TW200815633A - Lyocell staple fiber - Google Patents

Lyocell staple fiber Download PDF

Info

Publication number
TW200815633A
TW200815633A TW96119363A TW96119363A TW200815633A TW 200815633 A TW200815633 A TW 200815633A TW 96119363 A TW96119363 A TW 96119363A TW 96119363 A TW96119363 A TW 96119363A TW 200815633 A TW200815633 A TW 200815633A
Authority
TW
Taiwan
Prior art keywords
holes
cross
staple fiber
sectional shape
filaments
Prior art date
Application number
TW96119363A
Other languages
Chinese (zh)
Other versions
TWI480437B (en
Inventor
Christoph Schrempf
Franz Durnberger
Wolfgang Uhlir
Original Assignee
Chemiefaser Lenzing Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemiefaser Lenzing Ag filed Critical Chemiefaser Lenzing Ag
Publication of TW200815633A publication Critical patent/TW200815633A/en
Application granted granted Critical
Publication of TWI480437B publication Critical patent/TWI480437B/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Woven Fabrics (AREA)

Abstract

The present invention relates to Lyocell staple fibre consisting of a plurality of cut filaments, which is characterized in that at least part of said cut filaments exhibit an overall cross-sectional shape which is a bi- or multi-filar cross-sectional shape resulting from notionally partially overlapping two or more fiber cross-sectional shapes.

Description

200815633 九、發明說明 【發明所屬之技術領域】 本發明係關於Lyocell短纖維。 【先前技術】200815633 IX. Description of the Invention [Technical Field of the Invention] The present invention relates to Lyocell short fibers. [Prior Art]

Lyocell纖維是一種從纖維素之有機溶劑(特別是含水 的三級胺氧化物)的溶液所紡成的纖維素纖維。今日,N-φ 甲基·嗎啉-N-氧化物(NMMO)在商業上可用來作爲溶劑以 製造Lyocell纖維。 製造標準Lyocell纖維之方法特別是由US 4,246,22 1 或WO 93/1 9230得知。該方法稱爲”胺氧化物方法”或” Lyocell 方法,,。Lyocell fiber is a cellulosic fiber spun from a solution of an organic solvent of cellulose, particularly an aqueous tertiary amine oxide. Today, N-φ methyl morpholine-N-oxide (NMMO) is commercially available as a solvent to produce Lyocell fibers. A method of making a standard Lyocell fiber is known in particular from US 4,246,22 1 or WO 93/1 9230. This method is called "amine oxide method" or "Lyocell method,".

Lyocell短纖維是一種藉由切斷多個(無末端)纖絲所得 之產物,該等纖絲藉著經由噴絲板令纖維素溶液紡絲且沉 澱所紡成之纖絲而獲得。 • 典型地,Lyocell纖維之截面形狀基本上是圓的。此 與標準之呈相當鋸齒截面形狀的膠黏纖維相反。 有多種製造具有限定之非圓形截面形狀之纖維素纖維 的方法被提出。例如,EP 0 301 874 A揭示一種製造所謂 之多葉型纖維素短纖維的方法。W0 04/85720揭示另外一 種藉著經由具有多葉噴絲板孔之噴絲板將紡絲溶液紡絲以 製造纖維素短纖維的方法。” Y”形截面之纖維素纖維亦在 GB-A- 2 085 3 04 中提及。 JP-A 61-113812 及’’Verzug, Verstreckung und 200815633Lyocell staple fiber is a product obtained by cutting a plurality of (endless) filaments obtained by spinning a cellulose solution through a spinneret and depositing the spun filaments. • Typically, the cross-sectional shape of the Lyocell fiber is substantially round. This is in contrast to standard adhesive fibers that have a serrated cross-sectional shape. A variety of methods for making cellulosic fibers having a defined non-circular cross-sectional shape have been proposed. For example, EP 0 301 874 A discloses a process for the manufacture of so-called multi-lobed cellulosic staple fibers. WO 04/85720 discloses another method for producing cellulosic staple fibers by spinning a spinning solution through a spinneret having a multi-leaf spinneret orifice. Cellulose fibers of the "Y" cross section are also mentioned in GB-A-2 085 3 04. JP-A 61-113812 and ’’Verzug, Verstreckung und 200815633

Querschnittsmodifizierung beim Viskosespinnen”,T reiber E.,Chemiefasern 5(1 967) 344-348 之刊物揭示:藉著經由 具有多葉噴絲板孔之噴絲板擠出紡絲溶液以製造(無末端) 纖維素纖絲。 所有以上之參考資料限於經由膠黏方法製造纖維素纖 維。就其物理及紡織性質而言,膠黏纖維相當不同於 Lyocell 纖維。 “Y”形Lyocell纖維之製造於EP 0 5 74 870 A中提及 〇 JP 1 0- 1 40429 A揭示再生纖維素纖維,其是藉著經由 具有接鄰安置之纖維形成孔排列之噴絲板將膠黏溶液紡絲 而製造。在經由噴絲板將溶液紡絲後,經由這些纖維形成 孔所擠出之纖絲被熔化以形成不規則截面形狀之纖維。 【發明內容】 本發明之一目的是要提供一種具有限定之非圓形截面 形狀之Lyocell短纖維。 此目的藉一種由多個切斷纖絲所組成之Lyocell短纖 維所解決,該等Lyocell短纖維特徵在於至少部分之該等 切斷纖絲具有一種自槪念上部分重疊二或更多個纖維截面 形狀所得呈雙絲或多絲截面形狀的總截面形狀。 【實施方式】 供本發明之目的所用之“雙絲或多絲”截面形狀意指 -6- 200815633 一種自槪念上部分重疊二或更多個纖維截面形狀所得之截 面形狀。 亦即,雙絲截面形狀是一種自部分重疊二個纖維截面 形狀所得的形狀。三絲截面形狀是一種自部分重疊三個截 面形狀所得的形狀,其餘以此類推。所得之形狀在以下也 稱爲“總截面形狀”以與被部分重疊之單一截面形狀相對 〇 1 若在以下中使用例如“短纖維之截面形狀”之詞,則 此被了解是指構成依本發明之短纖維之纖絲的總截面形狀 〇 在一較佳具體表現中,至少部分的,較佳是所有的該 等部分重疊的截面形狀基本上是圓形。 依照此較佳具體表現之雙絲或多絲截面形狀因此具有 數個呈圓之片段的部分,亦即這些圓形的片段不重疊。另 外,雙絲或多絲截面形狀在那些圓形被槪念上重疊的部分 中具有刻痕或鋸齒狀。 該等二或更多個部分重疊的圓形可以具有基本上相同 之直徑。或者,一或更多個該等部分重疊的圓形可以具有 比其餘之該等重疊的圓形更大之直徑。此指明所得之總截 面形狀由部分重疊之較小及較大之圓形的組合所組成。 如以下將更詳細描述的,依本發明之Lyocell短纖維 可以藉著經由噴絲板將纖維素溶液紡絲而製造,其中至少 部分的該等噴絲板噴嘴由二或更多個接鄰安置之孔組合所 組成,以致當溶液經由該等孔擠出時由該等孔擠出之纖絲 -7- 200815633 被部分地熔化以形成熔化的纖絲。 這指明爲要製造Lyocell短纖維(其雙絲或多絲截面形 狀是如上述之部分重疊之較小及較大圓形之組合),纖維 素溶液可以經由某種幾何排列之具有不同直徑之接鄰的圓 形孔來擠出。 這不僅得到已定義之特定的總截面形狀,另外此類之 本發明的短纖維具有令人意外的高皺縮値。 φ 無意侷限於任何理論,咸信此具體表現之本發明短纖 維的高皺縮値起因於:設定氣隙中某一總擠出速度及某一 總拉伸比率,若纖絲由Μ有不同直徑之紡絲孔擠出,則溶 在一起以形成熔化纖絲所得的單纖絲具有不同之抗張性, 以致有某種天然張力及因此之天然皺縮於熔化之纖絲中。 在一較佳具體表現中,依本發明之纖維的總截面形狀 是自槪念上重疊二個基本上圓形所得之雙絲截面形狀。 在另一較佳具體表現中,該等總截面形狀是一種自槪 • 念上重疊三個基本上圓形所得的三絲截面形狀。 該等三個重疊的圓形可以排成一排或呈三角形。該三 角形較佳基本上可以是等腰三角形。 在另一較佳具體表現中,該等總截面形狀是一種由槪 念上重疊四個基本上圓形所得之四絲截面形狀。 該等四個重疊圓形或者可以排成一排,成正方形,平 行四邊形或菱形,或呈三角形,而該等圓形之一形成該等 三角形之中心。 包含纖絲而具有如上述之雙絲、三絲或四絲截面形狀 -8- 200815633 的Lyocell短纖維可以具有0·5至8 dtex之分特(decitex) 。此分特之短纖維對於織品應用是特別有用的。在吸收劑 產物之領域中,或在纖維塡充物或毛毯之領域中’可以使 用最高達40dt ex或更高之分特的依本發明之短纖維。 依本發明之短纖維的總截面形狀也可以是自槪念上重 疊5或更多個,較佳是5或7個基本上圓形所得之多絲截 面形狀。在此具體表現中,纖維典型具有高於6dtex之分 • 特。 依本發明之短纖維的部分重疊截面形狀的至少一者可 以是非圓形截面形狀。 亦即,依本發明之短纖維之纖絲成分的總截面形狀可 以是部分重疊之圓形及非圓形截面形狀的組合,或彼甚至 可以單獨地由部分重疊之非圓形截面形狀所組成。 該等非圓形截面形狀可以是多葉形,較佳是三葉形或 三角开多。 φ 依本發明之短纖維之特別較佳之具體表現特徵在於基 本上所有的切斷纖絲具有基本上相同之總截面形狀。 依此具體表現之短纖維在其截面形狀及所達成之各種 物性及紡織性方面具有相當均勻的性質。 在另一具體表現中,構成依本發明之Lyocell短纖維 的纖絲可以至少部分具有中空之雙絲或多絲截面形狀。中 空結構可以藉下方式獲得:藉選擇與紡絲孔之尺寸及距離 相關之紡絲參數以使擠出之單一纖絲不完全熔化,而是使 一隙縫留在所形成之熔化纖絲的中心。 -9- 200815633 令人驚訝地已發現:依本發明之Lyocell短纖維與具 有相同分特之相當的標準Lyocell短纖維相比,具有顯著 較高之韌度。特別地,依本發明之Lyo cell短纖維纖維韌 度在調節狀況時,與相同分特之比較性Lyocell短纖維的 纖維韌度相比,高至少1 5%,較佳是至少20%,其中該比 較性Lyocell短纖維之所有切斷纖絲具有基本上圓的截面 〇 ^ 另外,依本發明之Lyocell短纖維具有令人意外之高 的撓曲剛度。 特別地,依本發明之Lyocell短纖維具有至少〇·5毫 牛頓•平方毫米/平方特,較佳是大於0.6毫牛頓•平方毫 米/平方特之與分特有關之撓曲剛度。 撓曲剛度藉本申請人所發展之方法來測量。所測量之 値顯示爲在以分特爲基準計之線性測量範圍內,力之梯度 對途徑的關係。 Φ 爲要進行此測量,經調節之纖維被夾持於一夾持棒中 且用切割裝置來切割成精準之5毫米長度。夾持棒藉電齒 輪以定速向上移動。藉此,纖維被壓在作爲力感應器之小 的感應器板上。纖維越剛硬,所測量之力越高。 因缺乏校正之可能性,沒有給予有效的力以供計算撓 曲剛度。然而,可能在特定之測量範圍內進行纖維之相對 性的比較。藉此,在所經途徑上且與纖維之分特相關之所 測量之力的線性測量範圍內測量梯度。 製造依本發明之Lyocell短纖維的方法包含以下步驟 -10- 200815633 -經由具有多個噴絲板噴嘴的噴絲板擠出溶於含水之三級 胺氧化物的纖維素溶液以形成纖絲 一經由氣隙將該等纖絲導入沉澱浴中 -拉延於該氣隙中之該等纖絲 -將空氣吹於該氣隙中之該等纖絲上 -將該等纖絲沉澱於該沉澱浴中 -切斷該等沉澱的纖絲以形成切斷纖絲, 其特徵在於 -至少部分之該等噴絲板噴嘴由接鄰安置之二或更多個孔 的組合所組成,以使溶液經該等孔擠出時,由該等孔擠 出之纖絲部分熔化以形成一熔化的纖絲。 令人驚訝地已發現:若纖維素之NMMO溶液經由如 以上所說明之噴絲板擠出,則熔化之纖絲導致具有極均勻 且可複製之雙絲或多絲截面形狀者。 在依本發明之方法中,至少部分的,更佳是所有的該 等噴絲板孔是圓形。所有的該等孔可以具有相同直徑。 可選擇地,一或更多個該等孔可以具有比其餘之該等 孔更大的直徑。在此情況中’獲得之截面形狀是如上述之 部分重疊較小及較大圓形的組合者。較大直徑之孔的截面 積對較小直徑之孔的孔截面積的比例較佳是超過1:1至 16:1,較佳是 6:1 至 2.7:1。 在另一具體表現中,該噴絲板噴嘴由一個各爲圓形之 -11 - 200815633 孔所組成。 該噴絲板噴嘴也可由三個各爲圓形之孔所組成。此三 個孔可以排成一排,得到一個整個是扁平橢圓形的熔化纖 絲截面形狀。 再者,該等三孔可以排成三角形,較佳是等腰三角形 。若所有噴絲板孔直徑相同,或特別是若等腰三較形之二 等邊之交點中的孔直徑大於其他二孔之直徑,則所得之熔 化纖絲之總截面形狀會有類似“泰迪熊”之本質,二個部 分重疊之圓形形成熊之“耳”,等腰三角形之二等邊之焦 點處之孔所紡成之纖絲的圓形則形成“面”。 該噴絲板噴嘴也可由四個各爲圓形之孔所組成。 此四孔可以排成一排,而再次得到扁平且橢圓之熔化 纖絲的截面形狀。 可選擇地,該等四孔可以排成正方形、平行四邊形或 菱形。若所有的噴絲板孔直徑相同,所得之熔化纖絲之總 截面形狀則分別類似正方形、平行四邊形或菱形。 該等四孔也可排成三角形,而該等孔之一形成該等三 角形之中心。再次,按照所用之噴絲板孔之直徑可以得到 三角形或類似“泰迪熊”形狀。 該噴絲板噴嘴也可以由5或更多個,較佳是5或7個 各爲圓形之孔所組成。當然,可能有多種不同之孔的幾何 排列,得到多種不同之熔化纖絲之截面形狀,其在以下參 考圖示更詳細地顯示。 正如以上所顯明的,熔化纖絲之總截面形狀不僅按照 -12- 200815633 所用之噴絲板孔之數目及幾何排列’而且與孔直徑大小極 有關係。亦即,藉改變孔直徑或藉提供不同直徑之孔的幾 何排列,所得之熔化纖絲的截面形狀會深受影響。 在本發明之另一具體表現中,至少一個該等孔爲非圓 形。該非圓形可以是多葉,較佳是三葉或三角形。 較佳地,所有該等噴絲板噴嘴由在該等孔之幾何排列 、形狀及尺寸方面爲相同之孔的組合所組成。亦即,在此 具體表現中,孔之所有組合具有相同的幾何排列,且在該 等排列中孔之個別尺寸及形狀對所有組合而言皆相同。藉 此具體表現,已發現可能獲得具有基本上相同之雙絲或多 絲截面形狀的多個纖絲。相當令人驚訝地,此種均勻且可 複製之纖絲(及短纖維)截面可以在胺氧化或Lyocell方法 中獲得。 在經由均勻之噴絲板噴嘴紡絲時,這些較佳可以位於 多個平行排上。在該等排之每一者內,孔之所有組合可以 基本上彼此平行定向。 另外,已發現:若吹在氣隙中該等纖絲上之空氣以特 定方向直接導至該等纖絲,則噴絲板孔之幾何排列及其個 別之尺寸及形狀可以在熔化之纖絲中最恰當地複製: 一在該等孔呈排的排列情況中,吹動方向較佳應基本上平 行於該排的方向 一在該等孔之三角形排列的情況中,吹動方向較佳應基本 上平行於該三角形底線之一的方向 -在該等孔之正方形排列的情況中,吹動方向較佳應基本 -13- 200815633 上平行於該正方形底線之一的方向 -在該等孔之其他幾何排列的情況中,吹動方向較佳應基 本上平行於該排列之主定向軸方向。 數個幾何排列之主要定向軸的實例參考圖示在以下給 予。 在該等孔組合中該等孔之直徑可以是3 5至200微米 。在非圓形情況中,“直徑” 一詞指明可以外接此非圓形 之圓形的直徑。如已提及的,可以使用不同直徑之孔於一 孔組合中。 在該等孔組合中一孔之中心至鄰近之另一孔之中心的 距離較佳可以是100至5 00微米,較佳是150至250微米 。熟練之技術人員可以按照所要之熔化纖絲之總截面形狀 調節距離。藉合適地調節各孔間之距離及各孔的直徑,可 以製造具有中空截面形狀之短纖維。 依本發明之Lyocell短纖維可用於多種最終用途中,例 如醫藥一、衛生-、家用織品,技術-及衣物應用,特別 是包紮用敷料、剖腹手術用墊、床墊、棉塞、衛生棉墊、 手帕、失禁用產品、枕頭、棉被、毛巾、毛毯、羽毛織物 、斜紋布、緞子、絕緣材料、聚合物或紙類或混凝土之強 化纖維、紡織物件、例如針織或機織之紡織物件、襯衫衣 料、絲絨、其濃(chinos)、棉類手織物及所製成之衣服。 特別地,依本發明之Lyocell短纖維可用於任何需要 更剛硬、更易碎且更“類似棉”之手感,或交替之熱及水 處性質或不同光學性質的應用中。 -14- 200815633 本發明之較佳具體表現現將藉由圖式及實例描述。 依照圖1,製造二絲截面形狀之Lyocell短纖維用的 噴絲板噴嘴由二噴絲板孔組成(左側)。這些孔有相同或不 同之直徑。任意較小之孔直徑由較小之圓所指明,反之亦 然(此適用於所有圖1至7)。 圖1右側所示之陰影結構顯示經由左側之噴絲板噴嘴 所紡成之熔化纖絲的二種可能的總截面形狀。在二個具有 相同大直徑之孔的情況中,得到由二個部分重疊之比較大 之圓所組成之雙絲截面。在二個孔之一者具有較小直徑之 情況中,得到例如在圖1右端所示之陰影結構的截面,其 中較大之圓與較小之圓部分重疊。 圖1中之箭頭指明吹動之空氣應導引至擠出之纖絲的 較佳方向,爲要達成熔化纖絲之截面形狀之再現性及均勻 性的最佳結果。 圖2至7是基於圖1之相同原則的結構:在左側上, 顯示噴絲板結構之幾何排列。自其右側,顯示數種可能之 纖維截面形狀(陰影結構),但與個別孔之直徑(小或大)無 關。另外在這些圖之每一者中,指明空氣之較佳吹動方向 〇 因此,在以下對於圖2至7僅給予一些敘述: 關於圖2A),若使用相同直徑之孔,則顯示呈排之三 絲截面形狀。吹動方向較佳是基本上平行於此排。 圖2B)顯示三角形構型之三絲截面形狀。特別地,若 等腰三角形之二等邊之交點中的孔是較大的(此由圖2B左 -15- 200815633 側上之三角形構型中的粗線所指明的),得到類似“泰迪 熊”形狀(陰影結構之中間者)。吹動方向較佳是基本上平 行於紡絲孔之三角形的底線。 圖3A)至3C)顯示四絲總截面形狀之各種具體表現。 由箭頭所指明之較佳吹動方向對所示之所有具體表現3A) 至3C)較佳是相同的。在圖3A)的情況中(柱狀之孔排列) ,吹動方向較佳基本上平行於此排。在圖3B)之情況中(正 方形之孔排列),吹動方向較佳基本上平行於正方形底線 之一。在圖3C)之情況中,較佳之吹動方向基本上平行於 噴絲板孔之幾何排列之主定向軸。或者,較佳吹動方向可 以基本上平行於圖3B)之正方形的主要對角線,或在圖 3 C)之情況中,可以基本上平行於孔之上端及下端間之連 線所定義之軸。 在圖4A)及4B)中,所示之幾何排列的個別主定向軸 用虛線指明。由按照個別孔直徑所示之孔排列所得之截面 形狀是自明的。按照圖A)之陰影結構顯示:藉適當地選 擇四個噴絲板孔之個別距離可得之中空截面結構。 與圖4A)及4B)二者有關之較佳吹動方向基本上是平 行於其中所指明之主定向軸。 同理適用於圖5A)及5B),其顯示經由具有5個鄰近 之噴絲板孔之噴絲板噴嘴令溶液紡絲所得之截面形狀。 圖6及7顯示另外之具體表現,其包括經由具有7個 鄰近噴絲板孔之噴絲板噴嘴令溶液紡絲所得之截面形狀( 圖7)且包括中空之截面形狀。 -16- 200815633 實例: 實例1 : 圖8及9說明空氣之吹動方向對本發明之短纖維可得 之截面形狀的影響。 在每一情況中,使用一種具有不同噴絲板噴嘴之噴絲 板,其中該噴嘴各自由排成三角形之三個孔所組成。在每 一噴嘴中,二個孔之直徑是80微米且一個孔之直徑是120 微米。較大孔中心至鄰近孔中心之距離各是250微米。 圖8A、8B及9A分別顯示個別之噴絲板構型及所用 之空氣吹動方向。 所有其他的紡絲參數是固定的,唯一的變數是空氣吹 動方向(在圖8A、8B及9A中分別由箭頭指明)。 正如圖8C)(其顯示按照圖8A之實驗結果)及圖8D)( 其顯示按照圖8B之實驗結果)與圖9B)(其顯示按照圖9A 之實驗結果)之比較所顯明的’使用按照圖9 A)之排列(亦 即其中空氣以基本上平行於分別由二個較小孔所定義之三 角形底線方向吹至纖絲)達成纖維截面形狀之最佳均勻性 及原有噴絲板孔構型之複製。 實例2 : 圖10及11顯示由上述與圖8及9有關之噴絲板構型 所製造之依本發明之Lyo cell短纖維的截面形狀。 13%之纖維素於NMM0中所成之標準紡絲溶液在110 -17- 200815633 °C下經由所述之噴絲板構型來紡絲且引導經一個約20毫 米長的氣隙。 吹動之空氣導至擠出之纖絲。吹動方向基本上平行於 由二個較小噴絲板孔所定義之三角形底線(參考圖9A)。 圖1 0及1 1二者顯示所得纖絲之極均勻的截面形狀及 噴絲板孔之類似”泰迪熊”構型的良好複製。 φ 實例3 : 爲製造圖1 2 .中所說明之短纖維,使用各具有4個孔 之噴絲板噴嘴。每一孔具有1 00微米之直徑。一孔之中心 至其鄰近孔的距離是500微米。孔排成菱形。吹動之空氣 平行於菱形之主定向軸以導至所紡成之纖絲(參考圖4A)。 12.3%之纖維素於NMMO中所成之標準紡絲溶液在120°C 下經由所述之噴絲板構型來紡絲且引導經一個約20毫米 長之氣隙。 Φ 如圖12所顯明的,所得之短纖絲顯示優越之均勻截 面形狀且具有明顯可複製之中空結構。 實例4 : 應用一組固定的紡絲參數,製造具有不同分特之具有 基本上圓的截面之標準Lyocell短纖維及具有三絲截面形 狀之Lyocell短纖維(分別由具有如所述之與實例1及圖8 及9有關的噴嘴的噴絲板所紡成)。下表比較所得之纖維 的纖維韌度。 -18- 200815633 表1 噴絲板 構造 所用之 紙漿 分特 (dtex) 纖維韌度 (調節狀態) cN/dtex 纖維延長度 (調節狀態(%) 纖維形式 圓 Bacell* 3.3 35.5 14.5 Lyocell-標準 比較性實例1 Bacell 3.3 40.2 9.9 Lyocell-三絲 ''泰迪熊〃 圓 Bacell 6.7 31.3 12.4 Lyocell-標準 比較性實例1 Bacell 6.7 36.5 11.0 Lyocell-三絲 >泰迪熊〃 圓 KZ03" 6.7 23.7 9.60 Lyocell-標準 比較性實例1 KZ03 6.7 30.7 11.20 Lyocell-三絲 ”泰迪熊〃 比較性實例1 KZ03 18.7 23.3 9.8 Lyocell-三絲 A泰迪熊〃 B a c e 11是由B a h i a B r a s i 1所製造之經T C F漂白的桉樹硫 酸鹽紙漿 ** ΚΖ03是一種由Lenzing AG所製造之經TCF漂白的山 毛櫸亞硫酸鹽紙漿。 可以容易地看出:依本發明之Lyocell短纖維與具有 相同分特之標準Lyoeell短纖維相比有明顯更高之纖維韌 度。 實例5 : 使用如所述之分別與實例1及圖8及9有關之噴絲板 -19- 200815633 構型所製造之依本發明之Lyocell短纖維就其與分特有關 之撓曲剛度,與其他不同形式之纖維素纖維比較。結果顯 示於表2中:Publication of Querschnittsmodifizierung beim Viskosespinnen", T reiber E., Chemiefasern 5 (1 967) 344-348 discloses the manufacture of (no end) cellulose by extruding a spinning solution through a spinneret having a multi-leaf spinneret orifice Filaments. All of the above references are limited to the manufacture of cellulose fibers via an adhesive process. Adhesive fibers are quite different from Lyocell fibers in terms of their physical and textile properties. "Y" shaped Lyocell fibers are manufactured in EP 0 5 74 870. A. pp. JP 10-4040429 A discloses regenerated cellulose fibers which are produced by spinning an adhesive solution through a spinneret arranged with adjacent fibers forming pores. After the solution is spun, the filaments extruded through the fiber-forming pores are melted to form fibers of irregular cross-sectional shape. SUMMARY OF THE INVENTION One object of the present invention is to provide a non-circular cross-sectional shape having a defined shape. Lyocell staple fiber. This object is solved by a Lyocell staple fiber composed of a plurality of cut filaments characterized by at least a portion of the staple fibers The filament has a total cross-sectional shape which is a double-filament or multifilament cross-sectional shape obtained by partially overlapping two or more fiber cross-sectional shapes. [Embodiment] A "double or multifilament" cross section for the purpose of the present invention. Shape means -6-200815633 A cross-sectional shape obtained by partially overlapping two or more fiber cross-sectional shapes. That is, the double-wire cross-sectional shape is a shape obtained by partially overlapping two fiber cross-sectional shapes. The cross-sectional shape is a shape obtained by partially overlapping three cross-sectional shapes, and the like, and so on. The resulting shape is also referred to as "total cross-sectional shape" hereinafter to be opposed to a single cross-sectional shape that is partially overlapped 〇 1 if used in the following For example, the term "cross-sectional shape of short fibers" is understood to mean the total cross-sectional shape of the filaments constituting the staple fibers according to the present invention, in a preferred embodiment, at least in part, preferably all of the The partially overlapping cross-sectional shape is substantially circular. The preferred double-filament or multi-filament cross-sectional shape thus has a plurality of rounded segments That is, the circular segments do not overlap. In addition, the cross-sectional shape of the twin or multifilament has a score or a zigzag in the portion where the circular shape is overlapped. The two or more partially overlapping circles It may have substantially the same diameter. Alternatively, one or more of the partially overlapping circles may have a larger diameter than the remaining overlapping circles. This indicates that the resulting total cross-sectional shape is partially overlapped. A combination of small and large round shapes. As will be described in more detail below, Lyocell staple fibers according to the present invention can be made by spinning a cellulose solution through a spinneret, at least a portion of which is sprayed. The wire nozzle is composed of two or more adjacently disposed hole combinations such that the filaments extruded from the holes when the solution is extruded through the holes are partially melted to form a molten fiber. wire. This indicates that the Lyocell staple fiber is to be produced (the cross-sectional shape of the twin or multifilament is a combination of smaller and larger circles as partially overlapped as described above), and the cellulose solution can be connected to different diameters via some geometric arrangement. Adjacent circular holes to extrude. Not only does this result in a specific overall cross-sectional shape that has been defined, but such short fibers of the present invention have surprisingly high shrinkage. φ is not intended to be limited to any theory. It is believed that the high shrinkage of the short fibers of the present invention is caused by setting a certain total extrusion speed in the air gap and a certain total elongation ratio, if the filaments are different from one another. The spinning holes of the diameter are extruded, and the monofilaments which are dissolved together to form the melted filaments have different tensile properties, so that there is some natural tension and thus natural shrinkage in the melted filaments. In a preferred embodiment, the overall cross-sectional shape of the fibers according to the present invention is a two-wire cross-sectional shape obtained by overlapping two substantially circular shapes. In another preferred embodiment, the total cross-sectional shape is a three-wire cross-sectional shape obtained by overlapping three substantially circular shapes. The three overlapping circles can be arranged in a row or in a triangle. Preferably, the triangle may be an isosceles triangle. In another preferred embodiment, the total cross-sectional shape is a four-wire cross-sectional shape resulting from overlapping four substantially circular shapes. The four overlapping circles may be arranged in a row, square, parallelogram or diamond, or triangular, and one of the circles forms the center of the triangles. A Lyocell staple fiber comprising fibrils having a double-filament, three-wire or four-wire cross-sectional shape as described above -8-200815633 may have a decitex of 0.5 to 8 dtex. This short staple fiber is particularly useful for fabric applications. Short fibers according to the invention may be used in the field of absorbent products, or in the field of fiber impregnations or felts, which can be used up to 40 dt ex or higher. The total cross-sectional shape of the short fibers according to the present invention may also be a multifilament cross-sectional shape obtained by folding 5 or more, preferably 5 or 7 substantially circular shapes. In this specific performance, the fiber typically has a fraction of more than 6 dtex. At least one of the partially overlapping cross-sectional shapes of the staple fibers according to the present invention may be a non-circular cross-sectional shape. That is, the total cross-sectional shape of the fibril component of the staple fiber according to the present invention may be a combination of partially overlapping circular and non-circular cross-sectional shapes, or it may even consist of a partially overlapping non-circular cross-sectional shape. . The non-circular cross-sectional shape may be a multilobal shape, preferably a trilobal shape or a triangular opening. Particularly preferred embodiment of φ according to the present invention is characterized in that substantially all of the cut filaments have substantially the same overall cross-sectional shape. The short fibers thus expressed have relatively uniform properties in terms of their cross-sectional shape and various physical properties and textile properties achieved. In another specific embodiment, the filaments constituting the Lyocell staple fiber according to the present invention may have at least partially a hollow twin or multifilament cross-sectional shape. The hollow structure can be obtained by selecting the spinning parameters associated with the size and distance of the spinning holes so that the extruded individual filaments are not completely melted, but leaving a gap at the center of the formed molten filaments. . -9- 200815633 Surprisingly, it has been found that the Lyocell staple fiber according to the present invention has a significantly higher toughness than the standard Lyocell staple fiber having the same equivalent. In particular, the Lyo cell staple fiber toughness according to the present invention is at least 1 5%, preferably at least 20% higher than the fiber toughness of the comparative Lyocell staple fiber of the same decitex when adjusted. All of the cut filaments of the comparative Lyocell staple fiber have a substantially round cross section. In addition, the Lyocell staple fiber according to the present invention has an unexpectedly high flexural rigidity. In particular, the Lyocell staple fiber according to the present invention has a flexural rigidity of at least 毫·5 millinewtons·square mm/square, preferably greater than 0.6 millinewtons·square millimeters per square tex. The flexural rigidity is measured by the method developed by the applicant. The measured 値 is shown as the relationship of the force gradient to the path over the linear measurement range on a decibel basis. Φ To make this measurement, the adjusted fiber is clamped in a clamping bar and cut with a cutting device to a precision length of 5 mm. The clamping bar is moved upwards at a constant speed by the electric gear. Thereby, the fiber is pressed on a small sensor board as a force sensor. The harder the fiber, the higher the force measured. Due to the lack of correction, no effective force is given for calculating the flexural rigidity. However, it is possible to compare the relatives of the fibers within a specific measurement range. Thereby, the gradient is measured over a linear measurement range of the measured force and the measured force associated with the fiber. The method for producing a Lyocell staple fiber according to the present invention comprises the following steps - 10, 2008, 15633 - extruding a cellulose solution dissolved in an aqueous tertiary amine oxide via a spinneret having a plurality of spinneret nozzles to form a filament Introducing the filaments into the precipitation bath via an air gap - the filaments drawn in the air gap - blowing air onto the filaments in the air gap - depositing the filaments in the precipitate In the bath - cutting the precipitated filaments to form a cut filament, characterized in that - at least part of the spinneret nozzles consist of a combination of two or more pores arranged adjacent to each other to make the solution Upon extrusion through the holes, the filaments extruded from the holes are partially melted to form a molten filament. Surprisingly it has been found that if the NMMO solution of cellulose is extruded through a spinneret as described above, the melted filaments result in a very uniform and replicable double or multifilament cross-sectional shape. In the method according to the invention, at least part, and more preferably all of the orifices of the spinneret are circular. All of the holes may have the same diameter. Alternatively, one or more of the holes may have a larger diameter than the remaining ones. In this case, the cross-sectional shape obtained is a combination of a small overlap and a large circular shape as described above. The ratio of the cross-sectional area of the larger diameter hole to the smaller cross-sectional area of the smaller diameter hole is preferably more than 1:1 to 16:1, preferably 6:1 to 2.7:1. In another embodiment, the spinneret nozzle is comprised of a circular -11 - 200815633 hole. The spinneret nozzle can also be composed of three circular holes each. The three holes can be arranged in a row to obtain a cross-sectional shape of the melted filament which is entirely flat elliptical. Furthermore, the three holes may be arranged in a triangle, preferably an isosceles triangle. If the diameters of all the spinneret holes are the same, or especially if the diameter of the holes in the intersection of the two equal sides of the isosceles is larger than the diameter of the other two holes, the total cross-sectional shape of the obtained melted filaments will be similar to "Thai". The essence of Di Xiong, the two overlapping circles form the "ear" of the bear, and the round shape of the fibril spun from the hole at the focus of the equilateral side of the isosceles triangle forms a "face". The spinneret nozzle can also be composed of four circular holes each. The four holes can be arranged in a row, and the cross-sectional shape of the flat and elliptical melted filaments is again obtained. Alternatively, the four holes may be arranged in a square, a parallelogram or a diamond. If all of the spinneret holes have the same diameter, the resulting cross-sectional shape of the molten filaments is similar to a square, a parallelogram or a diamond. The four holes may also be arranged in a triangle, and one of the holes forms the center of the triangles. Again, a triangle or a "Teddy Bear" shape can be obtained depending on the diameter of the spinneret hole used. The spinneret nozzle may also be composed of 5 or more, preferably 5 or 7, holes each having a circular shape. Of course, there may be a plurality of different pore geometries that result in a variety of different cross-sectional shapes of the molten filaments, which are shown in more detail in the following referenced drawings. As has been shown above, the total cross-sectional shape of the melted filaments is not only in accordance with the number and geometric arrangement of the orifices used in -12-200815633 but also in relation to the diameter of the pores. That is, the cross-sectional shape of the resulting molten filaments is greatly affected by changing the diameter of the pores or by providing a geometric arrangement of pores of different diameters. In another embodiment of the invention, at least one of the holes is non-circular. The non-circular shape may be a multi-lobed, preferably a trilobal or a triangular. Preferably, all of said spinneret nozzles are comprised of a combination of identical apertures in the geometric arrangement, shape and dimensions of the apertures. That is, in this particular representation, all combinations of holes have the same geometric arrangement, and the individual sizes and shapes of the holes in the array are the same for all combinations. By this specific expression, it has been found that it is possible to obtain a plurality of filaments having substantially the same double or multifilament cross-sectional shape. Quite surprisingly, such uniform and reproducible filament (and short fiber) cross sections can be obtained in an amine oxidation or Lyocell process. These may preferably be located on a plurality of parallel rows when spinning through a uniform spinneret nozzle. Within each of the rows, all combinations of holes can be oriented substantially parallel to each other. In addition, it has been found that if the air blown on the filaments in the air gap is directed to the filaments in a particular direction, the geometric arrangement of the orifices of the spinneret and its individual size and shape can be in the melted filaments. The most appropriate reproduction: in the case of the arrangement of the holes, the blowing direction should preferably be substantially parallel to the direction of the row. In the case of the triangular arrangement of the holes, the blowing direction is preferably In a direction substantially parallel to one of the bottom lines of the triangle - in the case of a square arrangement of the holes, the direction of the blow should preferably be substantially parallel to the direction of one of the bottom lines of the square - 13-200815633 - in the holes In the case of other geometric arrangements, the direction of the blow should preferably be substantially parallel to the direction of the main orientation axis of the arrangement. An example reference diagram of the main orientation axes of several geometric arrangements is given below. The diameter of the holes in the combination of holes may be from 35 to 200 microns. In the non-circular case, the term "diameter" indicates the diameter of the circular shape that can be circumscribed. As already mentioned, holes of different diameters can be used in a combination of holes. The distance from the center of one of the holes to the center of the other of the holes in the combination of holes may preferably be from 100 to 500 μm, preferably from 150 to 250 μm. The skilled artisan can adjust the distance according to the desired total cross-sectional shape of the molten filament. Short fibers having a hollow cross-sectional shape can be produced by appropriately adjusting the distance between the holes and the diameter of each hole. The Lyocell staple fiber according to the invention can be used in a variety of end uses, such as medicine, hygiene, household fabrics, technology and clothing applications, in particular dressings for dressing, laparotomy pads, mattresses, tampon, sanitary pads , handkerchiefs, incontinence products, pillows, quilts, towels, blankets, feather fabrics, twill, satin, insulating materials, polymer or paper or concrete reinforced fibers, textile articles, textile articles such as knitted or woven, shirt fabrics , velvet, its chinos, cotton hand fabrics and the clothes made. In particular, the Lyocell staple fibers according to the present invention can be used in any application requiring a more rigid, more brittle, and more "cotton-like" hand, or alternating heat and water properties or different optical properties. -14- 200815633 The preferred embodiment of the present invention will now be described by way of example and example. According to Fig. 1, a spinneret nozzle for producing a two-wire cross-sectional shape of Lyocell short fibers is composed of two spinneret holes (left side). These holes have the same or different diameters. Any smaller hole diameter is indicated by a smaller circle and vice versa (this applies to all Figures 1 to 7). The shaded structure shown on the right side of Figure 1 shows the two possible overall cross-sectional shapes of the melted filaments spun through the spinneret nozzles on the left side. In the case of two holes having the same large diameter, a double wire cross section composed of two relatively large circles partially overlapping is obtained. In the case where one of the two holes has a smaller diameter, a section of the shaded structure such as shown at the right end of Fig. 1 is obtained, in which the larger circle partially overlaps the smaller circle. The arrows in Figure 1 indicate the preferred direction in which the blown air should be directed to the extruded filaments for the reproducibility and uniformity of the cross-sectional shape of the molten filaments. Figures 2 to 7 are structures based on the same principle of Figure 1: On the left side, the geometric arrangement of the spinnerette structure is shown. From the right side, several possible fiber cross-sectional shapes (shaded structures) are shown, but are independent of the diameter (small or large) of individual holes. In addition, in each of these figures, the preferred direction of blowing of the air is indicated. Therefore, only some of the following descriptions are given for Figures 2 to 7: With respect to Figure 2A), if holes of the same diameter are used, the display is in rows. Three wire cross-sectional shape. The direction of the blow is preferably substantially parallel to the row. Figure 2B) shows the three-wire cross-sectional shape of the triangular configuration. In particular, if the hole in the intersection of the equilateral sides of the isosceles triangle is larger (this is indicated by the thick line in the triangular configuration on the left -15-200815633 side of Figure 2B), it is similar to "Teddy". Bear shape (the middle of the shadow structure). The direction of the blow is preferably substantially parallel to the bottom line of the triangle of the spinning orifice. 3A) to 3C) show various specific expressions of the total cross-sectional shape of the four wires. The preferred direction of blow indicated by the arrows is preferably the same for all of the specific representations 3A) to 3C) shown. In the case of Fig. 3A) (column arrangement of holes), the direction of the blow is preferably substantially parallel to this row. In the case of Fig. 3B) (the square hole arrangement), the blowing direction is preferably substantially parallel to one of the square bottom lines. In the case of Fig. 3C), the preferred direction of blowing is substantially parallel to the main orientation axis of the geometric arrangement of the orifices of the spinneret. Alternatively, the preferred direction of blow may be substantially parallel to the major diagonal of the square of Figure 3B) or, in the case of Figure 3 C), may be substantially parallel to the line defined between the upper and lower ends of the aperture. axis. In Figures 4A) and 4B), the individual main orientation axes of the geometric arrangement shown are indicated by dashed lines. The cross-sectional shape obtained by arranging the holes according to the diameter of the individual holes is self-evident. According to the shaded structure of Figure A), the hollow cross-sectional structure is obtained by appropriately selecting the individual distances of the four spinneret holes. The preferred direction of blow associated with both Figures 4A) and 4B) is substantially parallel to the main orientation axis indicated therein. The same applies to Figs. 5A) and 5B) which show the cross-sectional shape obtained by spinning a solution through a spinneret nozzle having five adjacent spinneret holes. Figures 6 and 7 show additional specific manifestations including the cross-sectional shape (Figure 7) obtained by spinning a solution through a spinneret nozzle having seven adjacent spinneret orifices and including a hollow cross-sectional shape. -16- 200815633 Example: Example 1: Figures 8 and 9 illustrate the effect of the direction of blowing of air on the cross-sectional shape of the staple fibers of the present invention. In each case, a spinneret having different spinneret nozzles was used, wherein the nozzles each consisted of three holes arranged in a triangle. In each nozzle, the diameter of the two holes is 80 microns and the diameter of one hole is 120 microns. The distance from the center of the larger hole to the center of the adjacent hole is 250 microns each. Figures 8A, 8B and 9A show the individual spinnerette configurations and the direction of air blowing used, respectively. All other spinning parameters are fixed and the only variable is the air blowing direction (indicated by arrows in Figures 8A, 8B and 9A, respectively). As shown in Fig. 8C) (which shows the experimental results according to Fig. 8A) and Fig. 8D) (which shows the experimental results according to Fig. 8B) and Fig. 9B) (which shows the experimental results according to Fig. 9A), the use is as follows. Figure 9 A) arrangement (i.e., where air is blown to the filaments substantially parallel to the direction of the triangle bottom line defined by the two smaller holes) to achieve optimum uniformity of the fiber cross-sectional shape and the original spinneret hole Copy of configuration. Example 2: Figures 10 and 11 show the cross-sectional shape of the Lyo cell staple fiber according to the present invention produced by the above-described spinnerette configuration relating to Figures 8 and 9. A standard spinning solution of 13% cellulose in NMM0 was spun through the spinnerette configuration at 110-17-200815633 °C and directed through an air gap of about 20 mm long. The blown air is directed to the extruded filaments. The direction of the blow is substantially parallel to the triangular bottom line defined by the two smaller spinneret holes (see Figure 9A). Both Figures 10 and 1 1 show a very uniform cross-sectional shape of the resulting filaments and a good replication of a similar "Teddy Bear" configuration of the spinneret holes. φ Example 3: To produce the short fibers described in Fig. 12, spinneret nozzles each having 4 holes were used. Each well has a diameter of 100 microns. The distance from the center of a hole to its adjacent hole is 500 microns. The holes are arranged in a diamond shape. The blown air is parallel to the main axis of the diamond to guide the spun filament (see Figure 4A). A standard spinning solution of 12.3% cellulose in NMMO was spun through the spinnerette configuration at 120 °C and directed through an air gap of about 20 mm length. Φ As shown in Fig. 12, the resulting short fibrils exhibit a superior uniform cross-sectional shape and have a substantially reproducible hollow structure. Example 4: Using a fixed set of spinning parameters, a standard Lyocell staple fiber having a substantially circular cross section and a Lyocell staple fiber having a three-wire cross-sectional shape were produced (respectively as described with Example 1 And the spinnerets of the nozzles of Figures 8 and 9 are spun). The following table compares the fiber tenacity of the resulting fibers. -18- 200815633 Table 1 Plexus dtex fiber toughness (adjusted state) for spinneret construction cN/dtex Fiber elongation (adjustment state (%) Fiber form round Bacell* 3.3 35.5 14.5 Lyocell-standard comparison Example 1 Bacell 3.3 40.2 9.9 Lyocell-Trifilament ''Teddy Bear's Round Bacell 6.7 31.3 12.4 Lyocell-Standard Comparative Example 1 Bacell 6.7 36.5 11.0 Lyocell-Three Wires>Teddy Bear Cub Round KZ03" 6.7 23.7 9.60 Lyocell- Standard Comparative Example 1 KZ03 6.7 30.7 11.20 Lyocell-Trifil" Teddy Bear Pup Comparative Example 1 KZ03 18.7 23.3 9.8 Lyocell-Trifil A Teddy Bear B ace 11 is a TCF manufactured by B ahia Brasi 1 Bleached Eucalyptus Kraft Pulp** ΚΖ03 is a TCF-bleached beech sulfite pulp manufactured by Lenzing AG. It can be easily seen that the Lyocell staple fiber according to the present invention and the standard Lyoeell staple fiber having the same decitex Compared to the significantly higher fiber tenacity. Example 5: Using the spinneret -19-200815633 configuration as described above with respect to Example 1 and Figures 8 and 9, respectively The Lyocell staple fiber produced according to the present invention is compared with other different types of cellulose fibers in terms of its flexural rigidity in relation to the decitex. The results are shown in Table 2:

-20- 200815633-20- 200815633

纖維型式 所用之 紙漿 分特 (dtex) 撓曲剛度 (毫牛頓•平方 毫米/平方特) 膠黏-標準 KZ03 1.7 0.29 膠黏-標準 KZ03 1.9 0.24 膠黏-標準 KZ03 1.7 0.2 9 模型纖維-由具有三葉孔 之噴絲板製造 KZ03 6.2 0.41 模型纖維-由具有三葉孔 之噴絲板製造 KZ03 6.4 0.34 模型纖維-由具有三葉孔 之噴絲板製造 KZ03 6.5 0.44 模型纖維-由具有三葉孔 之噴絲板製造 KZ03 6.6 0.35 Lyocell-三絲、'泰迪熊" KZ03 Ϊ 6.7 0.5 1 Lyocell-三絲A泰迪熊" KZ03 16.7 0.5 Lyocell-三絲、泰迪熊" B ace11 3.6 0.91 Lyocell-三絲、泰迪熊夕 KZ0 3 6.4 0.54 Lyocell-三絲、泰迪熊Λ/ KZ03 6.5 0.69 Lyocell-三絲 '、泰迪熊" S a i c c o r * 6.8 0.63 Lyocell·三絲、'泰迪熊夕 Bacell 6.5 0.65 Lyocell-三絲、'泰迪熊" B a c e 11 6.5 0.68 Lyocell-三絲、泰迪熊" Bacell 6.5 0.63 Lyocell-三絲、'泰迪熊〃 Bacell 6.5 0.62 Lyocell-三絲 '、泰迪熊" Bacell 6.4 0.69 Lyocell-標準 Bacell 6.1 0.37 是由S aiccor South Africa所製造之經TCF漂白的桉樹 亞硫酸鹽紙漿 -21 - 200815633 在以上實例中之模型纖維依照PCT/AT/000493 (無預 ' 先公告)來製造。 由表2顯明:具有類似三絲“泰迪熊”形狀之截面形 狀與所觀察之其他纖維素纖維相比具有顯著更高之與分特 相關之撓曲剛性。特別地,依本發明之Ly〇ce11短纖維之 與分特相關之撓曲剛性在所有實例中皆高於0 ·5毫牛頓· 平方毫米/平方特。 【圖式簡單說明】 圖1槪略地顯示適於製造二絲截面形狀之纖絲用之噴 絲板噴嘴,空氣之較佳吹動方向及由該等噴絲板噴嘴所紡 成之纖絲的可能的總截面形狀。 圖 2 A)及2B)槪略地顯示二種不同之適於製造三絲截 面形狀之纖絲用之噴絲板噴嘴,空氣之較佳吹動方向及由 該等噴絲板噴嘴所紡成之纖絲的可能的截面形狀。 ® 圖3A)至3C)槪略地顯示三種不同之適於製造四絲截 面形狀之纖絲用之噴絲板噴嘴,空氣之較佳吹動方向及由 該等噴絲板噴嘴所紡成之纖絲的可能的截面形狀。 圖4A)至4B)槪略地顯示另外二種適於製造四絲截面 形狀之纖絲用之噴絲板噴嘴,空氣之較佳吹動方向及由該 等噴絲板噴嘴所紡成之纖絲的可能的截面形狀。 圖5 A)至5 B)槪略地顯示另外二種不同之適於製造由 5個纖維截面形狀所構成之截面形狀之纖絲用的噴絲板噴 嘴,空氣之較佳吹動方向及由該等噴絲板噴嘴所紡成之纖 -22- 200815633 絲的可能的截面形狀。 圖6A)至6B)槪略地顯示另外二種適於製造由5個纖 維截面形狀所構成之截面形狀之纖絲用的噴絲板噴嘴,空 氣之較佳吹動方向及由該等噴絲板噴嘴所紡成之纖絲的可 能的截面形狀。 圖7A)至7B)槪略地顯示二種不同之適於製造由7個 纖維截面形狀所構成之截面形狀之纖絲用的噴絲板噴嘴, φ 空氣之較佳吹動方向及由該等噴絲板噴嘴所紡成之纖絲的 可能的截面形狀。 圖8A)至8D)顯示二個依本發明之製造三絲截面形狀 之短纖維的具體表現。 圖9 A)至9B)顯示另一個依本發明之製造三絲截面形 狀之短纖維的具體表現。 圖10顯示依本發明之Lyocell短纖維的三絲截面形狀 〇 # 圖11顯示依本發明之另一個Lyo cell短纖維的三絲截 面形狀。 圖12顯示依本發明之具有中空結構之Lyo cell短纖維 的四絲截面形狀。 -23-Dtex Flexural Stiffness (millitons·mm 2 / ft) for the fiber type Adhesive - Standard KZ03 1.7 0.29 Adhesive - Standard KZ03 1.9 0.24 Adhesive - Standard KZ03 1.7 0.2 9 Model fiber - by having Three-leaf hole spinneret manufacturing KZ03 6.2 0.41 model fiber - manufactured from a spinneret with three-leaf holes KZ03 6.4 0.34 model fiber - manufactured from a spinneret with three-leaf holes KZ03 6.5 0.44 model fiber - with three leaves Knob Spinning Plate Manufacturing KZ03 6.6 0.35 Lyocell-Three Wire, 'Teddy Bear' KZ03 Ϊ 6.7 0.5 1 Lyocell-Three Wire A Teddy Bear" KZ03 16.7 0.5 Lyocell-Three Wire, Teddy Bear " B ace11 3.6 0.91 Lyocell-Trifil, Teddy Bear KZ0 3 6.4 0.54 Lyocell-Trifil, Teddy Bear/KZ03 6.5 0.69 Lyocell-Trifilite, Teddy Bear " S aiccor * 6.8 0.63 Lyocell·Three Wire, ' Teddy Bear Bacell 6.5 0.65 Lyocell-Trifil, 'Teddy Bear' B ace 11 6.5 0.68 Lyocell-Trifil, Teddy Bear & Baquot 6.5 0.63 Lyocell-Trifil, 'Teddy Bear Bacell 6.5 0.62 Lyocell - Three Silk', Teddy Bear " B Acell 6.4 0.69 Lyocell-Standard Bacell 6.1 0.37 is a TCF bleached eucalyptus sulfite pulp manufactured by Saiccor South Africa-21 - 200815633 The model fibres in the above examples are in accordance with PCT/AT/000493 (no prior notice) ) to manufacture. It is evident from Table 2 that the cross-sectional shape having a shape similar to the three-filament "Teddy Bear" has a significantly higher flexural rigidity associated with Dtex than the other cellulose fibers observed. In particular, the flexural rigidity associated with the Leycece 11 short fibers according to the present invention is higher than 0. 5 millinewtons per square millimeter per square tex in all cases. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a spinneret nozzle for producing a filament having a cross-sectional shape of a second wire, a preferred blowing direction of air, and a filament spun from the nozzle of the spinneret. Possible total cross-sectional shape. 2) and 2B) schematically show two different spinneret nozzles suitable for making filaments of a three-wire cross-section shape, the preferred blowing direction of air and the spinning of the nozzles of the spinnerets Possible cross-sectional shape of the filament. ® Figures 3A) to 3C) show three different spinneret nozzles for filaments of a four-wire cross-section shape, the preferred direction of blowing of the air and the spinning of the nozzles of the spinnerets Possible cross-sectional shape of the filament. 4A) to 4B) schematically show two other spinneret nozzles suitable for producing filaments having a four-wire cross-sectional shape, a preferred blowing direction of air and a fiber spun from the nozzles of the spinneret Possible cross-sectional shape of the wire. Figures 5A) to 5B) schematically show two different spinneret nozzles suitable for producing filaments having a cross-sectional shape composed of five fiber cross-sectional shapes, the preferred blowing direction of air and The possible cross-sectional shape of the fiber -22-200815633 filament spun by the spinneret nozzles. 6A) to 6B) schematically show two other spinneret nozzles suitable for producing a filament having a cross-sectional shape composed of five fiber cross-sectional shapes, a preferred blowing direction of air and by the spinning Possible cross-sectional shape of the filaments spun from the plate nozzle. 7A) to 7B) schematically show two different spinneret nozzles suitable for producing a filament having a cross-sectional shape composed of seven fiber cross-sectional shapes, a preferred blowing direction of φ air, and the like Possible cross-sectional shape of the filaments spun from the spinneret nozzle. Figures 8A) through 8D) show the specific performance of two short fibers of the three-wire cross-sectional shape according to the present invention. Figures 9A) through 9B) show the specific performance of another short fiber of the three-wire cross-sectional shape according to the present invention. Fig. 10 shows the three-wire cross-sectional shape of the Lyocell short fiber according to the present invention. Fig. 11 shows the three-wire cross-sectional shape of another Lyo cell short fiber according to the present invention. Fig. 12 shows a four-wire cross-sectional shape of a Lyo cell short fiber having a hollow structure according to the present invention. -twenty three-

Claims (1)

200815633 (1) 十、申請專利範園 1·一種由多個切斷纖絲組成之Lyocell短纖維,其特 徵在於至少部分之該等切斷纖絲具有一種自槪念上部分重 疊二或更多個纖維截面形狀所得呈雙絲或多絲截面形狀的 總截面形狀。 2·如申請專利範圍第1項之Lyocell短纖維,其中至 少部分,較佳是全部之該等部分重疊之截面形狀基本上是 _ 圓形。 3. 如申請專利範圍第2項之Lyocell短纖維,其中該 二或更多個部分重疊之圓形具有基本上相同之直徑。 4. 如申請專利範圍第2項之Lyocell短纖維,其中一 或更多個該等部分重疊的圓形直徑比其餘之重疊圓形直徑 更大。 5. 如申請專利範圍第1至4項中任一項之Lyocell短 纖維,其中該總截面形狀是一種由槪念上重疊二個基本上 # 圓形所得之雙絲截面形狀。 6. 如申請專利範圍第1至4項中任一項之Lyocell短 纖維,其中該總截面形狀是一種由槪念上重疊三個基本上 圓形所得之三絲截面形狀。 7. 如申請專利範圍第6項之Lyocell短纖維,其中該 三個重疊的圓形排成一排。 8. 如申請專利範圍第7項之Lyocell短纖維,其中該 三個重疊的圓形排成三角形。 9. 如申請專利範圍第8項之Lyocell短纖維,其中該 -24- 200815633 (2) 三角形是基本上等腰三角形。 10·如申請專利範圍第1至4項中任一項之Lyoce11短 纖維,其中該總截面形狀是一種由槪念上重疊四個基本上 圓形所得之四絲截面形狀。 11. 如申請專利範圍第10項之Ly〇ce11短纖維’其中 該四個重疊的圓形排成一排。 12. 如申請專利範圍第10項之Lyocell短纖維,其中 φ 該四個重疊的圓形排成正方形、平行四邊形或菱形。 13. 如申請專利範圍第10項之Lyocell短纖維’其中 該四個重疊的圓形排成三角形,而該等圓形之一形成該三 角形的中心。 14. 如申請專利範圍第1至4項中任一項之Lyocell短 纖維,其中該等纖絲具有0.5至8 dtex,較佳是〇·5至4 dtex 的分特(decitex)。 15. 如申請專利範圍第1至4項中任一項之Lyocell短 φ 纖維,其中該總截面形狀是一種由槪念上重疊5或更多個 ,較佳是5或7個基本上圓形所得之多絲截面形狀。 16. 如申請專利範圍第1至4項中任一項之Lyocell短 纖維,其中該等部分重疊之截面形狀的至少一者是非圓形 截面形狀。 17. 如申請專利範圍第16項之Lyocell短纖維,其中 該非圓形截面形狀是多葉的,較佳是三葉形或三角形。 18. 如申請專利範圍第1至4項中任一項之Lyocell短 纖維,其中基本上所有的切斷纖絲具有基本上相同的總截 -25- 200815633 (3) 面形狀。 19.如申請專利範圍第1至4項中任一項之Lyocell短 纖維,其中該總截面形狀是中空的。 2 0.如申請專利範圍第1至4項中任一項之Lyocell短 纖維,其纖維韌度在調節狀況時與相同分特之比較性 Lyocell短纖維之纖維韌度相比,高至少15%,較佳是至 少20%,其中該比較性Lyocell短纖維之所有切斷纖絲具 φ 有基本上圓的截面。 21.如申請專利範圍第1至4項中任一項之Lyocell短 纖維,其具有至少0.5毫牛頓·平方毫米/平方特,較佳 是大於0.6毫牛頓·平方毫米/平方特之與分特有關之撓 曲剛度。 22. —種製造如先前申請專利範圍中之任一項的 Lyocell短纖維的方法,其包含以下步驟: -經由具有多個噴絲板噴嘴的噴絲板擠出溶於含水之三級 • 胺氧化物的纖維素溶液以形成纖絲 -經由氣隙將該等纖絲導入沉澱浴中 -拉延於該氣隙中之該等纖絲 -將空氣吹於該氣隙中之該等纖絲上 -將該等纖絲沉澱於該沉澱浴中 -切斷該等沉澱的纖絲以形成切斷纖絲, 其特徵在於 -至少部分之該等噴絲板噴嘴由接鄰安置之二或更多個孔 的組合所組成,以使溶液經該等孔擠出時,由該等孔擠出 -26- 200815633 (4) 之纖絲部分熔化以形成一熔化的纖絲。 2 3.如申請專利範圍第22項方法,其中至少部分,較 佳是全部之該等孔是圓形。 24.如申請專利範圍第23項之方法,其中所有該等孔 具有相同的直徑。 2 5.如申請專利範圍第23項之方法,其中至少一或更 多個該等孔具有比其餘之孔更大的直徑。 φ 26.如申請專利範圍第25項之方法,其中具有較大直 徑之孔的截面積對具有較小直徑之孔的截面積的比例是大 於 1 : 1 至 1 6 : 1,較佳是 1 · 6 :1 至 2.7 ·· 1。 27.如申請專利範圍第22至26項中任一項的方法, 其中該噴絲板噴嘴由二個各爲圓形之孔所組成。 2 8.如申請專利範圍第22至26項中任一項的方法, 其中該噴絲板噴嘴由三個各爲圓形之孔所組成。 29.如申請專利範圍第28項之方法,其中該三個孔排 φ 成一排。 3 0.如申請專利範圍第28項之方法,其中該三個孔排 成三角形。 3 1.如申請專利範圍第28項之方法,其中該三角形是 等腰三角形。 3 2.如申請專利範圍第22至26項中任一項的方法, 其中該噴絲板噴嘴由四個各爲圓形之孔所組成。 33.如申請專利範圍第32項之方法,其中該四個孔排 成一排。 -27- 200815633 (5) 34·如申請專利範圍第32項之方法,其中該四個孔排 成正方形、菱形或平行四邊形。 3 5 ·如申請專利範圍第3 2項之方法,其中該四個孔排 成三角形,而該等孔之一形成該三角形之中心。 3 6·如申請專利範圍第22至26項中任一項的方法, 其中該噴絲板噴嘴由5或更多個,較佳爲5或7個各爲圓 形之孔所組成。 φ 37.如申請專利範圍第22至26項中任一項的方法, 其中該等孔之至少一者是非圓形。 38·如申請專利範圍第37項之方法,其中該非圓形是 多葉形狀,較佳是三葉形或三角形。 3 9.如申請專利範圍第22至26項中任一項的方法, 其中所有該等噴絲板噴嘴由在孔之幾何排列、形狀及尺寸 方面是相同之孔組合所組成。 40.如申請專利範圍第39項之方法,其中該等噴絲板 # 噴嘴安排成多個平行排且其中在每一排中所有之孔組合彼 此基本上平行定向。 4 1 ·如申請專利範圍第4 0項之方法,其中該吹在氣隙 中該等纖絲上的空氣被導引至該等纖絲 -在該等孔呈排的排列情況中,基本上平行於該排的方向 -在該等孔之三角形排列的情況中’基本上平行於該三角 形底線之一的方向 -在該等孔之正方形排列的情況中’基本上平行於該正方 形底線之一的方向 -28- 200815633 (6) -在該等孔之其他幾何排列的情 列之主定向軸方向。 42. 如申請專利範圍第22至 其中在該孔組合中之該等孔的直 43. 如申請專利範圍第22至 其中於該孔組合中一孔中心至接 1〇〇至500微米,較佳是150至 φ 4 4 · 一種如申請專利範圍第1 Lyocell短纖維用於選自下列產占丨 一、家用紡織品,技術一及衣物 剖腹手術用墊、床墊、棉塞、衛 品、枕頭、棉被、毛巾、毛毯、 、絕緣材料、聚合物或紙類或混 件' 例如針織或機織之紡織物件 (chinos)、棉類手織物及所製成力 況中,基本上平行於該排 26項中任一項的方法, 徑是3 5至2 0 0微米。 :26項中任一項的方法, 鄰之另一孔中心的距離是 250微米。 至2 1項中任一項的 ^的用途:醫藥一、衛生 應用,例如包紮用敷料、 生棉墊、手帕、失禁用產 羽毛織物、斜紋布、緞子 凝土之強化纖維、紡織物 、襯衫衣料、絲絨、其濃 1衣服。 -29-200815633 (1) X. Patent Application Park 1. A Lyocell staple fiber composed of a plurality of cut filaments, characterized in that at least some of the cut filaments have a self-concealing partial overlap of two or more The cross-sectional shape of the fiber is obtained as a total cross-sectional shape of a cross-sectional shape of a double or multifilament. 2. The Lyocell staple fiber of claim 1, wherein at least a portion, preferably all of the partially overlapping cross-sectional shapes are substantially _ circular. 3. The Lyocell staple fiber of claim 2, wherein the two or more partially overlapping circles have substantially the same diameter. 4. The Lyocell staple fiber of claim 2, wherein one or more of the partially overlapping circular diameters are larger than the remaining overlapping circular diameters. 5. The Lyocell staple fiber of any one of claims 1 to 4, wherein the total cross-sectional shape is a cross-sectional shape of a twin wire obtained by merging two substantially circular circles. 6. The Lyocell staple fiber of any one of claims 1 to 4, wherein the total cross-sectional shape is a three-wire cross-sectional shape obtained by commemorating overlapping three substantially circular shapes. 7. The Lyocell staple fiber of claim 6 wherein the three overlapping circles are arranged in a row. 8. The Lyocell staple fiber of claim 7, wherein the three overlapping circles are arranged in a triangle shape. 9. For the Lyocell staple fiber of claim 8 of the patent scope, wherein the -24-200815633 (2) triangle is a substantially isosceles triangle. The Lyoce11 short fiber of any one of claims 1 to 4, wherein the total cross-sectional shape is a four-wire cross-sectional shape obtained by merging four substantially circular shapes. 11. The Lycce 11 staple fiber of claim 10, wherein the four overlapping circles are arranged in a row. 12. The Lyocell staple fiber of claim 10, wherein φ the four overlapping circles are arranged in a square, parallelogram or diamond shape. 13. The Lyocell staple fiber of claim 10, wherein the four overlapping circles are arranged in a triangle, and one of the circles forms the center of the triangle. 14. The Lyocell staple fiber of any one of claims 1 to 4, wherein the filaments have a decitex of from 0.5 to 8 dtex, preferably from 5 to 4 dtex. 15. The Lyocell short φ fiber according to any one of claims 1 to 4, wherein the total cross-sectional shape is a fifth or more overlap, preferably 5 or 7 substantially circular The resulting multifilament cross-sectional shape. 16. The Lyocell staple fiber of any one of claims 1 to 4, wherein at least one of the partially overlapping cross-sectional shapes is a non-circular cross-sectional shape. 17. The Lyocell staple fiber of claim 16, wherein the non-circular cross-sectional shape is multilobal, preferably trilobal or triangular. 18. The Lyocell staple fiber of any one of claims 1 to 4 wherein substantially all of the stapled filaments have substantially the same total cross-section -25 - 200815633 (3) face shape. The Lyocell staple fiber of any one of claims 1 to 4, wherein the total cross-sectional shape is hollow. The Lyocell staple fiber according to any one of claims 1 to 4, wherein the fiber toughness is at least 15% higher than the fiber toughness of the comparative Lyocell staple fiber of the same decitex when adjusted. Preferably, it is at least 20%, wherein all of the cut filaments of the comparative Lyocell staple fiber have a substantially circular cross section. The Lyocell staple fiber of any one of claims 1 to 4, which has at least 0.5 millinewtons of square millimeters per square tex, preferably greater than 0.6 millinewtons per square millimeter per square tex and decitex Relevant flexural rigidity. 22. A method of making a Lyocell staple fiber according to any one of the preceding claims, comprising the steps of: - extruding in a water-containing tertiary stage via a spinneret having a plurality of spinneret nozzles; a cellulose solution of oxides to form fibrils - the filaments are introduced into the precipitation bath via an air gap - the filaments drawn in the air gap - the filaments blowing air into the air gap Pre-precipitating the filaments in the precipitation bath - cutting the precipitated filaments to form a cut filament, characterized in that - at least part of the spinneret nozzles are placed two or more next to each other A combination of a plurality of holes is formed such that when the solution is extruded through the holes, the filaments extruded from the holes -26-200815633 (4) are partially melted to form a molten filament. 2 3. As claimed in claim 22, at least in part, preferably all of the holes are circular. 24. The method of claim 23, wherein all of the holes have the same diameter. The method of claim 23, wherein at least one or more of the holes have a larger diameter than the remaining holes. Φ 26. The method of claim 25, wherein the ratio of the cross-sectional area of the hole having the larger diameter to the cross-sectional area of the hole having the smaller diameter is greater than 1: 1 to 16: 1, preferably 1 · 6 : 1 to 2.7 · · 1. The method of any one of claims 22 to 26, wherein the spinneret nozzle is composed of two circular holes each. The method of any one of claims 22 to 26, wherein the spinneret nozzle is composed of three circular holes each. 29. The method of claim 28, wherein the three rows of holes φ are in a row. The method of claim 28, wherein the three holes are arranged in a triangle. 3 1. The method of claim 28, wherein the triangle is an isosceles triangle. The method of any one of claims 22 to 26, wherein the spinneret nozzle is composed of four circular holes each. 33. The method of claim 32, wherein the four holes are arranged in a row. The method of claim 32, wherein the four holes are arranged in a square, a diamond or a parallelogram. The method of claim 3, wherein the four holes are arranged in a triangle, and one of the holes forms the center of the triangle. The method of any one of claims 22 to 26, wherein the spinneret nozzle is composed of 5 or more, preferably 5 or 7, circular holes. The method of any one of claims 22 to 26, wherein at least one of the holes is non-circular. 38. The method of claim 37, wherein the non-circular shape is a multi-lobed shape, preferably a trilobal shape or a triangular shape. The method of any one of claims 22 to 26, wherein all of said spinneret nozzles are comprised of a combination of holes that are identical in geometric arrangement, shape and size of the holes. 40. The method of claim 39, wherein the spinneret # nozzles are arranged in a plurality of parallel rows and wherein all of the hole combinations in each row are oriented substantially parallel to one another. 4 1 - The method of claim 40, wherein the air blown into the air gap in the air gap is guided to the filaments - in the arrangement of the holes, substantially Parallel to the direction of the row - in the case of a triangular arrangement of the holes, 'substantially parallel to the direction of one of the triangular bottom lines - in the case of a square arrangement of the holes, 'substantially parallel to one of the square bottom lines Direction -28- 200815633 (6) - The orientation direction of the main orientation axis of the other geometric arrangement of the holes. 42. as claimed in claim 22, wherein the holes in the combination of holes are straight. 43. According to claim 22, wherein the center of a hole in the combination of holes is between 1 and 500 microns, preferably It is 150 to φ 4 4 · A 1st Lyocell staple fiber as claimed in the patent application is selected from the following products, household textiles, technology and clothing laparotomy pads, mattresses, tampon, toiletries, pillows, Quilts, towels, blankets, insulation materials, polymers or papers or blends, such as knitted or woven textile articles (chinos), cotton hand fabrics, and the force produced, substantially parallel to the row 26 The method of any one of the items is 35 to 200 microns. The method of any of the 26, wherein the distance from the center of the other hole is 250 microns. Uses of any of the items 1 to 21: Medicine 1. Hygiene applications, such as dressings for dressing, cotton pads, handkerchiefs, feather fabrics for incontinence, twill, reinforced fiber for satin concrete, textiles, shirting materials , velvet, its thick 1 dress. -29-
TW096119363A 2006-06-14 2007-05-30 Lyocell staple fiber and the manufacturing process and use thereof TWI480437B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0101506A AT503803B1 (en) 2006-06-14 2006-06-14 LYOCELL STAPLE FIBER

Publications (2)

Publication Number Publication Date
TW200815633A true TW200815633A (en) 2008-04-01
TWI480437B TWI480437B (en) 2015-04-11

Family

ID=38531755

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096119363A TWI480437B (en) 2006-06-14 2007-05-30 Lyocell staple fiber and the manufacturing process and use thereof

Country Status (8)

Country Link
US (2) US20100021711A1 (en)
EP (1) EP2027314B1 (en)
JP (1) JP5231404B2 (en)
CN (2) CN104357928B (en)
AT (1) AT503803B1 (en)
ES (1) ES2531985T3 (en)
TW (1) TWI480437B (en)
WO (1) WO2007143761A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT507387A1 (en) * 2008-09-22 2010-04-15 Chemiefaser Lenzing Ag USE OF LYOCELL FIBERS AND ARTICLES CONTAINING LYOCELL FIBERS
AT507757B1 (en) * 2008-12-23 2015-06-15 Chemiefaser Lenzing Ag CELLULOSIC FORM BODIES WITH NON-CIRCULAR CROSS-SECTION AND THEIR USE IN COMPOSITE MATERIALS
EP2390341B1 (en) 2010-05-25 2018-06-27 Neste Oyj Process and microorganisms for production of lipids
KR101455002B1 (en) 2013-06-28 2014-11-03 코오롱인더스트리 주식회사 Lyocell Material Cigarette Filter and Method for the Same
KR102205529B1 (en) * 2014-03-31 2021-01-20 코오롱인더스트리 주식회사 Lyocell Fiber
WO2015152594A1 (en) * 2014-03-31 2015-10-08 코오롱인더스트리 주식회사 Lyocell fiber
JP6453575B2 (en) * 2014-06-18 2019-01-16 ダイセルポリマー株式会社 Fiber reinforced resin composition
KR102211219B1 (en) * 2014-06-30 2021-02-03 코오롱인더스트리 주식회사 Lyocell Material with Noncircle Cross Section for Cigarette Filter And Manufacturing Method of the same
KR102211186B1 (en) 2014-12-31 2021-02-03 코오롱인더스트리 주식회사 Lyocell Material Cigarette Filter and Method for the Same
EP3385435A1 (en) * 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Nonwoven cellulose fiber fabric with different sets of pores
EP3385428A1 (en) * 2017-04-03 2018-10-10 Lenzing Aktiengesellschaft Nonwoven cellulose fiber fabric with fibers having non-circular cross section
KR102352034B1 (en) * 2018-06-29 2022-01-14 코오롱인더스트리 주식회사 Non-woven Fiber aggregates containing Lyocell Fibers
CN112981577A (en) * 2019-12-12 2021-06-18 连津格股份公司 Method for producing modal fibers completely chlorine-free
CN113089112A (en) * 2019-12-23 2021-07-09 连津格股份公司 Spinning machine for producing cellulose fibres and method for operating the same
KR20230036552A (en) 2020-07-29 2023-03-14 렌징 악티엔게젤샤프트 Uses of Lyocell Fiber
US11795624B2 (en) 2021-11-01 2023-10-24 Kimberly-Clark Worldwide, Inc. Through-air dried tissue products comprising regenerated cellulose fiber

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1773969A (en) * 1928-09-08 1930-08-26 Celanese Corp Process of and apparatus for making artificial filaments
DE7005636U (en) * 1969-02-20 1970-05-21 Bemberg Societa Per Azioni CELLULOSE ARTIFICIAL THREAD WITH IMPROVED PROPERTIES.
US4246221A (en) * 1979-03-02 1981-01-20 Akzona Incorporated Process for shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent
JPS6017844B2 (en) * 1978-03-30 1985-05-07 旭化成工業株式会社 Acrylic fiber manufacturing method
JPS6065108A (en) * 1983-05-09 1985-04-13 Mitsubishi Rayon Co Ltd Acrylonitrile filament yarn and its production
SU1341259A1 (en) * 1985-11-01 1987-09-30 Предприятие П/Я Г-4132 Apparatus for forming complex profiled yarn
JPS6426712A (en) * 1987-07-20 1989-01-30 Mitsubishi Rayon Co Production of modified cross-section acrylic fiber by dry spinning
JP2550807B2 (en) * 1991-08-19 1996-11-06 東レ株式会社 Dry-wet spinneret of acrylic cross-section fiber
US5108838A (en) * 1991-08-27 1992-04-28 E. I. Du Pont De Nemours And Company Trilobal and tetralobal filaments exhibiting low glitter and high bulk
ATA53792A (en) * 1992-03-17 1995-02-15 Chemiefaser Lenzing Ag METHOD FOR PRODUCING CELLULOSIC MOLDED BODIES, DEVICE FOR IMPLEMENTING THE METHOD AND USE OF A SPINNING DEVICE
US5417909A (en) * 1992-06-16 1995-05-23 Thuringisches Institut Fur Textil- Und Kunststoff-Forschung E.V. Process for manufacturing molded articles of cellulose
JPH07305219A (en) * 1994-05-10 1995-11-21 Toyobo Co Ltd Production of polynosic fiber with modified cross-section
JPH083814A (en) * 1994-06-16 1996-01-09 Toray Ind Inc Production of liquid crystal polyester fiber
US6306334B1 (en) * 1996-08-23 2001-10-23 The Weyerhaeuser Company Process for melt blowing continuous lyocell fibers
JP3844089B2 (en) * 1996-11-07 2006-11-08 東洋紡績株式会社 Blended yarn
JP3832000B2 (en) * 1996-11-21 2006-10-11 東洋紡績株式会社 Modified cross-section regenerated cellulose fiber and process for producing the same
GB2324064A (en) * 1997-04-11 1998-10-14 Courtaulds Fibres Modified lyocell fibre and method of its formation
DE29709804U1 (en) * 1997-05-30 1997-08-14 Hoechst Trevira GmbH & Co KG, 65929 Frankfurt Flame retardant shingle
US6773648B2 (en) * 1998-11-03 2004-08-10 Weyerhaeuser Company Meltblown process with mechanical attenuation
JP2000190812A (en) * 1998-12-28 2000-07-11 Toray Ind Inc Synthetic fiber for seat belt, and seat belt webbing
JP2001316936A (en) * 2000-05-10 2001-11-16 Toyobo Co Ltd Method for producing solvent spun cellulose fiber
JP2002201526A (en) * 2000-12-27 2002-07-19 Japan Exlan Co Ltd Spinneret
AU2003249903A1 (en) * 2002-07-09 2004-01-23 Lenzing Aktiengesellschaft Process for the manufacture of solid regenerated viscose fibres
AT411863B (en) * 2002-09-16 2004-07-26 Chemiefaser Lenzing Ag BLANKET, PREFERABLY QUILTED BLANKET
AT412654B (en) * 2003-03-27 2005-05-25 Chemiefaser Lenzing Ag MASSIVE REGENERATED STANDARD VISCOSE FIBER
DE10314878A1 (en) * 2003-04-01 2004-10-28 Zimmer Ag Method and device for producing post-stretched cellulose filaments
AT501931B1 (en) * 2004-12-10 2007-08-15 Chemiefaser Lenzing Ag CELLULOSE STAPLE FIBER AND ITS USE
DE102005024433A1 (en) * 2005-05-24 2006-02-16 Zimmer Ag Lyocell staple fibers of increased loop strength are obtained by having tertiary amine oxides still present in the spun filaments during the cutting stage

Also Published As

Publication number Publication date
TWI480437B (en) 2015-04-11
CN104357928A (en) 2015-02-18
CN101501252B (en) 2014-10-29
US20100021711A1 (en) 2010-01-28
CN104357928B (en) 2018-11-02
US20170121855A1 (en) 2017-05-04
EP2027314B1 (en) 2014-12-10
EP2027314A1 (en) 2009-02-25
CN101501252A (en) 2009-08-05
JP5231404B2 (en) 2013-07-10
WO2007143761A1 (en) 2007-12-21
JP2009540139A (en) 2009-11-19
ES2531985T3 (en) 2015-03-23
AT503803A4 (en) 2008-01-15
AT503803B1 (en) 2008-01-15

Similar Documents

Publication Publication Date Title
TWI480437B (en) Lyocell staple fiber and the manufacturing process and use thereof
CN1938461B (en) Composite fabric of island-in-sea type and process for producing the same
RU2388855C2 (en) Cellulose staple fibre, its application and filler
EP1781844B1 (en) Forming shaped fiber fabrics
JP2774284B2 (en) Method for producing regenerated cellulose solid staple fiber
KR101758204B1 (en) Twisted Composite Yarn Based Nanofibers and Method for Manufacturing the Same
KR100769974B1 (en) Production method of lyocell filament having uniformity for the clothes
JP2022552439A (en) Composite crimped fiber used for knitted fabric and method for producing the same
US5733656A (en) Polyester filament yarn and process for producing same, and fabric thereof and process for producing same
KR101225557B1 (en) Lyocell type cellulose fibre
JP2000226746A (en) Composite bulky yarn improved in permanent set property in fatigue and its production
JP7221245B2 (en) Irregular shaped polymer fibers
JPH02216295A (en) Production of highly strong polyester fiber paper
JPH09170128A (en) Cellulose acetate multifilament yarn having each specific cross section and its production
KR910007556B1 (en) Spinning nozzle for shaped fiber
KR100557271B1 (en) Divisible hollow copolyester fibers, and divided copolyester fibers, woven or knitted fabric, artificial leather and nonwoven fabric comprising same
CN115386976A (en) Novel functional textile material with good air permeability and moisture removal
JPH08302521A (en) Cellulose acetate fiber having specific cross section and its production
JP2001140124A (en) Modified cross-sectional cellulose acetate fiber, aggregation thereof and method for production modified cross-sectional cellulose acetate fiber
JPH1037059A (en) Cellulose fiber nonwoven fabric and production thereof
JPH11222713A (en) Cellulose acetate yarn having specific cross section, its aggregate and production of the yarn
JPH11222714A (en) Cellulose acetate warn having specific cross section, its aggregate and production of the yarn
JPH11222711A (en) Spinneret for cellulose acetate yarn having specific cross section
JPH0192440A (en) Production of blended fiber yarn having spun yarn like touch
JPH04146236A (en) Web composed of modified cross-section fibers

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees