 制器側可識別控制器本身之各操作中之功率消: 法識別記憶體在自動择作φ夕a # , ^ 勒奋作中之功率消耗。因此,存在一 勢:記憶系統之大功率洁釭成杜 ^ 八刀手4耗峰值可能很容易上 【發明内容】 根據本發明之一第一士 弟方面,提供一種記憶系統,发 含·一記憶體,其執杆宜 > 、钒仃寫入、讀取及抹除之操作,呈 據該等個別操作中之内 μ /、有依 之内邛刼作的不同功率消耗, 個別操作中之該等内部 在4荨 一 铈1乍肀之一功率沩耗量高時判 咼功率消耗操作輪出· . ^ 疋 ,及一控制器,其具有位於一主檣I 該記憶體間的一介而从& 王機與 判定談古λ漆冰 力此且接收該高功率消耗操作輪出, -消耗操作輪出時該控制器將 換至-低功率消耗模式。 “乍核式切 依據本發明之一繁_ 罘一方面,提供一種記憶晶片,其執行 123317.doc 200814087 ”’、入、讀取及抹除之操作且具有依據該等個別操作中之 ^桑作的不同功率消耗,其中該記憶晶片在該等個別摔作 中线等内部操作中之_功率消耗量高時判定_高功率消 耗操作輸出。 ' 【貫施方式】 見將參考附圖說明本發明之具體實施例。在以下說明 、在王邛圖式中採用共同參考編號表示共同部分。 (第一具體實施例) 圖1係—方塊圖’其顯示依據本發明之 例的記憶系統之基本結構。 為知 -範㈣轉發性半導體記憶體之 情體。^閃記憶體。快閃記憶體之—範例係反及快問記 二二::1之-特定範例係記憶卡。記憶卡係用作 體。 1仃動電話及可攜式音樂播放器之記錄媒 入=1= 例中之記憶體3從控制器2接收控制信號'寫 控:=讀二資,與就緒/忙線輸出 1致二)、寫入致能/WE、讀取致能·指令鎖 =::::鎖存致能ALE、啟動™寫入保 至記憶體3。接針將此等控制信號從控制器2輸入 ,’二—(例如)8位元或16位元之1/〇接針執行指 123317.doc 200814087 令輸入、寫入資料輸入及讀取資料輸出。經由就緒/忙線 接針將就緒/忙線輸出從記憶體3傳送至控制器2。 此具體實施例中之控制器2具有—用於主機與記憶體3間 之介面的介面功能。因此,此具體實施例之記憶系統凊 現-與主機側有關之被動裝置功能。控制器2從主機接收 控制信號、寫入資料及指令。控制器2依據控制信號從主 機接收指令。控制器2依據接收到之指令控制記憶體3,藉 此將從主機傳送之寫入資料寫入記憶體3中,將從記憶體3 中頃取之讀取資料傳送至主機’以及抹除記錄於記憶體3 中之資料。 以此方式,記憶體3在控制器2之控制下執行寫入、讀取 及抹除操作。 此外’此具體實施例之記憶體3除上述功能之外還包括 一高功率消耗操作輸出產生電路^高功率消耗操作輸出 產生電路1G依據記憶體3在—内部操作期間之功率消耗旦 判定-高功率消耗操作輸出並將其消除至記憶體3外部, 在寫入、讀取及抹除操作中,記憶體3按順序執行或重複 個別寫入、讀取及抹除操作中的某些内部操作。例如,在 寫入操作中,内部操作之範例包括位址輸入、寫入資料輸 入、將寫人資料鎖存於資料暫存器中(至此階段之操作^ 稱為"第-循環")、位元線預充電、將寫人資料傳輸至位元 線 '向字元線施加寫入脈衝、驗證讀取、及冑資料重寫於 -還未達到預定資料之單元中(至此階段之操作係稱為"自 動頁程式化”)。此等内部操作之功率消耗量不同。特定+ 123317.doc 200814087 之,位元線預充電及向字元線施加寫入脈衝消耗大量電 流,且此等内部操作中之功率消耗傾向於大於其他内部操 作中之功率消耗。記憶體3之功率消耗達到一預定值(或更 大值)或超過一預定值時,高功率消耗操作輸出產生電路 10判定高功率消耗操作輸出。另一方面,記憶體3之功率 消耗小於一預定值,或為一預定值(或更小值)時,高功率 消耗操作輸出產生電路10消除高功率消耗操作輸出。藉 此,記憶體3向記憶體3之外部通知記憶體3之功率消耗 量。 此具體實施例之控制器2具有一接收高功率消耗操作輸 出之功能,且依據高功率消耗操作輸出切換控制器2之操 作模式。圖1所示操作模式切換信號產生電路11產生一切 換信號。正在消除高功率消耗操作輸出時,此具體實施例 之控制器2係操作於一正常功率消耗模式中。判定高功率 消耗操作輸出時,此具體實施例之控制器2將操作模式從 正常功率消耗模式切換至低功率消耗模式。正在判定高功 率消耗操作輸出時,控制器2係操作於低功率消耗模式 中〇 現將說明依據第一具體實施例之記憶系統1的特定有利 效應。 圖2係一時序圖,其顯示一典型範例中之記憶系統操作 與功率消耗間之關係的一範例。 如圖2所示,若控制器之程序與記憶體之忙線狀態重 疊,則存在記憶體功率消耗之峰值與控制器功率消耗之峰 123317.doc 200814087 值重$的情況。若此等峰值重疊,則系統功率消耗之峰值 會急劇上升,如箭頭A所示。此可導致電池功率消耗增加 或由於功率消耗超過電池容量而出故障。不過,即使記憶 體處於忙線狀態中,控制器之程序仍在進行,因此記憶系 統之程序速度高。 ” 圖3係一時序圖,其顯示該典型範例中之記憶系統操作 與功率消耗間之關係的另一範例。 ”200814087 IX. Description of the Invention: [Technical Field] The present invention relates to a memory (e.g., flash memory) that performs an internal operation by, for example, an automatic instruction, And with respect to a memory system and a memory chip (which both include the memory). [Prior Art] In the case where the error is executed by the automatic instruction execution internal memory (for example, flash memory), a plurality of sequences are executed in series or in parallel in an automatic preparation, and The power consumption between the execution sequences is different. A memory system is configured to include a controller that is external to the memory chip. The power consumption of the controller is also different between several operations. On the controller side, the power consumption in each operation of the controller itself can be recognized: the method recognizes the power consumption of the memory in the automatic selection of φ 夕 a # , ^ 勒 奋 . Therefore, there is a potential: the power of the memory system is high, and the peak value of the four-knife hand 4 may be very easy. [Invention] According to one of the first aspects of the present invention, a memory system is provided. Memory, its operation should be >, vanadium yttrium write, read and erase operations, according to the different power consumption within the individual operations, / depending on the individual power consumption, in individual operations The internal power consumption operation is interrupted when one of the power consumption is high. ^ 疋, and a controller having a medium located between the main memory and the memory From the & Wang machine and the judgment, the high-power consumption operation is taken out, and the controller will switch to the low-power consumption mode when the operation is rotated. [乍 式 切 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆 记忆Different power consumption is performed, wherein the memory chip determines a high power consumption operation output when the power consumption amount in the internal operation such as the individual hit center line is high. 'Continuously, the specific embodiment of the present invention will be described with reference to the drawings. In the following description, a common reference number is used in the Wang Hao diagram to indicate the common part. (First Embodiment) Fig. 1 is a block diagram showing the basic structure of a memory system according to an example of the present invention. For the purpose of knowing - Fan (four) the nature of transmissive semiconductor memory. ^Flash memory. Flash memory - examples are fast and quick to ask. 22:: 1 - specific examples are memory cards. The memory card is used as a body. 1 Recording media of the mobile phone and the portable music player = 1 = The memory 3 in the example receives the control signal from the controller 2 'write control: = read the second capital, and the ready/busy line output 1 to 2) Write enable / WE, read enable · command lock =:::: latch enable ALE, start TM write to memory 3. The pin receives these control signals from the controller 2, 'two—for example, 8-bit or 16-bit 1/〇 pin execution finger 123317.doc 200814087 Let input, write data input, and read data output . The ready/busy line output is transferred from memory 3 to controller 2 via the ready/busy line pin. The controller 2 in this embodiment has an interface function for the interface between the host and the memory 3. Thus, the memory system of this embodiment achieves a passive device function associated with the host side. The controller 2 receives control signals, writes data, and commands from the host. The controller 2 receives an instruction from the host in accordance with the control signal. The controller 2 controls the memory 3 according to the received command, thereby writing the write data transferred from the host to the memory 3, transferring the read data taken from the memory 3 to the host', and erasing the record. The data in memory 3. In this way, the memory 3 performs writing, reading, and erasing operations under the control of the controller 2. In addition, the memory 3 of this embodiment includes a high power consumption operation output generation circuit in addition to the above functions. The high power consumption operation output generation circuit 1G determines the power consumption during the internal operation according to the memory 3. The power consumption operates on the output and is eliminated to the outside of the memory 3. In the write, read, and erase operations, the memory 3 sequentially performs or repeats some of the internal operations of the individual write, read, and erase operations. . For example, in a write operation, examples of internal operations include address input, write data input, and latching of the writer data in the data register (the operation at this stage is called "-cycle") , bit line pre-charging, transfer of the person data to the bit line 'apply write pulse to the word line, verify read, and 胄 data rewrite in the unit that has not yet reached the predetermined data (at this stage of operation) It is called "automatic page stylization". The power consumption of these internal operations is different. Specific + 123317.doc 200814087, bit line pre-charging and applying a write pulse to the word line consume a large amount of current, and this The power consumption in the internal operation tends to be greater than the power consumption in other internal operations. When the power consumption of the memory 3 reaches a predetermined value (or greater) or exceeds a predetermined value, the high power consumption operation output generating circuit 10 determines. High power consumption operation output. On the other hand, when the power consumption of the memory 3 is less than a predetermined value, or is a predetermined value (or smaller), the high power consumption operation output generation circuit 10 eliminates high power. The operation output is consumed. Thereby, the memory 3 notifies the external power of the memory 3 of the power consumption of the memory 3. The controller 2 of this embodiment has a function of receiving a high power consumption operation output and operates according to high power consumption. The operation mode of the switching controller 2 is output. The operation mode switching signal generating circuit 11 shown in Fig. 1 generates a switching signal. When the high power consumption operation output is being eliminated, the controller 2 of this embodiment operates in a normal power consumption mode. When determining the high power consumption operation output, the controller 2 of this embodiment switches the operation mode from the normal power consumption mode to the low power consumption mode. When determining the high power consumption operation output, the controller 2 operates at low power. In the consumption mode, a specific advantageous effect of the memory system 1 according to the first embodiment will now be described. Fig. 2 is a timing chart showing an example of the relationship between memory system operation and power consumption in a typical example. As shown in Figure 2, if the controller's program overlaps with the busy state of the memory, there is memory power consumption. Peak and controller power consumption peaks 123317.doc 200814087 Values are greater than $. If these peaks overlap, the peak power consumption of the system will rise sharply, as indicated by arrow A. This can result in increased battery power consumption or due to power The consumption exceeds the battery capacity and fails. However, even if the memory is in the busy state, the program of the controller is still running, so the program speed of the memory system is high." Figure 3 is a timing chart showing the typical example. Another example of the relationship between memory system operation and power consumption. ”

在記憶系統中提供就緒/忙線輸出RY//BY。可想像得 出,,由使用就緒/忙線輸ώκγ//Βγ’可在記憶體處於忙 線:態中(如Η 2所示)時暫停控制器之程序。處於忙線狀態 中時,.暫停控制器之程序。因此’記憶體功率消耗之峰: 不會與控制器功率消耗之峰值重疊。在此範例中,系統功 率消耗之峰值不會急劇上升。不過,由於記憶體處於忙線 狀態時暫停控制器之程序,所以記憶系統之程序速度低。 ,圖错-時序圖,其顯示本發明之第—具體實施例中之 記憶系統操作與功率消耗間之關係的一範例。 此範例之記憶系統〗除就緒/忙線輸出Κγ//Βγ之外還且有 一高功率消耗操作輪出LPcspt//HPcspt。如圖所示,^此 r^,it^^,Lpcspt//HPcspt^I(HM^ } 率隸低(消除高功率消耗操作輸出)。另-方面,當輸出 了cspt/m〜為”L"位準時’記憶體3之功率消耗高(判定 南功率消耗操作輸出)。在此範例之記憶系統!中,即使,己 憶體3處於忙線狀態中㈣器2也使程序進行 出 ㈣卿叫為"L”位準時(即,正在判定高功率消耗= 123317.doc 200814087 輪出時),控制器2部分暫停(或暫停 基於更容易理解具趙實施例:,序暫停= 式,記憶體3之功率消耗高時,控 乂此方 程序,從而操作於低功率消耗模式;。或暫停) :時’程序正在進行,’維持高程==消 "P制整個5己憶系統1之高功率消耗之峰值。 、 接下來說明依據第一具體實施 例。 ^又忑隐糸統之特定範 圖5係-方塊圖,其顯示依據本發明之第一 之記憶系統之一第一範例。 -體只施例 3:圖:所示,在包含於第-範例之記憶系統1内之記憶體 生電= 之车 =操作輸出產生電路1〇基於來自高電壓產 電路2〇之輸出判定或消除高功率消耗操作輸出。此外, 在匕3於第一範例之記憶系統]内之控制器2中,當判〜古 :率消耗操作輸㈣,操作模式切換信號產生電:心: a内部振盤器(0SC)21之一内部時脈之振盤,或停止該内 :時脈之供應。該内部時脈係用以決定控制器2本身:内 部操作之時序。例如,將内部時脈供應至主機介面(主機 I/F)、緩衝器、CPU及記憶體介面(記憶體I/F),且此等電 路組塊基於内部時脈操作。可藉由停止内部振盪器21本身 之振盪或藉由停止内部時脈之供應(不停止内部振盪器幻 本身之振盪)來暫停控制器2本身之程序。此外,可藉由將 内部時脈中的一或多個供應至主機介面、將内部日夺脈供應 至緩衝器、將内部時脈供應至CPU及將内部時脈供應至記 I233I7.doc 200814087 體介面來部分暫停控制器2本 測到高功率消耗操作輪岀從 :料,-旦债 制器2便恢復内部時脈之::轉變為消除狀態,控 低功率消耗,還原為”功率消:B=供應’從而從 功率消耗模式。-旦_=功此設定為低 :料傳輸’從—消耗模式還原為正t= Π J足特疋刼作之一範例。 :波形圖,其顯示圖5所示記憶系統之寫入操作之 寫入;::特疋知作之一乾例’說明-自動頁程式化(其係 ㈣之一)。不用說,除該寫入操作之外,同樣可執 行抹除操作及讀取操作。 圖6顯示-自動頁程式化(其係寫入操作之_)。寫入致 二/入:”位準的同時將-指令1〇h("h"係-十六進制數) 輸入至輸入/輸出接針1/〇時,開始自動頁程式化。之後, 寫入致能/WE為”L”位準的同時將一指令輸入至輸入/輸 出接針1/〇時,執行狀態讀取以讀出-指示寫入"成功"或 ”失敗”的狀態。 自動頁程式化期間,將就緒/忙線輸出設定為”l”。此時 123317.doc 200814087 間期間,高功率消耗操作輸出LPcspt//HPcspt重複"h"與 間之位準變化(其係基於以下控制)。 圖7係一波形圖,其顯示圖5所示記憶系統中之增壓電壓 vpp與操作輸出LPcspt//HPespt間之關係。 若開始自動頁耘式化,則啟動圖5所示高電壓產生電路 20以產生一增壓電壓vpp。功率消耗傾向於很容易增加之 狀態之一範例係高電壓產生電路2〇正在執行一增壓操作之 狀態ΓΗ”係功率消耗高之週期;”L,(係功率消耗低之週 期)。儘管此說明書中未特別顯示,但會在記憶體3内產生 一内部信號(其指示高電壓產生電路2〇執行增壓操作)。藉 由圖5所示高功率消耗操作輸出產生電路1〇接收此内部信 號,藉此高功率消耗操作冑出產生電路1〇可在增廢操作期 間將操作輸出LPcspt//HPcspt設定為”L”位準(”判定”)。此 外在自動頁私式化中,重複"寫入”與”驗證”直到單元之 限疋值達到與所輸入之寫入資料相對應之預定位準。換 言之’重複位元㈣充電及向字元線施加寫人脈衝。如上 斤述由於此等内部操作消耗大量電流,所以每當預充電 位元線時及母§向子元線施加寫入脈衝時重複增壓電壓 VPP之下降及增壓操作之開始。增壓操作時,記憶體3之 功率/肖耗也增力口’因此將操作輸出Lp以⑽服cSpt設定為 "L"位準。 错由向記憶體3之外部通知操作輸出Lpcspt//Hpcspt,控 制裔2可執行·圖4所示操作。 下面說明依據第一範例之記憶體3之結構的一範例。 123317.doc 12 200814087 圖5所不記憶體3係一記憶晶片。該記憶晶片包括一記憶 體單70陣列1〇1、一記憶體控制電路102、——指令解碼器 103、一操作機1〇4、一輸入/輸出電路(ι/〇)ι〇5、一資料暫 存器1〇6、一高電壓產生電路2〇、及一高功率消耗操作輸 出產生電路1 〇。The ready/busy line output RY//BY is provided in the memory system. It is conceivable that the controller can be suspended by the use of the ready/busy line κ γ / / Β γ ' when the memory is in the busy state (as shown by Η 2). When in the busy state, suspend the controller program. Therefore, the peak of memory power consumption does not overlap with the peak of controller power consumption. In this example, the peak power consumption of the system does not rise sharply. However, since the program of the controller is suspended while the memory is in the busy state, the program speed of the memory system is low. A diagram error-time diagram showing an example of the relationship between memory system operation and power consumption in the first embodiment of the present invention. The memory system of this example has a high power consumption operation in addition to the ready/busy line output Κγ//Βγ, which is LPcspt//HPcspt. As shown in the figure, ^ this r ^, it ^ ^, Lpcspt / / HPcspt ^ I (HM ^ } rate low (eliminate high power consumption operation output). Another - aspect, when the output cspt / m ~ "L " level on time 'memory 3 power consumption is high (determined south power consumption operation output). In this example of the memory system!, even if the memory 3 is in the busy state (four) device 2 makes the program out (four) Qing Called the "L" bit on time (ie, when high power consumption is being determined = 123317.doc 200814087 when it is rounded out), controller 2 is partially paused (or paused based on easier to understand with Zhao embodiment:, sequence pause = type, memory When the power consumption of the body 3 is high, the program is controlled to operate in the low power consumption mode; or paused: when the program is in progress, 'maintain the elevation==消消"P system 5 whole memory system 1 The peak value of high power consumption. Next, the first embodiment will be described. The specific schematic diagram of the hidden system is a block diagram showing a first example of a memory system according to the first aspect of the present invention. - Body only example 3: Figure: shown in the memory system 1 included in the first example Recalling the body power = car = operation output generation circuit 1 判定 based on the output from the high voltage production circuit 2 判定 determines or eliminates the high power consumption operation output. In addition, in the memory system of the first example memory system] 2, when the judgment ~ ancient: rate consumption operation input (four), the operation mode switching signal generates electricity: heart: a internal vibration plate (0SC) 21 one of the internal clock vibration disk, or stop the inner: the supply of the clock The internal clock is used to determine the timing of the internal operation of the controller 2. For example, the internal clock is supplied to the host interface (host I/F), buffer, CPU, and memory interface (memory I/F). And these circuit blocks are based on internal clock operation. The controller 2 can be suspended by stopping the oscillation of the internal oscillator 21 itself or by stopping the supply of the internal clock (without stopping the oscillation of the internal oscillator itself). The program itself. In addition, it can be supplied to the host interface by one or more internal clocks, the internal clock is supplied to the buffer, the internal clock is supplied to the CPU, and the internal clock is supplied to the I233I7. .doc 200814087 Body interface to the Ministry The sub-suspension controller 2 measures the high power consumption operation rim from: material, and the debt controller 2 restores the internal clock:: changes to the elimination state, controls the low power consumption, and restores to "power consumption: B = Supply 'from the power consumption mode. - Dan _ = this is set to low: material transfer 'from - consumption mode to positive t = Π J foot special example of one.. Waveform, which shows Figure 5 Writing of the write operation of the memory system;:: Specially known as one of the examples 'Description - automatic page stylization (one of the systems (4)). Needless to say, in addition to the write operation, the same executable wipe Except for operation and read operations. Figure 6 shows - automatic page stylization (which is the _ of the write operation). When writing to the second/input:" level, the instruction 1〇h ("h" system-hexadecimal number) is input to the input/output pin 1/〇, and automatic page programming is started. When the write enable/WE is at the "L" level and an instruction is input to the input/output pin 1/〇, the status read is performed to read-instruct the write "success" or "failure" The status of the ready/busy line is set to "1" during automatic page programming. At this time, during the period between 123317.doc and 200814087, the high power consumption operation outputs LPcspt//HPcspt repeats "h" (This is based on the following control.) Figure 7 is a waveform diagram showing the relationship between the boost voltage vpp and the operational output LPcspt//HPespt in the memory system shown in Figure 5. If automatic page compression is started, it is activated. The high voltage generating circuit 20 shown in Fig. 5 generates a boost voltage vpp. One of the states in which the power consumption tends to be easily increased is an example in which the high voltage generating circuit 2 is performing a boosting operation. Cycle; "L, (the period of low power consumption). Not specifically shown in this specification, but an internal signal (which indicates that the high voltage generating circuit 2 is performing the boosting operation) is generated in the memory 3. The high power consumption operation output generating circuit 1 shown in Fig. 5 receives this The internal signal, whereby the high power consumption operation output generation circuit 1 can set the operation output LPcspt//HPcspt to the "L" level ("decision") during the add-on operation. Further, in the automatic page customization, Repeat "Write" and "Verify" until the limit value of the unit reaches the predetermined level corresponding to the entered write data. In other words, the 'repetition bit (4) charges and applies a write pulse to the word line. As described above, since a large amount of current is consumed by such internal operations, the decrease of the boost voltage VPP and the start of the boosting operation are repeated each time the pre-charge bit line is applied and the parent § applies a write pulse to the sub-line. In the boosting operation, the power/short consumption of the memory 3 is also increased. Therefore, the operation output Lp is set to ("L" level by (10) service cSpt. The error is notified to the outside of the memory 3 by the operation output Lpcspt / / Hpcspt, and the control 2 is executable. An example of the structure of the memory 3 according to the first example will be described below. 123317.doc 12 200814087 Figure 5 shows that memory 3 is a memory chip. The memory chip includes a memory single 70 array 101, a memory control circuit 102, an instruction decoder 103, an operator 1〇4, an input/output circuit (ι/〇) 〇5, and a memory chip. The data register 1〇6, a high voltage generating circuit 2〇, and a high power consumption operation output generating circuit 1〇.

在n己隐體單兀陣列101中整合有複數個記憶體單元。記 憶體單元之-範例係非揮發性半導體記憶體單A。非揮發 料導體記憶體單元之—範例係限定值可變電晶體,或包 括複數個限定值可變電晶體之記憶體單元單位。限定值可 電日日 之^ -一 ^\\ ά] -A-b vs ,、括一電何累積層且具有一可依據累 積於電荷累積層中之電荷量(例如,電子量)變化之限定值 的:電晶體°記憶體單元單位之—範例係反及型記憶體單A plurality of memory cells are integrated in the n-hidden monolithic array 101. The memory cell unit - the example is a non-volatile semiconductor memory single A. An example of a non-volatile conductor memory cell is a variable-valued transistor, or a memory cell unit comprising a plurality of variable-valued transistors. The limit value can be used for day-to-day ^-\\^ ά] -Ab vs , including a cumulative layer and has a limit value that can be varied according to the amount of charge (eg, electron amount) accumulated in the charge accumulation layer. : transistor ° memory unit unit - example is the inverse memory type

元單位(其中限定值可轡雷B ^ 交電日日體係串聯連接在源極線與位 兀線之間)。藉由記橋骑@ 一 心 兀技制電路102來控制記憶體單 兀陣列101。 丁 指令解碼㈣3解碼—來自記憶晶片外部之指令 輸入/輸出電路1 〇 5將兮;八认 杼忒扣令輸入至指令解碼器1〇3。 操作機104依據—來自指 ,〇 .. ^ ^ 7解碼态103之輸出決定至少 刼作,並依據已決定掘於 、疋备作輸出一控制 之控制信號。 匕制。己隐體控制電路! 資料暫存器106暫時健存來 . 資料)。妹由輪人°己匕日日片外部之資料(寫, 貝才十)、,工由輸入/輸出電路105將寫入眘 哭1 rx lL ^ 于馬入貝科輸入至資料暫; 口口 1 0ό。此外,資料暫存 ^ $弁裔106暫時儲存來自一 列101之資料(讀取資料 自屺隐體早to f 、只#貝料)。經由輪 田彻入/輸出電路1〇5將該讀# 123317.doc 200814087 資料輸出至記憶晶片外部。 兩電尾產生電路2 0包括一增麼電路。增星電路之一範例 係電荷泵電路。包括增壓電路之高電壓產生電路2〇依攄一 來自C憶體控制電路1 〇2之控制信號產生一增壓電壓。增 壓電壓之一範例係Vpp。 问功率消耗操作輸出產生電路1〇基於一來自高電壓產生 電路20之内部信號來決定高電壓產生電路是否執行增壓 射。高功率消耗操作輸出產生電路1G基於決定結果來決 定欲判定還m高功率消耗操作輸出。例如,高功率消 耗知作輸出產生電路1()在高電壓產生電路2〇執行增壓操作 時判定高功率消耗操作輸出’且在高電壓產生電路20未執 订增壓操作時消除高功率消耗操作輸出。 接下來說明依據第一範例之控制器2之結構的一範例。 曰圖5所示控制器2係一控制器晶片。如上所述,該控制器 晶片具有用於主機與記憶體3間之介面的介面功能。作為 介面功能之-範例’控制器晶片管理記憶體3中之實體狀 態(例如’將按數字排序之邏輯區段位址資料的哪 儲存於哪—貫體區塊位址處,或哪—區塊係處於抹除能 幻。控制器晶片包括一主機介面(主機i/f)2〇i、一 c : 央處理單凡)202、— 1己憶體介面(記憶體I/F)203、_ )204、一;ram(隨機存取記憶體)2〇5、— 操作模式切換信號產生電路11及-内部振盪器21。— 主機介面201執行主機與控制器晶片間之介面程序。 CPU 202控制整個記憶系統1之操作。例如,啟動記Μ 123317.doc •14· 200814087 統 1時,CPU 202將儲存^ 仔於R〇M 204中之韌體(控制程式)讀 出至 R A JVI 2 〇 5 中,盤 ^4» ^ ^ ^ . 執仃一預疋程序,藉此在RAM 205中 創建各種表。 此外,C P U 2 0 2從該主趨垃it/r ^ 王機接收一寫入指令、一讀取指令 及.抹除指令’並針對記障㈣^袖 i。 了 隱體3執打一預定程序或經由緩 衝1§ 206控制一資料傳輸程序。 ROM 204儲存(例如)受cpxj 909 4介吐, 2〇2控制之控制程式。 RAM 205係用作CPU 202之一丁从广l 工作區域並儲存該控制程 式與各種表。 5己憶體介面2 0 3執行控制a μ & π ί工fj益日日片與記憶體3間之介面程 序。 緩衝器206在欲將從主機傳逆 戍得运之資料寫入記憶體3中時暫 時儲存一預定數量的資料(例如, _ J 1頁),且在欲將從記憶體 3中讀出之資料傳送至主機時亦暫 卞丌智時儲存一預定數量的資 料0 、 内部振盛器21使一内部時脈择蕩 t脈振盪。將該内部時脈供應至 (例如)主機介面201、CPU 2〇2、 ' ‘ G體介面203及緩衝器 206 〇 σ 如上所述,判定高功率消鉍趑从认, 兩粍知作輪出時,操作模式切換 “號產生電路11產生切換信贫d 、 唬(其停止内部振盪器21之内 部時脈之振盪或停止内部時脈之供鹿)。 圖8係一方塊圖,其顯示依 十私Θ灸弟一具體實施 之記憶系統之一第二範例。 在第一範例中,高功率消耗摔 永作輸出產生電路10使用内 123317.doc -15 - 200814087 部信號(其指示高電遷產生電路20之增屡操作),以便產生 操作輸出LPcSpt//HPcsp卜不過,操作輪出Lp邮·_ 之產生不受限於此範例。例如,如圖8所示,可藉由使用 記億體控制電路102之内部信號來產生操作輸出 LPCSPt//HPespi。例如,如上所述,預充電位元線及向字 -線施加寫入脈衝時會消耗大量電流。記憶體控制電路 ⑻產生—用於預充電位元線之内部信號及—用於向字元 ::施加寫入脈衝之内部信號。例如,藉由使用此等内部信 〜垂可產生具有圖7所示波形之操作輸出Lp卿卿剛。 亦特別顯示,不過高功率消耗操作輸出產生電路10 : = 自_機1〇4之控制信號來決定操 消耗狀態=決定操作來決定判定還是消除高功率 同樣地,德瞽去甜一 技… 不過高功率消耗操作輸出產生電 路10亦可經組態用以基於來 電 定操作之_,s ▲於末自“令解碼器103之輸出來決 '、 及依據該已決定摔作來氺宏划〜e 功率消耗狀態輸出。…末决-判-還是消除高 (第二具體實施例) 關的-範例“例係與N功率消耗操作輸出之輸出方法有 :係電路圖,其顯示依據本 之記憶系統之一第一範例。 U貫施例 如圖9所示,記惰系 其將高功率消耗疒::’匕括一高功率消耗操作輪出線, 知作輸出從記憶體3發送至控制器2。 123317.doc 200814087 =示記憶體3在判定高功率消耗操作輸㈣驅動高功 ㈣=作輸出線,且在消除高功率消耗操作輸出時 =操作輸出線設定為一高阻抗,反之亦然$作為 摩已例顯示前者。The unit of the unit (where the limit value can be 辔Ray B ^, the day-to-day system is connected in series between the source line and the bit line). The memory unit array 101 is controlled by a bridge ride@一 心 兀 制 circuit 102. Din Instruction Decoding (4) 3 Decoding - Command from the outside of the memory chip Input/output circuit 1 〇 5 兮 八 八 八 令 令 令 令 令 令 令 令 令 令 令 令 令 令 令 令 令 令 令 令 令 令 。 The manipulator 104 determines at least the operation based on the output of the decoding state 103 from the finger, 〇.. ^ ^ 7 , and according to the control signal that has been determined to be outputted and outputted as a control. Tanning. Have hidden control circuit! The data register 106 is temporarily saved. Data). The sister is the person who has the outside of the Japanese film (written, Beicai 10), and the input/output circuit 105 will be written to cautiously crying 1 rx lL ^ in the horse into the Beca input to the data; mouth 1 0ό. In addition, the data temporary storage ^ $弁 106 temporarily stored data from a list of 101 (read data from the hidden body early to f, only #贝料). The read #123317.doc 200814087 data is output to the outside of the memory chip via the round-in/out circuit 1〇5. The two tail generating circuit 20 includes an additional circuit. An example of a star-fill circuit is a charge pump circuit. The high voltage generating circuit 2 including the boosting circuit generates a boosted voltage according to a control signal from the C memory control circuit 1 〇2. An example of an increasing voltage is Vpp. The power consumption operation output generating circuit 1 determines whether or not the high voltage generating circuit performs the boosting based on an internal signal from the high voltage generating circuit 20. The high power consumption operation output generation circuit 1G decides based on the determination result to determine the m high power consumption operation output. For example, the high power consumption is known as the output generation circuit 1 () determines the high power consumption operation output when the high voltage generation circuit 2 performs the boost operation, and eliminates the high power consumption when the high voltage generation circuit 20 does not perform the boost operation. Operation output. Next, an example of the structure of the controller 2 according to the first example will be described. The controller 2 shown in FIG. 5 is a controller chip. As described above, the controller chip has an interface function for the interface between the host and the memory 3. As an interface function - the example 'controller wafer manages the entity state in memory 3 (eg 'which of the logical sector address data to be sorted by number—where the block address, or which block The controller chip includes a host interface (host i/f) 2〇i, a c: central processing unit) 202, — 1 memory interface (memory I/F) 203, _ 204, one; ram (random access memory) 2〇5, the operation mode switching signal generating circuit 11 and the internal oscillator 21. - The host interface 201 performs an interface program between the host and the controller chip. The CPU 202 controls the operation of the entire memory system 1. For example, when starting the file 123317.doc •14· 200814087, the CPU 202 reads the firmware (control program) stored in the R〇M 204 to the RA JVI 2 〇5, the disk ^4» ^ ^ ^ . A pre-program is executed to thereby create various tables in the RAM 205. In addition, C P U 2 0 2 receives a write command, a read command, and an erase command ' from the master ladder/r^ and is directed to the barrier (four) sleeve i. The hidden body 3 executes a predetermined program or controls a data transmission program via the buffer 1 § 206. The ROM 204 stores, for example, a control program that is mediated by cpxj 909 4 and controlled by 2〇2. The RAM 205 is used as one of the CPUs 202 to store the control program and various tables. 5 Recalling the interface 2 0 3 Execution control a μ & π 工 work fj between the Japanese and the memory 3 interface program. The buffer 206 temporarily stores a predetermined amount of data (for example, _J 1 page) when the data to be retrieved from the host is written into the memory 3, and is to be read from the memory 3 When the data is transmitted to the host, a predetermined amount of data is stored for a while, and the internal oscillator 21 causes an internal clock to oscillate. Supplying the internal clock to, for example, the host interface 201, the CPU 2〇2, the 'G body interface 203, and the buffer 206 〇σ, as described above, determining that the high-power consumption is recognized, and the two knowing rounds At the time, the operation mode switching "number generation circuit 11 generates a switching signal depletion d, 唬 (which stops the oscillation of the internal clock of the internal oscillator 21 or stops the supply of the internal clock). Fig. 8 is a block diagram showing A second example of a memory system implemented by a private moxibustion practitioner. In the first example, the high power consumption output is generated by the circuit 10 using a signal of 123317.doc -15 - 200814087 (which indicates high power generation) The operation of the circuit 20 is increased to generate the operation output LPcSpt / / HPcsp. However, the operation of the operation of the Lp mail · _ is not limited to this example. For example, as shown in Figure 8, can be used by using the billion body The internal signal of control circuit 102 produces an operational output LPCSPt / / HPespi. For example, as described above, a large amount of current is consumed when precharging the bit line and applying a write pulse to the word line. Memory control circuit (8) generation - for Within the pre-charge bit line Signal and - used to write the internal signal of the write pulse to the character:: For example, by using these internal signals, the operation output of the waveform shown in Fig. 7 can be generated by Lp Qingqing. Also shown, but specifically High power consumption operation output generation circuit 10: = Control signal from the control signal of the machine 1〇4 = determine the operation to determine the decision or eliminate the high power. Similarly, the de-sweet technology... But the high power consumption operation output The generating circuit 10 can also be configured to operate based on the incoming call _, s ▲ at the end of the "decision of the output of the decoder 103", and according to the determined decision to make a macro ~ e power consumption state output . ...the final decision----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- For example, as shown in Fig. 9, the inertia system is high power consumption:: 'includes a high power consumption operation wheel outlet, and the output is sent from the memory 3 to the controller 2. 123317.doc 200814087 = The memory 3 is determined to have a high power consumption operation (4) driving high power (4) = as an output line, and when the high power consumption operation output is eliminated = the operation output line is set to a high impedance, and vice versa. .

3之,將高功率消耗操作輸出產生電路1〇之輸出供 應至-mt道絕緣閘極FET 3G之閘極。酿%在高功率消 耗操作輸出產生電路10之輸出為"H"位準時驅動高功率消 耗知作輸出線,且使高功率消耗操作輸出線之電位沿 ?轉變為接地電位Vss。另一方面’ FET 3〇在高功率消耗 乍輸出產生電路1()之輸出為"L"位準時呈現關閉,從而 將高功率消耗操作輸出線設定為高阻抗。 高功率消耗操作輸出線係引入控制器2中。控制器2包括 :拉升式電阻器31(其係連接在高功率消耗操作輸出線與 電源供應電位vdd之間)’及—p通道絕緣閘極FET 32(其具 有連接至高功率消耗操作輸出線之閘極)。 高:力率消耗操作輸出線之電位沿一方向降至接地電位 Vss時,FET 32呈現導電且使節點33處之電位升高。另一 2 ’藉由拉升式電阻器使高功率消耗操作輸出線之電位 沿一方向從接地電位Vss增加至電源供應電位乂如時,FET 32關閉且使節點33處之電位降低。依據節點η之電位,操 作杈式切換信號產生電路丨丨致能或停用切換信號。 上述方法可有利地應用於具有複數個記憶體3之記憶系 ^ 〇 …、 圖10顯不依據本發明之第二具體實施例之記憶系統之 1233l7.doc 200814087 使用範例。 圖1〇所示記憶系統丨包括n個記憶體 —別包一~同連接Γ:功::: 當FET30之一呈現導電時,高功率消耗操作 輸出線之電位沿一方向減至接地 的,,有線或連接”。 此連接係所謂 在判定高功率消耗操作輸出時驅動高功率消耗 _作輸出線,且在消除& Λ座、、ά 寿 #^心—ΐ 作輸出時將功率_ '、輸出線§又疋為一高阻抗,反之亦然。因此,可 或連接二式將複數個記憶體3之高功率消耗操作輸出供應 至控制态2。因此,依據第一且體给 w 儺弟一具體男轭例之記憶系統1可右 利地應用於具有複數個記憶體3之記憶系統。 圖11係-電路圖’其顯示依據本發明之第二具體實施例 之圮憶系統之一第二範例。 如圖11所示,可不在控制器2内,而在控制器2外部提供 拉料電阻器31。例如,拉升式電阻器31可連接在高功率 4耗#作輸出線(其在記憶體3之功率消耗操作接針34與控 制器2之功率消耗操作接針35間延伸)與電源供應電位Vdd 之間。 圖12係一電路圖,其顯示記憶系統之一第一連接範例。 圖12所不在s亥第一連接範例中,控制器2與記憶體3 係佈置於記憶系統i内之—電路板4〇上,且控制器2與記憶 體3係經由形成於電路板4〇上之佈'㈣而連接。在此情況 下,可使用圖9所示第-範例與圖11所示第二範例兩者。 123317.doc -18- 200814087 可使用圖11所示第二範例的 升式電阻器3 1應該就足以了 原因係,在電路板4〇上形成拉 圖13係一電路圖,发_; 口 /、顯不§己憶系統之一第二連接範例。 如圖13所示,在第二造扭々々Α 連接乾例中,控制器2係佈置於記 憶體3上’且控制器2與記憶體3係經由接合線a而連接。 在此情況下’可使用圖9所示第一範例與圖u所示 Γ者,不過使用第二範例相對較難。原因係,難以隸 升式電阻H3丨連接至接合線42。不過,若如同第—範例那 樣在控制H2上提供拉升式電阻⑽,料接控制器2盘記 憶體3應該就足以了,因此使用會容易m觀點而言, 應明白,圖9所示笫一銘也丨t , 一 弟乾例可有利地應用於其中控制器2係 佈置於記憶體3上之記憶系、統卜以便促進大小減小。 (第三具體實施例) 圖14係一方塊圖,:M: _ +分丄八n 八颂不依據本發明之第三具體實施例 之5己憶糸統之一範例。 如圖14所不’在第三具體實施例中,可藉由一來自控制 器2之指令在記憶體3中選擇性設定高功㈣耗操作之位 準明確a之,從外部設定功率消耗值之位準(其係用於 區分高功率消耗操作輸出之”判定”與H)。將功率消耗 值之設定位準儲存於記憶體3之功率消耗邊界設定暫存器 财。-序聽態判別電路51制序聽態,並彳貞測或估 计:?隐體3之功率消耗值。將儲存於功率消耗邊界設定暫 存w 50中之位準供應至序列狀態判別電路η。序列狀態判 J電路1(例如)將供應位準與記憶體3之功率消耗之谓測或 123317.doc -19- 200814087 估計位準作比較。將比較 產生電㈣。基於來自序㈣=至南功率消耗操作輸出 率消耗操作輪出產生電路’别電路51之輸出,高功 ,Ή"位準或"L"位^此外、尚功率消耗操作輸出設定為 率消耗不同。可將與個I寫入、讀取及抹除操作間之功 率消耗邊界州存器同位準儲存於功 依據個職作產生—用 吏^狀態判別電路51 為"Η"位準還是"L"位準之幹广功率消耗操作輪出設定 模式相對應的不同位外,可將與記憶系統之 中’且可使序列狀態判別二財丄耗邊界設定暫存器50 決定將高功率消耗摔二 輸出。 &作輪“定為"Η,,位準還是,,L”位準之 ^據第三具體實施例’可使功率消耗值之位準⑷夺用 …力率消耗操作輪出之”判定”與”消除,,)保持為二不 的你進。十土 (而要所设定之固定預定功率消耗值 選擇:可依據從主機側所設定的記憶系統之模式 值’必須維持且必須不超過該預定功 (第四具體實施例) 圖1 5係一電路圖,甘 _ ΰ ,、顯示依據本發明之一第四呈體實施 :的-記憶晶片内所包含之一操作輸出產生電路之一第一 範例。 如圖15所示,可盘钱、 J /、就緒/忙線接針61共享功率消耗操作 接針。 123317.doc -20- 200814087 就緒/忙線產生電路60之輸出係連接至N通道絕緣閘極 FET 63之閘極。FET 63係經由開關電路62而串聯連接在接 針61與接地電位Vss之間。開關電路62之一特定範例係 CMOS傳輸閘極64。傳輸閘極64係連接在接針61與FET 63 之間。 高功率消耗操作輸出產生電路10之輸出係連接至FEτ 3〇 之閘極。FET 30係經由開關電路62而串聯連接在接針^與 接地電位Vss之間。開關電路62之一特定範例係cm〇s傳輸 閘極65。傳輸閘極65係連接在接針61與17£丁 〇之間。 此範例中之就緒/忙線產生電路60在啟用信號EN為"h"位 準時啟動,且在啟用信號EN為"L"位準時停用。此範例中 之高功率消耗操作輸出產生電路10在信號/E 號舰之反信賴"Η,,位準日㈣,且在㈣EN為"l用;; 準時停用。 因此,如圖16所示,當信號/EN為”H"位準時,啟 忙線產生電路60且停用高功率消㈣作輸出產生電路1〇。 圖15所示傳輸閘極64呈現導電,而傳輸閘極以呈現不導 電。因此,FET 3〇與接針61斷開,且FET 〇連接至接針 61° 在此情況下,當控㈣2僅支援就緒/忙線接針66時,可 使用依據第四具體實施例之第一範例的記憶體3。 相反地,如圖17所示,當信號/EN為”L,t位準時,啟動高 功率消耗操作輸出產生電路1G且停用就緒〜線產生電路 60。圖15所轉輸閘極65呈現導電,而傳輸閘極64呈現不 123317.doc -21 - 200814087 導電。因此,FE 丁 30連接至接針61。 在此情況下,當控制器2僅支援功率消耗操作接針67 時’可使用依據第四具體實施例之第一範例的記憶心。 圖18係一電路圖’其顯示依據本發明之第四具體實施例 ‘的該記憶晶片⑽包含之操作輸出產生電路之-第二範 例0 在Α第一範例中,提供一就緒/忙線接針68與一功率消 馨㈣作接針69’且可僅使用其中的—者,或使用兩者。’ 如圖18所不,相對於開關電路62,,第二範例與第—範 例不同。開關電路62,包括開關64、65及7〇。開關M係連& 接在接針68與FET 63之間。開關65係連接在接針的與阳丁 30之間。開關70係連接在接針68與接針69之間。 啟用信號EN1為"H”位準時,啟動就緒/忙線產生電路 60 ° 啟用信號EN2為"H”位準時,啟動高功率消耗操作輸出 ^ 產生電路1 0。 如圖19所示,當信號EN1為"H”位準且信號Em為” l"位 準時,啟動就緒/忙線產生電路6〇且停用高功率消耗操作 輸出產生電路10。圖18所示傳輸閘極64呈現導電,而傳輸 閘極65呈現不導電。因此,FET63連接至接針68。 在此情況下,當控制器2僅支援就緒/忙線接針66時,可 使用依據第四具體實施例之第二範例的記憶體3。 如圖20所示,當信號EN1為"L"位準且信號EN2為,,h ”位 準時,啟動高功率消耗操作輸出產生電路1〇且停用就緒/ 123317.doc -22- 200814087 忙線產生電路60。圖is所示傳輸閘極65呈現導電,而傳輸 閘極64呈現不導電。因此,FET 3〇連接至接針的。 別 在此情況下,當控制器2僅支援功率消耗操作接針π 時’可使用依據第四具體實施例之第二範例的記憶體3。 如圖21所示’當信號EN1與信號£]^皆為"h"位準時,啟 動高功率消耗操作輸出產生電路1〇與就緒/忙線產生電路 60兩者。由於圖18所示傳輸閘極64與65均呈現導電,所^ FET 63連接至接針68且附3〇連接至接針69。 乂 在此情況下,當控制器2支援就緒/忙線接針咐 耗操作接針67兩者時,可使用依據第四具體實施例之第 範例的記憶體3。 一 上述具體實施例包括以下方面: >⑴一種記憶系、统,其包含:一記憶體,其執行寫入、 讀取及抹除之操作,具有依據該等個別 的不同功暢,及在該等個別操作中之該等内::: 之:功率消耗量高時判定一高功率消耗操作輸出;及一押 制為,其具有位於一主機與該記憶體間的 : 收=高_消耗操作輪出,判定該高功率消耗操作== 抓制②將其-操作模式切換至—低功率消耗模式。'、 ⑺^⑴之記憶系統’其中該控制器在該 式之時間暫停記憶體之資料傳輸。 η耗抵 ^!ΐηΓΓ ^ ^ ! ^ ^ ^^^^ ^ ^^ :…τ止供應-用以決定控制器本身之内部操: 序的内部時脈。 y、乍之日Τ I23317.doc -23 - 200814087 W如⑺之記憶4統,其中該控制器包括—操作 換信號產生電路,其依據該高功 1 、工刀 _ , 4. 丰/為耗刼作輸出產生一用 於切換控制器之操作模式的切換 钕 琥,及一記憶體介面雷 路’以及,將該切換信號供應至該記憶體介面電二 該切換信號已判定該低功率消耗 且备 路暫停該記憶體之資料傳輸。 回冤 (5)如W之記憶系統,其中該控 換信號產生電路,苴依攄哕古从玄丄 奋作核式切 於切換控制器之操作模式的切換 用 =,其使内部時脈振盪,以及,將該切換信號供應 振盈電路’且當該切換信號已判定該低功率消耗模; 該内部振盪電路暫停該内部時脈之振盈。 、式 π ㈠之。己隐系統’其進一步包含-將該高功率消耗 刼作輸出從該記憶體發送至該_制^ μ # Λ t A 4 出飨,甘士 知、主a栓制裔的向功率消耗操作輸 該ΐ❹憶體在判定該高功率消耗操作輸出時驅動 耗操作輪出線,且在消除該高功率消耗操作輸 二將該高功率消耗操作輸出線設定為一高阻抗,反之 生(電7)::6i之記憶系統,其中該控制器包括-切換信號產 ,、依據該高功率消耗操作輸出產 控制器之操作掇★沾, 用於切換该 包括-電阻琴,、;雷刀換信號’以及該切換信號產生電路 耗操作^ 電阻器係連接在一為其供應該高功率消 .^ 之供應點與一電源供應之間,且該切換信號產 電路依據該電阻n與該供應關之—連接節點之電位產 1233l7.doc -24- 200814087 生該切換信號。 (8) 如(6)之記憶系統,其齐 4 輸出線與-電源供應之間的電阻哭。 (9) 如(1)至(8)中任一者之 〇〇 H # # +、胃 β ^糸統,其中該記憶體係一 非揮發性半導體記憶體。 (10) 如(9)之記憶系統,1 一反及快閃記憶體。〃"非揮發性半導體記憶體係 二:種記憶晶片’其執行寫入、讀取及抹除之操作且 中”‘产”, ”呆作的不同功率消耗,其 = 片在該等個別操作中之該等内部操作中之—功 〜肖耗夏咼時判定一高功率消耗操作輸出。 =)如⑴)之記憶晶片,其進—步包含—產生該高功率 祕細作輸出的高功率消耗操作輸出產生電路,及一將节 :功率消耗操作輪出輸出至外部的外部輸出端子,直中 南功率消耗操作輸出產生電路在 / ^ ⑩ 山士 在判疋該兩功率消耗操作輪 出時驅動該外部輸出端子,且在消除該高功率消耗操作輸 出時將該外部輸出端子設定為一高阻抗,反之亦然。 二 13)如(11)之記憶晶片,其中在該記憶晶片中,從外部 设定-功率消耗值之―㈣,該位準朗該高 作輸出之判定與消除。 耗知 ⑽如(13)之記憶晶片,其進—步包含_儲存該功率消 耗值之位準的功率消耗邊界設定暫存器。 (15)如(11)之記憶晶片,其中該記憶晶片包含:一記慎 體單元陣列,其内整合有複數個記憶體單元;-記憶體於 123317.doc -25- 200814087 制電路,其控制該記憶體單元陣列;一指令解碼器,其解 碼:來自外部之指令;一操作機,其依據一來自該指令解 碼裔之輸出決定複數個或單一操作,並依據該已決定操作 輪出一用以控制該記憶體控制電路之控制信號;及一高功 1消耗操作輸出產生電路,其基於來自該操作機之該控制 ^遽決定該複數個或單—操作之—者,並依據該已決定操 作中之該内部操作決定判定還是消除該高功率消耗操作輸 出。 _ 16)如(11)之記憶晶片,其中該記憶晶片包含:一記憶 體單元陣列’其内整合有複數個記憶體單元;一記憶體: 制電路,其控制該記憶體單元陣列;一指令解碼器,其解 碼來自外部之指令;一操作機,其依據一來自該指令解 碼益之輸出決定複數個或單一操作,並依據該已決定操作 輸出用以控制該記憶體控制電路之控制信號;及一高功 率消耗操作輸出產生電路,其基於來自該指令解碼器之該 • 冑出決定該複數個或單一操作之-者,並依據該已決定操 作中之该内部操作決定判定還是消除該高功率消耗操作輸 出。 _ (17)如(11)之記憶晶片,其中該記憶晶片包含··一記憶 體單元陣列,其内整合有複數個記憶體單元;一記憶體控 制電路,其控制該記憶體單元陣列;一指令解碼器,其解 碼來自外部之指令;一操作機,其依據一來自該指令解 碼器之輪出決定複數個或單一操作,並依據該已決定操作 輪出用以控制該記憶體控制電路之控制信號;一高電壓 1233l7.doc -26- 200814087 生電路,其產生一南電壓,及一高功率消耗操作輸出產 生電路,其基於一來自該高電壓產生電路之内部信號決定 該高電壓產生電路是否產生高電壓,並依據該已決定操作 決定判定還是消除該高功率消耗操作輸出。 (18)如(11)之記憶晶片,其中該記憶晶片包含:_記憶 體單元陣列,其内整合有複數個記憶體單元;一記憶體控 制電路’其控制该記憶體單元陣列;一指令解碼器,其解3. The output of the high power consumption operation output generating circuit 1 is supplied to the gate of the -mt gate insulating gate FET 3G. The output of the high-power consumption operation output generating circuit 10 is the "H" level-time drive high-power consumption known as the output line, and the potential of the high-power consumption operation output line is converted to the ground potential Vss. On the other hand, the FET 3 呈现 is turned off when the output of the high power consumption 乍 output generating circuit 1 () is "L", thereby setting the high power consumption operation output line to high impedance. A high power consumption operation output line is introduced into the controller 2. The controller 2 includes a pull-up resistor 31 (which is connected between the high power consumption operation output line and the power supply potential vdd) and a p-channel insulated gate FET 32 (which has a connection to a high power consumption operation output line) The gate). High: When the potential of the power consumption operation output line drops to the ground potential Vss in one direction, the FET 32 exhibits conduction and raises the potential at the node 33. The other 2' increases the potential of the high power consumption operation output line from the ground potential Vss to the power supply potential in one direction by the pull-up resistor, and the FET 32 is turned off and the potential at the node 33 is lowered. According to the potential of the node η, the operation type switching signal generating circuit 丨丨 enables or disables the switching signal. The above method can be advantageously applied to a memory system having a plurality of memories 3, and Fig. 10 is an example of the use of the memory system of the second embodiment of the present invention, 1233l7.doc 200814087. The memory system shown in FIG. 1A includes n memories—one-to-one connection: work::: When one of the FETs 30 is electrically conductive, the potential of the high-power consumption operation output line is reduced to ground in one direction, , wired or connected. This connection is to drive high power consumption when making high power consumption operation output as output line, and will be power when eliminating &Λ座,ά寿#^心ΐΐ output The output line § is again a high impedance, and vice versa. Therefore, the high power consumption operation output of the plurality of memories 3 can be supplied to the control state 2 by the connection type 2. Therefore, according to the first and the body is given w 傩A memory system 1 of a specific male yoke example can be applied to a memory system having a plurality of memories 3. The FIG. 11 is a circuit diagram showing one of the memory systems according to the second embodiment of the present invention. 2. As shown in FIG. 11, the pull resistor 31 may be provided outside the controller 2 instead of the controller 2. For example, the pull-up resistor 31 may be connected to a high power 4 consumption output line (its Operating the pin 34 and the controller 2 in the power consumption of the memory 3 The power consumption operation pin 35 extends between the power supply potential Vdd. Figure 12 is a circuit diagram showing a first connection example of the memory system. Figure 12 is not in the first connection example, the controller 2 is The memory 3 is arranged on the circuit board 4 in the memory system i, and the controller 2 and the memory 3 are connected via a cloth '(4) formed on the circuit board 4''. In this case, a map can be used. The first example shown in Fig. 9 is the same as the second example shown in Fig. 11. 123317.doc -18- 200814087 The lift resistor 3 1 which can be used in the second example shown in Fig. 11 should be sufficient for the reason, on the circuit board On the 4th, a circuit diagram of the drawing 13 is formed, and the second connection example of the system is shown in Fig. 13. In the second example of the twisted connection, the control is performed. The device 2 is disposed on the memory 3' and the controller 2 and the memory 3 are connected via the bonding wire a. In this case, the first example shown in FIG. 9 and the one shown in FIG. The second example is relatively difficult. The reason is that it is difficult to connect the riser resistance H3丨 to the bonding wire 42. However, if As in the first example, the pull-up resistor (10) is provided on the control H2, and the memory controller 3 of the controller 2 should be sufficient. Therefore, it is easy to use, and it should be understood that the same is shown in Fig. 9.第三t, a younger example can be advantageously applied to the memory system in which the controller 2 is arranged on the memory 3 to facilitate size reduction. (Third embodiment) FIG. 14 is a block diagram, M: _ + 分 n n n 颂 颂 颂 颂 颂 颂 颂 颂 n n n 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The instruction of the device 2 selectively sets the high power in the memory 3 (4) the level of the operation is clear, and the level of the power consumption value is set externally (which is used to distinguish the high power consumption operation output from the "decision" and H ). The set value of the power consumption value is stored in the power consumption boundary setting register of the memory 3. The sequence auditory discriminating circuit 51 prepares the auditory state and speculates or estimates: the power consumption value of the concealed body 3. The level stored in the power consumption boundary setting buffer w 50 is supplied to the sequence state discrimination circuit η. The sequence state judgment J circuit 1 (for example) compares the supply level with the power consumption of the memory 3 or the estimated level of 123317.doc -19-200814087. The comparison will produce electricity (4). Based on the order (4) = to the south power consumption operation output rate consumption operation wheel output circuit 'output of the circuit 51, high power, Ή " level or "L" bit ^ In addition, the power consumption operation output is set to rate consumption different. The power consumption boundary state register with the I write, read, and erase operations can be stored in the same level as the job-based state determination circuit 51 as "Η" level or " The L" level of dry power consumption operation rounds out the different modes corresponding to the setting mode, and can determine the high power consumption in the memory system and can make the sequence status discriminating boundary setting buffer 50 Drop two output. & round "set to "quote,", level or, L" level according to the third embodiment of the 'power consumption value level (4) can be used ... force rate consumption operation rounded out" Determine "and" to eliminate,,) keep you in the second. If you want to set a fixed predetermined power consumption value selection: according to the mode value of the memory system set from the host side must be maintained and must No more than the predetermined work (fourth embodiment) FIG. 15 is a circuit diagram, which is implemented according to one of the fourth inventions of the present invention: one of the operational output generating circuits included in the memory chip A first example. As shown in Fig. 15, the chargeable, J/, ready/busy line pin 61 shares the power consumption operation pin. 123317.doc -20- 200814087 Ready/busy line generation circuit 60 output connection The gate of the N-channel insulated gate FET 63. The FET 63 is connected in series between the pin 61 and the ground potential Vss via the switch circuit 62. One specific example of the switch circuit 62 is a CMOS transfer gate 64. The transfer gate The 64 series is connected between the pin 61 and the FET 63. High power consumption The output of the output generating circuit 10 is connected to the gate of FEτ 3 . The FET 30 is connected in series between the pin ^ and the ground potential Vss via the switching circuit 62. A specific example of the switching circuit 62 is transmitted. Gate 65. The transmission gate 65 is connected between the pins 61 and 17. The ready/busy line generating circuit 60 in this example is activated when the enable signal EN is "h" EN is the "L" bit on time. In this example, the high power consumption operation output generation circuit 10 is in the anti-trust of the signal / E ship "Η,, the standard date (four), and in (4) EN is "l Therefore, as shown in FIG. 16, when the signal /EN is "H" level, the busy line generating circuit 60 is activated and the high power cancellation (four) is disabled as the output generating circuit 1 〇. The gate 64 is electrically conductive and the transfer gate is rendered non-conductive. Therefore, the FET 3 is disconnected from the pin 61 and the FET is connected to the pin 61. In this case, the control (four) 2 only supports the ready/busy line. When the pin 66 is attached, the memory 3 according to the first example of the fourth embodiment can be used. As shown in Fig. 17, when the signal /EN is "L, t level, the high power consumption operation output generating circuit 1G is activated and the ready to line generating circuit 60 is deactivated. The switching gate 65 of Fig. 15 is electrically conductive and transmitted. The gate 64 is not electrically conductive. 123317.doc -21 - 200814087 is electrically conductive. Therefore, the FE 30 is connected to the pin 61. In this case, when the controller 2 only supports the power consumption operation pin 67, the use can be based on the fourth specific The memory of the first example of the embodiment. Figure 18 is a circuit diagram showing the operation output generating circuit of the memory chip (10) according to the fourth embodiment of the present invention - In the first example, a ready/busy line pin is provided 68 and a power consumer (four) as the pin 69' and may use only one of them, or both. As shown in Fig. 18, the second example is different from the first example with respect to the switch circuit 62. Switch circuit 62 includes switches 64, 65 and 7A. The switch M is connected between the pin 68 and the FET 63. The switch 65 is connected between the pin and the male 30. The switch 70 is connected between the pin 68 and the pin 69. Enable signal EN1 to be "H" on time, start ready/busy line generation circuit 60 ° Enable signal EN2 to be "H" bit on time, start high power consumption operation output ^ Generate circuit 1 0. As shown in Fig. 19, when the signal EN1 is at the "H" level and the signal Em is "1", the ready/busy line generating circuit 6 is activated and the high power consumption operation output generating circuit 10 is deactivated. The transfer gate 64 shown in Figure 18 is electrically conductive and the transfer gate 65 is rendered non-conductive. Therefore, the FET 63 is connected to the pin 68. In this case, when the controller 2 supports only the ready/busy line pin 66, the memory 3 according to the second example of the fourth embodiment can be used. As shown in FIG. 20, when the signal EN1 is the "L" level and the signal EN2 is, the h" level, the high power consumption operation output generating circuit 1 is started and the deactivation is disabled / 123317.doc -22- 200814087 busy The line generating circuit 60. The transmission gate 65 shown in Fig. is shown to be electrically conductive, and the transmission gate 64 is rendered non-conductive. Therefore, the FET 3 is connected to the pin. In this case, when the controller 2 only supports power consumption. When the pin π is operated, the memory 3 according to the second example of the fourth embodiment can be used. As shown in Fig. 21, when the signal EN1 and the signal £] are both "h", the high power consumption is started. Both the output output generating circuit 1 and the ready/busy line generating circuit 60 are operated. Since the transmitting gates 64 and 65 are both electrically conductive as shown in Fig. 18, the FET 63 is connected to the pin 68 and the pin 3 is connected to the pin 69. In this case, when the controller 2 supports both the ready/busy line pin and the operation pin 67, the memory 3 according to the first example of the fourth embodiment can be used. The following aspects: > (1) A memory system, which includes: a memory The operation of writing, reading, and erasing, according to the individual differences, and in the individual operations:::: determining a high power consumption when the power consumption is high Operation output; and a charge is that it is located between a host and the memory: receive = high _ consumption operation round, determine the high power consumption operation == capture 2 switch its operation mode to - low Power consumption mode. ', (7) ^ (1) memory system 'where the controller pauses the data transfer of the memory at this time. η consumption ^!ΐηΓΓ ^ ^ ! ^ ^ ^^^^ ^ ^^ :...τ Supply - used to determine the internal operation of the controller itself: the internal clock of the sequence. y, 乍日Τ I23317.doc -23 - 200814087 W as in (7) memory 4, where the controller includes - operation of the signal generation a circuit, which generates a switching mode for switching the operation mode of the controller, and a memory interface lightning path according to the high power 1, the tool _, 4. abundance/output for output, and switching Signal is supplied to the memory interface, and the switching signal has determined the low power Consumption and backup to suspend the data transmission of the memory. Back to (5) such as W memory system, which control signal generation circuit, 苴 摅哕 从 从 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄 丄The switching of the mode uses =, which oscillates the internal clock, and supplies the switching signal to the oscillating circuit' and when the switching signal has determined the low power consuming mode; the internal oscillating circuit suspends the oscillation of the internal clock. Equation π (1). The implicit system 'further inclusion' - the high power consumption output is sent from the memory to the _ system ^ μ # Λ t A 4 out, Gan Shizhi, the main a The power consumption operation outputting the memory body drives the operation wheel outlet when determining the high power consumption operation output, and sets the high power consumption operation output line to a high impedance when the high power consumption operation is eliminated. (Electric 7):: 6i memory system, wherein the controller includes - switching signal production, according to the operation of the high power consumption operation output controller, for switching the included-resistance piano,; Knife change signal 'to The switching signal generating circuit consumes a resistor connected between a supply point for supplying the high power consumption and a power supply, and the switching signal generating circuit is connected to the supply according to the resistor n The potential of the node is 1233l7.doc -24- 200814087. (8) As in (6) the memory system, its resistance between the 4 output line and the power supply is crying. (9) The 〇〇H##+, stomach β^ system of any one of (1) to (8), wherein the memory system is a non-volatile semiconductor memory. (10) For example, the memory system of (9), 1 and flash memory. 〃"Non-volatile semiconductor memory system 2: a kind of memory chip' which performs the operations of writing, reading and erasing and "production", "different power consumption of staying, its = piece in these individual operations In the internal operations, the power is determined to determine a high power consumption operation output. =) The memory chip as (1)), the further step includes - generating high power consumption of the high power secret output. An operation output generating circuit, and a section: a power consumption operation wheel output to an external external output terminal, and a direct-to-south power consumption operation output generation circuit drives the / ^ 10 hills when the two power consumption operations are rotated An external output terminal, and the external output terminal is set to a high impedance when the high power consumption operation output is eliminated, and vice versa. 23) The memory chip of (11), wherein the memory chip is externally disposed The value of the power consumption value is (4), and the bit is judged and eliminated. The memory chip of (13) includes the power of storing the power consumption value. (15) The memory chip of (11), wherein the memory chip comprises: a careful array of cells integrated with a plurality of memory cells; - memory at 123317.doc -25 - 200814087 circuit, which controls the array of memory cells; an instruction decoder that decodes: instructions from the outside; an operator that determines a plurality of or a single operation based on an output from the decoding source of the instruction, and Having decided to operate a control signal for controlling the memory control circuit; and a high power 1 consuming operation output generating circuit that determines the plurality of or single-operations based on the control from the operating machine. And determining, according to the internal operation in the determined operation, determining or eliminating the high power consumption operation output. _16) The memory chip of (11), wherein the memory chip comprises: a memory cell array integrated therein a plurality of memory cells; a memory: a circuit that controls the array of memory cells; an instruction decoder that decodes instructions from the outside; an operator, Determining a plurality of or a single operation according to an output from the decoding benefit of the instruction, and outputting a control signal for controlling the memory control circuit according to the determined operation; and a high power consumption operation output generating circuit based on the The instruction decoder determines whether the plurality of or a single operation is determined, and determines or eliminates the high power consumption operation output according to the internal operation in the determined operation. _ (17) as in (11) a memory chip, wherein the memory chip comprises: a memory cell array in which a plurality of memory cells are integrated; a memory control circuit that controls the memory cell array; and an instruction decoder that decodes from the outside An operating machine that determines a plurality of or a single operation according to a rotation from the instruction decoder, and rotates a control signal for controlling the memory control circuit according to the determined operation; a high voltage 1233l7.doc -26- 200814087 a circuit that generates a south voltage and a high power consumption operation output generating circuit based on a high The internal signal of the voltage generating circuit determines whether the high voltage generating circuit generates a high voltage, and determines or eliminates the high power consumption operation output according to the determined operation. (18) The memory chip of (11), wherein the memory chip comprises: a memory cell array in which a plurality of memory cells are integrated; a memory control circuit that controls the memory cell array; and an instruction decode Device, its solution

碼:來自外部之指♦卜操作機,其依據_來自該指令解 碼裔之輸出決定複數個或單_操作,並依據該已決定操作 輸出一用以控制該記憶體控制電路之控制信號,·及一高功 率消耗操作輸出產生電路,其基於―來自該記憶體控:電 路之内部信號決定該複數個或單一操作之一者,並依據該 已決定操料之該内部操作決定判定還是消除該高功率消 耗操作輸出。 其中該記憶晶片 (19)如(11)至(18)中任一者之記憶晶片 係一非揮發性半導體記憶晶片。 :0)如(19)之記憶晶片中該非揮發性半導體記憶晶 片係一反及快閃記憶晶片。 ▲ (21)如⑴)之記憶晶片,其中與—就緒/忙線接針 向功率消耗操作輸出 接訂且遥擇該尚功率消耗操作 輪出與-就緒/忙線中的一者並從共享接針輸出。 (22)如(11 )之e憶晶片,其中該記憶晶片包含:一第一 接針’為5亥弟一接針供應該高功率消耗操作輸出;及一第 -接針’ 4该第二接針供應一就緒/忙線輸出,其中第一 123317.doc -27- 200814087 =一接針輸出該高功率消耗操作輪出與該就緒/忙線輸 出中的一者,或輸出兩者。 已麥考某些具體實施例說明本發明。本發明不受限於上 述具=實_。在實施本發明之階財,可進行各種修改 而不背離本發明之精神。 :管可獨立實施個別具體實施例,不過也可恰當地组合 且貫施該等具體實施例。 之=具:實施例包括發明之各階段,且可由本文所揭示 凡牛之恰當組合導出發明之各階段。 在該等具體實施例中,已美 之範例說明本發明。不π,:: 應用於記憶系統 ^ 不匕本叙明不受限於記憶系統。併 入此記憶系統之半導體積體電路裝置⑽ 統LSD亦在本發明之範疇内。 次糸 為非揮I性半導體記憶體之範例說明反及快閃 發性半導體記憶體不受限於反及快閃二 a 為與反及快閃記憶體不同的快閃記憶體,例如 及决閃δ己憶體或反或快閃記憶體。 【圖式簡單說明】 圖1係一方塊圖,其顯示依據本發明之一第一且體者 例的記憶系統之基本結構; 只 圖2係-時序圖,其顯示—典型範例中之記憶系統操作 與功率消耗間之關係的一範例; 圖3係時序圖,其顯示該典型範例中之記憶系統操 與功率消耗間之關係的另一範例; 123317.doc -28- 200814087 圖4係一時序圖,其顯示本發明之第一呈體 各己憶系統操作盥功率、、亩 貝靶例中之 ^ 、力羊,為耗間之關係的一範例; 圖5係一方塊圖,i 八·、、、員不依據本發明之第_且 之記憶系統之一第一範例; ,、體只鈀例 圖6係一波形圖,1顯 -範例; …、、1不圖5所不記憶“之寫人操作之 圖7係一波形圖’其顯示圖5所示記憶系統中之增壓電壓 卿與操作輸出LPcspt/HPcspt間之關係; 曰“匕 ,係一方塊圖’其顯示依據本發明之第—具體實施例 之圮憶系統之一第二範例; 圖9係一電路圖,苴_ +仂缺+% 将口…、具不依據本發明之帛二具體實施例 之記憶系統之一第一範例; 圖H)顯示依據本發明之第二具體實施例之記憶系統之一 使用範例; 圖11係-電路圖,其顯示依據本發明之第二具體實施例 之記憶系統之一第二範例; 圖12係一方塊圖,其顯示記憶系統之一第一連接範例; 圖13係一方塊圖,其顯示記憶系統之一第二連接範例; 圖14係一方塊圖,其顯示依據本發明之第三具體實施例 之記憶系統之一範例; 圖1 5係一電路圖,其顯示依據本發明之第四具體實施例 的一記憶晶片内所包含之一操作輸出產生電路之一第一範 例; 圖16顯示一使用圖15所示記憶晶片之記憶系統之結構的 123317.doc -29- 200814087 一第一範例; 圖17顯示使用圖15所示記憶晶片之記憶系 第二範例; 統之結構的一 圖18係-電路圖’其顯示依據本發明之第四具體實施例 的該記憶晶片内所包含之操作輸出產生電路 # ^ 一辈色 例; 圖19顯示一使用圖18所示記憶晶片之記憶系 第一範例; 統之結構的 圖20顯示使用圖1 8所示記憶晶片之記憶系 第二範例;及 統之結構的一 圖2 1顯示使用圖1 8所示記传a y — / 乂 口日日片之記憶系統之結構的 第三範例。【主要元件符號說明】 1 2 3 3-1 至 3-n 10 l〇h 、 70h 11 20 21 30 31 記憶系統 控制器 記憶體 記憶體 呵功率消耗操作輸出產生電路 指令 細作模式切換信號產生電路 焉電壓產生電路 内部振盪器 N通道絕緣閘極FET 拉升式電阻器 123317.doc -30- 200814087Code: from the external finger ♦ operation machine, which determines a plurality of or single _ operations according to the output from the decoding source of the instruction, and outputs a control signal for controlling the memory control circuit according to the determined operation, And a high power consumption operation output generating circuit that determines one of the plurality or single operations based on an internal signal from the memory control circuit: and determines or eliminates the internal operation according to the determined internal operation of the operation High power consumption operation output. The memory chip of the memory chip (19), such as any one of (11) to (18), is a non-volatile semiconductor memory chip. :0) The non-volatile semiconductor memory wafer in the memory chip of (19) is a flash memory chip. ▲ (21) The memory chip of (1), wherein the ready-to-busy line pin is bound to the power consumption operation output and the one of the power consumption operation round-and-ready/busy line is selected and shared from the shared power consumption operation. Pin output. (22) The memory chip of (11), wherein the memory chip comprises: a first pin 'supplied to the high power consumption operation output for the 5th pin; and a first pin '4 the second The pin supplies a ready/busy line output, where the first 123317.doc -27-200814087 = one pin outputs the high power consuming operation wheel out and one of the ready/busy line outputs, or both outputs. The invention has been described in terms of certain specific embodiments. The present invention is not limited to the above = true_. Various modifications may be made without departing from the spirit of the invention in the practice of the invention. The tubes may be independently implemented as individual embodiments, but such specific embodiments may be combined as appropriate. The embodiment includes the various stages of the invention, and the various stages of the invention can be derived from the appropriate combination of the cows disclosed herein. In the specific embodiments, the invention has been described by way of example. Not π,:: applied to the memory system ^ The description is not limited to the memory system. The semiconductor integrated circuit device (10) integrated into the memory system is also within the scope of the present invention. An example of a non-volatile semiconductor memory is that the flash memory semiconductor memory is not limited to the reverse flash and the flash memory is different from the flash memory, for example, and Flash δ recall or reverse or flash memory. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing the basic structure of a memory system according to a first embodiment of the present invention; FIG. 2 is only a timing diagram showing the memory system in a typical example. An example of the relationship between operation and power consumption; FIG. 3 is a timing diagram showing another example of the relationship between memory system operation and power consumption in the typical example; 123317.doc -28- 200814087 FIG. 4 is a timing diagram The figure shows an example of the operation power of the first body of the present invention, the power of the amu target, and the force of the sheep, which is an example of the relationship between the consumption; FIG. 5 is a block diagram, i 八· The first example of a memory system according to the invention is not according to the present invention; , the body is only a palladium example, FIG. 6 is a waveform diagram, 1 display-example; ..., 1 does not remember in FIG. 5 Figure 7 is a waveform diagram showing the relationship between the boost voltage and the operation output LPcspt/HPcspt in the memory system shown in Fig. 5; 曰 "匕, is a block diagram" which is displayed according to the present invention a second example of a memory system of a specific embodiment; Figure 9 A circuit diagram, 苴 _ 仂 + % % % 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 ; ; 1 is a circuit diagram showing a second example of a memory system in accordance with a second embodiment of the present invention; FIG. 12 is a block diagram showing a first connection example of a memory system; 13 is a block diagram showing a second connection example of a memory system; FIG. 14 is a block diagram showing an example of a memory system according to a third embodiment of the present invention; FIG. A first example of one of the operational output generating circuits included in a memory chip according to the fourth embodiment of the present invention is shown; FIG. 16 shows a structure of a memory system using the memory chip shown in FIG. 29-200814087 A first example; FIG. 17 shows a second example of a memory system using the memory chip shown in FIG. 15; FIG. 18 is a diagram showing the structure of the system, and showing a fourth embodiment according to the present invention. The operation output generation circuit included in the memory chip is a first-generation color example; FIG. 19 shows a first example of the memory system using the memory chip shown in FIG. 18. FIG. 20 shows the structure shown in FIG. The memory of the wafer is a second example; and a diagram of the structure of the system shows a third example of the structure of the memory system using the ay_ / 日 日 日 日 日 日 。 。 。 。. [Main component symbol description] 1 2 3 3-1 to 3-n 10 l〇h, 70h 11 20 21 30 31 Memory system controller memory memory power consumption operation output generation circuit command fine mode switching signal generation circuit焉Voltage Generation Circuit Internal Oscillator N-Channel Insulated Gate FET Pull-Up Resistors 123317.doc -30- 200814087

32 P通道絕緣閘極FET 33 節點 34 - 35 功率消耗操作接針 40 電路板 41 佈線32 P-Channel Insulated Gate FET 33 Node 34 - 35 Power Consumption Operation Pin 40 Board 41 Wiring

42 50 51 60 61、66 62 接合線 功率消耗邊界設定暫存器 序列狀態判別電路 就緒/忙線產生電路 就緒/忙線接針 開關電路 62' 開關電路 6342 50 51 60 61, 66 62 Bonding wire Power consumption boundary setting register Sequence status discrimination circuit Ready/busy line generation circuit Ready/busy line pin switch circuit 62' Switch circuit 63

N通道絕緣閘極FET 64 CMOS傳輸閘極/開關 65 CMOS傳輸閘極/開關N-Channel Insulated Gate FET 64 CMOS Transmit Gate/Switch 65 CMOS Transmit Gate/Switch

68 69 101 102 103 104 功率消耗操作接針 就緒/忙線接針 功率消耗操作接針 記憶體單元陣列 記憶體控制電路 指令解碼器 操作機 105 輸入/輸出電路 106 資料暫存器 123317.doc -31 - 200814087 201 主機介面 202 中央處理單元 203 記憶體介面 204 唯讀記憶體 205 隨機存取記憶體 206 緩衝器 LPcspt//HPcspt 高功率消耗操作輸出 RY/BY 就緒輸出/忙線輸出 123317.doc 32-68 69 101 102 103 104 Power Consumption Operation Pin Ready/Bus Line Pin Power Consumption Operation Pin Memory Unit Array Memory Control Circuit Instruction Decoder Operator 105 Input/Output Circuit 106 Data Scratchpad 123317.doc -31 - 200814087 201 Host Interface 202 Central Processing Unit 203 Memory Interface 204 Read Only Memory 205 Random Access Memory 206 Buffer LPcspt//HPcspt High Power Consumption Operation Output RY/BY Ready Output/Busy Line Output 123317.doc 32-

Claims (1)

200814087 十、申請專利範圍: 1 ’種1己憶系統,其包含: 一記憶體,其執行寫入u 據個別操作中之内部取及抹除之操作’具有依 別操作中之”心 不同功率消耗,及在該等個 τ之1亥荨内部操作中一 高功率消耗操作輪出;及 〜里而時判定一 功能且接於-主機與該記憶體間的-介面 操作輪出:=:rr輸出,判定該一 耗模式。4其-操作模式切換至-低功率消 2·如請求項Γ之系統,其 之時門靳f 彳工制裔在该低功率消耗模式 守間暫停該記憶體之資料傳輸。 式 2长員1之系統’其中該控制器在 之時間停止供應一用以決定兮W 力羊功耗模式 -時序的内部時脈。 工制為、本身之内部操作之 4· = r求項2之系統’其中該控制器包括一操作模式 “號產生電路,其依據該高 、,刀、 ^ 门刀半功耗刼作輸出產生一用 二刀換該控制器之該操作模式的切換信號,及 介面電路,以及 ύ口體 將該切換信號供應至該記憶體介面電路, 信號已判定該低功率消耗模式 Μ刀換 停該記憶體之該資料傳輸。 …⑼體"面電路暫 123317.doc 1 .==之系統’其中該控制器包括-操作模式切換 4產生電路’其依據該高功率消耗操作輸出產生—用 200814087 於切換該控制器之該操作模 Blf 、旦& 、式的切換信號,及一 脈振盪電路,其使該内部時脈振盈,以及 内部時 :該切換信號供應至該内部振盈電路,且 號已判定該低功㈣㈣柄, ^切換信 内部時脈之振盪。 11卩振盪電路暫停該 6.如請求項!之系統,其進—步包 作輸出從該記憶體發送 ”功率消耗操 出線, ⑪制器的高功率消耗操作輸 其中該記憶體在判定該高功 高功率消耗操作輸出線 出時驅動該 亦然。 耗㈣輪出線設定為一高阻抗,反之 7·如請求項6之季絲,甘士 # ^ ’、、,、中该控制器包括一切換_ ¥ # ^ 電路,其依據該高功率洁釭η^ 換4諕產生 控制器之該摔作模气的士拖 產生-用於切換·該 二 ^朱作耦式的切換信號,以及 5亥切換信號產生電 — 在一為直供岸今古功n m 11 ’該電阻器係連接 仰:力率消耗操作輸出之供應點與—電劳 :、應之間’且該切換信號產生電路依 、:: 應點間之—連接節點之&與该供 〇 , ^ . s 電位產生该切換信號。 8·如峋求項6之系統,其進一齐 耗操作輸出線盥φ ^ ^ β 、接在該高功率消 料輸出線與-電源供應之間的電阻器。 9· 一種記憶晶片,其執杆宜λ ^ ^ 士 丁寫入、讀取及抹除之操作,曰且 有依據該等個別操作中 … 中該記憶晶片在該等個別操 “毛,其 Η永tF〒之忒4内部操作 123317.doc 200814087 力率4耗量高時判^ _高功率消耗操作輸出。 10·:::項9之記憶晶片,其中在該記憶晶片中,從外部 率消耗值之—位準,該位準判別該高功率消耗 森作輸出之判定與消除。 "二=们。之記憶晶片,其進一步包含1存該功率消 =之_位準的功率消耗邊界設定暫存器。 々吻求項9之記憶晶片,其中該記憶晶片包含: 一己隐體早7C陣列,其内整合有複數個記憶體單元. ?己憶體控制電路’其控制該記憶體單元陣列. =指令解碼器,其解碼一來自外部之指令; 知作機’其依據一來自該指令解 數個哎罝4σ Α 您W出決疋複 記依據已決定操作輸出-用以控制該 u體控制電路之控制信號;及 -高功率消耗操作輸出產生電路 機之該控制户觫土 A斗 土飞术自々插作 據該已決㈣=數個或單—操作之—者,並依 、疋知作中之内部操作決定 率消耗操作輸出。 還疋治除該高功 3长項9之s己憶晶片,其中該記憶晶片包含, 一記憶體單元Μ ^ ^ ^ Α * -記,㈣㈣ 複數個記憶體單元; …:f路’其控制該記憶體單元陣列. 一令解竭器’其解碼-來自外部之指令;’ 刼作機,其依據一來自該指令解碼 複數個或單-操作,並依據該已決定操;輪::疋該 制該記憶體控制電路之控㈣H ,一用以控 123317.doc 200814087 一鬲功率消耗操作輸出產生電路,其基於來自該指令 1 之為輪出決定該複數個或單一操作之一者,並依 據^已決定操作中之該内部操作決定判^還是消除該高 功率消耗操作輸出。 士口月求項9之記憶晶片,其中該記憶晶片包含:200814087 X. Patent application scope: 1 '1 1 memory system, which includes: a memory, which performs the operation of writing internal data in the individual operation and erasing operation. Consumption, and a high-power consumption operation in the internal operation of the τ 1 ;; and _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Rr output, determine the consumption mode. 4 its operation mode is switched to - low power consumption 2. If the system is requested, the threshold 靳f is completed and the memory is suspended in the low power consumption mode. The data transmission of the body. The system of the long-term 1 of the formula 2, in which the controller stops supplying the internal clock at the time to determine the power consumption mode-timing of the power system. The internal system of the internal system is 4 · = r system 2 of the solution 2, wherein the controller includes an operation mode "number generation circuit, which generates a switch for the controller according to the high, knives, and ^ knives half power consumption output Operating mode switching signal, and interface Road and ύ the nozzle switching signal is supplied to the memory interface circuit, it determines that the signal has a low power consumption mode transducer Μ knife stop transmission of the data of the memory. ...(9)body"face circuit temporary 123317.doc 1 .== system 'where the controller includes - operation mode switching 4 generating circuit' which is generated according to the high power consumption operation output - using 200814087 to switch the controller Operating mode Blf, dan & , switching signal, and a pulse oscillating circuit, which causes the internal clock to vibrate, and internal time: the switching signal is supplied to the internal oscillating circuit, and the number has determined the low power (4) (4) Handle, ^ Switch the internal clock oscillation of the letter. 11卩 oscillating circuit suspends the 6. system of request item!, the step-by-step packet is outputted from the memory, and the power consumption operation line is output, and the high power consumption operation of the controller is input, wherein the memory is determined. The high-power and high-power consumption operation output line is driven by the same. The consumption (four) wheel outlet line is set to a high impedance, and vice versa. 7. If the request item 6 is the quarter wire, Gans #^ ', ,,, the controller Including a switching _ ¥ # ^ circuit, which is based on the high power 釭 諕 諕 諕 諕 諕 諕 諕 諕 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 控制器 的And the 5 hai switching signal generates electricity - in the case of a direct supply of the current ancient work nm 11 'the resistor is connected to the anode: the rate of power consumption operation output supply point and - electricity:, should be between 'and the switching signal is generated The circuit depends on:: between the points - the connection node & and the supply, ^. s potential to generate the switching signal. 8 · If the system of the request 6, the input operation output line 盥 φ ^ ^ β, connected between the high power elimination output line and the power supply Resistors 9. A memory chip whose operation is to be written, read and erased by λ ^ ^ 士, and according to these individual operations... The memory chip is in the individual operation , Η t t t t〒 忒 4 internal operation 123317.doc 200814087 When the power rate 4 is high, the judgment is _ high power consumption operation output. 10:::: The memory chip of item 9, wherein in the memory chip, from the level of the external rate consumption value, the level determines the determination and elimination of the high power consumption. "Two = us. The memory chip further includes a power consumption boundary setting register for storing the power consumption. The memory chip of claim 9, wherein the memory chip comprises: a self-concealed early 7C array in which a plurality of memory cells are integrated. The memory control circuit 'controls the memory cell array. , which decodes an instruction from the outside; knows the machine 'based on a number of 哎罝 4σ from the instruction Α W 出 疋 疋 疋 疋 疋 疋 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已 已; and - high power consumption operation output generation circuit machine of the control household 觫 A 斗 斗 斗 々 々 々 々 々 々 々 々 据 据 据 据 据 据 据 据 据 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四The internal operation determines the rate to consume the operational output. Also in addition to the high-power 3 long term 9 s memory chip, wherein the memory chip contains, a memory cell Μ ^ ^ ^ Α * - note, (four) (four) a plurality of memory cells; ...: f road 'its control The memory cell array. A de-exhaustion device 'its decoding - an instruction from the outside; ' a machine that decodes a plurality of or single-operations from the instruction, and according to the determined operation; round::疋The control of the memory control circuit (4)H, one for controlling 123317.doc 200814087 a power consumption operation output generation circuit, based on which one of the plurality or single operations is determined by the rotation of the instruction 1 The high power consumption operation output is determined or determined according to the internal operation decision in the operation. The memory chip of the term 9 of the month, wherein the memory chip comprises: 思體單元陣列,其内整合有複數個記憶體單元; 一記憶體控制電路,其控制該記憶體單元陣列; 一指令解碼器,其解碼一來自外部之指令; 知作機’其依據一來自該指令解碼器之輸出決定該 :個或單一操作’並依據該已決定操作輸出一用以控 忒屺fe體控制電路之控制信號; 153功率消耗操作輸出產生電路,其基於—來自兮 電壓產生電路之内部信號決定該高電壓產生電路= 壓’並依據該已決定操作決定判定還是消除 回力率消耗操作輸出。 士明求項9之記憶晶片,其中該記憶晶片包含: -記憶體單元陣列’其内整合有複數個記憶 ::憶體控制電路,其控制該記憶體單元陣列广 -指令解碼器’其解碼一來自外部之指令; ::呆作機’其依據—來自該指令解碼 複數個或單一操作,並依據該已決定操作輪出^ 制^憶體控制電路之控制信號;及 雨功率消耗操作輸出產生電路,其基 水自呑 123317.doc 200814087 憶體控制電路之μ 者,甘# μ ° t唬決定該複數個或單一择# 1亚依據該已決定操作中之該 :㈣之- 消除該高功率消耗操作輸出。 "、乍决疋判定還是 16.如請求項9之記憒曰 ^ ^ 心_片,其中與一就緒/忙線拉私“ 咼功率消耗操作輪出 、接針共享該 作於屮傲 接針’且選擇該高功率嗜知4 作輸出與_就緒/忙線中的 辜趣操 .如請求項9 …予接針輪出。 -第-接針為該第:該記憶晶片包含: 出;及 ’ 接針供應§亥馬功率消耗操作輪 二:二接針’為該第二接針供 其中該等第—盥第- 有/忙線輪出, 與該就緒/忙綠輪出中—的:輪出:高功率消耗操作輪出 18+如請求項9之記憶晶片,二或:二兩者。 半導體記憶晶片。 ^心日日片係—非揮發性 19·如睛求項18之記憶晶片,其 片係—反及快閃記憶晶片。《性半導體記憶晶 123317.doca body unit array having a plurality of memory units integrated therein; a memory control circuit that controls the memory unit array; an instruction decoder that decodes an instruction from the outside; The output of the instruction decoder determines the one or a single operation 'and outputs a control signal for controlling the body control circuit according to the determined operation; 153 a power consumption operation output generation circuit based on - generating voltage from ? The internal signal of the circuit determines the high voltage generating circuit = voltage 'and determines whether to determine or eliminate the return force rate operation output according to the determined operation. The memory chip of claim 9, wherein the memory chip comprises: - a memory cell array in which a plurality of memories are integrated: a memory control circuit that controls the memory cell array wide-instruction decoder's decoding An instruction from the outside; :: the hangover machine's basis - from the instruction to decode a plurality of or a single operation, and according to the determined operation of the control signal of the control system; and the rain power consumption operation output The circuit is generated, the base water is self-呑123317.doc 200814087 The memory control circuit μ, Gan #μ ° t唬 determines the plural or single choice # 1 亚 according to the determined operation: (4) - eliminate the High power consumption operation output. ", 乍 疋 疋 还是 16 16 16 如 如 如 如 如 如 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Needle 'and select this high power level 4 for output and _ready/busy line in the fun operation. For example, request item 9 ... pre-pinning. - The first pin is the first: the memory chip contains: ; and 'pin supply § Haima power consumption operation wheel two: two pin 'for the second pin for the first - 盥 first - with / busy line round, with the ready / busy green round out —: Round out: High power consumption operation rounds 18+ memory chips as requested in item 9, two or two. Semiconductor memory chips. ^心日日系系- non-volatile 19·如相求18 The memory chip, its film system - anti-flash memory chip. "Sex semiconductor memory crystal 123317.doc
TW096128455A 2006-08-02 2007-08-02 Memory system and memory chip TW200814087A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006211198A JP4829029B2 (en) 2006-08-02 2006-08-02 Memory system and memory chip

Publications (1)

Publication Number Publication Date
TW200814087A true TW200814087A (en) 2008-03-16

Family

ID=38997334

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096128455A TW200814087A (en) 2006-08-02 2007-08-02 Memory system and memory chip

Country Status (7)

Country Link
US (2) US8892917B2 (en)
EP (1) EP2047367A4 (en)
JP (1) JP4829029B2 (en)
KR (1) KR101019864B1 (en)
CN (1) CN101517547B (en)
TW (1) TW200814087A (en)
WO (1) WO2008016162A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996277B2 (en) 2007-02-09 2012-08-08 株式会社東芝 Semiconductor memory system
KR20110032606A (en) * 2009-09-23 2011-03-30 삼성전자주식회사 Electronic device controller for improving performance of the electronic device
US9824056B2 (en) 2009-11-05 2017-11-21 Rambus Inc. Handshake signaling for interface clock management
CN101881996B (en) * 2010-07-19 2011-07-27 中国人民解放军国防科学技术大学 Parallel memory system check-point power consumption optimization method
US9417687B2 (en) 2011-07-12 2016-08-16 Rambus Inc. Dynamically changing data access bandwidth by selectively enabling and disabling data links
EP2764440B1 (en) * 2011-10-07 2021-02-17 Hitachi, Ltd. Storage system
US8819371B2 (en) 2011-10-07 2014-08-26 Hitachi, Ltd. Storage system
JP5998677B2 (en) * 2012-06-29 2016-09-28 富士通株式会社 Storage device and connection device
KR101977684B1 (en) 2012-12-12 2019-05-13 삼성전자 주식회사 A driving method of memory controller controlling nonvolatile memory device using variable resistive element, the memory controller, a memory system including the memory controller and nonvolatile memory device
KR102071550B1 (en) 2013-03-06 2020-01-31 삼성전자주식회사 Mobile device for power reduction and method thereof
KR101707266B1 (en) * 2013-08-29 2017-02-15 엘에스산전 주식회사 Apparatus and method for updating Operating System in Programmable Logic Controller
KR102632452B1 (en) * 2016-10-17 2024-02-05 에스케이하이닉스 주식회사 Semiconductor memory device and operating method thereof
KR102615227B1 (en) 2018-02-01 2023-12-18 에스케이하이닉스 주식회사 Memory system and operating method thereof
JP2021047699A (en) * 2019-09-19 2021-03-25 東芝情報システム株式会社 Flash memory evaluation device and method therefor
CN111427518B (en) * 2020-04-24 2023-01-24 西安紫光国芯半导体有限公司 Data protection method and NVDIMM
WO2022205086A1 (en) * 2021-03-31 2022-10-06 Yangtze Memory Technologies Co., Ltd. Power management mechanism and memory device having the same

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166370A (en) * 1991-12-18 1993-07-02 Matsushita Electric Ind Co Ltd Memory controller
US5490107A (en) * 1991-12-27 1996-02-06 Fujitsu Limited Nonvolatile semiconductor memory
US5452251A (en) * 1992-12-03 1995-09-19 Fujitsu Limited Semiconductor memory device for selecting and deselecting blocks of word lines
US5469399A (en) * 1993-03-16 1995-11-21 Kabushiki Kaisha Toshiba Semiconductor memory, memory card, and method of driving power supply for EEPROM
JP2838967B2 (en) * 1993-12-17 1998-12-16 日本電気株式会社 Power cut-off circuit for synchronous semiconductor device
US5495453A (en) * 1994-10-19 1996-02-27 Intel Corporation Low power voltage detector circuit including a flash memory cell
US5615162A (en) * 1995-01-04 1997-03-25 Texas Instruments Incorporated Selective power to memory
US5765002A (en) * 1995-03-13 1998-06-09 Intel Corporation Method and apparatus for minimizing power consumption in a microprocessor controlled storage device
US5826092A (en) * 1995-09-15 1998-10-20 Gateway 2000, Inc. Method and apparatus for performance optimization in power-managed computer systems
US5663919A (en) * 1996-02-28 1997-09-02 Micron Technology, Inc. Memory device with regulated power supply control
US6073204A (en) * 1997-04-23 2000-06-06 Micron Technology, Inc. Memory system having flexible architecture and method
JP3930074B2 (en) * 1996-09-30 2007-06-13 株式会社ルネサステクノロジ Semiconductor integrated circuit and data processing system
US6404274B1 (en) * 1998-04-09 2002-06-11 Kabushiki Kaisha Toshiba Internal voltage generating circuit capable of generating variable multi-level voltages
US6151262A (en) * 1998-10-28 2000-11-21 Texas Instruments Incorporated Apparatus, system and method for control of speed of operation and power consumption of a memory
JP2001109034A (en) * 1999-10-08 2001-04-20 Seiko Precision Inc Exposure controlling and driving device
JP3836279B2 (en) * 1999-11-08 2006-10-25 株式会社東芝 Semiconductor memory device and control method thereof
JP3768088B2 (en) * 2000-11-09 2006-04-19 松下電器産業株式会社 Memory card device
JP3697393B2 (en) * 2000-12-21 2005-09-21 株式会社東芝 Processor
US20030093702A1 (en) * 2001-03-30 2003-05-15 Zheng Luo System on a chip with multiple power planes and associate power management methods
KR100395770B1 (en) * 2001-05-23 2003-08-21 삼성전자주식회사 Novolatile flash memory device usable as a boot-up memory in a system and method of operating the same
US6771553B2 (en) * 2001-10-18 2004-08-03 Micron Technology, Inc. Low power auto-refresh circuit and method for dynamic random access memories
JP3962923B2 (en) * 2003-03-20 2007-08-22 セイコーエプソン株式会社 Semiconductor device, semiconductor circuit, electronic device, and clock supply control method
US7080217B2 (en) * 2003-03-31 2006-07-18 Intel Corporation Cycle type based throttling
US7213086B2 (en) * 2003-10-28 2007-05-01 Hewlett-Packard Development Company, L.P. System having a storage controller that modifies operation of a storage system based on the status of a data transfer
CN100470656C (en) * 2003-10-31 2009-03-18 宇田控股有限公司 Method and apparatus for generating oscillating clock signal
JP2005141811A (en) * 2003-11-05 2005-06-02 Renesas Technology Corp Nonvolatile memory
JP5087278B2 (en) * 2003-11-12 2012-12-05 エヌエックスピー ビー ヴィ Control of peak power consumption in electronic circuits.
JP4526841B2 (en) * 2004-03-09 2010-08-18 ルネサスエレクトロニクス株式会社 Memory control device and data processing system having the same
JP2005267734A (en) * 2004-03-18 2005-09-29 Renesas Technology Corp Boosting circuit and non-volatile memory using it
JP4488800B2 (en) * 2004-06-14 2010-06-23 株式会社ルネサステクノロジ Semiconductor integrated circuit device
JP4908064B2 (en) * 2005-08-19 2012-04-04 株式会社東芝 Semiconductor integrated circuit device
KR100784861B1 (en) * 2005-10-10 2007-12-14 삼성전자주식회사 Flash memory device and voltage generating circuit for the same
US7499339B2 (en) * 2006-07-19 2009-03-03 Sandisk Corporation High-performance flash memory data transfer
US7701764B2 (en) * 2006-05-17 2010-04-20 Micron Technology, Inc. Apparatus and method for reduced peak power consumption during common operation of multi-NAND flash memory devices
JP2009146467A (en) * 2007-12-11 2009-07-02 Toshiba Corp Semiconductor integrated circuit device

Also Published As

Publication number Publication date
KR20090026205A (en) 2009-03-11
CN101517547B (en) 2013-01-16
WO2008016162A1 (en) 2008-02-07
EP2047367A1 (en) 2009-04-15
KR101019864B1 (en) 2011-03-04
US20150039921A1 (en) 2015-02-05
JP2008040609A (en) 2008-02-21
US20090144484A1 (en) 2009-06-04
EP2047367A4 (en) 2012-11-14
US9880767B2 (en) 2018-01-30
US8892917B2 (en) 2014-11-18
JP4829029B2 (en) 2011-11-30
CN101517547A (en) 2009-08-26

Similar Documents

Publication Publication Date Title
TW200814087A (en) Memory system and memory chip
US7317658B2 (en) Semiconductor integrated circuit and IC card
JP3931249B2 (en) Nonvolatile memory that enables simultaneous reading and writing by time-multiplexing the decoding path
TWI582780B (en) Ultra-deep power-down mode for memory devices
TWI229347B (en) Internal voltage converter scheme for controlling the power-up slope of internal supply voltage
TWI486964B (en) High-performance flash memory data transfer method and device
US8625379B2 (en) Semiconductor storage device and electronic apparatus
JPH09502560A (en) Sequential programming of flash EEPROM memory
JP2011507140A5 (en)
TW200426844A (en) Nonvolatile semiconductor memory device
TW200912954A (en) Method and circuit for preventing high voltage memory disturb
TWI426527B (en) Circuit and method of driving a word line of a memory device
TWI734808B (en) Apparatus for switching voltage and semiconductor memory apparatus having the same
TW201212040A (en) FRDY pull-up resistor activation
US7454644B2 (en) Integrated circuit with low current consumption having a one wire communication interface
TWI246692B (en) Power supply with power saving in a display system
JP2004240795A (en) Nonvolatile storage device
JP2005176296A (en) High voltage switch circuit
JP4080043B2 (en) Booster circuit, semiconductor memory device, and data processing device
JP2006185530A (en) Nonvolatile semiconductor memory device
JP2007317236A (en) Nonvolatile storage device
US6285594B1 (en) Wordline voltage protection
US6429634B2 (en) Voltage boosting device, in particular for speeding power-up of multilevel nonvolatile memories
CN215682288U (en) Two-wire circuit architecture integrating switch and communication
JP2000100183A (en) Semiconductor integrated circuit and non-volatile memory