JP3417513B2 - How to prepare whey - Google Patents

How to prepare whey

Info

Publication number
JP3417513B2
JP3417513B2 JP07817996A JP7817996A JP3417513B2 JP 3417513 B2 JP3417513 B2 JP 3417513B2 JP 07817996 A JP07817996 A JP 07817996A JP 7817996 A JP7817996 A JP 7817996A JP 3417513 B2 JP3417513 B2 JP 3417513B2
Authority
JP
Japan
Prior art keywords
whey
protein
casein
milk
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07817996A
Other languages
Japanese (ja)
Other versions
JPH09238614A (en
Inventor
清隆 谷口
篤 芹澤
智幸 藤井
哲 石井
正和 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP07817996A priority Critical patent/JP3417513B2/en
Publication of JPH09238614A publication Critical patent/JPH09238614A/en
Application granted granted Critical
Publication of JP3417513B2 publication Critical patent/JP3417513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、白色のホエー、そ
の粉末およびこれらを用いた粉乳の製造方法に関する。
本発明により得られる白色ホエー中のホエータンパク質
は、カゼインミセル様の会合体を形成しており、特に、
熱安定性に優れ、高い溶解性を示す。かかるミセル状ホ
エータンパク質を含有するホエーおよび粉乳は食品素材
として広範に利用可能なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to white whey, its powder, and a method for producing powdered milk using them.
The whey protein in the white whey obtained by the present invention forms a casein micelle-like aggregate, and in particular,
It has excellent thermal stability and high solubility. Whey and milk powder containing such micellar whey protein are widely applicable as food materials.

【0002】[0002]

【従来の技術】ホエータンパク質は、酸性条件下で水に
溶融性を示す乳タンパク質と定義されている。ホエー
は、チーズやカゼイン生産の際の副産物として得られる
が、環境保全と資源の有効利用という目的からもホエー
タンパク質を食品素材として開発することは極めて重要
である。ホエータンパク質は一般に60℃以上で加熱する
と変性し、一定条件下、塩類の存在下で加熱した場合に
おいて、容易にゲル化する(神谷隆元、Jpn. J. Dairy
Food Sci., 29, A15-A25,1980)。このようなゲル化は、
加熱変性に伴って高次構造が変化し、疎水性領域の増大
およびジスルヒド結合の反応性の増大によってタンパク
質分子どうしが3次元のネットワーク構造を形成するた
めと考えられている。
Whey proteins are defined as milk proteins that are soluble in water under acidic conditions. Whey is obtained as a by-product in the production of cheese and casein, but it is extremely important to develop whey protein as a food material for the purpose of environmental protection and effective use of resources. Whey protein generally denatures when heated above 60 ° C, and easily gels when heated in the presence of salts under certain conditions (Kamiya Takamoto, Jpn. J. Dairy.
Food Sci., 29, A15-A25, 1980). Such gelling is
It is considered that the higher-order structure changes with heat denaturation, and the protein molecules form a three-dimensional network structure due to the increase in the hydrophobic region and the increase in the reactivity of the disulfide bond.

【0003】ホエータンパク質は高い栄養価を持つた
め、育児用粉ミルクといった高度栄養食品の原料として
用いられたり、上記のようなホエータンパク質の熱ゲル
化性を初めとして、結着性、乳化性などの機能特性をも
有していることから肉の結着剤、脂肪代替物等への利用
がなされている(堂迫俊一、食品タンパク質の科学p10
1 〜118)。このようにホエータンパク質のさまざまな利
用が考えられているが、いまだに食品加工用副素材とし
て限られたごく一部の分野においてのみ用いられている
にすぎない。
Since whey protein has a high nutritional value, it is used as a raw material for highly nutritious foods such as powdered milk for child-rearing, and the heat gelling property of whey protein as described above, binding property, emulsifying property, etc. Since it also has functional properties, it is used as a meat binder, fat substitute, etc. (Shunichi Dosako, Science of Food Protein p10
1-118). As described above, various uses of whey protein have been considered, but they are still used only in a limited number of fields as auxiliary materials for food processing.

【0004】ホエーはチーズ製造時に副産物として大量
に生産されるが、カゼインを除去した後のホエーは透明
な黄緑色を呈している。これはホエー中のタンパク質が
水に溶解しているためである。このホエーを加熱すると
上述したようにホエータンパク質がゲル化したり沈殿を
生じてしまう。このため、ホエーを粉末化するために
は、高度の技術を必要とし、通常ホエーはそのpHを中性
付近に調整した後、濃縮し噴霧乾燥をしてホエー粉末と
して利用される。しかしこのような操作は製造コストも
高く、大型の設備を必要とするため、チーズ製造時に生
産されるホエーはその多くはそのまま廃棄されることが
多い。
Although whey is produced in large quantities as a by-product during cheese production, whey after removing casein has a transparent yellow green color. This is because the protein in whey is dissolved in water. When this whey is heated, the whey protein gels or precipitates as described above. Therefore, in order to powder whey, a high technique is required, and usually whey is used as a whey powder by adjusting its pH to around neutral, then concentrating and spray-drying. However, since such an operation has a high production cost and requires a large-scale facility, most whey produced during cheese production is often discarded as it is.

【0005】さらに、ホエーを利用するためにホエー又
は、ホエー粉末を溶解した還元ホエーにカゼインの溶解
液を添加したりあるいはさらに脂肪分を添加し乳化処理
を行った後、これを噴霧乾燥等の乾燥処理をして、粉乳
を製造することがしばしば行なわれている。しかしこの
ようにしてホエーを原料として製造した粉乳は、通常の
製造方法で製造された粉乳と比較して、熱安定性を欠
き、さらにホエー粉末を溶解した還元ホエーを用いた場
合には、特有のホエー臭と呼ばれる欠点が出現する。
Furthermore, in order to utilize whey, a solution of casein is added to whey or reduced whey in which whey powder is dissolved, or fat is further added to carry out an emulsification treatment, which is then subjected to spray drying or the like. Drying is often performed to produce milk powder. However, the milk powder produced using whey as a raw material in this way lacks thermal stability as compared with the milk powder produced by the usual production method, and when reduced whey in which whey powder is dissolved is used, A defect called whey odor appears.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来技
術の実情に鑑み、ホエーを有効利用するためのホエーの
処理方法を提供することを課題とする。特に、本発明に
より得られるホエーは、従来のホエーのようにタンパク
質が溶解状態で存在するのではなく、ミセル状態で水中
に分散して存在し、このためホエーの溶液は白色の牛乳
様の状態を呈する。またホエータンパク質を分離して加
工する必要もなく、非常に簡便な操作でホエーの利用性
を高めることができる。さらに、本発明は、このホエー
溶液を原料とした熱安定性の高い粉乳を調製する方法を
提供することを課題としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances of the prior art, and it is an object of the present invention to provide a method for treating whey for effectively utilizing it. In particular, the whey obtained by the present invention does not exist in the dissolved state of proteins as in conventional whey, but is dispersed in water in a micelle state, and therefore the whey solution has a white milk-like state. Present. Further, there is no need to separate and process whey protein, and the utility of whey can be enhanced by a very simple operation. Further, it is an object of the present invention to provide a method for preparing powdered milk having a high thermal stability, which uses this whey solution as a raw material.

【0007】[0007]

【課題を解決するための手段】本発明は、ホエーのpHを
5.5〜6.5 に調整後90℃以上に加熱し、ホエー中に存在
するホエータンパク質をミセル化することを特徴とする
白色ホエーの調製方法である。また、本発明は、ホエー
のpHを 5.5〜6.5 に調整後90℃以上に加熱し、ホエー中
に存在するホエータンパク質をミセル化した後、乾燥さ
せることを特徴とする乾燥ホエー粉末の製造方法であ
る。さらに、本発明は、ホエーのpHを 5.5〜6.5 に調製
後90℃以上に加熱し、ホエー中に存在するホエータンパ
ク質をミセル化した後、カゼインの溶解液を添加するこ
とを特徴とする白色ホエー及びその調製方法である。さ
らにまた、本発明はホエーのpHを 5.5〜6.5 に調整後90
℃以上に加熱し、ホエー中に存在するホエータンパク質
をミセル化した後、カゼインの溶解液を添加し乾燥する
ことを特徴とする粉乳の調製方法である。
The present invention determines the pH of whey.
This is a method for preparing white whey, which comprises adjusting the whey protein to 5.5 to 6.5 and then heating it to 90 ° C. or higher to make the whey protein present in the whey into micelles. Further, the present invention is a method for producing a dry whey powder, which comprises heating the whey to pH 5.5 to 6.5 and then heating it to 90 ° C. or higher to micelle the whey protein present in the whey, and then drying the whey protein. is there. Furthermore, the present invention is characterized in that after the pH of whey is adjusted to 5.5 to 6.5, it is heated to 90 ° C. or higher, the whey protein present in the whey is micellar, and then a solution of casein is added. And its preparation method. Furthermore, the present invention provides 90% whey pH after adjustment to 5.5-6.5.
This is a method for preparing powdered milk, which comprises heating to a temperature of not lower than 0 ° C. to micelle the whey protein present in whey, and then adding a casein solution and drying.

【0008】本発明の原料であるホエーはチーズ生産時
や、カゼインの生産時に副産物として生成する。本発明
の原料となるホエーは、これらのホエーを濃縮し噴霧乾
燥したり、あるいはまたこれらのホエーを脱塩処理し噴
霧乾燥した粉末(ホエー粉)あるいはその他の方法によ
る粉末を 0.1〜10%の濃度に水に溶解して得られる還元
ホエーであっても良い。ホエーの主要な成分組成は、タ
ンパク質約 0.6〜0.8 %、乳糖約 4.5%、灰分約 0.6
%、脂肪約 0.3%、水分約93%からなる。またホエー粉
は、タンパク質約12〜13%、乳糖約65〜75%、灰分約9
〜10%、脂肪約 0.5〜0.9 %、水分約 5〜7 %である。
The whey as a raw material of the present invention is produced as a by-product during cheese production or casein production. The whey used as the raw material of the present invention is a powder obtained by concentrating these whey and spray-drying them, or desalting these whey and spray-drying them (whey powder) or a powder by another method at 0.1-10%. Reduced whey obtained by dissolving in water to a certain concentration may be used. The main component composition of whey is about 0.6-0.8% protein, about 4.5% lactose, about 0.6 ash.
%, Fat about 0.3%, water about 93%. Whey powder is about 12 to 13% protein, about 65 to 75% lactose, and about 9 ash.
~ 10%, fat about 0.5-0.9%, water about 5-7%.

【0009】ホエーのpHは、通常PH 6.0〜6.5 であり、
またホエー粉末を溶解した還元ホエーは通常pH7前後の
中性値を示す。このようなpHではホエー中のタンパク質
は溶解状態にあり、上述したように薄い黄緑色を呈して
いる。
The pH of whey is usually pH 6.0-6.5,
Further, reduced whey in which whey powder is dissolved usually shows a neutral value around pH 7. At such pH, the protein in the whey is in a dissolved state and has a pale yellowish green color as described above.

【0010】このホエーのpHを弱い酸性、特にpH 5.5〜
6.5 に調整し、ついでホエータンパク質が熱変性するよ
うな条件で加熱する。ホエータンパク質を熱変性させる
場合、加熱は通常ホエータンパク質の加熱変性温度であ
る55〜60℃で良いが、本発明の目的を完全に達成する、
すなわち、ホエータンパク質をミセル化するためには、
90℃以上で加熱することが好ましい。加熱の時間は原料
であるホエー中のタンパク質の濃度によっても異なる
が、例えばチーズ製造時のホエーを使用する場合は、12
0 ℃で2〜5秒間加熱すれば良い。このような加熱処理
によって、ホエー中のタンパク質は、溶解状態からミセ
ル状態へと変化する。なお本発明でいうミセル状態と
は、乳タンパク質の一種であるカゼインが示すような、
20〜600nm の粒径分布を示すコロイド状粒子となってい
る状態のように、β−ラクトグロブリンを主成分とする
ホエータンパク質の複合体がコロイド状粒子となってい
る状態をいう。このミセルは、光を散乱する性質を有し
ており、ホエータンパク質のミセルが形成されることに
よって、ホエーはホエー本来の黄緑色から牛乳様の白色
へと劇的に変化する。
The pH of this whey is weakly acidic, especially pH 5.5-
Adjust to 6.5 and then heat under conditions such that the whey protein will be heat denatured. When the whey protein is heat-denatured, heating is usually carried out at a heat denaturation temperature of the whey protein of 55 to 60 ° C., but the object of the present invention is completely achieved.
That is, in order to micelle the whey protein,
It is preferable to heat at 90 ° C. or higher. The heating time varies depending on the protein concentration in the whey that is the raw material, but for example, when using whey during cheese production, 12
It may be heated at 0 ° C. for 2 to 5 seconds. By such heat treatment, the protein in whey changes from the dissolved state to the micellar state. Incidentally, the micelle state in the present invention, as shown by casein which is a kind of milk protein,
It is a state in which a whey protein complex containing β-lactoglobulin as a main component is in the form of colloidal particles, as in the state of colloidal particles having a particle size distribution of 20 to 600 nm. These micelles have the property of scattering light, and the formation of whey protein micelles causes the whey to change dramatically from the original yellow-green color of whey to a milky-white color.

【0011】さらにまた、このミセル状ホエータンパク
質と特定量のカゼインを会合させた乳タンパク質ミセル
溶液はミセル状ホエータンパク質を含有するホエー溶液
と同様に牛乳様の白さを示し、熱安定性に優れ加熱によ
りゲル化や沈殿を生じない。このため牛乳様の飲料等と
して利用できる他、そのまま食品素材として各種用途に
用いることができる。また該溶液中でホエータンパク質
分子はミセル化し高分子化しているので、例えば分画分
子量 50000Da以上の膜を用いて濃縮が可能で、ホエー中
の乳糖等の低分子物質との分離が容易である。
Furthermore, the milk protein micelle solution obtained by associating this micellar whey protein with a specific amount of casein exhibits milk-like whiteness like the whey solution containing the micellar whey protein and is excellent in heat stability. Does not cause gelation or precipitation by heating. Therefore, it can be used as a milk-like beverage or the like, or can be used as it is as a food material for various purposes. In addition, since the whey protein molecule is micellar and polymerized in the solution, it can be concentrated using, for example, a membrane having a cut-off molecular weight of 50,000 Da or more, and can be easily separated from low-molecular substances such as lactose in whey. .

【0012】また、上記のミセル状ホエータンパク質を
含有するホエー溶液を乾燥処理して粉末化することがで
きる。ミセル状となったホエータンパク質は熱安定性等
に優れているので、その溶液を凍結乾燥、噴霧乾燥等に
より容易に保存性の高い粉末とすることができ、またか
かる粉末は再溶解しても、通常のホエー粉と異なり溶解
性が低下することはない。従って、この粉末を造粒処理
をするなどして、飲食時に溶解させるような、易溶性の
粉末飲料等として用いることができる。
The whey solution containing the above-mentioned micellar whey protein can be dried and powdered. Since the whey protein in the form of micelle has excellent thermal stability and the like, its solution can be easily made into a highly storable powder by freeze-drying, spray-drying, etc. , Unlike ordinary whey powder, the solubility does not decrease. Therefore, this powder can be used as an easily soluble powdered beverage or the like which is dissolved at the time of eating and drinking by performing a granulation process or the like.

