TW200812633A - Cosmetic use of whey protein micelles - Google Patents

Cosmetic use of whey protein micelles Download PDF

Info

Publication number
TW200812633A
TW200812633A TW096110593A TW96110593A TW200812633A TW 200812633 A TW200812633 A TW 200812633A TW 096110593 A TW096110593 A TW 096110593A TW 96110593 A TW96110593 A TW 96110593A TW 200812633 A TW200812633 A TW 200812633A
Authority
TW
Taiwan
Prior art keywords
whey protein
micelles
composition
protein
micelle
Prior art date
Application number
TW096110593A
Other languages
Chinese (zh)
Inventor
Lionel Jean Rene Bovetto
Christophe Joseph Etienne Schmitt
Original Assignee
Nestec Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nestec Sa filed Critical Nestec Sa
Publication of TW200812633A publication Critical patent/TW200812633A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0291Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/28Rubbing or scrubbing compositions; Peeling or abrasive compositions; Containing exfoliants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair

Abstract

The present invention relates to use of whey protein micelles as abrasive agents, in particular in cosmetic compositions and to a method for obtaining said compositions.

Description

200812633 九、發明說明: 【發明所屬之技術領域】 本發明係關於乳清蛋白質微膠粒作為研磨劑、具體而言 在美容組合物中之用途且係關於獲得該等組合物之方法。 【先前技術】 包含研磨劑之非均相組合物(例如粒狀糊劑或顆粒狀液 體)通常用於健康護理及美容領域。 舉例而言,專利申請案WO 03000215揭示牙膏組合物, 其包含作為研磨劑之無機粉末以去除牙齒表面上形成之蛋 白質膜。 美國專利第6036966號係關於局部組合物,其包含選自 …、機粕末至屬皂或有機粉末(例如用於重新處理皮膚之 微晶纖維素)之稍耐磨粉末狀組合物。 在粒狀產品及其用途之領域中仍有許多未開發領域。 因此’本發明之_目的係提供_種該項技術中所用研磨 介質之替代物。 【發明内容】 、本案之目的係借助獨立請求項之特徵達成。該等獨立請 求項進一步顯現本發明之中心思想。 通常建議使用蛋白質(例如使用乳清蛋200812633 IX. DESCRIPTION OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to the use of whey protein micelles as abrasives, in particular in cosmetic compositions, and to methods of obtaining such compositions. [Prior Art] Heterogeneous compositions containing abrasives (e.g., granular pastes or granular liquids) are commonly used in the fields of health care and beauty. For example, the patent application WO 03000215 discloses a toothpaste composition comprising an inorganic powder as an abrasive to remove a protein film formed on the surface of the tooth. U.S. Patent No. 6,036,966 is directed to a topical composition comprising a slightly abrasion resistant powdered composition selected from the group consisting of: end-to-end soaps or organic powders (e.g., microcrystalline cellulose for reprocessing skin). There are still many untapped areas in the field of granular products and their uses. Thus, the present invention is intended to provide an alternative to the abrasive media used in the art. SUMMARY OF THE INVENTION The purpose of the present invention is achieved by the features of independent claims. These independent claims further illustrate the central idea of the present invention. Protein is usually recommended (eg using whey eggs)

在本發明其他態樣中,提供一 為達成該目的,通常建議使 白質微膠粒或包含乳清蛋白質 介質。具體而言,本發明係關$ 種包含乳清蛋白質微膠粒 119066.doc 200812633 之美各組合物。 本發明之第三態樣係關於一種製造美容組合物之方法。 又一態樣係關於一種藉由該方法獲得之產品。 【實施方式】 根據本發明,諸如乳清蛋白質微膠粒或其聚集體等n 作研磨介質。 可用In other aspects of the invention, it is provided that, for this purpose, it is generally preferred to have a white matter micelle or a whey protein medium. In particular, the present invention relates to various compositions comprising whey protein micelles 119066.doc 200812633. A third aspect of the invention pertains to a method of making a cosmetic composition. Yet another aspect relates to a product obtained by the method. [Embodiment] According to the present invention, n such as whey protein micelles or aggregates thereof is used as a grinding medium. Available

結合本發明可使用之乳清蛋白質微膠粒係繪示於圖7 中,其中該等乳清蛋白質係以以下方式排列:該等蛋白質 之親水部分經定向朝向該聚錢之外部部分且該等蛋白= 之疏水部分經定向朝向該微膠粒之内部,,核心"。此能量= 利構型為該等結構在親水環境中提供良好穩定性。 此特定微膠粒結構可自料圖、具體而言圖3、9、㈣ 13中看出’其中本發明所用微膠粒實f上由變性乳清蛋白 質之球形聚集體構成。 、乳清蛋白質微膠粒可藉由首先調節天然乳清蛋白質水溶 液之PH及/或離子強度、且隨後使該溶液經受加熱之方法 來製備。該方法將更詳細地進__步闞述於本文中。 由此製得之乳清蛋白f微膠粒具有雙重特性(親水性及 二Jc !·生)實際上’變性乳清蛋白質排列成微膠粒結構似 乎允許疏水相(例如脂肪滴或空氣)與親水相相互作用。因 此,該等乳清蛋白f微膠粒具有優良乳化及發泡性質。 此外,用於本發明之乳清蛋白質微膠粒係以使其具有極 窄尺寸分佈(參見圖14)之方式製備,以便所製造微膠粒的 嶋以上將具有小於!微米之尺寸。較㈣,本發明所用 119066.doc 200812633 乳清蛋白質微膠粒應具有介於1〇〇奈米與_奈米、更佳介 於100销奈米、最佳介於細奈米與伽奈米之尺寸。 該等微膠粒之平均直徑可使用透射電子顯微鏡(TEM)測 定。為了如此做,將液體微膠粒樣品密封於-瓊月旨凝膠試 官卜固定係藉由浸於2.5%存敎i M (pH 7.4)二甲基肿 酸鹽緩衝液中之戊二磐溶液中達成且利用2%存於相同緩 衝液中之四氧化餓後固冑’兩種溶液皆含有請%舒紅。 樣品在梯度乙醇系列(7〇、8〇、9〇、96、刚%乙醇)中脫水 後,將樣品包埋於Spurr樹脂(Spurr/乙醇ι:ι、Μ、1〇㈣) 中。使樹脂聚合(7(tc,48小時)後,制LeicauUr繼t UCT超薄切片機切成半薄及超薄切片。將超薄切片用乙酸 雙氧轴及#板酸錯水溶液染色,並然後藉由透射電子顯微 鏡(Philips CM12,80 kv)檢測。 不期望受限於任何理論,但據認為在微膠粒形成期間, 該等微膠粒達到”最大”尺寸,此乃因該微膠粒之總體靜電 何排斥任何額外蛋白質分子,以致於該微膠粒之尺寸不再 生長。此解釋了所觀察到之窄尺寸分佈(參照圖14)。 本發明所用乳清蛋白質微膠粒可自任何市售乳清蛋白質 分離物或濃縮物(即,藉由該項技術中習知製備乳清蛋白 貝之任何方法獲得之乳清蛋白質)、以及由其製得之乳清 蛋白質部分或蛋白質(例如β_乳球蛋白(BLG)、心乳白蛋白 及血清白蛋白)來製備。具體而言,在乾酪製造中作為副 產物獲得之甜乳清、在酸性酪蛋白製造中作為副產物獲得 之酸性乳清 '藉由乳微濾獲得之天然乳清及在皺胃酪蛋白 119066.doc 200812633 製造中作為副產物獲得之凝乳乳清所有皆可用作乳清蛋白 貝來源該乳清蛋白質可來自單一來源或來自任何來源之 混合物。 用於製備本發明所用乳清蛋白質微膠粒之乳清分離物並 不限於該等牛源,而且包括來自所有哺乳動物物種(例如 來自錦羊、山羊、馬及駱駝)之乳清分離物。而且,該等 礼清製品可經礦化、去礦物質或稍微礦化。,,稍微礦化"係 _ 彳日除去可凑析或滲濾之游離礦物質後之任何乳清製品,但 在(例如)製彳于乳清蛋白質濃縮物或分離物後會由於天然 礦化而仍含有與其結合之礦物質。該等”稍微礦化,,乳清製 品必須不富含特定礦物。 為製造乳清蛋白質微膠粒,乳清蛋白質以該溶液之總重 量計可以〇·1糾.%至12 wt·%、較佳以0.1 ^.%至8 wt·%之 里、更佳0.2 wt·%至7 wt·%之量、甚至更佳〇·5 _%至6 Wt.%之量、最佳1 wt.%至4 wt·%之量存在於水溶液中。 • 微膠粒化步驟之前呈現之乳清蛋白質製品水溶液亦可包 含額外化合物,例如各乳清製造製程之副產物、其他蛋白 貝樹膠、角又菜膠或碳水化合物。該溶液亦可包含其他 ‘ 食品成份(脂肪、碳水化合物、植物提取物等)。該等額外 化合物之量通常不超過該溶液總重量的5〇 wt %、較佳 20%、且更佳不超過10 wt.%。 該乳清蛋白質、以及其部分及/或主要蛋白質皆可以純 化形式或另外以粗製品形式使用。為製造乳清蛋白質微膠 粒,該乳清蛋白質中二價陽離子之含量可小於25%、較佳 119066.doc 200812633 小於0.2%。最佳地’該乳清蛋白質已完全去除礦物質。 PH值及離子強度係製造乳清蛋白質微膠粒中之重要因 子因此,對於貝際上全無《已消耗掉游離陽離子(例如 Ca、K、Na、Mg)經廣泛透析之樣品而言,當在pH低於5·4 下時實施加熱處理Η)秒至2小時期間時獲得凝乳,而在ρΗ 超過6·8時’獲得可溶性乳清蛋白f (參見叫。因此,僅 在此相當窄pH窗口内將獲得直徑小於m米之乳清蛋白質 微膠粒。該等微膠粒將帶有總體貞電荷。在對稱地低於等 電點PH(即,3.5至5.〇、更佳3.8至45)下亦可獲得相同微膠 粒开> 式,此使得微膠粒帶正電荷(參見圖6)。 因此’為獲得帶正電荷微膠粒,乳清蛋白質之微膠粒化 可在無鹽溶液中於經調節介於3.8與44之間之阳值(此取決 於該蛋白質來源之礦物質含量)下實施。 或者,為獲得帶負電荷之微膠粒,對於在乳清蛋白質粉 末中所包合二價陽離子含量介於〇 2%與2 5%之情況而言, 該PH可經調節介於6·3至9.0。 〇 更特疋而s,為獲得帶負電荷之微膠粒,對於低二價陽 離子s里(例如小於初始乳清蛋白質粉末的〇 2%)而古,該 ΡΗ隸調節介於5.6至“、或甚至58至6()。該辦增加 至局達8广此取決於該乳清蛋白質來源(濃縮物或分離物) 之礦物貝合1。具體而言,為在存在大量游離礦物質之情 況下獲得帶負電荷微膠粒,該可介於7 5至以、較佳μ 至8.0,且為在存在中等量游離礦物質之情況下獲得帶負 電荷微膠粒,該ΡΗ可介於6·4至7.4、較佳6.6至7.2。通 119066.doc 200812633 常’該初始乳清蛋白質粉末之鈣及/或鎂含量越高,微膠 粒化之pH越高。 形成礼清蛋白質微膠粒之條件可藉由使液體天然乳清蛋 白質之任何來源脫礦物質_藉由任何習知脫礦物質技術(透 析、超濾、、反渗透、離子交換層析等)_來標準化,該等來 源具有介於甜乳清、乳之微濾滲透物或酸性乳清(〇·9%蛋 白質含量)至30%蛋白質含量之濃縮物間之蛋白質濃度。該 透析可針對水(蒸餾、去離子或軟化水)來實施,但由於此 僅去除弱鍵結至乳清蛋白質之離子,故通常針對低於 4.0之8文(有機或無機)透析以更好的控制該乳清蛋白質之離 子、、且成。如此將使乳清蛋白質微膠粒形成之低於 7·〇,通常介於5.8至6.6。 加熱該乳清蛋白質水溶液之前,通常藉由添加酸(例如 鹽酸 '磷酸、乙酸、檸樣酸、葡萄糖酸或乳酸)來調節 Ρ11田礦物質含1較高時,通常藉由添加驗性溶液(例如 氫氧化鈉、氫氧化鉀或氫氧化銨)來調節pH。 -或者若不期望PH調節步驟,則可在保持該pH恆定的 5寺凋谛該乳’月蛋白質製品之離子強度。然後,可藉由有 機或無機離子以允許在恆定阳值7下微膠粒化之方式調節 離子強度。圖4繪示微膠粒係在恒定姆7()下同時藉由添 加πιο mM精胺酸HC1來改變離子強度而形成。 、可將-緩衝液進一步添加於乳清蛋白質之水溶液中以便 避免該PH值在該乳清蛋白質熱處理期間之實質變化。原則 上’該緩衝液可選自任何緩衝系統,gp,乙酸及其鹽(例 119066.doc 200812633 如乙酸鈉或乙酸鉀)、磷酸及其鹽(例如NaH2p〇4、 NazHPO4、ΚΗβΟ4、Κ2ΗΡ〇4)或檸檬酸及其鹽等。 加熱之前調節該水溶液之pH及/或離子強度獲得一受控 製程,此獲得尺寸介於100奈米-900奈米、較佳1〇〇_7⑽奈 米、最佳200-400奈米之微膠粒。較佳地,當實施本文所 述方法時,尺寸介於100-700奈米之微膠粒的分佈係大於 80%(參見圖14)。The whey protein micelles which can be used in connection with the present invention are shown in Figure 7, wherein the whey proteins are arranged in such a way that the hydrophilic portion of the proteins is oriented towards the outer portion of the poly-money and such The hydrophobic portion of the protein = oriented towards the interior of the micelle, the core ". This energy = favorable configuration provides good stability for these structures in a hydrophilic environment. This particular micelle structure can be seen from the drawings, in particular Figures 3, 9, and (III) 13 where the micelles used in the present invention consist of spherical aggregates of denatured whey protein. The whey protein micelles can be prepared by first adjusting the pH and/or ionic strength of the natural whey protein aqueous solution and then subjecting the solution to heat. This method will be described in more detail in this article. The whey protein f micelles thus obtained have dual properties (hydrophilicity and two Jc!). Actually, the 'denatured whey protein is arranged into a micelle structure which seems to allow a hydrophobic phase (such as fat droplets or air) and The hydrophilic phase interacts. Therefore, the whey protein f micelles have excellent emulsifying and foaming properties. Further, the whey protein micelles used in the present invention are prepared in such a manner that they have an extremely narrow size distribution (see Fig. 14) so that the yttrium of the manufactured micelles will have less than! The size of the micron. Compared with (4), the 119066.doc 200812633 whey protein microcapsules used in the present invention should have a size of between 1 nanometer and _ nanometer, more preferably between 100 nanometers, and preferably between fine nanometers and gammameters. . The average diameter of the micelles can be determined using a transmission electron microscope (TEM). In order to do so, the liquid micelle sample was sealed in a -2 月 旨 凝胶 gel assay by immersion in 2.5% 敎 i M (pH 7.4) dimethyl sulphate buffer In the solution, and using 2% in the same buffer, the four kinds of solutions are all contained in the same buffer. After the sample was dehydrated in a gradient ethanol series (7 Å, 8 Å, 9 Å, 96, and just % ethanol), the sample was embedded in Spurr resin (Spurr/ethanol ι: ι, Μ, 1 〇 (4)). After the resin was polymerized (7 (tc, 48 hours), the LeicauUr was cut into semi-thin and ultra-thin sections by t UCT ultrathin slicer. The ultrathin sections were stained with acetic acid dioxane and #plate acid aqueous solution, and then Detected by transmission electron microscopy (Philips CM12, 80 kv). Not wishing to be bound by any theory, it is believed that during the formation of micelles, the micelles reach the "maximum" size due to the micelles. The overall static repels any additional protein molecules such that the size of the micelles no longer grows. This explains the narrow size distribution observed (see Figure 14). The whey protein micelles used in the present invention can be from any Commercially available whey protein isolates or concentrates (i.e., whey proteins obtained by any of the methods known in the art for preparing whey protein shells), and whey protein portions or proteins made therefrom (e.g., Preparation of β-lactoglobulin (BLG), lactobaculin and serum albumin. Specifically, sweet whey obtained as a by-product in cheese production, acid obtained as a by-product in the manufacture of acidic casein Sorbet's natural whey obtained by microfiltration of milk and curd whey obtained as a by-product in the manufacture of whipped protein casein 119066.doc 200812633 can be used as the source of whey protein. The whey protein can be used. a mixture from a single source or from any source. The whey isolate used to prepare the whey protein micelles used in the present invention is not limited to such bovine sources, but includes all mammalian species (eg, from mutton, goat, Whey isolates of horses and camels. Moreover, such ritual products may be mineralized, demineralized or slightly mineralized., slightly mineralized " Any whey product after minerals, but after, for example, the whey protein concentrate or isolate will still contain minerals associated with it due to natural mineralization. These "slightly mineralized, whey The product must not be enriched with specific minerals. To produce whey protein micelles, the whey protein may be from 1% to 12 wt%, preferably from 0.1% to 8 wt%, based on the total weight of the solution. ·% of the better, better 0.2 wt· The amount of % to 7 wt·%, even more preferably 5·5 _% to 6 Wt.%, optimally 1 wt.% to 4 wt·% is present in the aqueous solution. • Before the microgelation step The presented whey protein product aqueous solution may also contain additional compounds, such as by-products of each whey manufacturing process, other protein shell gum, carrageenan or carbohydrates. The solution may also contain other 'food ingredients (fat, carbohydrates) , plant extracts, etc.) The amount of the additional compound is usually not more than 5% by weight, preferably 20%, and more preferably not more than 10% by weight of the total weight of the solution. The whey protein, and parts thereof and / or the main protein can be used in purified form or otherwise in the form of a crude product. To produce whey protein micelles, the amount of divalent cations in the whey protein can be less than 25%, preferably 119066.doc 200812633 less than 0.2%. Optimally, the whey protein has completely removed minerals. PH and ionic strength are important factors in the manufacture of whey protein micelles. Therefore, for samples that have been extensively dialyzed by free cations (such as Ca, K, Na, Mg) When the pH is lower than 5.4, heat treatment is performed Η) to obtain curd during the period of 2 to 2 hours, and when ρ 超过 exceeds 6.8, 'soluble whey protein f is obtained (see called. Therefore, it is only quite narrow here) Whey protein micelles less than m meters in diameter will be obtained in the pH window. These micelles will carry an overall enthalpy charge. They are symmetrically lower than the isoelectric point PH (ie, 3.5 to 5. 〇, better 3.8) The same micelle opening can also be obtained under 45), which makes the micelles positively charged (see Figure 6). Therefore, in order to obtain positively charged micelles, the granules of whey protein can be granulated. In a salt-free solution, it is carried out at a positive value between 3.8 and 44 (depending on the mineral content of the protein source). Alternatively, to obtain a negatively charged micelle, for the whey protein In the case where the content of divalent cations contained in the powder is between 〇2% and 25%, the PH can be The adjustment is between 6.3 and 9.0. 〇 is more special and s, in order to obtain a negatively charged micelle, for low divalent cations s (for example less than 〇 2% of the initial whey protein powder), this The sputum regulation is between 5.6 and "or even 58 to 6 (). The increase to the local level of 8 depends on the mineral protein of the whey protein source (concentrate or isolate). Specifically, In order to obtain negatively charged micelles in the presence of large amounts of free minerals, this may range from 75 to s, preferably from μ to 8.0, and obtain a negatively charged microparticle in the presence of a moderate amount of free minerals. The colloidal particles may be between 6.4 and 7.4, preferably 6.6 to 7.2. 119066.doc 200812633 often 'the higher the calcium and/or magnesium content of the initial whey protein powder, the higher the pH of the microgelatinization High. The conditions for the formation of celestial protein micelles can be demineralized by any source of liquid natural whey protein - by any conventional demineralization technique (dialysis, ultrafiltration, reverse osmosis, ion exchange chromatography) Etc.) to standardize, these sources have a microfiltration permeate or acid between sweet whey and milk Protein concentration between whey (〇·9% protein content) to 30% protein content concentrate. This dialysis can be carried out against water (distillation, deionization or demineralized water), but since this only removes weak bonds to the milk Clearing the ions of the protein, it is usually used for dialysis of less than 4.0 (organic or inorganic) to better control the ions of the whey protein, and so that the whey protein micelles are formed below 7 · 〇, usually between 5.8 and 6.6. Before heating the whey protein solution, usually by adding an acid (such as hydrochloric acid 'phosphoric acid, acetic acid, lemon acid, gluconic acid or lactic acid) to adjust the mineral content of Ρ11 field is higher The pH is usually adjusted by adding an assay solution such as sodium hydroxide, potassium hydroxide or ammonium hydroxide. - Or if the pH adjustment step is not desired, the ionic strength of the milk's protein product can be withered at the 5th temple where the pH is kept constant. The ionic strength can then be adjusted by means of organic or inorganic ions to permit microgelation at a constant positive value of 7. Figure 4 is a graph showing that the micelles are formed under constant m 7 () while changing the ionic strength by adding π ο mM arginine HCl. The buffer may be further added to the aqueous solution of the whey protein to avoid substantial changes in the pH during the heat treatment of the whey protein. In principle, the buffer can be selected from any buffer system, gp, acetic acid and its salts (eg 119066.doc 200812633 such as sodium acetate or potassium acetate), phosphoric acid and its salts (eg NaH2p〇4, NazHPO4, ΚΗβΟ4, Κ2ΗΡ〇4) ) or citric acid and its salts. Adjusting the pH and/or ionic strength of the aqueous solution prior to heating to obtain a controlled process, the obtained size is between 100 nm and 900 nm, preferably 1 〇〇 7 7 (10) nm, and optimally 200-400 nm. Colloidal particles. Preferably, when the methods described herein are practiced, the distribution of micelles having a size between 100 and 700 nanometers is greater than 80% (see Figure 14).

調節該pH及/或離子強度之後,使起始乳清蛋白質水溶 液經受熱處理。就此而言,為獲得乳清蛋白質微膠粒,重 要的是使溫度於約80-約98。〇之範圍、較佳約82_約89。〇、 更佳約8仁約87t、最佳約85°C。 達到合意溫度後,將此溶液於此溫度下保持最短1〇秒且 最長2小時。較佳地,將乳清蛋白f水溶液保持於合意溫 度下期間之時期於12·25分鐘之範圍、更佳12_2()分鐘、或 最佳約1 5分鐘。 該熱處理亦可在I波爐或任何允許藉由微波加教之類似 設備中以U)秒m毫升之時間/數量比實施以使在测絲 置中加熱之+4 wt%蛋白質溶液達_點(在海拔阳米處98 亦可藉由在可旎藉由夾持試管延長之玻璃試管周 圍添加8或更多磁好來❹連續製㈣增加保溫時間。 如圖2中所示’濁度量測結果係微膠粒形成之指示。對 蛋白質溶液而言’由在细奈米下之吸光度所量測之 =通常至少3個吸光度單位,但當微膠粒化高於嶋時 可達到16個吸光度單位(參見圖2)。 119066.doc • 12 - 200812633 為自物理化學觀點進一步脅示微膠粒形成之效應,將i Wt% BiproiE)之分散液在85它下於pH 6 〇及6 8下在MilHQ水 中加熱15分鐘。熱處理後所獲得聚集體之流體動力學直徑 係藉由動態光散射量測。該聚集體之表觀分子量係藉由靜 恶光散射使用所謂的Debye圖測定。表面疏水性係使用疏 水ANS探針來探測且游離可及硫醇基團係藉由dtNB方法 使用半胱胺酸作為標準胺基酸來探測。最後,該等聚集體 之形態係藉由負染色ΊΈΜ來研究。該等結果呈現於下表1 中。 根據表1,很明顯,與在相同條件下但pH為6.8下加熱之 未微膠粒化乳清蛋白質相比,在pH 6·0下所形成乳清蛋白 質微膠粒使得蛋白質其特異性ANS表面疏水性降低二分之 一。對於未微膠粒化蛋白質而言,在27x106 g.mor1之極高 分子量(與〇.64xl06 g.mol·1相比)下亦可看到形成微膠粒, 此表明該微膠粒内部之物質呈極為黏稠狀態(少量水)。有 趣的是,該等微膠粒之ζ-電位甚至較未經微膠粒化之蛋白 質更負,即使後者係在較微膠粒更鹼性pH下形成。此係該 微膠粒之更親水表面暴露於溶劑之結果。最後,人們應注 意到,由於不同pH之熱處理,該等微膠粒之硫醇反應性遠 較未經微膠粒化之蛋白質為低。 表1 :在存在或不存在NaCl之情況下藉由1 wt%蛋白質分 散液之熱處理(85°C,15分鐘)所獲得可溶性乳清蛋白質聚 集體之物理化學性質。 119066.doc -13- 200812633 pH 流體動 分子量 形態 ζ-電位 蛋白質表面 可及SH基團 力學直徑 Mw(xl06 (mV) 疏水性 (mnolSILmg·1 (nm) g.moF1) (pg.mmor1 ANS) 蛋白質) 6.0 120.3+9.1 27.02±8.09 球形微膠粒-31.8±0·8 105.4 3.5±0.4 6.8 56.2±4·6 0.64±0·01 直線型聚集體-27·9±1.2 200·8 6.8±0.5 當在pH調節及熱處理之前初始蛋白質濃度增加時,天然 乳清蛋白質至微膠粒之轉化率降低。舉例而言,當利用乳 清蛋白質分離物Prolacta 90(批號673,自Lactalis獲得)起 始時,乳清蛋白質微膠粒之形成率自85°/。(當利用4%蛋白 質起始時)降至50%(當利用12%蛋白質起始時)。為使乳清 蛋白質微膠粒之形成達到最大程度(大於起始蛋白質含量 的85%),較佳利用蛋白質濃度低於12%、較佳低於4%之乳 清蛋白質水溶液。端視期望最終應用而定,可在熱處理之 前調節蛋白質濃度以控制最佳乳清蛋白質微膠粒產率。 端視合意應用而定,微膠粒濃縮前之產率為至少50%、 較佳至少80%且殘餘可溶聚集體或可溶蛋白質含量較佳低 於20%。平均微膠粒尺寸之特徵在於多分散指數低於 0.200。因此,所獲得之白色懸浮液穩定且在pH 2-8之大範 圍内具有乳狀外觀。已經觀察到,乳清蛋白質微膠粒在約 pH 4.5處可形成聚集體,其中即使在4°C下至少12小時後 亦無宏觀相分離跡象。 乳清蛋白質微膠粒之純度可藉由製得後測定殘餘可溶性 蛋白質之量來獲得。微膠粒係藉由在20 °C及26900 g下離 心15分鐘來去除。上清液用於在石英試管中於280奈米(1 公分光程)下測定蛋白數量。數值係以熱處理前初始值的 百分數表示。 119066.doc •14- 200812633 微膠粒之比例=(初始蛋 ^ θ 貝之里〜可溶性蛋白質之量)/初始 赏曰貝之量 幕白耕4方法相反’藉由使用本文所述之方法,該等乳清 微膠粒在形成期間並未經受任何導致粒徑減小之機 =。該方法包括在熱處理期間在無剪切之情況下誘發 孔β蛋白質之自發微膠粒化。 該等微膠粒可作為在协_ a目士 為存於一液體中之懸浮液或分散液獲得 且八有介於100-900奈米之間、較佳1〇 200-400奈米之尺寸。 不卞敢仏 ^本文所述方法可獲得之微膠粒係極為穩定、不溶性 、、Ό ,其根據本發明可用作研磨介質。 =微膠粒可如此用於本發明或可在保持其研磨性質的 :叉進一步處理(例如濃縮、噴霧劑乾燥等)。 八,,,、處理後可獲得微膠粒分散液之一 發'離心、沉降或微滤來實施。mm 备集乳清蛋白質微膠粒來製備1 辰鈿物k供以先前不可 度獲得富蛋白質產品之優點。因此,該微膠粒 大於20%。蛋白貝η大於㈣、較佳大於⑽、更佳 藉由將微膠粒分散液進給至在真空下溫度介於50 或乳霜之中來實施。所得產物通常具有凝膠 如)研磨介Λ,::18中所示。該微膠粒產物可用作(例 貝或用作吴容剤、或用於本發明美容組合物 。此外’藉由蒸發獲得之乳清蛋白f微膠粒的卿^白 119066.doc -15- 200812633 質濃縮物可藉由使用乳酸酸化來組織化處理成可塗敷結 構。 離心可於低於5、較佳4.5之pH下酸化該乳清蛋白質微膠 粒分散液後以高加速度(大於2000 g)或低加速度㈠、於5〇〇 g)實施。 亦可藉由酸化使該乳清蛋白質微膠粒分散液實施自發沉 降。較佳地,該pH應為4,5且沉降時間大於小時。After adjusting the pH and/or ionic strength, the initial whey protein aqueous solution is subjected to heat treatment. In this regard, in order to obtain whey protein micelles, it is important to have a temperature of from about 80 to about 98. The range of 〇 is preferably about 82 to about 89. 〇, better about 8 ren, about 87t, best about 85 °C. After reaching the desired temperature, the solution was kept at this temperature for a minimum of 1 second and a maximum of 2 hours. Preferably, the period during which the aqueous solution of whey protein f is maintained at the desired temperature is in the range of 12.25 minutes, more preferably 12-2 () minutes, or most preferably about 15 minutes. The heat treatment can also be carried out in an I-wave oven or any similar device that allows for microwave training in a time/quantity ratio of U) seconds, so that the +4 wt% protein solution heated in the wire is up to _ point ( At the elevation of the yang meter 98, the holding time can also be increased by adding 8 or more magnets around the glass tube which can be extended by holding the test tube. (4) Increasing the holding time. As shown in Fig. 2, the turbidity measurement The result is an indication of the formation of micelles. For protein solutions, 'measured by absorbance under fine crystals = usually at least 3 absorbance units, but 16 absorbances when microgelatinization is higher than 嶋Unit (see Figure 2). 119066.doc • 12 - 200812633 To further implicate the effect of micelle formation from a physicochemical point of view, the dispersion of i Wt% BiproiE) at 85 under pH 6 〇 and 6 8 Heat in MilHQ water for 15 minutes. The hydrodynamic diameter of the aggregate obtained after the heat treatment was measured by dynamic light scattering. The apparent molecular weight of the aggregate was determined by the use of a so-called Debye diagram by means of electrostatic light scattering. Surface hydrophobicity was detected using a hydrophobic ANS probe and free accessible thiol groups were detected by the dtNB method using cysteine as the standard amino acid. Finally, the morphology of these aggregates was studied by negative staining. These results are presented in Table 1 below. According to Table 1, it is apparent that the whey protein micelles formed at pH 6.0 make the protein specific ANS compared to the ungelatinized whey protein heated under the same conditions but at a pH of 6.8. Surface hydrophobicity is reduced by a factor of two. For the non-gelatinized protein, the formation of micelles was also observed at a very high molecular weight of 27x106 g.mor1 (compared to 〇.64xl06 g.mol·1), indicating that the micelles were internal. The substance is extremely viscous (small amount of water). Interestingly, the ζ-potential of these micelles is even more negative than that of the ungelatinized protein, even though the latter is formed at a more alkaline pH than the micelles. This is the result of exposure of the more hydrophilic surface of the micelle to the solvent. Finally, it should be noted that due to the heat treatment at different pHs, the thiol reactivity of the micelles is much lower than that of the ungelatinized proteins. Table 1: Physicochemical properties of the soluble whey protein aggregate obtained by heat treatment (85 ° C, 15 minutes) of 1 wt% protein dispersion in the presence or absence of NaCl. 119066.doc -13- 200812633 pH Hydrodynamic molecular weight morphology ζ-potential protein surface accessible SH group mechanical diameter Mw (xl06 (mV) hydrophobicity (mnolSILmg·1 (nm) g.moF1) (pg.mmor1 ANS) protein ) 6.0 120.3+9.1 27.02±8.09 Spherical micelles-31.8±0·8 105.4 3.5±0.4 6.8 56.2±4·6 0.64±0·01 Straight-type aggregates -27·9±1.2 200·8 6.8±0.5 The conversion of natural whey protein to micelles is reduced when the initial protein concentration is increased prior to pH adjustment and heat treatment. For example, when using the whey protein isolate Prolacta 90 (batch 673, available from Lacalis), the formation rate of whey protein micelles was from 85°/. (when starting with 4% protein) down to 50% (when starting with 12% protein). In order to maximize the formation of whey protein micelles (greater than 85% of the starting protein content), it is preferred to use an aqueous whey protein solution having a protein concentration of less than 12%, preferably less than 4%. Depending on the desired end application, the protein concentration can be adjusted prior to heat treatment to control optimal whey protein micelle yield. Depending on the desired application, the yield of the micelles prior to concentration is at least 50%, preferably at least 80% and the residual soluble aggregate or soluble protein content is preferably less than 20%. The average micelle size is characterized by a polydispersity index of less than 0.200. Therefore, the obtained white suspension is stable and has a milky appearance in the range of pH 2-8. It has been observed that whey protein micelles can form aggregates at about pH 4.5, with no signs of macroscopic phase separation even after at least 12 hours at 4 °C. The purity of the whey protein micelles can be obtained by measuring the amount of residual soluble protein after preparation. The micelles were removed by centrifugation at 20 ° C and 26900 g for 15 minutes. The supernatant was used to determine the amount of protein in a quartz tube at 280 nm (1 cm pathlength). The values are expressed as a percentage of the initial value before heat treatment. 119066.doc •14- 200812633 The ratio of micelles = (initial egg ^ θ baizhili ~ soluble protein amount) / initial 曰 之 之 幕 幕 耕 耕 4 4 4 4 4 4 方法 方法 相反 相反 相反 相反 相反 相反 相反 相反 ' ' ' ' ' ' ' ' ' ' The whey micelles were not subjected to any machine that caused a reduction in particle size during formation. The method involves inducing spontaneous microgelatinization of the pore beta protein during the heat treatment without shearing. The micelles can be obtained as a suspension or dispersion in a liquid, and the size is between 100 and 900 nm, preferably between 1 and 200 to 400 nm. . The micelles obtainable by the methods described herein are extremely stable, insoluble, and ruthenium, and are useful as grinding media in accordance with the present invention. = micelles may be used in the present invention as such or may be further processed (e.g., concentrated, spray dried, etc.) while maintaining their abrasive properties. Eight,,,, after treatment, one of the micelle dispersions can be obtained by centrifugation, sedimentation or microfiltration. Mm Prepare whey protein micelles to prepare 1 钿 钿 k to provide the advantage of previously not available protein-rich products. Therefore, the micelles are greater than 20%. The protein shell η is larger than (four), preferably larger than (10), more preferably carried out by feeding the micelle dispersion to a temperature of 50 or a cream under vacuum. The resulting product typically has a gel such as: Grinding mediator::18. The micelle product can be used as a cosmetic composition or as a cosmetic composition of the present invention. In addition, the whey protein f micelle obtained by evaporation is 119066.doc -15- 200812633 The concentrate can be organized into a coatable structure by acidification using lactic acid. Centrifugation can acidify the whey protein micelle dispersion at a pH below 5, preferably 4.5 with high acceleration (greater than 2000 g) ) or low acceleration (1), at 5〇〇g). The whey protein micelle dispersion can also be spontaneously precipitated by acidification. Preferably, the pH should be 4, 5 and the settling time is greater than hours.

或者,本發明所用乳清蛋白質微膠粒之濃縮可藉由微膠 粒分散液之微遽來實施。此富集技術不僅能夠藉由去除溶 劑來'/辰縮乳清蛋白質微膠粒’而且能夠去除未微膠粒化蛋 白質(例如天然蛋白質或可溶性聚集體)。因此,最終產物 實質上僅由微膠粒構成(如藉由透射電子顯微鏡所檢查一參 照圖9及10)。在此情況下’當穿過膜之滲透物的初始流速 降至其初始值的20%後能獲得可達成之濃縮因數。此可獲 得濃度大於80%之微膠粒。 可對使用本文所述方法可獲得之微膠粒分散液實施乳清 蛋白質微膠粒之其他處理。 舉例而言,該等乳清蛋白質微膠粒可用乳化劑(例如与 脂)或其他塗敷劑(例如阿拉伯樹膠)塗敷以調節該等乳清邊 白質微膠粒之功能。較佳地,該覆蓋層係—種選自以^ 乳化劑:硫酸化油酸丁酯、單-及— —甘油酯之二乙醯基2 石酸酯、單甘油酯之檸檬酸酯、硬 咬月日醯乳酸鹽及其混< 物。圖17係具有硫酸化油酸丁 g旨之霜笔 復盍層的示意圖。 亦可對該等乳清蛋白質微膠粒眘 m貫轭其他處理(例如| 119066.doc -16 - 200812633 燥’例如噴霧劑乾燥、冷滚乾燥、旋轉乾燥等卜因此, 該乳清蛋白質濃縮物可在添加或不添加其他成份之情況下 喷霧劑乾燥且可用作一欲用於寬範圍製程(例如消耗品生 產 '化妝品應用等)之遞送系統或結構單元。Alternatively, the concentration of the whey protein micelles used in the present invention can be carried out by microcapsules of the micelle dispersion. This enrichment technique not only removes the whey protein microcapsules by removing the solvent but also removes the ungelatinized protein (e.g., native protein or soluble aggregates). Therefore, the final product consists essentially only of micelles (as seen by transmission electron microscopy, see Figures 9 and 10). In this case, an achievable concentration factor can be obtained after the initial flow rate of the permeate passing through the membrane drops to 20% of its initial value. This gives micelles with a concentration greater than 80%. Other treatments of the whey protein micelles can be performed on the micelle dispersions obtainable using the methods described herein. For example, the whey protein micelles may be coated with an emulsifier (e.g., with a lipid) or other coating agent (e.g., gum arabic) to adjust the function of the whey edge micelles. Preferably, the cover layer is selected from the group consisting of: an emulsifier: sulfated butyl oleate, mono- and-glyceride diethyl phthalate 2 sulphate, monoglyceride citrate, hard Biting the sun and the yoghurt and its mixture. Figure 17 is a schematic view of a retanning layer having a sulfated oleic acid glycerin. The whey protein microcapsules may also be conjugated to other treatments (for example, | 119066.doc -16 - 200812633 drying), such as spray drying, cold-roll drying, spin drying, etc., therefore, the whey protein concentrate The spray can be dried with or without the addition of other ingredients and can be used as a delivery system or structural unit for a wide range of processes (e.g., consumables production 'cosmetics applications, etc.).

圖8展示在未添加任何其他成份之情況下藉由喷霧劑乾 無獲得之粉末,由於在噴霧劑乾燥期間該微膠粒結塊,故 其具有大於i微米之平均顆粒直徑尺寸。該等乳清蛋白質 微膠粒粉末之典型平均體積中值直徑(Do)係介於Μ微米與 55微米之間、較佳51微米。該等粉末之表面中值直徑㈣ 較佳介於3微米與4微米之間,其更佳為38微米。 喷霧劑乾燥後所獲得粉末之水分含量較佳小於跳、更 佳小於4%。 當此一乳清蛋白質微膠粒粉末包含至少9〇%乳清蛋白質 (其中至少80%為微膠粒形式)時,認為其係”純淨的”。、 而且,該等"純淨"乳清蛋白質微膠粒粉末對溶劑(例如 水、甘油、乙醇、油、有機溶劑等)具有高結合容量。該 等粉末對水之結合容量為至少5〇%、較佳至少9〇%、最佳 至少100%。對於諸如甘油及乙醇等溶劑而言該結合容 量係至少50%。乳清蛋白質微膠粒#末之此性質允許該等 粉末與其他選自以下各物之群組之活性劑—起噴射或°用其 填充:肽、植物提取物、蛋白質水解物、生物活性物質,、、 維他命、礦物質、藥品、美容組份等、及其混合物。、 該等活性劑可以0.U50%之量包含在該粉末中。因此, 該粉末可作為其他功能性成份之載體。 119066.doc •17· 200812633 噴霧劑乾燥前可混入該等乳清蛋白質微膠粒或其濃縮物 中之額外成份包括可溶性或不溶鹽、色素、脂肪、乳化 劑、香料、植物提取物、配體或生物活性物質(礦物質、 維他命、藥物等)及其任何混合物。所得混合乳清蛋白質 微膠粒粉末包含重量比於1:1至1:1000之乳清蛋白質微膠粒 與額外成份。此獲得進-步包含料額外成份之團塊,以Figure 8 shows a powder which is obtained by dry spraying without the addition of any other ingredients, which has an average particle diameter size greater than i microns since the micelles agglomerate during spray drying. The typical mean volume median diameter (Do) of the whey protein micelle powder is between Μ microns and 55 microns, preferably 51 microns. The surface median diameter (iv) of the powders is preferably between 3 and 4 microns, more preferably 38 microns. The moisture content of the powder obtained after the spray is dried is preferably less than hop, more preferably less than 4%. When the whey protein micelle powder comprises at least 9% whey protein (at least 80% of which is in the form of micelles), it is considered "pure". Moreover, these "pure" whey protein micelle powders have a high binding capacity to solvents such as water, glycerin, ethanol, oils, organic solvents and the like. The powder has a binding capacity to water of at least 5%, preferably at least 9%, most preferably at least 100%. The binding capacity is at least 50% for solvents such as glycerol and ethanol. This property of the whey protein micelles # allows the powders to be sprayed or filled with other active agents selected from the group consisting of peptides, plant extracts, protein hydrolysates, biologically active substances , , vitamins, minerals, pharmaceuticals, beauty components, etc., and mixtures thereof. The active agents may be included in the powder in an amount of 0.5% by weight. Therefore, the powder can serve as a carrier for other functional ingredients. 119066.doc •17· 200812633 Additional ingredients that can be incorporated into the whey protein micelles or concentrates prior to spray drying include soluble or insoluble salts, pigments, fats, emulsifiers, perfumes, plant extracts, ligands Or biologically active substances (minerals, vitamins, drugs, etc.) and any mixture thereof. The resulting mixed whey protein micelle powder comprises whey protein micelles and additional ingredients in a weight ratio of 1:1 to 1:1000. This obtains a step in which the extra component of the material is added to

便根據本發明料可㈣展示其他功錄及健康優點(此 取決於所用該額外成份)之研磨介質。因此,該混合粉末 可作為生物活性劑之载體,舉例而言。 乳清蛋白質微膠粒粉末之特徵在於極高流動性,此賦予 易於使用及可轉移性優點。該等粉末之靜止角較佳小於 35、更佳小於3G。。舉例而言,此—小靜止角允許該等粉 末在美容應用中用作流動劑。 根據本發明,該等粉末亦可用作(例如)研磨介質、用作 美容劑或用於美容組合物之製造中。 粉末顆粒(即,乳清蛋白質微膠粒聚集體)之尺寸及該等 乳清蛋^微膠粒自身之尺寸展現該等乳清蛋白質微膠粒 或“聚集體4乎不能察覺且當用於局部施用時將用作研磨 劑而不刺激皮膚之優點。 、、無論乳清蛋白f微膠粒之形式(濃縮物、懸浮液、乾燥 私末等)如何’其重要特性在於保持該等乳清蛋白質之基 本,膠粒、、、Ό構。圖15展示經切片之乳清蛋白質粉末顆粒, 藉此可觀察到單獨乳清蛋白質微膠粒。而且,該微膠粒 結構可容易地在溶劑中再構成。舉例而言,已展示,自乳 119066.doc 200812633 、〜戈5代之Γ 物獲得之粉末可容易地重新分散於室 >皿或C之水I與初始濃縮物相比,該等乳 膠粒之尺寸及結構被完全保持。舉例而言,在圖u中,、: 在2〇%蛋白質濃度經喷霧劑乾燥之乳清蛋白質濃縮物以 5〇%之蛋白質濃度重新分散於⑽去離子水中。該等微职 粒之結構已經藉由ΤΕΜ探測且可舆_進行峰。獲得類 似形狀之微膠粒。藉由動態光散射發現該等微膠粒之直徑According to the invention, it is possible to (4) show the grinding media of other work and health advantages (depending on the additional ingredients used). Therefore, the mixed powder can be used as a carrier for the bioactive agent, for example. The whey protein micelle powder is characterized by extremely high fluidity, which gives advantages in ease of use and transferability. The angle of repose of the powders is preferably less than 35, more preferably less than 3G. . For example, this - small angle of repose allows the powders to be used as a flow agent in cosmetic applications. According to the invention, the powders can also be used, for example, as grinding media, as cosmetic agents or in the manufacture of cosmetic compositions. The size of the powder particles (ie, whey protein micelle aggregates) and the size of the whey egg micelles themselves exhibit that the whey protein micelles or "aggregates 4 are undetectable and when used The advantage of being used as an abrasive without irritating the skin when applied topically. Regardless of the form of the whey protein f micelle (concentrate, suspension, dry blister, etc.), its important characteristic is to maintain the whey. The basics of protein, colloidal particles, and sputum. Figure 15 shows the sliced whey protein powder particles, whereby whey protein micelles alone can be observed. Moreover, the micelle structure can be easily in a solvent. Reconstitution. For example, it has been shown that the powder obtained from the milk of 119066.doc 200812633 and the genus of the 5th generation can be easily redispersed in the chamber > the water of the dish or C is compared with the initial concentrate, The size and structure of the latex particles are completely maintained. For example, in Figure u,: the whey protein concentrate dried at a concentration of 2% protein by spray is redispersed at a protein concentration of 5% (10) Deionized water. The grain structure and may have been detected by ΤΕΜ _ Peak map was obtained similar to the shape of the micelles. Diameter by dynamic light scattering, such micelles found in the

為315不米’同時多分散指數為G.2。圖16亦展示經冷;東乾 燥乳清蛋白質微膠粒粉末之分散液,其中該等微膠粒經 構成。 經喷霧劑乾燥或冷;東㈣粉末在再構錢可在溶液中觀 察到乳清蛋白質微膠粒及僅少量聚集體部分之事實證明乳 清蛋白質微膠粒對於喷霧劑乾燥、冷凍乾燥等係物理上穩 定的。 … 亦感興趣的注意到,若將該濃縮物調節至蛋白質含量為 10%,則具有在85。(:下在pH 7.0下在(例如)高達〇15 M氯化 納之存在下經受隨後熱處理15分鐘之能力,如圖u中所 示。為比較起見,以天然乳清蛋白質分散液(來自乙“…“ 之Prolacta90,批號500658)在0.1 Μ氯化鈉存在下在4%蛋 白質濃度下形成凝膠(參照圖12)。 在濃縮步驟期間亦保持該微膠粒結構之高穩定性。此提 供了該微膠粒結構所賦予之研磨性質在本發明美容組入物 之製造、儲存等期間將不會損失之優點。 根據本發明,乳清蛋白質微膠粒或其聚集體可用作研磨 119066.doc -19- 200812633 w θ蛋白貝微膠粒之聚集體可呈經喷霧劑乾燥或冷 '乾,泰末之形式。該等可包含選自可溶性或不溶鹽、色 素月曰肪、礼化劑、香料、植物提取物、配體或生物活性 物質(礦物質、維他命、華 杀物寺)及其任何混合物之群之額 外成份。 根據本發明,礼清蛋白質微膠粒或該等其聚集體可用作 美容劑或用於製造美容組合物。 该等可與選自肽、植物提取物、蛋白f水解物、生物活 性物質、維他命、躺f、藥品、美容組份及其混合物之 群之其他活性劑組合。 較佳地’該乳清蛋白質微膠粒或其聚集體係以至少 W、較佳大於5%.、更佳大於跳、甚i更佳大於鳩、最 佳南達50%之量存在於該組合物中。 該等乳清蛋白質微膠粒可以液體分散液、懸浮液、凝 膠、乳霜或粉末形式存在。較佳地,乳清蛋白質在該液體 分散液、懸浮液、凝膠、乳霜或料中之濃度大於4%、 較佳大於10%。 本發明所用乳清蛋白質微膠粒之平 卞构尺寸可介於100奈 米至900奈米之間、較佳介於ι〇〇-77 水之間、更佳介於 200-400奈米之間。 方面,本發明利乳清蛋白質聚集體可具有大於ι 被米之平均尺寸。 該等乳清蛋白質微膠粒或其聚集體可精、 沐浴凝膠等。 119066.doc -20 200812633 該等亦可用於局部施用,其中該等乳清蛋白質微膠粒呈 液體分散液、懸浮液、乳霜、凝膠或粉末形式。 該等乳清蛋白質微膠粒可納入用於局部施用之美容組合 物中。 根據一實施,本發明提供一種研磨皮膚粒子之方法,該 方法包括將乳清蛋白質微膠粒施加於皮膚之步驟。該等乳 /月蛋白貝被膠粒可呈液體分散液、懸浮液、乳霜、凝膠或 Φ 粉末形式或可在施加之前納入一組合物中。 本發明之組合物可包含數量至少1 %、較佳大於、更 佳大於10%、甚至更佳大於20%、最佳高達5〇%之微膠 粒。 較佳地,乳清蛋白質在該組合物中之濃度大於1%、較 佳大於10%、更佳大於2〇%、最佳大於 該組合物可呈溶液、乳霜、凝膠、糊劑、發泡體、噴霧 劑等形式。 • 根據一實施例,該組合物係一種頭髮護理產品(例如洗 髮精)。其亦可為沐浴凝膠或體用及/或洗髮洗髮精。 本發明亦提供一種製造美容組合物之方法,該方法包括 - 以下步驟: 、 a.製備乳清蛋白質微膠粒或其聚集體,及 b·將該等微膠粒或其聚集體納入一組合物中。 藉由本發明方法獲得之乳清蛋白質微膠粒或其聚集體及 組合物係(例如)該等上文所闞述者。 根據本發明,該等乳清蛋白質微膠粒之研磨性質允許其 119066.doc -21- 200812633It is 315 m. The simultaneous polydispersity index is G.2. Figure 16 also shows a dispersion of cold, lyophilized whey protein micelle powder, wherein the micelles are constructed. Dry or cold by spray; East (D) powder can be observed in the solution. The fact that whey protein micelles and only a small amount of aggregates are observed in the solution prove that whey protein micelles are spray dried and freeze-dried. The system is physically stable. It is also of interest to note that if the concentrate is adjusted to a protein content of 10%, it has a pH of 85. (: The ability to undergo subsequent heat treatment for 15 minutes at pH 7.0 in the presence of, for example, up to 〇15 M sodium chloride, as shown in Figure u. For comparison, a natural whey protein dispersion (from B "Prolacta 90", lot number 500658) gels at 4% protein concentration in the presence of 0.1 Torr of sodium chloride (see Figure 12). The high stability of the micelle structure is also maintained during the concentration step. Providing the advantage that the abrasive properties imparted by the micelle structure are not lost during the manufacture, storage, etc. of the cosmetic composition of the present invention. According to the present invention, whey protein micelles or aggregates thereof can be used as a grind 119066.doc -19- 200812633 w aggregates of θ protein shell micelles may be spray-dried or cold-dried, in the form of tamarind. These may include selected from soluble or insoluble salts, pigments, and fats. An additional component of a group of ritual agents, perfumes, plant extracts, ligands or biologically active substances (minerals, vitamins, wormwoods) and any mixture thereof. According to the invention, ritual protein micelles or such Its aggregate can be used as A cosmetic agent or for the manufacture of a cosmetic composition. These may be combined with other active agents selected from the group consisting of peptides, plant extracts, protein f hydrolysates, biologically active substances, vitamins, linings, pharmaceuticals, cosmetic components and mixtures thereof. Preferably, the whey protein micelle or its aggregation system is present in an amount of at least W, preferably greater than 5%, more preferably greater than hop, even more preferably greater than 鸠, and most preferably 50%. In the composition, the whey protein micelles may be present in the form of a liquid dispersion, suspension, gel, cream or powder. Preferably, the whey protein is in the liquid dispersion, suspension, gel, The concentration in the cream or the material is greater than 4%, preferably greater than 10%. The whey protein microcapsules used in the present invention may have a flattened size ranging from 100 nm to 900 nm, preferably between ι -77 Between water and more preferably between 200 and 400 nm. Aspects, the whey protein aggregates of the present invention may have an average size greater than ι by rice. The whey protein micelles or aggregates thereof may Fine, shower gel, etc. 119066.doc -20 200812633 For topical application, wherein the whey protein micelles are in the form of a liquid dispersion, suspension, cream, gel or powder. The whey protein micelles can be incorporated into a cosmetic composition for topical application. According to one embodiment, the present invention provides a method of abrading skin particles, the method comprising the step of applying whey protein micelles to the skin. The milk/moon protein shells can be in the form of a liquid dispersion, suspension, milk. The cream, gel or Φ powder form may be incorporated into a composition prior to application. The compositions of the present invention may comprise an amount of at least 1%, preferably greater than, more preferably greater than 10%, even more preferably greater than 20%, optimal. Up to 5% by mole of micelles. Preferably, the concentration of the whey protein in the composition is greater than 1%, preferably greater than 10%, more preferably greater than 2%, and most preferably greater than the composition may be in the form of a solution, cream, gel, paste, In the form of a foam, a spray, or the like. • According to one embodiment, the composition is a hair care product (e.g., shampoo). It can also be a shower gel or a body and/or shampoo. The present invention also provides a method of making a cosmetic composition, the method comprising - the following steps: a. preparing whey protein micelles or aggregates thereof, and b. incorporating the micelles or aggregates thereof into a combination In. The whey protein micelles obtained by the process of the invention, or aggregates and compositions thereof, for example, are as described above. According to the present invention, the abrasive properties of the whey protein micelles allow for 119066.doc -21 - 200812633

用於一種研磨皮膚粒子之方法中。此可藉由局部施用呈懸 浮液、分散液、乳霜、凝膠或粉末形式之乳清蛋白質微膠 粒來實施,該等微膠粒可如此使用或與其他活性劑組合使 用。該等活性劑係選自肽、植物提取物、蛋白質水解物、 生物活性物質、維他命、礦物質、藥品、美容組份等。而 且,該等乳清蛋白質微膠粒或其聚集體亦可在施加之前納 入一組合物中。其中納入乳清蛋白質微膠粒之組合物可自 基本乳霜組合物至精製清潔溶液、肥皂、凝膠、發泡體、 牙膏、喷霧劑、洗髮精等。 藉由使用乳清蛋白質微膠粒作為美容劑所展現之優點在 於不僅研磨態樣係去除(例如)死皮膚細胞所關心的,而且 完全天然之微膠粒使其具有其他功能。除機械研磨性質 外同度▼負電荷或帶正電荷之乳清蛋白質微膠粒還可與 來自皮膚帶相反電荷之雜質形成靜電錯合物以促進其特定 去除。以相同方式,微膠粒之天然疏水性可有助於清除來 自皮膚之親油雜質,而決不會侵蝕及刺激皮膚^ 而且’乳清蛋白質微膠粒已展示理想地適於作為乳化 劑、增白劑、脂肪替代物 '初妓膠粒酪蛋白或發泡劑之替代 物,此乃因其能夠穩定存於一 ^ 水性糸統中之脂肪及/或空 氣延長時期。該發泡體穩定极在 一 %疋丨生係展不於圖5中,其比較了 未微膠粒化乳清蛋白質與本、 如乃所用礼清蛋白質微膠粒之 使用。 因此,乳清蛋白質微膠粒 J用作礼化劑,該材料之戶 理想地適用係由於其具有φ 有中性味道且使用該材料不會』 119066.doc -22« 200812633 異味。 此外,本發明乳清蛋白質微膠粒仍能夠用作增白劑,以 ^利用#化合物即可完成若干任務。由於乳清係一種豐 昌地可用材料,故其使用降低需要乳化劑、填充劑、增白 劑或發泡劑之產品的成本。 曰 而且’在其作為乳化劑之情況下,乳清蛋白f微膠粒既 可用作(例如)乳液或發泡體之穩定劑,其還可有助於去除 油性殘餘物、提供完全清潔效果。此外,該等乳清蛋白質 微膠粒可與其他活性成份組合使用,例如乳鐵傳遞蛋白、 3抗病毋劑、消,炎劑、藥物、抗生素物質、酸、玫魂 路甘油等。該等可用於洗髮精中作為清潔劑、增白劑或 甚至作為著色劑。該等亦可用於沐浴凝膠中。 因此,呈任何形式乳清蛋白質微膠粒之應用包括皮膚護 理口 L蔓理(例如牙膏、漱口水、齒銀清潔劑等)及頭髮 護理。該等乳清蛋白質微膠粒或其濃縮物可端視該應用而 如此使用或經稀釋使用。 因此,本發明亦提供一種製造美容組合物之方法,藉此 根據(例如)上述方法製造該等乳清蛋白質微膠粒,且其 該等微膠粒進一步納入一組合物中。 、 其中納入該等乳清蛋白質微膠粒之組合物可自基本乳命 、、且口物至精製清潔溶液、肥皂、凝膠、發泡體、牙膏 務』洗髮精等。該等亦可包含其他活性成份,例如乳鐵 傳遞蛋白、保濕劑、潤膚劑、鎮痛劑、收斂劑、抗氧化 119066.doc -23- 200812633 劑、抗微生物劑、抗病毒劑、消炎劑、藥物、抗生素物 質、酸、玫魂水蒸餾液、甘油、磺基琥珀酸酯、磺酸烷基 酯、可可甜菜鹼、黃原膠、EDTA、山梨酸鉀、大豆油、 杏仁油、丙基二甲基銨、希特瑞斯(ceteareth) 2〇、十六烷 醇、香精油、植物油、氫化蓖麻油、乳化劑、穩定劑、 … Paraben-DU、香水、月桂基葡糖苷、月桂基硫酸銨、月桂 基硫酸鈉、丁二醇、月桂醯基肌胺酸鈉、peg_2硬脂酸 _ 醋、鯨臘醇、cleth-12、硬脂醇、二甲聚矽氧烷 (mieticone)、尿囊素、EDTA二鈉、EDTA四鈉、甲氧基肉 桂酸乙基己基酯、甘草次酸、甲基椰油醯基牛膽酸鈉、 bht、氯化鈉、咪唑啶基脲、心異曱基紫羅蘭酮、水揚酸苄 基酯、丁苯基甲基丙醛、羥基異己基3_環已烯基甲醛、水 揚酸、聚乙烯、三乙醇胺、黃原膠、peg-6〇氫化菌麻油、 二苯甲酮-4、咪唑啶基脲、癸基葡糖苷、二甲基乙醇胺、 椰油醯胺丙基甜菜鹼、乙醇酸、ppg_2羥乙基椰子醯胺、 • glyCeTeth-7、Peg·120甲基葡萄糖二油酸酯、椰油醯基肌胺 酸鈉、苯氧基乙醇、對羥基笨甲酸甲酯、對羥基苯甲酸丙 酯、對羥基苯甲酸丁酯、對羥基苯甲酸乙酯、對羥基苯甲 -豸異丁酯、香水薄荷醇、香茅醇、香葉醇、己基肉桂醛、 檸檬油精等。 通常,該組合物將包含數量為至少1%、5%、1〇%、 20%、高達50%呈粉末之乳清蛋白質微膠粒或其聚集體。 以下實例將闡述本發明,而非對其進行限制。 實例 119066.doc 24- 200812633 將參考以下詳細闡述本發明微膠粒之製備的實例進一步 界定本發^本文所闡述及所主張之本發明並不欲受限於 本文所揭示特定實_之範圍’此乃因該等係意欲闡述本 發明若干態樣。任何等效實施❹意欲屬於本發明範圍。 實際上,除彼等本文所展示及所闡述者,根據以上說明本 毛明之各種修改對彼等熟悉該項技術者將顯而易見。該等 修改亦易於屬於隨附請求項範圍内。Used in a method of grinding skin particles. This can be carried out by topical application of whey protein micelles in the form of suspensions, dispersions, creams, gels or powders, which may be used as such or in combination with other active agents. The active agents are selected from the group consisting of peptides, plant extracts, protein hydrolysates, biologically active substances, vitamins, minerals, pharmaceuticals, cosmetic components and the like. Moreover, the whey protein micelles or aggregates thereof may also be incorporated into a composition prior to application. The composition in which the whey protein micelles are incorporated may be from a basic cream composition to a refined cleansing solution, soap, gel, foam, toothpaste, spray, shampoo, and the like. The advantage exhibited by the use of whey protein micelles as a cosmetic agent is that not only the abrasive state system is concerned with the removal of, for example, dead skin cells, but the completely natural micelles have other functions. In addition to mechanical abrasive properties, the same degree of negative or positively charged whey protein micelles can form electrostatic complexes with oppositely charged impurities from the skin to facilitate their specific removal. In the same way, the natural hydrophobicity of the micelles can help remove oleophilic impurities from the skin without eroding and irritating the skin ^ and the 'whey protein microcapsules have been shown to be ideally suited as emulsifiers, A whitening agent, a fat substitute, a substitute for priming gum casein or a foaming agent, because it is stable in the fat and/or air prolonged period in a water system. The foam stabilizing pole is not shown in Figure 5, which compares the use of the ungelatinized whey protein with the lyophilized protein micelles used herein. Therefore, the whey protein micelle J is used as a ritual agent, and the material of the material is ideally applied because it has a neutral taste of φ and does not use the material 119066.doc -22 « 200812633 odor. In addition, the whey protein micelles of the present invention can still be used as a whitening agent to accomplish several tasks using the #compound. Since whey is a readily available material, its use reduces the cost of products requiring emulsifiers, fillers, brighteners or blowing agents.曰 and 'when it is used as an emulsifier, whey protein f micelles can be used as stabilizers for, for example, emulsions or foams, which can also help remove oily residues and provide complete cleaning results. . In addition, the whey protein micelles can be used in combination with other active ingredients such as lactoferrin, 3 anti-disease agents, anti-inflammatory agents, drugs, antibiotic substances, acids, and glycerin. These can be used in shampoos as detergents, whiteners or even as colorants. These can also be used in shower gels. Thus, applications in any form of whey protein micelles include skin care ports (e.g., toothpaste, mouthwash, tooth silver cleaner, etc.) and hair care. Such whey protein micelles or concentrates thereof may be used as such or diluted for use depending on the application. Accordingly, the present invention also provides a method of making a cosmetic composition whereby the whey protein micelles are produced according to, for example, the above method, and the micelles are further incorporated into a composition. The composition in which the whey protein micelles are incorporated may be from a basic milk fat, and a mouthwash to a refined cleaning solution, soap, gel, foam, toothpaste, shampoo, and the like. These may also contain other active ingredients such as lactoferrin, humectants, emollients, analgesics, astringents, antioxidants 119066.doc -23- 200812633, antimicrobials, antivirals, anti-inflammatory agents, Drugs, antibiotic substances, acid, merging water distillate, glycerin, sulfosuccinate, alkyl sulfonate, cocobetaine, xanthan gum, EDTA, potassium sorbate, soybean oil, almond oil, propyl two Methylammonium, ceteareth 2〇, cetyl alcohol, essential oils, vegetable oils, hydrogenated castor oil, emulsifiers, stabilizers, ... Paraben-DU, perfume, lauryl glucoside, ammonium lauryl sulfate , sodium lauryl sulfate, butanediol, sodium lauryl sarcosinate, peg 2 stearic acid _ vinegar, cetyl alcohol, cleth-12, stearyl alcohol, miicone, mienivine , EDTA disodium, EDTA tetrasodium, methoxy cinnamic acid ethylhexyl ester, glycyrrhetinic acid, methyl cocoyl oxabate sodium, bht, sodium chloride, imidazolidinyl urea, cardiopurinyl violet Ketone, benzyl salicylate, butylphenylmethylpropanal, hydroxyisohexyl 3_cyclohexene Formaldehyde, salicylic acid, polyethylene, triethanolamine, xanthan gum, peg-6〇 hydrogenated sesame oil, benzophenone-4, imidazolidinyl urea, decyl glucoside, dimethylethanolamine, cocoamine Propyl betaine, glycolic acid, ppg 2 hydroxyethyl cocoamine, • glyCeTeth-7, Peg·120 methyl glucose dioleate, sodium cocoyl sarcosinate, phenoxyethanol, p-hydroxy acid Methyl ester, propyl p-hydroxybenzoate, butyl p-hydroxybenzoate, ethyl p-hydroxybenzoate, p-hydroxybenzyl-p-isobutyl acrylate, menthol menthol, citronellol, geraniol, hexyl cinnamaldehyde, Lemon oil and so on. Typically, the composition will comprise whey protein micelles or aggregates thereof in powders in an amount of at least 1%, 5%, 1%, 20%, up to 50%. The following examples are intended to illustrate and not to limit the invention. EXAMPLES 119066.doc 24-200812633 An example of the preparation of the micelles of the present invention will be further described with reference to the following detailed description of the invention as set forth and claimed herein. This is because these are intended to illustrate several aspects of the invention. Any equivalent implementation is intended to be within the scope of the invention. In fact, in addition to those shown and described herein, it will be apparent to those skilled in the art that the various modifications of the present invention. Such modifications are also susceptible to falling within the scope of the accompanying request.

實例1 : P-乳球蛋白之微膠粒化 β-乳球蛋白(批⑽ 002_8·922, 13_12_2刪)係自 Davisc〇 8.85% 水分、I%% 灰分(〇 〇79% 0-097% K+、0.576% Na+、〇·〇5〇〇/0 (Le Su:,MN,職)獲彳卜該蛋白f係自甜乳清藉由超遽 及離子乂換層析純化。該粉末之組成係89.蛋白質、Example 1: P-lactoglobulin microgelatinized β-lactoglobulin (batch (10) 002_8·922, 13_12_2 deleted) from Davisc〇 8.85% moisture, I%% ash (〇〇79% 0-097% K+ , 0.576% Na+, 〇·〇5〇〇/0 (Le Su:, MN, position) was obtained. The protein f was purified from the whey by ultra-purine and ion exchange chromatography. 89. Protein,

Ca2+、〇·〇13〇/ο Mg2+、 cr)。所用所有其他試 劑皆為分析級(Merck Darmstadt,Gennany>。 蛋白質溶液係以0.2%濃度藉由β_乳球蛋白在刪聊水 (MilliP〇re)中溶劑化並於2(rc下攪拌2小時來製備。然後, 藉由添加HC1將等份試樣之PH調節至5.0、5.2、5.4、5.6、 5/' 6_〇、6·2、6.4、6·6、6·8、7.〇。將該等溶液填充於 20 笔升玻璃小瓶(Agilent Technologies)中並用包含一個矽/ρτρΈ 密封之鋁囊密封。將該等溶液於85t:下加熱15分鐘(達到 該溫度之時間為2.30-3.00分鐘)。熱處理後,將樣品在冰 水中冷卻至20。(:。 產物之目視外觀(圖丨)表明微膠粒化之最佳1)11為5.8。 實例2 :乳清蛋白質分離物之微膠粒化 119066.doc •25- 200812633 乳清蛋白質分離物(WPI) (Bipro®,Batch JE 032-1-420) 係自Davisco (Le SueiiT,MN,USA)獲得。該粉末之組成報 告於下表2中。 蛋白質溶液係以3.4%蛋白質藉由乳清蛋白質粉末在 MilliQ®水(Millipore)中溶劑化並於20°C下攪拌2小時來製 備。初始pH為7.2。然後’藉由添加0.1 n HC1將等份試樣 之pH調節至 5.6、5.8、6.0、6.2、6.4及 6.6。 將該等溶液填充於20毫升玻璃小瓶(Agilent Technologies)中並用包含一個矽/!>丁!^密封之鋁囊密封。 將該等溶液於85 °C下加熱1 5分鐘(達到該溫度之時間為 2.30-2.50分鐘)。熱處理後’將樣品在冰水中冷卻至。 經加熱乳清蛋白質之濁度係於500奈米及25 °C下測定, 將試樣稀釋以使量測值介於〇· 1-3吸光度單位之間(分光光 度計Uvikon 810, Kontron lnstrument)。針對初始蛋白質濃 度3.4%計算該等值。 當於500奈米下在10分鐘時間間隔内針對相同樣品所量 測之吸光度穩定(小於初始值5%的變化)時(如圖2所繪示), 認為達到微膠粒化之pH。對於此產品而言,微膠粒化之最 佳pH為6·0至6.2。對於此於熱處理前調節的pH而言,穩定 濁度為21且離心後藉由於280奈米下之吸光度估計殘餘可 溶性蛋白質為i.9%。我們可得出結論··在pH 6g下45%的 初始蛋白質轉化成微膠粒。 119066.doc -26 - 200812633 表2 : WPI之組成及微膠粒化後之樣品特性 供應商 Davisco 產品名稱 Bipro 批號 JE 032-1-420 組成(mg/100 g) 鈉 650 鉀 44 氯*10若仝40 10 鈣 82 鱗 49 鎂 6 初始pH 7.2 pH微膠粒化 6.0 3.4%蛋白質存於溶液中之濁度(500奈米) 21 藉由280奈米下之濁度估計之殘餘可溶性蛋白質(%) 1.9 實例3 ··微膠粒之顯微鏡觀察 微膠粒之製備: 蛋白質溶液係以2%蛋白質藉由乳清蛋白質粉末(WPI 90 批號 98972, Lactalis, Retier, France)在 MilliQ® 水 (Mmipore)中溶劑化並於20°C下攪拌2小時來製備。然後, 使用HC1 0·1 N或NaOH 0·1 N調節等份試樣之pH。 將該等溶液填充於20毫升玻璃小瓶(Agilent Technologies)中並用包含一個石夕/PTFE密封之铭囊密封。 將該等溶液於85 °C下加熱15分鐘(達到談溫度之時間為 2.30-2.50分鐘)。熱處理後,將樣品在冰水中冷卻至20 °C。對於此產品而言,微膠粒化之最佳pH為7.4。 119066.doc -27- 200812633 顯微鏡觀察: 將液體微膠粒樣品密封於瓊脂凝膠試管中。固定係藉由 浸於2·5%存於Ο.1 M (PH 7.4)二甲基胂酸鹽緩衝液中之戊 二醛溶液中達成且利用2%存於相同緩衝液中之四氧化鐵 後口疋兩種/谷液皆含有0.04%舒紅。樣品在梯度乙醇系 -列(70、80、90、96、1〇〇%乙醇)中脫水後,將樣品包埋於 补抓樹脂(Spurr/乙醇1:1、2:1、1〇〇%)中。使樹脂聚合(7〇 φ C,48小時〕後,利用Leica ultracut UCT超薄切片機切成 半薄及超薄切片。將超薄切片用乙酸雙氧触及捧樣酸錯水 溶液染色,並在透射電子顯微鏡(Philips CM12,80 kV)中 檢測。 TEM顯微照片呈現於圖3中。所獲得微膠粒呈現直徑為 200奈米之球形。 粒徑分佈 對藉由在85 C下於pH 4.25(帶正電荷,其中ζ電位約+25 • mV)及在ρΗ 6·0(帶負電荷,其中ζ電位約-30 mV)丁熱處理 1 wt /。β乳球蛋白分散液丨5分鐘所獲得之彼等微膠粒量測 微膠粒基於強度之尺寸分佈。該等微膠粒之乙平均流體動 力學直位於pH 4·25下為229.3奈米且在pH 6.0下為227.2奈 „ 米P LG及乳巧蛋白質聚集體係使用動態光散射跟蹤。使 用一個配備有以633奈米發射之雷射及具有4·0 mW功率之 Nanosizer ZS裝置(Malvern Instruments,υκ)。該設備係用 於反向散射構造中,其中係以173。之散射角實施檢測。此 可發現混濁樣品中多次散射信號明顯減少。將樣品放置於 119066.doc -28- 200812633 正方形石英池(Hellma’光程1公分)中。該光束之光程係由 該裝置端視樣品濁度(衰減)而自動設定。自相關函數係根 據散射強度之振幅來計算結果展示於圖6中。其表明, 平均粒子之特徵在於一極狹窄多分散指數(<0 200)。因 此,藉由本發明獲得之白色懸浮液穩定且在ρΗ 3·8之大範 圍内具有乳狀外觀。 實例4: β-乳球蛋白在恆定pH下之微膠粒化 重複實例1中所闡述之方法,其中限制條件是使用2%卜 乳球蛋白水溶液。添加精胺酸HC1溶液後,將此溶液之 調節至7.0以獲得介於5_2〇〇 mM之間之最終鹽濃度及1%之 最終卜乳球蛋白濃度。隨後實施熱處理(80。(:,10分鐘,約 2分鐘升溫)以製備微膠粒。 該等結果展示於圖4中且清晰地表明,僅在離子強度範 圍為約50-70 mM時可觀察到實質混濁,此表明存在乳清蛋 白質微膠粒。 實例5 :製備一種增白劑 根據實例2處理天然乳清蛋白質(WPI 95批號848, Lactalis; 8 wt_%水溶液)。所得產物之亮度(l)係以透反射 模式使用配備有2毫米量測池之MacBeth CE-XTH D65 10。 SCE裝置量測。所得亮度為L=74 8,其可與全脂奶粉之值 Ε=74·5相當。 實例6 :製備一種水性發泡邋 將天然β-乳球蛋白(Biopure,Davisco,批號JE 002-8- 922,2 wt-%水溶液)與120 mM精胺酸HC1溶液混合以便最 119066.doc -29- 200812633 終13•乳球蛋白濃度為1 wt.%且精胺酸HC1為60 mM。然後藉 由添加1 N HC1將pH調節至7.0。然後將混合物於8〇°c下加 熱處理10分鐘以便90%的初始卜乳球蛋白轉化成z_平均直 徑為130奈米之微膠粒。在此情況下,該等微膠粒之直徑 係使用 Nanosizer ZS裝置(Malvern Instruments,UK)测定。 將樣品傾倒於石英試管中並自動記錄反射光之變化。所獲 得自相關函數係使用累積方法擬合以便可使用Stokes_ Einstein定律計算該等粒子之擴散係數且由此計算&平均流 體動力學直徑。對於此量測而言,將溶液之折射率視為 1.33且微膠粒為145。然後使用標準化F〇amscanTM (ITConcept)裝置藉由使氮氣鼓泡通過玻璃料產生12_16微 米氣泡使50毫升體積所得^乳球蛋白微膠粒分散液發泡, 以產生體積為180 cm3之發泡體。然後,於26 °C下使用圖 像分析追蹤發泡體隨時間流逝之體積穩定性並與利用在 相同條件下處理、但無精胺酸HC1之卜乳球蛋白所獲得 發泡體(其中未形成微膠粒)之穩定性相比。圖5展示,發 泡體體積穩定性因β-乳球蛋白微膠粒之存在而極大改 良。 實例7 :藉由喷霧劑乾燥所獲得粉末狀乳清蛋白質微膠粒 材料 蛋白質含量為90%之乳清蛋白質分離物(wpi,來自Ca2+, 〇·〇13〇/ο Mg2+, cr). All other reagents used were of analytical grade (Merck Darmstadt, Gennany). The protein solution was solvated in 0.2% strength by β-lactoglobulin in MilliP〇re and stirred at 2 (rc for 2 hours) Prepare. Then, adjust the pH of the aliquot to 5.0, 5.2, 5.4, 5.6, 5/' 6_〇, 6.2, 6.4, 6·6, 6.8, 7. by adding HCl. The solutions were filled in a 20-liter glass vial (Agilent Technologies) and sealed with an aluminum capsule containing a 矽/ρτρΈ seal. The solutions were heated at 85t: for 15 minutes (the time to reach this temperature was 2.30-3.00) Min.) After heat treatment, the sample was cooled to 20 in ice water. (: The visual appearance of the product (Fig. 丨) indicates that the best of the micelle granulation is 1) 11 is 5.8. Example 2: Micron whey protein isolate Gelatinization 119066.doc •25- 200812633 Whey Protein Isolate (WPI) (Bipro®, Batch JE 032-1-420) was obtained from Davisco (Le SueiiT, MN, USA). The composition of the powder is reported below. Table 2. Protein solution with 3.4% protein by whey protein powder in MilliQ® water (Millipore) It was prepared by solvation and stirring at 20 ° C for 2 hours. The initial pH was 7.2. Then the pH of the aliquot was adjusted to 5.6, 5.8, 6.0, 6.2, 6.4 and 6.6 by adding 0.1 n HCl. The solutions were filled in a 20 ml glass vial (Agilent Technologies) and sealed with an aluminum pouch containing a 矽/!> 。!^. The solution was heated at 85 °C for 15 minutes (the time to reach this temperature) 2.30-2.50 minutes). After heat treatment, the sample is cooled in ice water. The turbidity of the heated whey protein is measured at 500 nm and 25 °C, and the sample is diluted to make the measurement value · Between 1-3 absorbance units (Spectrophotometer Uvikon 810, Kontron Instrument). Calculate the value for the initial protein concentration of 3.4%. Measure the absorbance for the same sample at 500 nm over a 10-minute interval Stable (less than the initial value of 5% change) (as shown in Figure 2), it is considered that the pH of the micellization is reached. For this product, the optimum pH for micell granulation is from 6.00 to 6.2. For this pH adjusted before heat treatment, the stable turbidity is 21 and after centrifugation By estimating the residual soluble protein by i.9% due to the absorbance at 280 nm, we can conclude that 45% of the initial protein is converted to micelles at pH 6g. 119066.doc -26 - 200812633 Table 2: Composition of WPI and sample characteristics after microgelation Supplier Davisco Product name Bipro Lot number JE 032-1-420 Composition (mg/100 g) Sodium 650 Potassium 44 Chlorine *10 Same as 40 10 Calcium 82 Scale 49 Magnesium 6 Initial pH 7.2 pH Microgelation 6.0 3.4% protein in solution turbidity (500 nm) 21 Residual soluble protein estimated by turbidity at 280 nm (% 1.9 Example 3 · Microscopic observation of micelles Preparation of microcapsules: Protein solution is made up of 2% protein by whey protein powder (WPI 90 lot number 98972, Lactalis, Retier, France) in MilliQ® water (Mmipore) It was prepared by solvation and stirring at 20 ° C for 2 hours. Then, the pH of the aliquot was adjusted using HC1 0·1 N or NaOH 0·1 N. The solutions were filled in 20 ml glass vials (Agilent Technologies) and sealed with a capsule containing a stone/PTFE seal. The solutions were heated at 85 °C for 15 minutes (the time to reach the temperature was 2.30-2.50 minutes). After the heat treatment, the sample was cooled to 20 ° C in ice water. For this product, the optimum pH for micell granulation is 7.4. 119066.doc -27- 200812633 Microscopic observation: Seal the liquid micelle sample in an agar gel tube. The immobilization was achieved by immersing in 2.5% glutaraldehyde solution in Ο.1 M (pH 7.4) dimethyl citrate buffer and using 2% iron oxide in the same buffer. Both the mouth and the gluten contain 0.04% Shuhong. After the sample was dehydrated in a gradient ethanol-column (70, 80, 90, 96, 1% ethanol), the sample was embedded in a scavenging resin (Spurr/ethanol 1:1, 2:1, 1%%) )in. After the resin was polymerized (7 〇 φ C, 48 hours), it was cut into semi-thin and ultra-thin sections using a Leica ultracut UCT ultra-thin slicer. The ultra-thin sections were stained with acetic acid bis-oxygen in contact with the aqueous acid solution and in transmission. SEM photomicrographs were taken in an electron microscope (Philips CM12, 80 kV). The obtained micelles exhibited a spherical shape with a diameter of 200 nm. The particle size distribution was at pH 4.25 at 85 C ( Positively charged, where the zeta potential is about +25 • mV) and at ρΗ 6·0 (with a negative charge, where the zeta potential is about -30 mV), the heat treatment of 1 wt /. beta lactoglobulin dispersion is obtained for 5 minutes. These micelles measure the size distribution of micelles based on strength. The average hydrodynamics of these micelles is 229.3 nm at pH 4·25 and 227.2 nm at pH 6.0. And the milky protein aggregation system uses dynamic light scattering tracking. A Nanosizer ZS device (Malvern Instruments, υκ) equipped with a laser emitting at 633 nm and having a power of 4·0 mW is used. In the construction, the detection is performed at a scattering angle of 173. It was found that the scatter signal was significantly reduced in the turbid sample. The sample was placed in a square quartz cell (Hellma' optical path 1 cm) from 119066.doc -28-200812633. The optical path of the beam was measured by the device. (Attenuation) is automatically set. The autocorrelation function is calculated based on the amplitude of the scattering intensity and is shown in Fig. 6. It shows that the average particle is characterized by a very narrow polydispersity index (<0 200). The white suspension obtained by the invention is stable and has a milky appearance over a wide range of pH Η 3. 8. Example 4: Microgelation of β-lactoglobulin at constant pH The method described in Example 1 is repeated, wherein The condition is to use 2% aqueous solution of lactoglobulin. After adding arginine HCl solution, the solution is adjusted to 7.0 to obtain a final salt concentration between 5 and 2 mM and a final concentration of 1% of the lactoglobulin. Subsequent heat treatment (80. (:, 10 minutes, about 2 minutes warming) to prepare micelles. These results are shown in Figure 4 and clearly show that only in the ionic strength range of about 50-70 mM Observed Turbidity, indicating the presence of whey protein micelles. Example 5: Preparation of a whitening agent Natural whey protein (WPI 95 lot 848, Lactalis; 8 wt_% aqueous solution) was treated according to Example 2. The brightness (l) of the resulting product was The MacBeth CE-XTH D65 10 equipped with a 2 mm measuring cell was used in a transflective mode to measure the SCE device. The resulting brightness was L = 74 8, which was comparable to the value of whole milk powder Ε = 74. Example 6: Preparation of an aqueous foaming mash Natural beta-lactoglobulin (Biopure, Davisco, Lot JE 002-8-922, 2 wt-% aqueous solution) was mixed with 120 mM arginine HCl solution for the most 119066.doc - 29- 200812633 The final 13 • lactoglobulin concentration was 1 wt.% and the arginine HC1 was 60 mM. The pH was then adjusted to 7.0 by the addition of 1 N HCl. The mixture was then heat treated at 8 ° C for 10 minutes to convert 90% of the initial glycoglobulin into z-microcapsules having an average diameter of 130 nm. In this case, the diameters of the micelles were measured using a Nanosizer ZS apparatus (Malvern Instruments, UK). The sample was poured into a quartz tube and the change in reflected light was automatically recorded. The obtained correlation function is fitted using a cumulative method so that the diffusion coefficients of the particles can be calculated using Stokes_Einstein's law and thus the & average fluid dynamic diameter is calculated. For this measurement, the refractive index of the solution was taken to be 1.33 and the micelles were 145. Then, using a standardized F〇amscanTM (ITConcept) device, a 50-ml volume of the obtained lactoglobulin micelle dispersion was foamed by bubbling nitrogen through a glass frit to produce a bubble of 180 cm 3 to produce a foam having a volume of 180 cm 3 . . Then, image analysis was used at 26 ° C to track the volume stability of the foam over time and the foam obtained by using the lactoglobulin which was treated under the same conditions but without arginine HC1 (which was not formed) Compared to the stability of micelles. Figure 5 shows that the volume stability of the foam is greatly improved by the presence of β-lactoglobulin micelles. Example 7: Powdered whey protein micelle obtained by spray drying Material Whey protein isolate with a protein content of 90% (wpi from

Lactalis,RStiers,France之pr〇lacta9〇⑧) 可食用乳糖 麥芽糊精DE39 119066.doc -30- 200812633 去離子水 可食用鹽酸1 Μ 方法 使用一個雙夾套100公升槽,將Prolacta90⑧粉末在緩慢 攪拌下以10 wt%之蛋白質濃度分散於50°C去離子水中以避 免形成發泡體,即,將11公斤Prolacta90®分散於89公斤去 離子水中。分散1小時後,藉由添加HC1將分散液之pH調 節至微膠粒化pH(在此情況下約6.3)。使該分散液之溫度升 高至85°C並維持15分鐘以產生乳清蛋白質微膠粒。15分鐘 後,使溫度降至50°C並將10 wt%乳清蛋白質微膠粒分散液 分成兩份50公斤的批料。在第一試驗中,與50°C下將20公 斤乳糖分散於50公斤微膠粒分散液中並攪拌30分鐘。同 樣,將20公斤麥芽糊精DE39添加於其餘50公斤乳清蛋白 質微膠粒分散液中。 然後將兩個混合物以15公升/小時之流速在NIRO SD6.3N 塔中喷霧劑乾燥。空氣輸入溫度為140°C且空氣輸出溫度 為80°C。所獲得粉末之水含量低於5%。 該等乳清蛋白質微膠粒之尺寸係在乳糖及麥芽糊精 (DE39)之存在下在水中使用動態光散射在噴霧劑乾燥之前 及之後測定。總蛋白質濃度係藉由稀釋喷霧劑乾燥前之分 散液或使粉末再構成而設定為0.4 wt%以便符合乳清蛋白 質微膠粒黏度稀釋方案。使用Nanosizer ZS裝置(Malvern Instruments)且微膠粒直徑係根據20個量測值求平均。 在乳糖及麥芽糊精(DE39)存在下乳清蛋白質微膠粒之測 119066.doc -31- 200812633 定粒徑分別為310.4奈米及3〇6·6奈米。粉末再構成後,發 現相應直徑分別為265.3奈米及268.5奈米。該等量測結果 證明:乳清蛋白質微膠粒係關於喷霧劑乾燥物理穩定的。 該等結果係在1% pH 7磷鎢酸之存在下使用負染色藉由〇1 wt%存於水中之乳清蛋白質微膠粒分散液之tem顯微鏡觀 • 察來確證。使用以80 kV運作之Philips CM12透射電子顯微 鏡。在噴霧劑乾燥之前及噴霧劑乾燥粉末再構成之後於溶 液中觀察乳清蛋白質微膠粒。未檢測到形態及結構差異。 實例8 :藉由蒸發濃縮 於15 C下將來自Lactalis之乳清蛋白質分離物Pr〇lacta 9〇(批號500648)在軟水中以4〇/。之蛋白質濃度再構成至達到 最終批買大小為2500公斤。藉由添Mi M鹽酸調節?11以便 最終pH值為5.90。將該乳清蛋白質分散液藉助板-板Apv_ 作t* a熱父換器以5 0 0公升/小時之流速抽出。於6 〇。〇下預 熱,隨後於85°C下熱處理15分鐘。藉由使用動態光散射量 • 測粒徑以及於500奈米下量測濁度來檢驗乳清蛋白質微膠 粒之形成。所獲得4%乳清蛋白質微膠粒分散液之特徵在 於粒子之流體動力學半徑為250奈米、多分散指數為〇13 , 且濁度為80。然後通常將該乳清蛋白質微膠粒分散液以 500公升/小時之流速進給至Scheffers蒸發器。該蒸發器中 之溫度及真空係經調節以便製得約5 〇 〇公斤蛋白質濃度為 2 0 %乳 蛋白質微膠粒濃縮物並將其冷卻至4。〇。 μ 實例9 ··藉由微濾富集 於15C下將來自Lactalis之乳清蛋白質分離物pr〇i_列 119066.doc -32- 200812633 (批號500648)在軟水中以4%之蛋白質濃度再構成至達到最 終批里大小為2500公斤。藉由添加i m鹽酸調節以便最 終pH值為5.90。將該乳清蛋白質分散液藉助板-板Apv-混 合熱交換器以500公升/小時之流速抽出。於,。下預熱, P逍後於85 C下熱處理15分鐘。藉由使用動態光散射量測粒 . 徑以及於500奈米下量測濁度來檢驗乳清蛋白質微膠粒之 形成。所獲得4%乳清蛋白質微膠粒分散液之特徵在於粒 φ 子之流體動力學半徑為260奈米、多分散指數為0.07且濁 度為80。該蛋白質之微膠粒形式亦藉由tem檢測,且明顯 看到平均直徑為150_200奈米之微膠粒結構(圖9)。將該乳 清蛋白質微膠粒分散液於4。(:下冷卻並通常以ι8〇公升/小 時之流速進給至配備有6.8 m2 Carbosep Μ14膜之過濾單 兀。在此情況下,於1〇。〇下實施乳清蛋白質微膠粒之濃縮 直至參透流速達到7 〇公升/小時為止。在此情況下,該最 終乳清蛋白質濃縮物包含2〇%蛋白質。藉由tem檢測該濃 φ 縮物中該等微膠粒之結構,且很明顯與微濾前4%乳清蛋 白質分散液相比,未看到明顯變化(圖1〇)。 實例10 :包含至少90%乳清蛋白質之乳清蛋白質微膠粒 粉末 ~ 將200公斤藉由微濾以20%蛋白質獲得之乳清蛋白質微 膠粒濃縮物(參見以上實例)使用霧化喷嘴(0=〇5毫米,喷 射角=65。,壓力=40巴)以25公斤/小時之產物流速注入Niro SD6.3N塔中。產物之入口溫度為i5〇°c且出口溫度為75 °C。該塔中之氣流為丨50 m3/h。該粉末中之水分含量小於 119066.doc -33- 200812633 4%且該粉末之特徵在於極高流動性。該粉末之掃描電子 顯微鏡展示表觀直徑介於10-100微米之間之完全球形粒子 (圖 8) 〇 實例11 :混合乳清蛋白質微膠粒粉末 - 將20公斤乳清蛋白質微膠粒濃縮物與1.7公斤DE為39之 . 麥芽糊精混合以便粉末中最終乳清蛋白質微膠粒與麥芽糊 精比例為70/30。將此混合物使用霧化噴嘴(0 = 0.5毫米,喷 射角=65。,壓力=40巴)以25公斤/小時之產物流速注入Niro • SD6.3N塔中。產物之入口溫度為150°C且出口溫度為75 fC。該塔中之氣流為150 m3/h。該粉末中之水分含量小於 4%且該粉末之特徵在於極高流動性。 當將實例10及11之粉末在水中再構成時,其包含具有與 乳清蛋白質微膠粒濃縮物相同之結構及形態之實質微膠 粒。 實例12:包含3.8%乳清蛋白質微膠粒之美容組合物的配 血 方。磨砂沐浴凝膠。 成份 百分數 玫瑰水蒸餾液 35-40 20%經濃縮的WPM 15-25 石黃基號ίό酸酯 10-20 磺酸烷基酯 10-15 甘油 5-10 可可甜菜鹼 1-10 黃原膠 0.1-2 EDTA 0.1-1 山梨酸鉀 0.1-1 香水 0.1-1 119066.doc -34- 200812633 方法: 將20%經濃縮WPM及玫瑰水蒸餾液加熱至40°C,然後添 加甘油及黃原膠。向此摻合物中添加績酸烧基自旨、可可甜 菜鹼、磺基琥珀酸酯及EDTA。將所有成份藉由攪拌混 合,然後添加山梨酸卸及香水。 實例17 :包含11.8%乳清蛋白質微膠粒之美容組合物的配 方。WPM去角質洗液。Lactalis, RStiers, France pr〇lacta9〇8) Edible lactose maltodextrin DE39 119066.doc -30- 200812633 Deionized water edible hydrochloric acid 1 Μ Method using a double jacket 100 liter tank, the Prolacta 908 powder is slow Disperse in deionized water at 50 ° C with a protein concentration of 10 wt% with stirring to avoid foam formation, i.e., disperse 11 kg of Prolacta 90® in 89 kg of deionized water. After dispersing for 1 hour, the pH of the dispersion was adjusted to the micelle granulation pH (about 6.3 in this case) by the addition of HCl. The temperature of the dispersion was raised to 85 ° C and maintained for 15 minutes to produce whey protein micelles. After 15 minutes, the temperature was lowered to 50 ° C and the 10 wt% whey protein micelle dispersion was divided into two 50 kg batches. In the first test, 20 kg of lactose was dispersed in 50 kg of micelle dispersion at 50 ° C and stirred for 30 minutes. Similarly, 20 kg of maltodextrin DE39 was added to the remaining 50 kg of whey protein micelle dispersion. The two mixtures were then spray dried in a NIRO SD6.3N column at a flow rate of 15 liters per hour. The air input temperature was 140 ° C and the air output temperature was 80 ° C. The water content of the obtained powder was less than 5%. The size of the whey protein micelles was determined in the presence of lactose and maltodextrin (DE39) in water using dynamic light scattering before and after the spray was dried. The total protein concentration was set to 0.4 wt% by diluting the dispersion before drying of the spray or reconstituting the powder to conform to the whey protein micelle viscosity dilution protocol. A Nanosizer ZS apparatus (Malvern Instruments) was used and the micelle diameter was averaged based on 20 measurements. Determination of whey protein micelles in the presence of lactose and maltodextrin (DE39) 119066.doc -31- 200812633 The particle size was 310.4 nm and 3〇6·6 nm, respectively. After the powder was reconstituted, the corresponding diameters were found to be 265.3 nm and 268.5 nm, respectively. These measurements demonstrate that the whey protein micelles are physically stable with respect to spray drying. These results were confirmed by negative staining in the presence of 1% pH 7 phosphotungstic acid by tem microscopy of 〇1 wt% whey protein micelle dispersion in water. A Philips CM12 transmission electron microscope operating at 80 kV was used. The whey protein micelles were observed in the solution before the spray was dried and after the spray dried powder was reconstituted. No differences in morphology and structure were detected. Example 8: The whey protein isolate PrLlacta 9® (lot 500648) from Lactalis was concentrated in soft water by 4 〇 at 15 C by evaporation. The protein concentration was reconstituted to a final batch size of 2,500 kg. Adjusted by adding Mi M hydrochloric acid? 11 so that the final pH is 5.90. The whey protein dispersion was withdrawn at a flow rate of 500 liters per hour by means of a plate-plate Apv_ as a t* a hot-parent. At 6 〇. The underarm was preheated and then heat treated at 85 ° C for 15 minutes. The formation of whey protein micelles was examined by measuring the amount of dynamic light scattering, measuring the particle size, and measuring the turbidity at 500 nm. The 4% whey protein micelle dispersion obtained was characterized in that the hydrodynamic radius of the particles was 250 nm, the polydispersity index was 〇13, and the turbidity was 80. The whey protein micelle dispersion is then typically fed to a Scheffers evaporator at a flow rate of 500 liters per hour. The temperature and vacuum in the evaporator were adjusted to produce a protein concentration of about 5 〇 〇 kg of 20% milk protein micelle concentrate and cooled to 4. Hey. μ Example 9 · Reconstitution of the whey protein isolate pl〇i_ column 119066.doc -32- 200812633 (batch number 500648) from Lactalis in soft water at a protein concentration of 4% by microfiltration enrichment at 15C The size of the final batch is 2,500 kg. It was adjusted by adding i m hydrochloric acid so that the final pH was 5.90. The whey protein dispersion was withdrawn at a flow rate of 500 liters per hour by means of a plate-plate Apv-mixing heat exchanger. to,. Preheating, P逍 and heat treatment at 85 C for 15 minutes. The formation of whey protein micelles was examined by measuring the particle diameter using dynamic light scattering and measuring the turbidity at 500 nm. The 4% whey protein micelle dispersion obtained was characterized in that the particle φ had a hydrodynamic radius of 260 nm, a polydispersity index of 0.07 and a turbidity of 80. The micelle form of the protein was also detected by tem, and a microcapsule structure having an average diameter of 150-200 nm was apparent (Fig. 9). The whey protein micelle dispersion was at 4. (: Cool down and usually feed to a filter unit equipped with a 6.8 m2 Carbosep Μ14 membrane at a flow rate of ι8 〇 liters/hour. In this case, concentrate the whey protein micelles at 1 〇. The flow rate of the penetration reaches 7 〇 liters/hour. In this case, the final whey protein concentrate contains 2% protein. The structure of the micelles in the concentrated φ shrinkage is detected by tem, and is obviously No significant changes were observed in the 4% whey protein dispersion before microfiltration (Fig. 1A). Example 10: Whey protein micelle powder containing at least 90% whey protein ~ 200 kg by microfiltration The whey protein micelle concentrate obtained with 20% protein (see example above) was injected at a product flow rate of 25 kg/hr using an atomizing nozzle (0 = 〇 5 mm, spray angle = 65, pressure = 40 bar). In the Niro SD6.3N column, the inlet temperature of the product is i5〇°c and the outlet temperature is 75 ° C. The gas flow in the column is 丨50 m3/h. The moisture content in the powder is less than 119066.doc -33- 200812633 4% and the powder is characterized by extremely high fluidity. Electron microscopy shows fully spherical particles with apparent diameters between 10 and 100 microns (Fig. 8) Example 11: Mixed whey protein micelle powder - 20 kg of whey protein micelle concentrate with 1.7 kg DE 39. Maltodextrin is mixed so that the ratio of final whey protein micelles to maltodextrin in the powder is 70/30. This mixture is used with an atomizing nozzle (0 = 0.5 mm, spray angle = 65., pressure). =40 bar) was injected into the Niro • SD6.3N column at a product flow rate of 25 kg/hr. The inlet temperature of the product was 150 ° C and the outlet temperature was 75 f C. The gas flow in the column was 150 m3 / h. The moisture content is less than 4% and the powder is characterized by extremely high fluidity. When the powders of Examples 10 and 11 are reconstituted in water, they comprise the same structure and morphology as the whey protein micelle concentrate. Microcapsules. Example 12: Blood-matching formula of a cosmetic composition containing 3.8% whey protein micelles. Frosted shower gel. Percentage of ingredients rose water distillate 35-40 20% concentrated WPM 15-25 stone yellow Base number ό ό 10-20 sulfonate alkyl ester 10-15 Glycerin 5-10 Cocobetaine 1-10 Xanthan gum 0.1-2 EDTA 0.1-1 Potassium sorbate 0.1-1 Perfume 0.1-1 119066.doc -34- 200812633 Method: 20% concentrated WPM and rose water distillate The mixture was heated to 40 ° C, and then glycerin and xanthan gum were added. To the blend was added a chlorinated base, cocoa betaine, sulfosuccinate and EDTA. Mix all ingredients with agitation, then add sorbic acid to remove the perfume. Example 17: Formulation of a cosmetic composition comprising 11.8% whey protein micelles. WPM exfoliating lotion.

成份 % 經濃縮的20% WPM 55-65 杏仁油 15-20 甘油 5-10 香水 1-10 鯨蠟醇 1-5 硬脂酸 1-5 聚山梨醇酯60 1-5 丙基三曱基銨 1-5 Paraben-DU 0.1-5 方法: 將20%經濃縮WPM加熱至70°C,然後添加甘油。添加熔 融(70°C )油相(杏仁油、鯨蠟醇硬脂酸及聚山梨醇酯60)並 攪拌直至獲得均勻分散液為止。將摻合物於室溫下冷卻並 然後添加Paraben-DU及香水。 實例18 :包含14%乳清蛋白質微膠粒之美容組合物的配 方。WPM去角質洗液。 119066.doc -35- 200812633 成份 % 20%經濃縮WPM 60-80 甘油 5-10 大豆油 5-10 丙基三甲基銨 2-8 可可甜菜鹼 1-5 CreamMaker Wax 1-5 希特瑞斯-20 1-5 蘇壤醇 1-5 Paraben-DU 0.1-2 香水 0.1-1 方法:Ingredients% Concentrated 20% WPM 55-65 Almond Oil 15-20 Glycerin 5-10 Perfume 1-10 Cetyl Alcohol 1-5 Stearic Acid 1-5 Polysorbate 60 1-5 Propyl Tridecyl Ammonium 1-5 Paraben-DU 0.1-5 Method: Heat 20% concentrated WPM to 70 ° C, then add glycerin. A molten (70 ° C) oil phase (almond oil, cetyl stearate, and polysorbate 60) was added and stirred until a uniform dispersion was obtained. The blend was cooled at room temperature and then Paraben-DU and perfume were added. Example 18: Formulation of a cosmetic composition comprising 14% whey protein micelles. WPM exfoliating lotion. 119066.doc -35- 200812633 Ingredient % 20% Concentrated WPM 60-80 Glycerin 5-10 Soybean Oil 5-10 Propyl Trimethylammonium 2-8 Coco Betaine 1-5 CreamMaker Wax 1-5 Hitres -20 1-5 Supra Alcohol 1-5 Paraben-DU 0.1-2 Perfume 0.1-1 Method:

將20%經濃縮WPM加熱至70°C,然後添加甘油及丙基三 曱基铵。添加溶融(70 °C )油相(大豆油、Cream Maker WAX、希特瑞斯-20、可可甜菜鹼、鯨蠟醇)並攪拌直至獲 得均勻分散液為止。將摻合物於室溫下冷卻並然後添加 Paraben-DU及香水。 【圖式簡單說明】 下文將參考以下隨附圖中所展示之一些較佳實施例進一 步闡述本發明,其中: 圖1展示一證明pH及熱處理對β-乳球蛋白微膠粒化之影 響的試驗結果。 圖2展示一種使用於500奈米下之濁度量測結果對商業製 品(Bipro®,Batch JE 032-1-420)之微膠粒化pH進行測定之 手段。 圖3係於pH 7.4下乳清蛋白質微膠粒(2 wt·%,WPI 95, 119066.doc -36- 200812633The 20% concentrated WPM was heated to 70 ° C and then glycerin and propyltrimethylammonium were added. The molten (70 °C) oil phase (soybean oil, Cream Maker WAX, Hitres 20, cocobetaine, cetyl alcohol) was added and stirred until a uniform dispersion was obtained. The blend was cooled at room temperature and then Paraben-DU and perfume were added. BRIEF DESCRIPTION OF THE DRAWINGS The invention will be further elucidated with reference to the following preferred embodiments shown in the accompanying drawings in which: Figure 1 shows a demonstration of the effect of pH and heat treatment on the granulation of β-lactoglobulin microgels. test results. Figure 2 shows a means for determining the gelatinization pH of a commercial product (Bipro®, Batch JE 032-1-420) using a turbidity measurement at 500 nm. Figure 3 is a whey protein micelle at pH 7.4 (2 wt·%, WPI 95, 119066.doc -36- 200812633

Lactalis)之透射電子顯微鏡顯微照片。標度條為200奈米。 圖4展示一評價於恆定pH 7.0下離子強度(精胺酸HC1)對 蛋白質微膠粒之形成影響之試驗結果。 圖5展示與未經微膠粒化β-乳球蛋白相比發泡體之體積 穩定性(FVS),該發泡體係於pH 7.0下在60 mM精胺酸HC1 之存在下藉由1 wt.% β-乳球蛋白微膠粒(Davisco)穩定。 圖6展示乳清蛋白質基於強度之等效流體動力學直徑, 該乳清蛋白質係藉由1 wt% β-乳球蛋白分散液於85°C下於 介於2-8之間之pH下熱處理15分鐘獲得。乳清蛋白質微膠 粒係於pH 4.25(帶正電荷,其中ζ電位約+25 mV)及於pH 6.〇(帶負電荷,其中ζ電位約-30 mV)下獲得。該等微膠粒 之Z-平均流體動力學直徑於pH 4.25下為229.3奈米且在pH 6.0下為227.2奈米。展示負染色後藉由TEM所獲得該等微 膠粒之相應顯微照片。標度條為1微米。 圖7展示乳清蛋白質微膠粒之高度示意性結構。 圖8展示微濾後喷霧劑乾燥20%蛋白質含量分散液所獲 得乳清蛋白質微膠粒粉末之SEM(掃描電子顯微鏡)顯微照 片。 圖9係以4%蛋白質含量所獲得乳清蛋白質微膠粒分散液 之負染色TEM顯微照片。 圖10係微濾後以20%蛋白質含量所獲得乳清蛋白質微膠 粒分散液之負染色TEM顯微照片。 圖11展示一乳清蛋白質微膠粒分散液之熱穩定性,該分 散液係在85°C下加熱15分鐘後於pH 7.0下於NaCl存在下微 119066.doc -37- 200812633 濾後以10%蛋白質含量獲得。 圖12展示一乳清蛋白質分散液之熱穩定性,該分散液係 在85。(:下加熱15分鐘後於pH 7_0下於NaCl存在下以4%蛋白 質含量獲得。 ' 圖13係4%乳清蛋白質微膠粒分散液之負染色Tem顯微 _ 照片,該分散液係基於於50°C下分散於去離子水中後之純 乳清蛋白質微膠粒噴霧劑乾燥粉末。 ❿ 圖14係一展示微膠粒尺寸分佈之照片,該等微膠粒係藉 由本發明方法使用4 wt% pr〇lacta 90乳清蛋白質分離物於 pH 5.9下處理獲得。 圖15係一 SEM顯微照片,其展示切割圖8所呈現喷霧劑 乾燥粉末顆粒後之内部結構。 圖16係4%乳清蛋白質微膠粒分散液之負染色TEM顯微 照片’該分散液係在室溫下由純淨經冷凍乾燥之乳清蛋白 質微膠粒粉末存於去離子水中形成。標度條為〇 5微米。 φ 圖17係當在PH 3.0下增加混合比例時被SB〇(硫酸化油酸 丁酯)包覆之WPM示意圖。灰色圓:帶有正表面電荷之 WPM。黑色頭部+尾部·· SB〇之帶負電荷頭部及疏水尾 , 部。 • 圖18係蒸發後所獲得2〇%乳清蛋白質微膠粒濃縮物之照 片,其中添加4% NaCl。 119066.doc -38-Transmission electron microscopy photomicrograph of Lactalis). The scale bar is 200 nm. Figure 4 shows the results of an experiment evaluating the effect of ionic strength (arginine HC1) on the formation of protein micelles at a constant pH of 7.0. Figure 5 shows the volume stability (FVS) of a foam compared to unmicronized beta-lactoglobulin at pH 7.0 in the presence of 60 mM arginine HC1 by 1 wt .% β-lactoglobulin micelles (Davisco) are stable. Figure 6 shows the equivalent hydrodynamic diameter of whey protein based on a 1 wt% β-lactoglobulin dispersion heat treated at 85 ° C at a pH between 2 and 8 Get in 15 minutes. The whey protein microgels are obtained at pH 4.25 (with a positive charge, with a zeta potential of about +25 mV) and at pH 6.〇 (with a negative charge, with a zeta potential of about -30 mV). The Z-average hydrodynamic diameter of the micelles was 229.3 nm at pH 4.25 and 227.2 nm at pH 6.0. Corresponding photomicrographs of the micelles were obtained by TEM after negative staining. The scale bar is 1 micron. Figure 7 shows a highly schematic structure of whey protein micelles. Figure 8 shows an SEM (Scanning Electron Microscope) micrograph of whey protein micelle powder obtained by drying a 20% protein content dispersion after microfiltration. Figure 9 is a negative staining TEM micrograph of a whey protein micelle dispersion obtained at 4% protein content. Figure 10 is a negative staining TEM micrograph of a whey protein micelle dispersion obtained at 20% protein content after microfiltration. Figure 11 shows the thermal stability of a whey protein micelle dispersion which was heated at 85 ° C for 15 minutes and then at pH 7.0 in the presence of NaCl micro 119066.doc -37 - 200812633 filtered to 10 % protein content is obtained. Figure 12 shows the thermal stability of a whey protein dispersion which is at 85. (: After heating for 15 minutes, it was obtained at 4% protein content in the presence of NaCl at pH 7_0. ' Figure 13 is a negative stained Tem micrograph of 4% whey protein micelle dispersion - photo, the dispersion is based on Pure whey protein micelle spray dried powder after dispersion in deionized water at 50 ° C. Figure 14 is a photograph showing the size distribution of micelles used by the method of the present invention 4 The wt% pr〇lacta 90 whey protein isolate was obtained by treatment at pH 5.9. Figure 15 is an SEM micrograph showing the internal structure after cutting the dry powder particles of the spray as shown in Figure 8. Figure 16 is 4% Negative staining TEM micrograph of whey protein micelle dispersion 'This dispersion is formed from pure lyophilized whey protein micelle powder in deionized water at room temperature. The scale bar is 〇5 φ Figure 17 is a schematic diagram of WPM coated with SB〇 (sulfated butyl oleate) when the mixing ratio is increased at pH 3.0. Gray circle: WPM with positive surface charge. Black head + tail ·· SB〇 has a negatively charged head and a hydrophobic tail, • After evaporation system 18 photographs 2〇% whey protein micelle concentrate obtained of which was added 4% NaCl. 119066.doc -38-

Claims (1)

200812633 十、申請專利範圍: L 一種蛋白質微膠粒、尤其乳清蛋白質微膠粒或其聚集體 作為研磨介質之用途。 2·如請求項〗之用途,其中該等聚集體包括選自可溶性或 • 不溶性鹽、色素、脂肪、乳化劑、香料、植物提取物、 諸如礦物質、維他命、藥物之配體或生物活性物質、及 其任何混合物之群組的額外成份。 3. —種乳清蛋白質微膠粒或其聚集體作為美容劑之用途。 _ 4· 一種乳清蛋白質微膠粒或其聚集體用於製造美容組合物 之用途。 5.如上述請求項中任一項之用途,其中該等乳清蛋白質微 膠粒或其聚集體係與其他活性劑纟且合。 6·如睛求項5之用途,其中該等活性劑係選自肽、植物提 取物、蛋白質水解物、生物活性物質、維他命、礦物 質、藥品、美容組份、及其混合物之群組。 _ 7·如請求項4至6之用途,其中該等乳清蛋白質微膠粒或其 t集體係以至少1 %、較佳至少5 %、更佳至少1 〇 %、甚至 更佳至少20%、最佳高達50%之量包含於該組合物中。 , 8 ·如請求項1至7中任一項之用途,其中該等乳清蛋白質微 膠粒係以液體分散液、懸浮液、凝膠、乳霜或粉末形式 存在。 9.如請求項5之用途,其中該乳清蛋白質之濃度係大於 4%、較佳大於1 〇%。 10·如上述請求項中任一項之用途,其中該等乳清蛋白質微 119066.doc 200812633 膠粒具有100奈米至900奈米之平均尺寸。 U·如請求項10之用途,其中該等瓒、生 寻孔用蛋白質微膠粒具有 100-770奈米、較佳200-400奈米之平均尺寸。 12. 如上述請求項中任—項之用途,其中該等乳清蛋白質微 膠粒聚集體具有大於1微米之平均尺寸。 13. 如請求項4至12中任—項之用途,其中該美容組合物係 洗髮精。200812633 X. Patent application scope: L The use of a protein microgel, especially whey protein micelles or aggregates thereof as a grinding medium. 2. The use of claim 1 wherein the aggregate comprises a soluble or insoluble salt, a pigment, a fat, an emulsifier, a fragrance, a plant extract, a ligand such as a mineral, a vitamin, a drug, or a biologically active substance. And additional components of the group of any mixture thereof. 3. Use of a whey protein micelle or an aggregate thereof as a cosmetic agent. _ 4· Use of a whey protein micelle or an aggregate thereof for the manufacture of a cosmetic composition. 5. The use according to any of the preceding claims, wherein the whey protein micelles or aggregate systems thereof are combined with other active agents. 6. The use of claim 5, wherein the active agents are selected from the group consisting of peptides, plant extracts, protein hydrolysates, biologically active substances, vitamins, minerals, pharmaceuticals, cosmetic components, and mixtures thereof. 7. The use of claim 4 to 6, wherein the whey protein micelles or the t-set system thereof are at least 1%, preferably at least 5%, more preferably at least 1%, even more preferably at least 20% An optimum amount of up to 50% is included in the composition. The use of any one of claims 1 to 7, wherein the whey protein microcapsules are in the form of a liquid dispersion, suspension, gel, cream or powder. 9. The use of claim 5, wherein the concentration of the whey protein is greater than 4%, preferably greater than 1%. The use of any of the above claims, wherein the whey protein micro 119066.doc 200812633 colloidal particles have an average size of from 100 nanometers to 900 nanometers. U. The use of claim 10, wherein the protein micelles for the enthalpy and the porogen have an average size of from 100 to 770 nm, preferably from 200 to 400 nm. 12. The use of any of the preceding claims, wherein the whey protein micelle aggregates have an average size greater than 1 micron. 13. The use of any of claims 4 to 12, wherein the cosmetic composition is a shampoo. 14·如請求項4至12中任一項之用途, 沐浴凝膠。 /、中該美容組合物係 15.-種諸如乳清蛋白質或酪蛋白微膠粒等蛋白質微膠粒之 局部施用。 %如請求項15之局部施用’其中該等乳清蛋白質微膠粒係 呈液體分散液、懸浮液、乳霜、凝膠或粉末形式。 17.如請求項15或16中任一項之局部施用,其中該等乳清蛋 白質微膠粒係納入組合物中。 18·種研磨皮膚粒子之方法,其包括將乳清蛋白質微膠粒 施加於皮膚之步驟。 19·如叫求項18之方法,其中該等乳清蛋白質微膠粒係呈液 體分散液、懸浮液、乳霜、凝膠或粉末形式。 2〇·如請求項18或19中任一項之方法,其中該等乳清蛋白質 微膠粒係在施加之前納入組合物中。 21 · —種美容組合物,該組合物包含一種研磨介質,該研磨 介質包含諸如乳清蛋白質或酪蛋白質微膠粒或其聚集體 之蛋白質。 H9066.doc 200812633 22·如請求項21之組合物’其中該等乳清蛋白質微膠粒係以 至少1%、較佳至少5%、更佳至少1〇%、甚至更佳至少 20%、敢佳南達50%之量包括在該組合物中。 擎 2 3 ·如請求項21及2 2之組合物,1中讀擎受丨主 ,、甲忑导礼清蛋白質微膠粒 具有100奈米至900奈米之平均尺寸。 24. 如請求項21至23之組合物,其中該等乳清蛋白質微膠粒 聚集體具有大於1微米之平均尺寸。 25. 如請求項21至24之組合物,其中乳清蛋白質之濃度大於 1%、較佳大於10%、更佳大於2〇%、最佳大於5〇%。 26. 如請求項21至25中任_項之組合物,該組合物係為溶 液、乳霜、凝膠、糊劑、發泡體、噴霧劑、洗髮精等形 式。 27. 如請求項21至26中任-項之組合物,其為身體及/或頭髮 護理產品。 28. 如請求項27之組合物,其為一種洗髮精。 29. 如請求項2 1至26中任一頊夕έ日人私 甘从》 項之組合物,其為沐浴凝膠產 3〇_ -種製造美容組合物之方法,該方法包括以下步驟: a. 製備乳清蛋白質微膠粒或其聚集體;及 b. 將該等微膠粒或其聚集體納入組合物中。 31. 如請求項3G之方法’其中該等乳清蛋白f微膠粒具有 100及900奈米之平均尺寸。 32. 如請求項3G之方法’其中該等乳清蛋白f微膠粒聚集體 具有大於1微米之平均尺寸。 119066.doc 200812633 33·如請求項30至32之方法,其中該等乳清蛋白質微膠粒係 呈懸浮液、分散液、乳霜、凝膠或乾燥粉末形式。 34·如請求項30至33之方法,其中該納入有該等乳清蛋白質 微膠粒或其聚集體之組合物係溶液、糊劑、凝膠、乳 霜、發泡體或噴霧劑等。 35. 如請求項30至34中任一項之方法,其中該納入有該等乳 /月蛋白貝械膠粒或其聚集體之組合物係洗髮精。14. The use of any of claims 4 to 12, a shower gel. /, the beauty composition is a topical application of protein microcapsules such as whey protein or casein micelles. % as applied topically to claim 15 wherein the whey protein micelles are in the form of a liquid dispersion, suspension, cream, gel or powder. The topical application of any one of claims 15 or 16, wherein the whey protein micelles are incorporated into the composition. 18. A method of grinding skin particles comprising the step of applying whey protein micelles to the skin. 19. The method of claim 18, wherein the whey protein micelles are in the form of a liquid dispersion, suspension, cream, gel or powder. The method of any one of claims 18 or 19, wherein the whey protein micelles are incorporated into the composition prior to application. 21 - A cosmetic composition comprising a grinding medium comprising a protein such as whey protein or casein micelles or aggregates thereof. H9066.doc 200812633 22. The composition of claim 21 wherein the whey protein micelles are at least 1%, preferably at least 5%, more preferably at least 1%, even more preferably at least 20%, dare A 50% amount of Jia Nanda is included in the composition.擎 2 3 · As in the combination of claims 21 and 2, 1 is the master of the sputum, and the sputum is a protein microcapsule with an average size of 100 nm to 900 nm. 24. The composition of claim 21 to 23, wherein the whey protein micelle aggregates have an average size greater than 1 micron. 25. The composition of claim 21 to 24, wherein the concentration of whey protein is greater than 1%, preferably greater than 10%, more preferably greater than 2%, and most preferably greater than 5%. 26. The composition of any of clauses 21 to 25, which is in the form of a solution, a cream, a gel, a paste, a foam, a spray, a shampoo or the like. 27. The composition of any of items 21 to 26, which is a body and/or hair care product. 28. The composition of claim 27 which is a shampoo. 29. A method of making a cosmetic composition according to any one of claims 2 to 26, which is a composition for the manufacture of a cosmetic composition, the method comprising the steps of: a. preparing whey protein micelles or aggregates thereof; and b. incorporating the micelles or aggregates thereof into the composition. 31. The method of claim 3, wherein the whey protein f micelles have an average size of 100 and 900 nm. 32. The method of claim 3, wherein the whey protein f micelle aggregates have an average size greater than 1 micron. The method of claim 30 to 32, wherein the whey protein micelles are in the form of a suspension, dispersion, cream, gel or dry powder. The method of claim 30 to 33, wherein the composition comprising the whey protein micelles or aggregates thereof is a solution, a paste, a gel, a cream, a foam or a spray, and the like. The method of any one of claims 30 to 34, wherein the composition comprising the milk/month protein shells or aggregates thereof is a shampoo. 36. -種藉由如請求項3G至35中任_項之方法獲得之美容组36. A beauty group obtained by the method of any one of claims 3G to 35 119066.doc119066.doc
TW096110593A 2006-03-27 2007-03-27 Cosmetic use of whey protein micelles TW200812633A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06006299A EP1844758B1 (en) 2006-03-27 2006-03-27 Cosmetic use of whey protein micelles

Publications (1)

Publication Number Publication Date
TW200812633A true TW200812633A (en) 2008-03-16

Family

ID=36810177

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096110593A TW200812633A (en) 2006-03-27 2007-03-27 Cosmetic use of whey protein micelles

Country Status (16)

Country Link
US (1) US9387158B2 (en)
EP (1) EP1844758B1 (en)
JP (1) JP5508845B2 (en)
KR (1) KR20080110870A (en)
CN (1) CN101453980A (en)
AR (1) AR060139A1 (en)
AT (1) ATE472317T1 (en)
AU (1) AU2007231344A1 (en)
BR (1) BRPI0709228B1 (en)
CA (1) CA2647572C (en)
DE (1) DE602006015164D1 (en)
ES (1) ES2348963T3 (en)
MX (1) MX2008012266A (en)
RU (1) RU2008142385A (en)
TW (1) TW200812633A (en)
WO (1) WO2007110419A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2873502T3 (en) 2009-03-27 2021-11-03 Bend Res Inc Spray drying process
DK2540169T3 (en) * 2010-02-26 2016-10-03 Univ Navarra Nanoparticles for encapsulating compositions, their preparation and use of same.
WO2012031133A2 (en) 2010-09-03 2012-03-08 Bench Research, Inc. Spray-drying apparatus and methods of using the same
US9084976B2 (en) 2010-09-03 2015-07-21 Bend Research, Inc. Spray-drying apparatus and methods of using the same
US9248584B2 (en) 2010-09-24 2016-02-02 Bend Research, Inc. High-temperature spray drying process and apparatus
EP2583562A1 (en) * 2011-10-21 2013-04-24 Nestec S.A. Use of whey protein micelles for infants at risk of obesity or diabetes
EP3212169B1 (en) 2014-10-31 2021-01-13 Bend Research, Inc. Process for forming active domains dispersed in a matrix
US10449129B2 (en) 2015-02-20 2019-10-22 Biocogent, Llc Encapsulates of salicylic acid and polysalicylic acid derivatives
CN106176281B (en) * 2016-07-26 2019-06-28 西安艾尔菲生物科技有限公司 Fibroin albumen/HA complex microsphere freeze-dried powder of load active constituent and preparation and application
CN106943585A (en) * 2017-05-17 2017-07-14 贵州红润生物科技有限公司 It is a kind of to be used to treat the pseudo-ginseng externally used compound preparation and preparation method for spraining swelling and pain relieving
WO2019229215A2 (en) * 2018-05-30 2019-12-05 DÖHLER GmbH High-pressure process, in particular for preserving items of food, pharmaceuticals and cosmetics, and high-pressure apparatus
RU2710249C1 (en) * 2019-08-23 2019-12-25 Ирина Сергеевна Егоровская Powder for peeling
KR102219317B1 (en) * 2020-10-06 2021-02-24 엘앤피코스메틱 (주) A method of producing a cosmetic composition comprising a micelle complex formed by using natural moisturizing factor, and a cosmetic composition formed by the method
IT202000030992A1 (en) * 2020-12-16 2022-06-16 Tech Scientific S R L SYSTEM FOR THE CONTROLLED RELEASE OF ACTIVE INGREDIENTS
FR3117736B1 (en) * 2020-12-22 2024-04-05 Savencia New process for preparing a cationic whey protein isolate and the product thus obtained
CN112675046B (en) * 2020-12-31 2022-02-15 华南理工大学 Almond polypeptide hair care nano micelle and preparation method thereof
CN114306196B (en) * 2021-12-31 2024-01-23 深圳市瑞茵电子科技有限公司 Preparation method of self-assembled whitening active compound micelle and skin care product

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143174A (en) * 1975-07-24 1979-03-06 Beatrice Foods Co. Food composition containing whey colloidal precipitate
CA1166576A (en) 1980-08-19 1984-05-01 Lorna C. Staples Whey protein containing cosmetic formulations
US4734287A (en) * 1986-06-20 1988-03-29 John Labatt Limited Protein product base
JPS63135326A (en) 1986-11-27 1988-06-07 Kenji Takeshima Powdery cleaning composition
CH672597A5 (en) 1987-12-11 1989-12-15 Rhone Electra S A Geneve
FR2655544B1 (en) * 1989-12-13 1992-02-28 Thorel Jean Noel MICELLAR STRUCTURES AND THEIR PREPARATION METHODS.
CH684773A5 (en) * 1992-12-28 1994-12-30 Nestle Sa anti-cariogenic food composition.
CO4560537A1 (en) * 1992-12-28 1998-02-10 Nestle Sa DAIRY COMPOSITION AND PREPARATION PROCEDURE
JP2683492B2 (en) * 1993-09-07 1997-11-26 雪印乳業株式会社 Micellar whey protein, solution thereof, powder thereof, and method for producing micellar whey protein
JPH08134497A (en) 1994-11-02 1996-05-28 Meiji Milk Prod Co Ltd Detergent
EP0748591B1 (en) * 1995-06-16 2001-10-17 Societe Des Produits Nestle S.A. Fluorinated micellar casein
JP3417513B2 (en) * 1996-03-06 2003-06-16 雪印乳業株式会社 How to prepare whey
DE29616496U1 (en) * 1996-09-23 1997-01-16 Friedrichs Jester Cellulite peeling
US6036966A (en) 1998-02-17 2000-03-14 Youssefyeh; Rena T. Skin treatment compositions comprising protein and enzyme extracts
JP2001097842A (en) 1999-09-28 2001-04-10 Ichimaru Pharcos Co Ltd Acne medicine originated from natural product
ITMI20011315A1 (en) 2001-06-21 2002-12-21 Herbariorum Medicaminum Offici COMPOSITION FOR ANTI-PLATE TOOTHPASTE PASTE WITH PLATE DETECTOR
MY153295A (en) * 2004-09-29 2015-01-29 Nestec Sa Nanoparticulated whey proteins
JP4424494B2 (en) 2005-02-01 2010-03-03 東京電力株式会社 Distribution system configuration optimization device and distribution system configuration optimization method
PL1839498T3 (en) 2006-03-27 2011-09-30 Nestec Sa Whey protein vehicle for active agent delivery
ATE524073T1 (en) 2006-03-27 2011-09-15 Nestec Sa WHEY PROTEIN MICELLES
PL1839495T3 (en) * 2006-03-27 2011-07-29 Nestec Sa Protein-enriched frozen dessert

Also Published As

Publication number Publication date
CN101453980A (en) 2009-06-10
JP2009531378A (en) 2009-09-03
JP5508845B2 (en) 2014-06-04
BRPI0709228A2 (en) 2011-06-28
CA2647572A1 (en) 2007-10-04
ES2348963T3 (en) 2010-12-17
US9387158B2 (en) 2016-07-12
ATE472317T1 (en) 2010-07-15
RU2008142385A (en) 2010-05-10
US20100221295A1 (en) 2010-09-02
CA2647572C (en) 2014-06-17
DE602006015164D1 (en) 2010-08-12
WO2007110419A1 (en) 2007-10-04
EP1844758B1 (en) 2010-06-30
EP1844758A1 (en) 2007-10-17
KR20080110870A (en) 2008-12-19
AR060139A1 (en) 2008-05-28
AU2007231344A1 (en) 2007-10-04
MX2008012266A (en) 2008-12-12
BRPI0709228B1 (en) 2016-09-27

Similar Documents

Publication Publication Date Title
TW200812633A (en) Cosmetic use of whey protein micelles
KR101555345B1 (en) Granulated silica particle composite powder their production methods and cosmetic preparation containing them
MX2008012334A (en) Whey protein vehicle for active agent delivery.
WO2007007521A1 (en) Surface-treated powder and cosmetic comprising the same
JP6019218B2 (en) Porous resin particles, production method thereof, dispersion and use thereof
CN104905984A (en) Cosmetic, external skin preparation, and medical instrument
JP2006256921A (en) Manufacturing method of silica hollow particle
US9492373B2 (en) Cosmetic composition containing a dispersion of polymer particles and mineral fillers
JP2016008181A (en) Kit for skin external preparation
SK281587B6 (en) Cosmetic kaolin-containing preparation
JP5692618B1 (en) Skin preparation kit
KR102305493B1 (en) Method for stabilizing extracellular vesicles derived from human stem cells and external composition for skin comprising stabilized extracellular vesicles
JP4040957B2 (en) Silica-containing cosmetics
JP3989694B2 (en) Gel composition and method for producing the same
JP2022531941A (en) Microparticles containing cellulose nanocrystals with aggregated proteins and their cosmetic applications
WO2018062315A1 (en) Particles and method for manufacturing same
JP2018199731A (en) Kit for skin external preparation
KR102458630B1 (en) Cubosome composition containing retinal and covalent organic framework, and cosmetic composition comprising thereof
KR102645449B1 (en) Nanoparticles comprising resveratrol
Sunduru et al. A review on cubosomes: As a novel carrier for drug delivery
JP2024042503A (en) Porous silica particles, method for producing the particles, and uses of the particles
TW202042842A (en) Topical preparation for the skin or mucosae, method for manufacturing same, and base for topical preparation for the skin or mucosae
JPH10218754A (en) Cosmetic
JP2018162289A (en) Kit for skin external preparation
CN113226249A (en) Core-shell network structures comprising biopolymers and compositions comprising the same