【0013】このようにして、ホエーのpHを 5.5〜6.5
の弱い酸性領域に調整し加熱処理することによって、ホ
エータンパク質がミセル化し、ホエーが白色を呈するこ
とはこれまで知られていなかった。またこのようにして
調製したホエーを粉末化したものの溶解性や熱安定性が
改善されることは知られていなかった。またこのホエー
あるいはホエー粉末は従来のホエー臭が消失しているこ
とも大きな特徴である。
In this way, the pH of whey is adjusted to 5.5 to 6.5.
It has not been known so far that the whey protein becomes micelles and the whey has a white color by adjusting to a weakly acidic region of and heat treatment. Further, it has not been known that the whey prepared in this way is powdered to improve the solubility and thermal stability. Further, this whey or whey powder is also characterized in that the conventional whey odor has disappeared.

【0014】さらにまたホエーのpHを5.5 〜6.5 に調整
後90℃以上に加熱し、ホエー中に存在するホエータンパ
ク質をミセル化した後、カゼインの溶解液を添加した溶
液も熱に安定で白色を呈しており、これを乾燥すること
によって、安定な粉末を調製することができる。
Furthermore, after the pH of the whey is adjusted to 5.5 to 6.5, the whey protein is heated to 90 ° C. or more to micelle the whey protein present in the whey, and then the solution containing casein solution is also stable to heat and white. Stable powder can be prepared by drying it.

【0015】上記したように、ホエー製造時に除去した
カゼインを再度加え、再構成乳と称する乳製品を製造す
ることは公知技術である。しかしこのようにして製造さ
れた乳製品は、ホエータンパク質の熱安定性が悪く、ま
たホエー臭が強く、必ずしも満足できるものでなかっ
た。しかし、本発明の方法では、ホエータンパク質をミ
セル化したホエーを原料として、これにカゼインを添加
し、必要に応じて脂肪を添加して、噴霧乾燥その他の乾
燥操作を行って熱安定性がありホエー臭のない粉乳を得
ることができる。このようにして調製された粉乳は、従
来の再構成乳が持つホエー臭がなく非常に良好な風味を
呈し、さらに熱安定性にも優れている。
As mentioned above, it is known in the art to re-add casein removed during whey production to produce a dairy product called reconstituted milk. However, the dairy products thus produced are not always satisfactory because the heat stability of whey protein is poor and the whey odor is strong. However, in the method of the present invention, whey obtained by micelleizing whey protein is used as a raw material, casein is added thereto, and fat is added as necessary, and spray drying and other drying operations are performed to provide heat stability. It is possible to obtain milk powder without whey odor. The milk powder thus prepared has a very good flavor without the whey odor of conventional reconstituted milk and is also excellent in heat stability.

【0016】[0016]

【発明の実施の形態】本発明の方法によって得られた白
色のホエーは、タンパク質が、カゼインミセルに類似し
たミセル構造を形成していることを特徴としている。本
発明において、ミセル構造とは、前述したミセル状態、
すなわち乳タンパク質の一種であるカゼインが示すよう
な、20〜600nm の粒子分布を示すコロイド状粒子となっ
ている状態のように、ホエータンパク質の複合体が、コ
ロイド状粒子となっている状態をいう。このホエーミセ
ルは外観上不定型の粒子状を成していて、光を散乱させ
たとき、白色化しており、該粒子の内部構造等は特に規
定されるものではない。本発明におけるホエーミセルの
粒子の大きさは30〜700nm 程度、好ましくは50〜600nm
程度である。このホエーミセルは溶液中に安定に分散し
白濁した溶液を形成する。このミセル溶液は加熱しても
沈澱したりゲル化したりせず極めて安定である。またこ
の粒子の粒子径は公知のレーザー散乱法などによって容
易に測定できる。
BEST MODE FOR CARRYING OUT THE INVENTION The white whey obtained by the method of the present invention is characterized in that the protein forms a micellar structure similar to casein micelles. In the present invention, the micelle structure, the micelle state described above,
That is, the state where the whey protein complex is a colloidal particle, such as the state where the whey protein complex has a particle distribution of 20 to 600 nm as shown by casein which is a kind of milk protein. . The whey micelles are in the form of irregularly shaped particles in appearance, and when they scatter light, they become white, and the internal structure of the particles is not particularly specified. The size of the whey micelle particles in the present invention is about 30 to 700 nm, preferably 50 to 600 nm.
It is a degree. The whey micelles are stably dispersed in the solution to form a cloudy solution. This micellar solution is extremely stable without precipitation or gelation even when heated. The particle size of the particles can be easily measured by a known laser scattering method or the like.

【0017】本発明を実施するための原料となるホエー
はチーズの製造に伴って生産されるものが特に好まし
い。これを用いた方法を説明する。ゴーダチーズの製造
時に得られるホエーを、乳酸水溶液を用いて、pHを5.5
〜6.5 に調整する。調整後プレート式殺菌機を用いて、
90℃で3〜6秒間保持し5℃に冷却する。この操作を行
うことによって、初め黄緑色であったホエーは、牛乳様
の白色に変化する。この溶液は加熱したりあるいは長期
間保存しても沈殿を生ずることがなく安定な状態を保つ
ことができる。次いで、この白色ホエーにカゼインを添
加する。カゼインは市販の酸カゼインを用い、約5〜10
%の濃度になるように溶解し、カゼイン臭を除くために
活性炭処理を行った後、両者を所望の固形分量になるよ
うに混合し、必要に応じて水を加え、さらに均質化処理
を行う。この時に添加するカゼインはホエー蛋白質に対
して1/20重量以上添加すると、安定な懸濁液となり、12
0 ℃以上で加熱し、噴霧乾燥することによりホエー粉末
を得ることができる。さらに、カゼインをホエータンパ
ク質に対して、 1/3重量以上添加し、これを乾燥、特に
120 ℃で加熱し噴霧乾燥することで脱脂粉乳と同等の粉
末を得ることができる。
The whey used as a raw material for carrying out the present invention is particularly preferably one produced in association with the production of cheese. A method using this will be described. The whey obtained during production of Gouda cheese was adjusted to pH 5.5 with an aqueous lactic acid solution.
Adjust to ~ 6.5. After adjustment, using a plate type sterilizer,
Hold at 90 ° C for 3-6 seconds and cool to 5 ° C. By performing this operation, the whey that was initially yellowish green changes to milky white. This solution can maintain a stable state without precipitation even when heated or stored for a long period of time. Casein is then added to this white whey. As casein, commercially available acid casein is used, and it is about 5-10.
Dissolve to a concentration of 10%, treat with activated carbon to remove the casein odor, mix both to obtain the desired solid content, add water as necessary, and further homogenize. . If the casein added at this time is 1/20 weight or more with respect to whey protein, it becomes a stable suspension.
A whey powder can be obtained by heating at 0 ° C. or higher and spray drying. Furthermore, casein was added to whey protein in an amount of 1/3 or more by weight, which was dried, especially
A powder equivalent to skim milk powder can be obtained by heating at 120 ° C and spray drying.

【0018】以下に実施例を示すが、本発明はこれらに
限定されるものではない。
Examples are shown below, but the present invention is not limited thereto.

【実施例1】ホエータンパク質ミセル(以下、WPMと略す)の生成
による白色化ホエーの調製 (1)WPMの調製方法 未殺菌チーズホエー(0.71%ホエータンパク質含有)を
37℃でインキュベートし、乳酸を添加してpH6.0 に調整
した。次いで、このチーズホエーを90〜120 ℃で2〜4
秒間加熱後直ちに4℃に冷却した。この処理により、ホ
エー中のタンパク質の形態がミセル状に変化し、ホエー
特有の透明感と黄色味がかった色は、ミルク様の白色化
した懸濁状態に変化した.
Example 1 Generation of whey protein micelles (hereinafter abbreviated as WPM)
Preparation of whitened whey by (1) WPM preparation method Unsterilized cheese whey (containing 0.71% whey protein)
After incubation at 37 ° C, lactic acid was added to adjust the pH to 6.0. Then, this cheese whey at 90-120 ℃ for 2-4
After heating for 2 seconds, it was immediately cooled to 4 ° C. By this treatment, the morphology of protein in whey was changed into micelles, and the transparent and yellowish color peculiar to whey was changed to a milky white suspension.

【0019】(2)WPMの特性 加熱処理したホエーと未加熱のホエーの濁度を、600nm
の吸光度を測定することによって示した。また、その色
彩を色彩色差計 (CR200,ミノルタ製) を用いて測定し
た。表1に実施例により pH6.0, 120 ℃で2秒間加熱処
理して調製したホエータンパク質ミセル溶液の濁度と色
彩の測定値を示す。
(2) WPM characteristics The turbidity of heat-treated whey and unheated whey is 600 nm.
It was shown by measuring the absorbance. The color was measured using a color difference meter (CR200, manufactured by Minolta). Table 1 shows the measured values of turbidity and color of the whey protein micelle solution prepared by heating at pH 6.0 and 120 ° C. for 2 seconds according to the examples.

【0020】[0020]

【表1】 ホエーの加熱処理による濁度, 色彩変化 ───────────────────────── WPM 未処理ホエー ───────────────────────── 濁度 0.870 0.408 L値 53.98 44.93 a値 -3.40 -2.09 b値 0.50 1.28 ─────────────────────────[Table 1]                   Turbidity and color change by heat treatment of whey           ─────────────────────────                             WPM untreated whey           ─────────────────────────                 Turbidity 0.870 0.408                 L value 53.98 44.93                 a value -3.40 -2.09                 b value 0.50 1.28           ─────────────────────────

【0021】pH調整後の加熱処理によりホエーの濁度は
顕著に上昇した。色彩も白さを示すL値の上昇が顕著で
かつ、黄色味を示すb値の減少が認められた。次に、加
熱ホエーを3000xGで5分間遠心分離し白濁の起因物質の
分離を試みた。しかし、本発明の加熱処理したホエーの
沈殿物はほとんど認められず、白濁も消失しなかった。
このことから、本発明のホエーの白色化はタンパク質の
コロイドによる安定な懸濁液の生成によるものであるこ
とが確認できた。
The heat treatment after pH adjustment markedly increased the turbidity of whey. As for the color, the L value showing whiteness was remarkably increased, and the b value showing yellowness was also decreased. Next, the heated whey was centrifuged at 3000 × G for 5 minutes to try to separate the substance causing white turbidity. However, almost no precipitate of the heat-treated whey of the present invention was observed, and the white turbidity did not disappear.
From this, it was confirmed that the whitening of the whey of the present invention was due to the formation of a stable suspension by the protein colloid.

【0022】[0022]

【実施例2】乳タンパク質ミセル(以下MPMと略す)の添加による
白色化ホエーの調製 (1)MPMの調製方法 実施例1で調製したホエータンパク質溶液1400mlに、10
%の酸カゼイン溶液を1 、2 、5 、10、20mlずつ加え、
MPM溶液を調製した。
Example 2 By adding milk protein micelles (hereinafter abbreviated as MPM)
Preparation of whitened whey (1) Method for preparing MPM To 1400 ml of the whey protein solution prepared in Example 1, 10
% Acid casein solution 1, 2, 5, 10, 20 ml each,
An MPM solution was prepared.

【0023】(2)MPMの特性 前記(1) で調製した各濃度のMPM溶液を50℃で1時間
攪拌後、3000xGで5 分間遠心分離を行い安定性を確認し
た。実施例1の(2) と同様に遠心分離してもほとんど沈
殿は認められず、白色も消失しなかった。このことから
本発明のホエーの白色化は蛋白質のコロイドによる安定
な懸濁液の生成によるものであることが確認された。ま
た、カゼイン溶液を10ml添加したものについて、色彩を
色彩色差計 (CR200,ミノルタ製) を用いて測定した。結
果を表2に示す。MPMの溶液もWPMと同様な白さを
示した。
(2) Characteristics of MPM The MPM solution of each concentration prepared in (1) above was stirred at 50 ° C. for 1 hour and then centrifuged at 3000 × G for 5 minutes to confirm the stability. As in the case of Example 1 (2), almost no precipitate was observed even after centrifugation, and the white color did not disappear. From this, it was confirmed that the whitening of the whey of the present invention was due to the formation of a stable suspension by the protein colloid. The color of the casein solution added with 10 ml was measured using a colorimeter (CR200, manufactured by Minolta). The results are shown in Table 2. The MPM solution also showed whiteness similar to WPM.

【0024】[0024]

【表2】 [Table 2]

【0025】(3)MPMの熱安定性 前記(1) で調製した各濃度のMPM溶液を3mlのアンプ
ル瓶に2mlずつ分注封入した。これらのアンプルを120
℃のオイルバスで加熱し、凝固物が発生するまでの時間
を測定し、カゼインの添加量と凝固に要する時間の関係
を調べ、その値を表3に示した。
(3) Thermal stability of MPM The MPM solution of each concentration prepared in (1) above was dispensed and sealed in 2 ml aliquots in a 3 ml ampoule bottle. 120 these ampoules
It was heated in an oil bath at ℃, the time until the coagulation was generated was measured, the relationship between the amount of casein added and the time required for coagulation was examined, and the value is shown in Table 3.

【0026】なお、表中カゼインの添加量は、 で表わしたものである。The casein addition amount in the table is It is represented by.

【0027】[0027]

【表3】MPMの熱安定性 ──────────────────── カゼイン添加量 凝固時間 [ml] [%] * [min] ──────────────────── 0 0.0 0.8 1 1.0 5.3 2 2.0 8.2 5 5.0 54.5 10 10.0 120.0 20 20.0 126.5 ────────────────────* WPM中のタンパク質量当たり[Table 3] Thermal stability of MPM ──────────────────── Casein addition amount Coagulation time [ml] [%] * [min] ─────── ────────────── 0 0.0 0.8 1 1.0 5.3 2 2.0 8.2 5 5.0 54.5 10 10.0 120.0 20 20.0 126.5 ────────────────── ── * Per amount of protein in WPM

【0028】WPM溶液に酸カゼイン溶液を加えて調製
されるMPMの溶液の熱安定性は高く、しかもこれはカ
ゼインの濃度に依存しており、WPMのタンパク質量に
対するカゼインの添加量が5重量%以上で特に高い安定
性を示した。
The thermal stability of the MPM solution prepared by adding the acid casein solution to the WPM solution is high, and this depends on the concentration of casein, and the amount of casein added to the protein amount of WPM is 5% by weight. Above all, a particularly high stability was shown.

【0029】(3) MPMのタンパク質組成 実施例2で調製した酸カゼイン10mlを添加したMPM溶
液及び実施例1で調製したWPM溶液をそれぞれ0.22μ
mのポアサイズのメンブレンフィルターを通した後、こ
の透過液をゲル濾過クロマトグラフィー(Superose12HR
カラム、ファルマシア製) に付して0.5ml/min の流量で
分離し排除容量で溶出したWPM及びMPMをそれぞれ
回収した。回収した各ミセルを還元条件下でSDS-PAGEに
付し、デンシトメトリーにより構成成分を同定、定量し
た。SDS 電気泳動パターンを図1に、デンシトメトリー
の結果を表4に示す。
(3) MPM protein composition The MPM solution added with 10 ml of acid casein prepared in Example 2 and the WPM solution prepared in Example 1 were each 0.22 μm.
After passing through a pore size membrane filter of m, the permeate was subjected to gel filtration chromatography (Superose12HR
Column, manufactured by Pharmacia) and separated at a flow rate of 0.5 ml / min, and the WPM and MPM eluted at the exclusion volume were respectively collected. Each recovered micelle was subjected to SDS-PAGE under reducing conditions, and constituent components were identified and quantified by densitometry. The SDS electrophoresis pattern is shown in FIG. 1, and the densitometry result is shown in Table 4.

【0030】[0030]

【表4】 WPM及びMPMのタンパク質組成 ─────────────────────────── タンパク質組成 WPM (%) MPM (%) ─────────────────────────── α−ラクトアルブミン 7.7 7.5 β−ラクトグロブリン 92.3 81.5 α−カゼイン 0.0 5.3 β−カゼイン 0.0 1.6 κ−カゼイン 0.0 4.1 ───────────────────────────[Table 4]                     Protein composition of WPM and MPM           ────────────────────────────                 Protein composition WPM (%) MPM (%)           ────────────────────────────             α-lactalbumin 7.7 7.5             β-lactoglobulin 92.3 81.5             α-casein 0.0 5.3             β-casein 0.0 1.6             κ-Casein 0.0 4.1           ────────────────────────────

【0031】WPMの主要な構成成分はβ−ラクトグロ
ブリンであることが確認できた。一方、MPMは、β−
ラクトグロブリンとともにα−カゼイン、β−カゼイ
ン、κ−カゼインが含まれることが確認できた。
It was confirmed that the main constituent of WPM is β-lactoglobulin. On the other hand, MPM is β-
It was confirmed that α-casein, β-casein and κ-casein were contained together with lactoglobulin.

【0032】次に、WPM(pH6.0)およびMPMの粒子
径をレーザー粒径測定システムPAR−3(大塚電子
製)により測定した。前処理として5μm のポアサイズ
のメンブランフィルターで濾過し、その濾過液中に含ま
れるミセル粒子の粒子径を測定した。測定結果を表5に
示した。
Next, the particle diameters of WPM (pH 6.0) and MPM were measured by a laser particle size measuring system PAR-3 (manufactured by Otsuka Electronics). As a pretreatment, filtration was performed with a membrane filter having a pore size of 5 μm, and the particle size of micelle particles contained in the filtrate was measured. The measurement results are shown in Table 5.

【0033】[0033]

【表5】 WPMとMPMの粒子径比較 ───────────────────────────── WPM MPM ───────────────────────────── 平均粒子径(nm) 547.07±2.43 669.03±6.01 多分散指数 0.1299±0.0098 0.1661±0.0165 ─────────────────────────────[Table 5]                       Comparison of particle size between WPM and MPM       ─────────────────────────────                                 WPM MPM       ─────────────────────────────         Average particle size (nm) 547.07 ± 2.43 669.03 ± 6.01         Polydispersity index 0.1299 ± 0.0098 0.1661 ± 0.0165       ─────────────────────────────

【0034】本発明方法によって得られた白色化ホエー
中のWPMの粒子径はMPMとほぼ同一の粒子径を有し
ており約500nm から約 700nmであることが確認できた。
It was confirmed that the particle size of WPM in the whitened whey obtained by the method of the present invention has a particle size substantially the same as that of MPM and is about 500 nm to about 700 nm.

【0035】[0035]

【実施例3】脱脂乳様調製乳飲料の製造方法 (1)カゼインの脱臭処理 酸カゼイン3.5kg を50℃に加温した温湯20kgに溶解し
た。次いで、活性炭を充填したカラム(内径50mm、高さ
500mm)に通し、カゼイン特有の臭気を除去した。この
時、回収総固形量を 3.0kgになるよう調製し、かつ回収
液総量は30kg以下になるようにした。次に、脱脂粉乳
1.67kg を加え撹拌溶解し、原料ミックス溶液とした。
[Example 3] Method for producing skim milk-like modified milk drink (1) Deodorization treatment of casein 3.5 kg of acid casein acid was dissolved in 20 kg of warm water heated to 50 ° C. Next, a column packed with activated carbon (inner diameter 50 mm, height
The odor peculiar to casein was removed by passing through 500 mm). At this time, the total recovered solid amount was adjusted to 3.0 kg, and the total recovered liquid amount was set to 30 kg or less. Next, skim milk powder
1.67 kg was added and dissolved by stirring to obtain a raw material mix solution.

【0036】(2)白色ホエー溶液の調製 50℃前後に加温した水 100kgに10.0kgのホエー粉(12.7
%ホエータンパク質含有) を加えて撹拌溶解し、pH6.0
になるように乳酸で調整した。次いで、プレート式熱交
換機で 120℃、2秒の加熱処理をし、50℃まで冷却して
白色化ホエー液を調製した。この結果、総固形量は8.7k
g でかつ液量は110kg となった。
(2) Preparation of white whey solution 10.0 kg of whey powder (12.7
% Whey protein) and dissolve with stirring to pH 6.0.
Was adjusted with lactic acid. Then, the plate type heat exchanger was heat-treated at 120 ° C. for 2 seconds and cooled to 50 ° C. to prepare a whitened whey solution. As a result, the total solid amount is 8.7k.
It was g and the liquid volume was 110 kg.

【0037】(3)脱脂調製乳飲料の製造 前記(1) で調製した脱臭カゼイン溶液の全量と前記(2)
で調製した白色化ホエー溶液の全量を混合し、水酸化ナ
トリウムでpHを6.5 に調整後クラリファイヤーで不溶物
を除去した。次いで、0.2kg の無塩バターを添加した
後、総量が150kgとなるように水を添加した。さらにホ
モゲナイザーを用いて均質化圧 150kg/cm2 で均質化処
理を行い、最後に 120℃、2秒間の加熱処理を行い、脱
脂乳様調製乳飲料を製造した。
(3) Production of non-fat modified milk beverages The total amount of the deodorized casein solution prepared in (1) above and the above (2)
The whole amount of the whitened whey solution prepared in 1 above was mixed, the pH was adjusted to 6.5 with sodium hydroxide, and the insoluble matter was removed with a clarifier. Next, 0.2 kg of unsalted butter was added, and then water was added so that the total amount became 150 kg. Further, homogenization was carried out using a homogenizer at a homogenization pressure of 150 kg / cm 2 , and finally heat treatment was carried out at 120 ° C. for 2 seconds to produce a skim milk-like modified milk drink.

【0038】(4)成分組成 得られた脱脂乳様調製乳飲料の成分組成を表6に示す。
また対照として脱脂乳の組成値を示した。表6に示され
るように、脱脂乳とほぼ同一の栄養成分を有する調製乳
が製造できた。
(4) Component composition Table 6 shows the component composition of the skimmed milk-like modified milk drink obtained.
As a control, the composition value of skim milk is shown. As shown in Table 6, a formula having almost the same nutritional components as skim milk could be produced.

【0039】[0039]

【表6】 脱脂乳様調製乳飲料の組成 ────────────────────────────── 脱脂乳様調製乳飲料(本発明) 脱脂乳 ────────────────────────────── 総固形 8.95 % 8.52% タンパク質 3.10 % 3.02% 脂肪 0.38 % 0.07% 糖質 4.90 % 4.71% 灰分 0.57 % 0.72% ──────────────────────────────[Table 6]                         Composition of skim milk-like modified milk drink       ──────────────────────────────                       Non-fat milk-like modified milk beverage (the present invention) non-fat milk       ──────────────────────────────             Total solid 8.95% 8.52%             Protein 3.10% 3.02%             Fat 0.38% 0.07%             Sugar 4.90% 4.71%             Ash 0.57% 0.72%       ──────────────────────────────

【0040】(5)色彩測定 得られた脱脂乳様調製乳飲料と脱脂乳の色彩を色彩色差
計 (CR200,ミノルタ製) を用いて測定し、表7に測定結
果を示した。両者はほぼ同一の値を示し、本発明によっ
て脱脂乳と同一色調を有する乳が調製できた。なお、本
発明による脱脂乳様調製乳飲料と対照として示した脱脂
乳との色の差をΔEで示した。
(5) Color measurement The color of the skimmed milk-like prepared milk beverage and skim milk obtained was measured using a color difference meter (CR200, manufactured by Minolta), and Table 7 shows the measurement results. Both showed substantially the same value, and milk having the same color tone as skimmed milk could be prepared by the present invention. The color difference between the skim milk-like modified milk beverage of the present invention and the skim milk shown as a control is represented by ΔE.

【0041】[0041]

【表7】 脱脂乳様調製乳飲料の色彩測定 ───────────────────────── 脱脂乳様調製乳飲料 脱脂乳 ───────────────────────── L値 81.67 84.65 a値 -4.35 -4.85 b値 3.12 2.51 ΔE値 3.08 0.0 ─────────────────────────[Table 7]                   Color measurement of skim milk-like modified milk drink       ─────────────────────────                   Non-fat milk-like modified milk drink Non-fat milk       ─────────────────────────           L value 81.67 84.65           a value -4.35 -4.85           b value 3.12 2.51           ΔE value 3.08 0.0       ─────────────────────────

【0042】[0042]

【実施例4】脱脂粉乳様調製粉乳の製造方法 (1)ホエーの加熱処理 未殺菌のチーズホエー(0.9 ホエータンパク質含有) 約
200kgをpH6.2 に達するまでタンク中で30℃に保持し
た。pH6.2 に到達後、プレート式熱交換機で 120℃で2
秒の加熱処理を施した後、50℃まで冷却し、白色化ホエ
ー溶液を調製した。
[Example 4] Method for producing skim milk-like modified milk powder (1) Heat treatment of whey Unpasteurized cheese whey (containing 0.9 whey protein)
200 kg was kept at 30 ° C. in the tank until a pH of 6.2 was reached. After reaching pH 6.2, use a plate heat exchanger at 120 ° C for 2
After heat treatment for seconds, it was cooled to 50 ° C. to prepare a whitened whey solution.

【0043】(2)カゼインの脱臭処理 酸カゼイン3.5kg を50℃の温湯28kgに溶解し、活性炭を
充填したカラム(内径50mm, 高さ 500mm)に通液して脱
臭した。この時の回収総固形量は 3.0kgであった。
(2) Casein Deodorization Treatment Acid casein (3.5 kg) was dissolved in hot water (28 kg) at 50 ° C., and the mixture was passed through a column (inner diameter 50 mm, height 500 mm) packed with activated carbon for deodorization. The total amount of solids recovered at this time was 3.0 kg.

【0044】(3)調合と濃縮および噴霧乾燥 上記(1) で調製した白色化ホエー溶液 150kgに、上記
(2) で回収した脱臭カゼイン溶液の全量を加えて混合
し、水酸化ナトリウムでpHを6.5 に調整した後、クラリ
ファイヤーで不溶物を除去した。次に0.2kg の無塩バタ
ーを添加して混合し、さらにホモゲナイザーにより、均
質化圧150kg/cm2 で均質化処理をし、次いで120 ℃、2
秒の加熱処理を行なった。加熱後、固形濃度が38%に達
するまで真空濃縮し、100 メッシュの濾過布を通して濾
過し、噴霧乾燥して調製粉乳を製造した。
(3) Formulation, concentration and spray drying To 150 kg of the whitened whey solution prepared in (1) above,
The whole amount of the deodorized casein solution recovered in (2) was added and mixed, the pH was adjusted to 6.5 with sodium hydroxide, and the insoluble matter was removed with a clarifier. Next, 0.2 kg of unsalted butter was added and mixed, and further homogenized with a homogenizer at a homogenizing pressure of 150 kg / cm 2 , and then at 120 ° C for 2 hours.
Second heat treatment was performed. After heating, the mixture was vacuum concentrated until the solid concentration reached 38%, filtered through a 100-mesh filter cloth, and spray-dried to produce a modified milk powder.

【0045】(4)成分組成 製造した脱脂粉乳様調製粉乳と一般的な脱脂粉乳の組成
を表8に示した。両者に顕著な差は認められず、ホエー
の熱処理に依るタンパク質の損失がほとんど起こってい
ないことが確認できた。
(4) Component composition Table 8 shows the composition of the skimmed milk powder-like prepared milk powder produced and general skim milk powder. No significant difference was observed between the two, and it was confirmed that there was almost no loss of protein due to heat treatment of whey.

【0046】[0046]

【表8】 脱脂粉乳様調製粉乳の組成 ────────────────────────────── 脱脂粉乳様調製粉乳 脱脂粉乳 ────────────────────────────── 水分 3.8% 3.6 % タンパク質 31.0% 34.8 % 脂肪 4.0% 0.8 % 糖質 54.2% 52.8 % 灰分 7.0% 8.0 % ──────────────────────────────[Table 8]                         Composition of non-fat dry milk powder       ──────────────────────────────                       Nonfat dry milk-like modified milk powder Nonfat dry milk       ──────────────────────────────           Moisture 3.8% 3.6%           Protein 31.0% 34.8%           Fat 4.0% 0.8%           Carbohydrate 54.2% 52.8%           Ash 7.0% 8.0%       ──────────────────────────────

【0047】(5)調製粉乳の物性 実施例4で調製した脱脂粉乳様調製粉乳中の不溶物量を
ADMI法により定量した。その結果、沈殿量は0.1ml
以下で通常の脱脂粉乳と同程度の量であることが確認で
きた。また、耐熱性試験として以下の測定を実施した。
最終固形濃度を15%にした調製粉乳水溶液をpH6.1 〜6.
7 の範囲で0.1 毎に調整し、次いで3mlのアンプル瓶に
2mlずつ分注封入した。このアンプルを120 ℃のオイル
バスで加熱し、凝固物が発生するまでの時間を各pH値の
試料毎に測定した。脱脂粉乳についても同様な測定を実
施し、両者の沈殿の発生量を比較した。その結果、実施
例4による脱脂粉乳様調製粉乳は、pH6.6 で最も安定で
あった。この時、205 分後に凝固物の発生がみられた。
また、pH6.1 の場合に最も早く凝固物が発生し、その時
間は130 分であった。なお、この調製粉乳を溶解した直
後のpHは6.43を示し、この溶液を加熱した時には190 分
後に凝固物の発生がみられた。
(5) Physical Properties of Formulated Milk Powder The amount of insolubles in the skim milk-like powdered milk powder prepared in Example 4 was quantified by the ADMI method. As a result, the precipitation amount is 0.1 ml
Below, it was confirmed that the amount was similar to that of normal skim milk powder. Moreover, the following measurement was implemented as a heat resistance test.
Adjust the final solid concentration to 15% with a powdered milk solution pH of 6.1 to 6.
It was adjusted to 0.1 in the range of 7 and then 2 ml was dispensed and sealed in a 3 ml ampoule bottle. The ampoule was heated in an oil bath at 120 ° C., and the time until a solidified product was generated was measured for each sample having each pH value. Similar measurements were carried out for skim milk powder, and the amounts of precipitates generated in both were compared. As a result, the skimmed milk powder-like modified milk powder of Example 4 was most stable at pH 6.6. At this time, the formation of coagulation was observed after 205 minutes.
In the case of pH 6.1, the coagulate was generated earliest and the time was 130 minutes. The pH immediately after dissolving this modified milk powder was 6.43, and when this solution was heated, coagulation was observed after 190 minutes.

【0048】これに対し通常の脱脂粉乳の熱安定性は低
く、pH6.4 付近が最も安定であったが67分で凝固し、pH
6.1 では10分、pH6.7 では20分でそれぞれ凝固した。ま
た、水に溶解させたのみでpH調整しない脱脂粉乳溶液の
pH値は6.56で、この時の凝固開始時間は30分であった。
本発明方法による脱脂粉乳様調製粉乳は、通常の脱脂粉
乳と比較し、熱安定性が極めて高く、またあらかじめ溶
解時のpHも安定なpHになるように設定出来る。
On the other hand, the heat stability of normal skim milk powder is low, and the pH around 6.4 is the most stable, but it solidifies in 67 minutes and the pH
It solidified in 10 minutes at 6.1 and 20 minutes at pH 6.7. In addition, a solution of skim milk powder solution that is only dissolved in water but not pH adjusted
The pH value was 6.56, and the coagulation start time at this time was 30 minutes.
The skimmed milk powder-like prepared milk powder prepared by the method of the present invention has extremely high thermal stability as compared with normal skim milk powder, and the pH at the time of dissolution can be set in advance to a stable pH.

【0049】調製粉乳の分散性と湿潤性は脱脂粉乳と顕
著な差は認められず、ほぼ同等の結果を示した。また固
形分濃度を10%になるように溶解した調製粉乳水溶液の
色彩を色差計を用いて測定した。この結果を表9に示
す。表9に示すように脱脂粉乳との間に差は認められな
かった。
The dispersibility and wettability of the modified milk powder were not significantly different from those of skim milk powder, and the results were almost the same. Further, the color of the prepared milk powder aqueous solution dissolved to have a solid content concentration of 10% was measured using a color difference meter. The results are shown in Table 9. As shown in Table 9, no difference was found between the skim milk powder and the skim milk powder.

【0050】[0050]

【表9】 脱脂粉乳様調製粉乳の色彩測定 ───────────────────────── 脱脂粉乳様調製粉乳 脱脂粉乳 ───────────────────────── L値 83.06 84.22 a値 -4.47 -4.30 b値 4.64 3.59 ΔE値 1.57 0.0 ─────────────────────────[Table 9]                       Color measurement of skimmed milk powder           ─────────────────────────                       Nonfat dry milk-like modified milk powder Nonfat dry milk           ─────────────────────────               L value 83.06 84.22               a value -4.47 -4.30               b value 4.64 3.59               ΔE value 1.57 0.0           ─────────────────────────

【0051】(6)官能評価 固形分濃度を8.8%になるように溶解した本発明方法によ
る脱脂粉乳様調製粉乳と市販の脱脂粉乳の風味を官能検
査により比較した。2点識別法で39人のパネルによる検
査を実施した。より好ましい風味を呈するものを選別さ
せたところ、パネル39人中21名が本発明方法による脱脂
粉乳様調製粉乳の風味を好ましいと判定した。
(6) Sensory evaluation The flavors of skimmed milk powder prepared by the method of the present invention dissolved in a solid content concentration of 8.8% and commercially available skimmed milk powder were compared by a sensory test. A two-point discriminant test was conducted by a panel of 39 people. When those having a more preferable flavor were selected, 21 of 39 panelists judged that the flavor of the skim milk powder-like prepared milk powder according to the method of the present invention was preferable.

【0052】[0052]

【発明の効果】本発明によって、白色のホエー、ホエー
粉末、および調製粉乳が提供される。本方法によって提
供される乳製品は、熱安定性が高い、ホエー臭がしない
などの特徴を有し、従来廃棄処分されていたホエーの利
用性を高めることができる。また、本発明方法によって
提供されるホエーミセル、さらにホエーミセルとカゼイ
ンの会合体を特定量含有した溶液は熱安定性に優れ、ゲ
ル化や沈殿を生じないので、飲料等として利用できる
他、そのまま食品素材として各種用途に用いることがで
きる。また該溶液中でホエータンパク質分子はミセル化
し高分子化しているので、例えば分画分子量50000Da 以
上の膜を用いて濃縮が可能で、乳糖等の低分子物質との
分離が容易である。
INDUSTRIAL APPLICABILITY The present invention provides white whey, whey powder, and infant formula. The dairy product provided by this method has characteristics such as high heat stability and no whey odor, and can enhance the utilization of whey that has been conventionally disposed of. Further, whey micelles provided by the method of the present invention, a solution containing a specific amount of whey micelles and casein associates has excellent thermal stability and does not cause gelation or precipitation, so that it can be used as a beverage, etc. Can be used for various purposes. In addition, since whey protein molecules are micelles and polymerized in the solution, they can be concentrated using, for example, a membrane having a cut-off molecular weight of 50,000 Da or more, and can be easily separated from low-molecular substances such as lactose.

【0053】さらに、ホエーミセル、さらにホエーミセ
ルとカゼインの会合体は熱安定性に優れているので、そ
の溶液を凍結乾燥、噴霧乾燥により容易に保存性の高い
粉末とすることができ、またかかる粉末は再溶解しても
溶解性が劣化しないので、粉末飲料等として用いること
ができる。
Furthermore, since whey micelles and whey micelles and casein-aggregates are excellent in thermal stability, their solutions can be easily freeze-dried and spray-dried to obtain highly storable powders. Since the solubility does not deteriorate even if it is redissolved, it can be used as a powdered beverage or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるWPMとMPMの構成タンパク質
のSDSゲルによる電気泳動パターンを示す。
FIG. 1 shows an SDS gel electrophoresis pattern of constituent proteins of WPM and MPM according to the present invention.

【符号の説明】[Explanation of symbols]

レーン1 WPM レーン2 MPM Lane 1 WPM Lane 2 MPM

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 哲 北海道札幌市東区北8条東16丁目1−13 (72)発明者 堀川 正和 北海道札幌市西区山の手4条10丁目2− 18−102 (56)参考文献 特開 昭63−24857(JP,A) 特開 平7−213232(JP,A) 特開 平7−75498(JP,A) 特開 平3−87148(JP,A) 特公 昭45−20537(JP,B1) 特表 平5−500163(JP,A) 特表 平7−507452(JP,A) (58)調査した分野(Int.Cl.7,DB名) A23C 1/00 - 23/00 A23J 1/00 - 7/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Ishii 16-1-13 Kita 8 Higashi, Higashi-ku, Sapporo, Hokkaido (13) (72) Inventor Masakazu Horikawa 4-18 10-102 Yamanote, Nishi-ku, Sapporo, Hokkaido 2-18-102 (56 ) Reference JP-A-63-24857 (JP, A) JP-A-7-213232 (JP, A) JP-A-7-75498 (JP, A) JP-A-3-87148 (JP, A) JP-B 45-20537 (JP, B1) Special table HEI 5-500163 (JP, A) Special table HEI 7-507452 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) A23C 1/00 -23/00 A23J 1/00-7/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ホエーのpHを 5.5〜6.5 に調整後90℃以
上に加熱し、ホエー中に存在するホエータンパク質をミ
セル化することを特徴とする白色ホエーの調製方法。
1. A method for preparing white whey, which comprises adjusting the pH of whey to 5.5 to 6.5 and then heating it to 90 ° C. or higher to micelle the whey protein present in the whey.
【請求項2】 ホエーのpHを 5.5〜6.5 に調整後90℃以
上に加熱し、ホエー中に存在するホエータンパク質をミ
セル化した後、乾燥させることを特徴とする乾燥ホエー
粉末の調製方法。
2. A method for preparing a dry whey powder, which comprises heating the whey to pH 5.5 to 6.5 and heating it to 90 ° C. or higher to micelle the whey protein present in the whey, and then drying.
【請求項3】 ホエーのpHを 5.5〜6.5 に調整後90℃以
上に加熱し、ホエー中に存在するホエータンパク質をミ
セル化した後、カゼインの溶解液を添加することを特徴
とする白色ホエーの調製方法。
3. A white whey characterized in that after the pH of the whey is adjusted to 5.5 to 6.5, the whey protein is heated to 90 ° C. or higher to micelle the whey protein present in the whey, and then a casein solution is added. Preparation method.
【請求項4】 カゼインの添加量がホエータンパク質量
に対して1/20重量以上である請求項3記載の白色ホエー
の調製方法。
4. The method for preparing white whey according to claim 3, wherein the amount of casein added is 1/20 weight or more based on the amount of whey protein.
【請求項5】 ホエーのpHを5.5 〜6.5 に調整後、90℃
以上に加熱し、ホエー中に存在するホエータンパク質を
ミセル化した後、カゼインの溶解液を添加し、乾燥して
なる白色ホエー粉末。
5. The pH of whey is adjusted to 5.5 to 6.5 and then 90 ° C.
White whey powder obtained by heating to the above temperature to make the whey protein present in whey into micelles, adding a casein solution, and drying.
【請求項6】 ホエーのpHを 5.5〜6.5 に調整後90℃以
上に加熱し、ホエー中に存在するホエータンパク質をミ
セル化した後、カゼインの溶解液をカゼインの添加量が
ホエー蛋白質量に対して1/3 重量以上となるように添加
し乾燥させることを特徴とする粉乳の調製方法。
6. The pH of whey is adjusted to 5.5 to 6.5 and then heated to 90 ° C. or higher to micelle the whey protein present in the whey, and then the casein solution is added to the whey protein in an amount relative to the whey protein mass. A method for preparing milk powder, which comprises adding 1/3 by weight or more and drying.
JP07817996A 1996-03-06 1996-03-06 How to prepare whey Expired - Fee Related JP3417513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07817996A JP3417513B2 (en) 1996-03-06 1996-03-06 How to prepare whey

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07817996A JP3417513B2 (en) 1996-03-06 1996-03-06 How to prepare whey

Publications (2)

Publication Number Publication Date
JPH09238614A JPH09238614A (en) 1997-09-16
JP3417513B2 true JP3417513B2 (en) 2003-06-16

Family

ID=13654749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07817996A Expired - Fee Related JP3417513B2 (en) 1996-03-06 1996-03-06 How to prepare whey

Country Status (1)

Country Link
JP (1) JP3417513B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136309A1 (en) 2007-04-26 2008-11-13 Meiji Dairies Corporation Fermented whey preparation and method for producing the same
WO2010047230A1 (en) 2008-10-23 2010-04-29 明治乳業株式会社 Fermented whey preparation and method for producing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ527434A (en) * 2003-08-07 2006-03-31 Fonterra Co Operative Group Production of protein composition from a dairy stream and its use as an ingredient in the manufacture of a cheese
EP1839492B1 (en) * 2006-03-27 2011-09-14 Nestec S.A. Whey protein micelles
EP1844758B1 (en) * 2006-03-27 2010-06-30 Nestec S.A. Cosmetic use of whey protein micelles
PT1839504E (en) * 2006-03-27 2009-05-11 Nestec Sa In situ preperation of whey protein micelles
JP4795180B2 (en) * 2006-09-13 2011-10-19 株式会社明治 Dairy beverage having a new texture and method for producing the same
EP2120591B1 (en) * 2007-02-02 2012-09-26 Arla Foods Amba Novel drinking yoghurt and process for manufacture thereof
JP2013118825A (en) * 2011-12-07 2013-06-17 Snow Brand Milk Products Co Ltd Milk-containing beverage and method for producing the same
JP6309202B2 (en) 2013-03-28 2018-04-11 雪印メグミルク株式会社 Protein composition and method for producing the same
EP2820956A1 (en) 2013-07-03 2015-01-07 Arla Foods Amba Sliceable dairy product with extended shelf life
WO2017211858A1 (en) * 2016-06-10 2017-12-14 Nestec S.A. Heat sterilized high protein enteral compositions with whey protein which comprises whey protein micelles and a source of casein
JP6875420B2 (en) * 2016-06-10 2021-05-26 ソシエテ・デ・プロデュイ・ネスレ・エス・アー Heat-sterilized high-protein enteral composition with whey protein and casein sources, including whey protein micelles
EP3813537A1 (en) * 2018-06-27 2021-05-05 Arla Foods amba Process for producing beta-lactoglobulin isolates and related methods and uses
EP3871508A4 (en) * 2018-10-26 2022-06-29 Meiji Co., Ltd Method for producing high-protein milk raw material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734287A (en) * 1986-06-20 1988-03-29 John Labatt Limited Protein product base
EP0412590A1 (en) * 1989-08-10 1991-02-13 Quest International B.V. Edible compositions of denatured whey proteins
KR927002923A (en) * 1990-05-17 1992-12-17 더 누트라스위트 컴파니 Protein type fat substitutes
DE4313014A1 (en) * 1992-06-10 1993-12-16 Danmark Protein A S Videbaek Partly denatured whey protein product
JP2683492B2 (en) * 1993-09-07 1997-11-26 雪印乳業株式会社 Micellar whey protein, solution thereof, powder thereof, and method for producing micellar whey protein

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136309A1 (en) 2007-04-26 2008-11-13 Meiji Dairies Corporation Fermented whey preparation and method for producing the same
WO2010047230A1 (en) 2008-10-23 2010-04-29 明治乳業株式会社 Fermented whey preparation and method for producing same

Also Published As

Publication number Publication date
JPH09238614A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
JP3417513B2 (en) How to prepare whey
AU593560B2 (en) Protein product base
JP3638301B2 (en) Milk composition and method for producing the same
JP4431181B2 (en) Method for modifying whey protein
JP3290145B2 (en) Milk material and method for producing the same
US20120171327A1 (en) Dairy product and process
JP4701472B2 (en) Method for producing milk calcium composition
EP0520581B1 (en) Method for the preparation of a product similar to low-fat milk
JP5132539B2 (en) Concentrated milk and emulsifier for concentrated milk
EP1659874A1 (en) Production of protein composition from a dairy stream and its use as an ingredient in the manufacture of a cheese
US20120231117A1 (en) Food products having improved heat stability
JP7139312B2 (en) Micronized whey protein and method for producing same
JP3619319B2 (en) Method for producing calcium-enriched milk beverage
Jana High protein dairy foods: technological considerations
JPH0576280A (en) Preparation of milk curd
JP5205432B2 (en) Adjusted milk and method for producing adjusted milk
EP3975729A1 (en) Nutritional composition
JP5228020B2 (en) Cheese, gelled food and method for producing the same
JP3083579B2 (en) Calcium fortified beverage and method for producing the same
JP4001254B2 (en) Foods and drinks that suppress color change
EP3662755A1 (en) A microparticulated whey protein concentrate
JPH02227035A (en) Protein composition and production thereof
IES80443B2 (en) Process for the manufacture of milk proteins
da Fonseca Fractionation of whey proteins by complex formation and membrane filtration
Knopp the degree Master of Science in the Graduate School of the Ohio State University

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees