TW200810136A - Photovoltaic device with nanostructured layers - Google Patents

Photovoltaic device with nanostructured layers Download PDF

Info

Publication number
TW200810136A
TW200810136A TW096105278A TW96105278A TW200810136A TW 200810136 A TW200810136 A TW 200810136A TW 096105278 A TW096105278 A TW 096105278A TW 96105278 A TW96105278 A TW 96105278A TW 200810136 A TW200810136 A TW 200810136A
Authority
TW
Taiwan
Prior art keywords
layer
photovoltaic device
nanoparticles
layers
nanoparticle
Prior art date
Application number
TW096105278A
Other languages
English (en)
Inventor
Damoder Reddy
Original Assignee
Solexant Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solexant Corp filed Critical Solexant Corp
Publication of TW200810136A publication Critical patent/TW200810136A/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Nanotechnology (AREA)
  • Photovoltaic Devices (AREA)

Description

200810136 (1) 九、發明說明 相關申請案 本專利案請求2 0 0 6年,2月1 3日申請的美國臨時專 , 利申請案序號60/772,548,發明名稱「整個吸收IR及 ^ 的奈米粒子層的太陽能_.電池」及2006年,5月2日申請 的美國臨時專利申請案序號60/796,820,發明名稱「奈米 複合材料太陽能電池」的益處及優先權,在此以引用其全 φ 文方式將該二者的揭示內容倂入本文。 【發明所屬之技術領域】 一般而言,本發明係有關光電伏打裝置或太陽能電池 的領域。更特別的是,本發明係有關具有奈米結構層的光 電伏打裝置。 【先前技術】 φ 漸增的油價提高了開發有成本效益的可再生能源的重 要性。現在全世界明顯致力於開發有成本效益的太陽能電 池以獲得太陽能。當今的太陽能技術可廣義地歸類成結晶 砂及薄膜技術。多於90%的太陽能電池係由矽-單晶矽、 多晶砂或非晶砂構成。 歷史上’結晶矽(c-Si )已被作爲大部分太陽能電池 當中的光吸收半導體,儘管其係光的較差吸收體且需要可 觀的厚度(數百微米)的材料。儘管如此,據證實因爲其 可產生具有良好效率(12至20%,理論最大値的一半至 200810136 (2) 三分之二)的穩定太陽能電池且使用自微電子產業知識基 礎發展出來的處理技術,所以係便利的。 在此產業中使用兩類的結晶矽。第一種爲單晶,經由 將來自高純度單晶晶棒的晶圓(約150mm直徑及3 50微 ’ 米厚)切曹而製成。第二1Γ爲多晶矽,先將矽鑄塊切成棒 然後晶圓而製成。結晶性矽電池製造的趨勢朝向多晶技術 〇 • 就單-及多晶矽而言,半導體p-n接面係經由使磷( η-型摻雜劑)擴散至摻硼(p-型)矽晶圓的頂表面。在該 電池的正面及背面施加網版印刷接觸,利用特別設計的正 面接觸圖案使該電池中有最大的矽材料曝光量及最小的電 力(阻抗)損失。 矽太陽能電池非常昂貴。製造技術已成熟但是未能明 顯降低成本。矽並非用於太陽能電池的理想材料,因爲其 主要吸收第1圖例示的太陽光譜的可見光區。如第2圖所 • 示有相當大量的太陽輻射包含IR光子。矽太陽能電池無 法獲得這些IR光子,所以限制了其轉化效率。 第二代太陽能電池技術以薄膜爲基準。兩種主要薄膜 技術爲第3圖所示的非晶矽及二硒化銅銦鎵(ciGS )。 在1 980年代將非晶矽(a-Si)視爲「唯一的」薄膜 PV材料。但是在那十年的末期及199〇年代早期,由於其 低效率及不穩定度而受到許多觀察者排拒。然而,針對這 些問題非晶矽技術在尋求非常成熟解決方法的方面已經有 很好的進展:即,多接面結構。現在,工業用的多接面a_ -5- 200810136 (3)
Si模組能達到 7%至9%的效率範圍。United Solar and
Kaneka已經建造25 MW的設備且許多公司宣布要在日本 及德國建造製造工廠。 a-Si技術的重要障礙爲低效率(約10%穩定)、光感 應效率降低(那需要例如多接觸等更複雜的電池設計)及 加工成本(製造方法以真空爲基礎且相當慢)。所有這些 議題對於製造有成本效益的a-Si模組的可能性都很重要 〇 非晶矽太陽能電池也具有不良的IR吸收且無法獲得 太陽光譜的IR光子的能量。微晶矽將吸收延伸至更長波 長但也於IR區的吸收仍然不良。爲了提高非晶矽太陽能 電池的IR獲得己採行不同的反射器設計。這些反射器增 加相當多成本但是提供有限的益處,因爲彼等不能將非晶 矽的IR吸收延伸超越1,〇〇〇 nm。若吸收IR的層可發展成 能符合成本效益地合倂非晶及微晶矽太陽能電池就能達到 明顯的效能改善。 由二硒化銅銦鎵(CIGS )吸收體製成的薄膜太陽能 電池顯示達到1 0至1 2%高轉化效率的可能性。與例如碲 化鎘(C d Te )或非晶砂(a- S i )等其他薄膜技術所達到的 效率相比’ CIGS的記錄高效率(19.2% NREL )爲目前爲 止最局的。 這些破記錄的小面積裝置使用真空蒸發技術製成,其 係資本密集且非常昂貴。在大面積基材上製造均勻組成的 CIG S膜極具挑戰性。此限制也會影響製程產量,彼等通 200810136 (4) 常非常低。由於這些限制,製造技術的實施尙未成功用於 t ^貞H '低成本的薄膜太陽能電池及模組的工業製造且無 法與當今的結晶矽太陽能電池競爭。 爲了克服使用昂貴真空設備的物理蒸氣沈積技術的限 制’有數家公可已經開發出用於CIGS太陽能電池製造的 高產量真空製程(例如:DayStar、Global Solar)及及非 真空製程(例如:ISET、Nano solar )。使用油墨技術, φ 可以較低的資本設備成本。合倂效爲爲薄膜太陽能裝置的 低成本製程。CIGS可做在軟性基材上使其能降低太陽能 電池的重量。CIGS太陽能電池的成本預期低於結晶矽使 其即使在較低效率下仍具有競爭性。CIGS太陽能電池的 主要問題爲:(1 )沒有清楚的途徑能達到較高的效率及 (2)高加工溫度使其難以使用高速輥來輥軋加工且因而 彼等不能達到非晶矽太陽能電池所能達之明顯較低的成本 結構。 φ CIGS太陽能電池也具有不良的IR吸收,因而無法吸 收或獲得太陽光譜的IR光子的能量。若IR吸收層可發展 成能符合成本效益地合倂CIGS太陽能電池就能達到明顯 的效能改善。 當下可取得的技術有明顯的問題。舉例來說,現今具 有>9 0%市佔率的結晶矽太陽能電池非常貴。與石化燃料 的<10美分/kwh相比,利用c-矽太陽能電池的太陽能費 用約25美分/kwh。此外,建造太陽能板的資金成本非常 高,限制其採用率。結晶性太陽能電池已經成熟且在不久 -7- 200810136 (5) 的未來可能還無法改善效能或成本競爭力。非晶矽薄膜技 術能接受大量製造,那可能導致低成本太陽能電池。然而 ,非晶及微晶矽太陽能電池僅吸收可見光區且無法獲得 IR區的任何光子。 先前技藝中有1午多例子將此吸收IR的薄膜層與政層 合倂以提高太陽能電池轉化率。用於此文獻中的吸收IR 的薄膜層係經由昂貴的真空沈積法來沈積。文獻中的例子 φ 包括多接面電池及串疊型電池(tandem cell )。文獻中的 例子包括(1 )由兩個獨立電池形成的四端裝置及(2 )經 由倂入隧道接面所製成的兩個末端裝置。所有這些文獻中 已知的例子要製造都很昂貴,限制了其商業應用。 國際可再生能源實際室(NREL)已經在2001年以達 到高效率爲主要目標開始進行高效率串疊型太陽能電池計 畫。例如SiGe、PbSe、PbS及III-V材料等許多半導體材 料可吸收IR區且可用於獲得IR光子。NREL的硏究員證 φ 實寬帶多接面太陽能電池可經由堆疊具有不同波長範圍吸 收的電池而製備。串疊型太陽能電池使用於單一電池中呈 串聯的具有不同能帶間隙之多種材料。組合串疊型太陽能 電池已經進行相當長的過程卻仍有許多限制。這些串疊型 電池似乎還未曾達到商業應用的成本競爭力。這些多接面 串疊型電池非常的複雜而難以設計(由於電池平衡的要求 )且傾向非常昂貴。因而這些串疊型電池僅限用在成本並 非重要驅動因子的防禦設施、太空及地面應用方面。然而 ’此等設計似乎不曾經濟到足以用於商業太陽能電池應用 -8- 200810136 ⑹ 下一代太陽能電池設計必需真正達到高效率及質輕與 低成本。兩個有可能的候選方案爲(1 )聚合物太陽能電 池及(2 )奈米粒子太陽能電池。聚合物太陽能電池由於 在中等溫度(<150C )下一捲接一捲加工証裏有低成本的 潛力。然而,聚合物會遇到兩種主要的缺點:(1 )由於 緩慢的電荷傳輸的不良效率及(2 )不良穩定度-尤其是對 UV。因而聚合物太陽能電池似乎不能達到所要求的性能 而無法變成下一代太陽能電池。 有許多硏究團體已經針對量子點爲主的太陽能電池進 行實驗硏究。據數據報導的最佳效率有到<5%。這些奈米 粒子太陽能電池低效率的主要原因爲下列造成的電荷再結 合(1)奈米粒子上的表面電荷及(2)聚合物主質中的不 良電荷傳輸。所以必須發展出新穎的合成方法以製備量子 點而沒有表面電荷效應。已經有人建議靠具有大縱長比的 電荷傳輸量子棒來降低聚合物主質的影響。從加州博克萊 大學的硏究員顯示可經由使用具有>10:1縱長比的量子棒 達到較佳的效率。 多倫多大學及布法羅大學已經刊載吸收IR的奈米粒 子°多倫多大學的泰德薩爾金特團隊經由使硫化鉛半導性 奈米晶體,測得直徑4奈米(nm ),懸在半導性塑膠中 (天然材料2005,4,1 3 8- 1 42 )而製成以溶液處理爲底的 H夕U泉光電伏打裝置。Pbs的4-nm球比激發的電子軌域 半倥小。此所謂量子侷限(q u a n t u m c ο n f i n e m e n t )的效應 ♦200810136 (7) 爲量子點開始吸收能量的光波長正好與該晶體的尺寸有關 。這意指經由改變奈米晶體的尺寸’塑膠太陽能電池可轉 變成任何預期的波長,從IR至可見光光譜。經由控制太 陽能電池的奈米晶體尺寸會使太陽能電池變成吸收980、 1 200及1 3 5 5 nm波長的IR光並將其轉變成電流。IR光電 伏打裝置具有較大的潛力,因爲曰光中有一半的能量在 IR,介於700 nm至2微米之間的波長。薩爾金特的第一 φ 個IR系統具有聽起來很糟的功率轉化效率〇 . 〇〇 1 %。 布法羅大學(UB )的百樂斯普塞德團隊開發出由磷 化銦(InP )奈米晶體構成的有效吸收IR的量子點光電伏 打裝置。InP量子點證實與其他量子點相比擬的發光效率 ,但是彼等-也發射該光譜紅色區中較長波長的光。這是重 要的優點,因爲紅光放射意指這些量子點能獲得IR區的 光子。由硒化鎘組成的量子點大部分放射較低可見光波長 區。矽太陽能電池主要作用在綠色區,因此僅捕捉一部分 φ 可得到的光能。對照之下,硒化鉛量子點可吸收紅外線, 所以能開發出比現在矽太陽能電池更能分多次將更多光有 效轉變成可用能量的光電伏打電池。UB團隊證實InP量 子點有3 %量子效率。論文中有描敘他們的硏究「使用量 子點··聚合物奈米複合材料而在紅外線波長有效率的光導 裝置」,2 0 0 5年,8月1 1日線上發表於應用物理文學中 〇 因此,仍有許多挑戰且對於未來的發展有相當多要求 -10- 200810136 (8) 【發明內容】 本發明的具體例大體上係有關光電伏打裝置或太陽能 電池的領域。更特別的是,本發明提供具有吸收IR及/或 UV的奈米結構層的光電伏打裝置。 一方面,本發明的具體例提供一種光電伏打裝置,其 包含:由顯示實質上在太陽光譜可見光區的輻射吸收之半 導體材料構成的第一光活性層,及由顯示實質上在該太陽 光譜IR區的輻射吸收之奈米結構材料構成的第二光活性 層。複合層係配置在該第一與第二層之間,且配置以促進 該第一與第二層之間,且經配置以促進該第一與第二層之 間的電荷傳輸。 另一方面,本發明提供一種光電伏打裝置,其包含第 一光活性層;配置在該第一層上的頂部光活性層,該頂部 光活性層係由顯示比該第一層更大的能帶間隙的材料構成 ;及配置在該第一層下的底部光活性層,該底部光活性層 係由顯示比該第一層更小的能帶間隙的材料構成。有些具 體例中,該頂部光活性層顯示2電子伏特及更高的能帶間 隙,且該底部光活性層顯示1.2電子伏特及更低的能帶間 隙。 . 又另一方面,本發明的具體例提供一種光電伏打裝置 ’其包含:由顯示實質上在太陽光譜可見光區的輻射吸收 之半導體材料構成的第一光活性層及由顯示實質上在太陽 光譜UV區的輻射吸收之奈米結構材料構成的頂部光活性 -11 - .200810136 (9) 層。複合層配置在該第一與頂部層之間,且配置以促進該 第一與頂部層之間的電荷傳輸。 又再一方面,本發明的具體例提供一種光電伏打裝置 ’其包含:由顯示實質上在太陽光譜可見光區的輻射吸收 之半導體材料構成的第一光活性層,及形成在該第一層上 之由顯示實質上在太陽光譜UV區的輻射吸收之奈米結構 材料構成的頂部光活性層。複合層配置在該第一與頂部層 φ 之間,且配置以促進該第一與頂部層之間的電荷傳輸。由 顯示實質上在太陽光譜IR區的輻射吸收之奈米結構材料 構成的底部光活性層係形成於該第一光活性層下方。第二 複合層配置在該第一與底部層之間,且配置以促進該第一 與底部層之間的電荷傳輸。 該奈米結構材料爲任何包含奈米尺寸的材料或粒子的 適合材料。這些奈米尺寸的材料或粒子可分散在另一種材 料,例如前驅物或載體化合物中。舉例來說,有些具體例 φ 中該奈米結構材料爲包含電洞傳導或電子傳導聚合物及分 散在其中的互補奈米粒子之奈米複合材料。該奈米複合材 料可由一或更多分散在聚合物中的奈米粒子構成。其他具 體例中,該奈米結構材料係由任何一或更多下列之物構成 :半導性點、棒或多足。多足可包含二及三棒結構,或其 他2及3維結構。適當奈米粒子材料的例子包括,但不限 於,一或更多下列之物:PbSe、PbS、CdHgTe、Si或 Si Ge。特別有益的是,該等奈米粒子的尺寸及/或組成可 經選擇以提供一個範圍的輻射吸收,藉此提高裝置的吸收 -12- 200810136 (10) 效率。 其他具體例中,該奈米結構材料係由光敏性奈米粒子 及傳導性奈米粒子的混合物構成。該等光敏性奈米粒子及 傳導性奈米粒子中之一或二者可經官能化。傳導性奈米粒 子的例子包括,但不限於,任何一或更多下列之物:單壁 碳奈米管(SWCNT) 、Ti〇2奈米管或Zn0奈米線。光敏 性奈米粒子的例子包括,但不限於,任何一或更多下列之 物:CdSe、ZnSe、PbSe、InP、Si、Ge、SiGe 或 III-V 方矢 材料。 有些具體例中,該複合層可由傳導與該傳導聚合物的 電荷相反的電荷之材料構成的摻雜層構成。因此有些具體 例中,該複合層包括具有與該奈米粒子的傳導聚合物相反 的電荷之摻雜層。或者,該複合層係由傳導與該奈米粒子 的電荷相反的電荷之材料構成的摻雜層。該複合層可進一 步包含耦合摻雜層的金屬層及/或絕緣層。 φ 該第一光活性層可由下列任一者構成:非晶矽、單晶 矽、多晶矽、微晶矽、奈米結晶矽、CdTe、二硒化銅銦 鎵(CIGS )或III-V族半導體材料。另一個具體例中,該 第一光活性層係由電洞傳導或電子傳導有機材料構成。舉 例來說,該第一光活性層可由P-I-N半導體或P-N半導體 構成。在替代性具體例中,第一光活性層係由任何一或更 多下列之物構成:P3HT、P30T、MEH-PPV、PCBM、 CuPe、PCTBI 或 C60 〇 在一個例示性具體例中,由奈米結構材料構成的第二 -13- 200810136 (11) 層包含一或更多配置在電洞傳導聚合物的無機奈米粒子, 且該複合層係由N +摻雜層;及耦合至該N +摻雜層的金屬 層構成。 【實施方式】 本發明的具體例大體上係有關於光電伏打裝置或太陽 能電池的領域。更特別的是,本發明提供具有IR及/或 φ UV吸收性奈米結構層的光電伏打裝置。「光電伏打裝置 」及「太陽能電池」二詞在全文說明中可相互交換使用。 本發明進一步係有關經由合倂吸收或獲得IR光子的奈米 結構材料及/或吸收或獲得UV光子的奈米結構材料而有 效提高太陽能電池成本效率。有些具體例中,該等-奈米結 構材料合倂下列之一或更多者:結晶矽(單晶或多晶)太 陽能電池及吸收主要在可見光區的薄膜(非晶矽、微晶性 矽、CdTe、C1GS及III-V族材料)太陽能電池。有些具 φ 體例中,該奈米結構材料由合倂第一材料層的一或更多奈 米粒子構成,該第一材料層顯示實質上在可見光譜的輻射 吸收。有些具體例中,該奈米粒子層由不同尺寸的量子點 、棒或多足構成。在一例子中奈米粒子的尺寸介於約2 nm至10 nm,且更常在約2 nm至6 nm的範圍,如第5 圖所示。小奈米粒子吸收光譜的藍色端同時大尺寸奈米粒 子吸收光譜的紅色端。
奈米粒子層較佳爲由不同的螢光材料構成。適當材料 的例子包括,但不限於,CdSe、PbSe、ZnSe、CdS、PbS -14-
200810136 (12) 、Si、Ge、SiGe、InP或111-1族半導體之任一或更 。PbS、PbSe、及SiGe爲吸收IR的奈米粒子的例 ZnSe爲吸收UV的奈米粒子的例子。不同化學性質 收IR及吸收UV的奈米粒子及粒子尺寸可經由此技 習知的方法製備而成。 在替代性具體例中,該奈米結構層係由奈米粒子 在傳導聚合物基質中所獲得的聚合物複合材料構成。 奈米粒子具有第4圖例示的核心-外殼結構。在此 ,該核心-外殼的核心1 0可包含半導體材料,例如 、II-IV半導體等。如第6圖所示該外殼20可由另-導體材料或溶劑,舉例來說TOPO構成。有些具體便 奈米粒子係被官能化,例如利用有機基團”以促成其 在傳導聚合物基質中。第7圖顯示奈米粒子由IV、 、:[II-V、II-VI、IV-VI族材料構成的奈米粒子(在m 爲量子點「QD」)。或者,該等奈米粒子30係係g 一或更多下列之物構成:CdSe、PbSe、ZnSe、CdS 、Si、SiGe或Ge。有些具體例中,該等奈米粒子 例如羧基(-COOH )、胺(_Nh2 )、膦酸根(_P〇4 ) 酸根(-HSO3 )及胺乙基硫醇等的官能基4〇來官能 奈米粒子層可經由例如旋塗法、浸塗法及噴墨 習知的溶液處理法來沈積。適當的話,奈米粒子也 真空沈積技術來沈積。厚度、粒子尺寸、發光材料 聚合物材料(若使用的話)的類型及該聚合物複合 若使用聚合物複合材料的話)的奈米粒子塡充量可 多者 子。 之吸 :藝中 分散 該等 :況中 III-V 1重半 [中, :分散 II-IV :亦稱 [任何 、PbS $利用 、磺 1印等 「經由 ί型、 卜料( 〗以調 -15- 200810136 (13) 整使吸收IR的奈米粒子在IR區的吸收及吸收UV的奈米 粒子在UV區的吸收最大化。 其他具體例中,該奈米結構材料係由光敏性奈米粒子 及傳導性奈米粒子的混合物構成。該光敏性及傳導性奈米 粒子中之一或二者可被官能化。傳導性奈米粒子的例子包 括,但不限於,任何一或更多下列之物:單壁碳奈米管( SWCNT) 、Ti02奈米管或ZnO奈米線。光敏性奈米粒子 0 的例子包括,但不限於,任何一或更多下列之物:c d s e、
ZnSe、PbSe、InP、Si、Ge、SiGe 或 ΙΠ-V 族材料。 另一方面,本發明係有關促進以高效率奈米粒子爲底 的光電伏打裝置之光電伏打裝置結構的開發。有些具體例 中,將光敏性奈米粒子(量子點、棒、二足、三足、多足 及線等)分散在高移動傳導聚合物的前驅物中以形成夾在 二傳導性電極之間之獲得輻射或光的薄膜層,這些電極中 之至少一者係透明的。該等前驅物較佳爲低分子量以便使 φ 彼等可保形地塗佈該等奈米粒子,同時在溶劑移除之後形 成前驅物/奈米粒子的薄膜。奈米粒子也可依此方式官能 化以促成利用前驅物來保形塗佈奈米粒子。該等奈米粒子 接著經由熱手段或經由使用UV輻射來聚合以獲得光敏性 奈米粒子完全包封在高移動傳導聚合物中的薄膜並促成奈 米粒子暴露於光底下時產生電洞與電子的快速電荷轉移。 光敏性奈米粒子可由其他暴露於光底下時會產生電子 電洞對的光敏性材料製成。奈米粒子可由硒化鎘(CdSe ) 、硒化鋅(ZnSe )、硒化鉛(PbSe )、磷化銦(InP )、 -16 - 200810136 (14) 硫化鉛(PbS)、矽(Si)、鍺(Ge)、鍺化矽(SiGe) 及ΙΠ-V族材料製成。 奈米粒子可利用有機或無機官能基來官能化。在此等 具體例中,接附至奈米粒子表面的官能基包括,但不限於 ,且爲Γ下—歹!Γ之一或多者:-COOH (羧基)、-ρ〇4 (膦—酸根 )、磺酸根(-S03H )及胺(-ΝΗ2 )。 局移動傳導聚合物的例子包括,但不限於稠五苯( φ pentacene ) 、Ρ3ΗΤ及 PEDOT等。這些聚合物的前驅物 可含有一或更熱可聚合的官能基。環氧基爲適當熱可聚合 的官能基的例子。或者該前驅物可含有一或更多UV可聚 合的官能基。丙烯酸官能基爲適當UV可聚合的官能基的 例子。 有些具體例中,以第二種傳導聚合物材料與高移動聚 合物的前驅物及光敏性奈米粒子合倂以助於該前驅物被聚 合之前的初步膜形成。PVK爲適當第二種聚合物材料的例 Φ 子。孩佳爲該前驅物與第二種聚合物以前驅物對第二種聚 合物的最大比例混合,只要聚合之後不會發生相分離。在 一個具體例中稠五苯爲前驅物,預期其能使PVK膜塑化 以允許光敏性奈米粒子均勻分散在膜中,也允許該前驅物 保形塗佈奈米粒子。 有些具體例中,該奈米結構材料的層係由光敏性及傳 導性奈米粒子的混合物構成。例如單壁碳奈米管、Ti〇2 奈米管、ZnO奈米線等的傳導性奈米粒子可與前驅物及光 敏性奈米粒子(視需地利用第二種傳導聚合物)混合以進 -17- 200810136 (15) 一步藉由暴露於光底下而增進該等奈米粒子所產生的電子 與電洞之電荷分離。 其他具體例中,光敏性奈米粒子爲分離的粒子,或將 彼等接附至例如碳奈米管(SWCNT) 、Ti02奈米管、ZnO 奈米線等的傳導性奈米粒子。 光敏性奈米粒子可經由分子自身組合化學接附至碳奈 米管爲底傳導性奈米結構以在該碳奈米管上形成這些奈米 φ 粒子的單層。傳導性碳奈米管係經由此技藝中習知的方法 製成。有些具體例中,較佳爲碳奈米管係由單壁碳奈米管 (SWCNT )構成。該等碳奈米管可被官能化以促成其分 散在適當溶劑中。以經官能化的奈米粒子與碳奈米管上的 適當官能基(例如:羧基或其他)反應以經由分子自身組 合法來沈積緻密連續奈米粒子的單層。經由調整該等奈米 粒子上的官能基與該等碳奈米管,可調節該奈米結構表面 與奈米粒子之間的距離而使促成電荷再結合時表面狀態的 φ 效應最小化。保持此距離使電子穿隧經過該等奈米粒子至 該等高傳導性奈米粒子的間隙。有些具體例中,此距離爲 數埃,較佳爲小於5埃。此易得的電子傳輸將消除電荷再 結合且造成將導致有效太陽能轉變的高效率電荷分離。在 一個具體例中,經由在適當溶劑中反應將光敏性奈米粒子 接附至該等碳奈米管。傳導性碳奈米管可經由遵循此技藝 中習知的方法直接長在基材(例如:金屬箔、塗佈例如 ITO等傳導性氧化物的玻璃)上。光敏性奈米粒子可附接 至長在該基材上的碳奈米管。 -18- 200810136 (16) 在本發明另一方面中,教導將不同尺寸的光敏性奈米 粒子分散在高移動性聚合物的前驅物中以形成夾在兩個電 極之間的單層,這些電極中之至少一者係透明的,之光電 伏打裝置結構。第二種聚合物及/或傳導性奈米粒子係視 需要地混入含有該等奈米粒子及該前:IT物的層中。 再者,本發明的具體例提供具有多層結構的光電伏打 裝置結構,其中各層包含一或更多尺寸的光敏性奈米粒子 0 ,其分散在高移動性聚合物的前驅物中以形成夾在兩個電 極之間的單層,這些電極中之至少一者係透明的。第二種 聚合物及/或傳導性奈米粒子係視需要地混入含有該等奈 米粒子與前驅物的這些層各自當中。 本發明進一步提供光電伏打裝置,其中碳奈米管附接 著分散在高移動性聚合物(視需要地與第二種聚合物合倂 )的前驅物中形成夾在兩個電極之間的單層之不同尺寸不 同材料的光敏性奈米粒子。這些電極中之至少一者係透明 Φ 的。本發明的具體例包含附接著單一尺寸光敏性奈米粒子 的碳奈米管係堆疊在一起以形成夾在兩個電極,這些電極 中之至少一者係透明的,之間的多層之光電伏打裝置。此 外,本發明提供附接著單一尺寸單一材料光敏性奈米粒子 的碳奈米管係堆疊在一起以形成夾在兩個電極,這些電極 中之至少一者係透明的,之間的多層之光電伏打裝置。另 一個具體例中,提供附接著多重尺寸單一材料光敏性奈米 粒子的碳奈米管係堆疊在一起以形成夾在兩個電極,這些 電極中之至少一者係透明的,之間的多層之光電伏打裝置 -19- 200810136 (17) 另一方面中,本發明的具體例提供包含配置在電極與 奈米複合材料層之間的電洞傳輸界面層之光電伏打裝置。 具體例包括以電子傳輸界面層用於奈米複合材料層之間的 電極與光電伏打裝置。 現在參照圖形來描述例示性具體例的例子。參照第8 圖,顯示本發明光電伏打裝置800的一個具體例。在此具 體例中經由此技藝中習知的方法沈積絕緣層82〇及金屬層 8 3 0而在玻璃、金屬或塑膠基材8 1 0上建造光電伏打裝置 。在該金屬層830上沈積在IR區800至2,000nm(1.2 ev 及更小的能帶間隙)中有吸收的奈米結構材料層840,接 著包含透明傳導層(舉例來說ITO )或穿隧接面層85 0的 複合層。在這些層之後接著形成配置在該奈米結構層840 上的第一光活性層8 5 5。在此具體例中,第一光活性層 8 5 5係由包括η -型非晶砂8 6 0、i -型非晶砂8 7 0及口-型非 晶矽880的標準非晶矽層構成。或者,第一光活性層855 可由包括η-型微晶矽、i-型微晶矽及P-型微晶矽的標準微 晶矽層構成。第一光活性層8 5 5可經由此技藝中習知的方 法形成。接著在該矽層頂部沈積例如IT〇的透明傳導層( TCO) 8 90。定光電伏打裝置的取向使日光8100落在TCO 8 9 0上。該非晶或微晶矽層8 5 5的厚度可經調整使在太陽 能光譜的可見光區的吸收最大化。與未倂入吸收IR的奈 米粒子的光電伏打裝置設計相比,本具體例中描述的光電 伏打裝置將獲得來自較高轉化效率的太陽能光譜的可見光 -20 - 200810136 (18) 及IR光子。 特別有益的是,在該第一光活性層與該奈米結構材料 層之間配置複合層或穿隧接面層850 °有些具體例中’該 複合層可由傳導與該奈米結構材料的電荷相反的電何之材 料所構成的摻雜層構成。因此有些具體例中’該複合層包 括具有與該奈米結構材料中的傳導聚合物材料的電何相反 的電荷之摻雜層。或者,該複合層爲由傳導與該奈米結構 材料中的奈米粒子的電荷相反的電荷之材料構成的摻雜層 。該複合層可進一步包含耦合至摻雜層的金屬層及/或絕 緣層。 第9圖更詳細地例示複合層8 5 0。該複合層8 5 0在下 文實施例中有時候也稱爲穿隧接面層。奈米結構層840係 由電洞傳導材料構成,該電洞傳導材料可爲電洞傳導奈米 粒子或配置在電洞傳導材料中的奈米粒子,例如電洞傳導 聚合物。複合層850包含一層金屬及/或絕緣體及一層p-摻雜材料。一般而言,該複合層爲由傳導與該奈米結構層 的電荷相反的電荷之材料構成的摻雜層。因此,該複合層 爲取決於該奈米結構層840的材料,由傳導與該奈米粒子 ,或該傳導聚合物材料的電荷相反的電荷之材料所構成的 摻雜層85〇B。有些具體例中,該複合層進一步包含耦合 至摻雜層85〇B的金屬層85 0 A。或者,該複合層進一步包 含親合至摻雜層850B的絕緣層(未顯示)。 爲了提供用於本發明的光電伏打裝置的適當頂部及底 邰電池連接大體上如第9圖例示的提供界面或複合層8 5 0 -21 - 200810136 (19) 。在一個具體例中,該複合層可具有經大量摻雜的非晶矽 附加層,該非晶矽層具有與該裝置的奈米結構層及/或在 該第一光活性層與該奈米結構層之間的金屬或絕緣層的摻 雜類型相反的類型,其可被想成頂部及底部太陽能電池。 該複合層係經配置以促進層之間的電荷傳輸。明確地說, 該複合層係經配置使得該能帶結構有利於明顯增強該底部 光活性層840 (也稱爲底部電池)的電洞與該第一光活性 φ 層8 5 5 (也稱爲頂部電池)的電子之間的再結合速率。同 時在電子-電洞再結合過程中的S S參與係經由頂部與底部 電池之間的物理分隔而被抑制。 再參照第9圖,該頂部電池具有沈積在第一光活性層 8 5 5之經大量摻雜的N +接-觸層,在本具體例中其係P-I-N 半導體的N +區,上之經非常大量摻雜的P +層850B。上 述P +及N +層在其與實際上變成一部分底部奈米結構層 840電洞傳導成分的極P +層8 5 0B之界面處形成穿隧接面 • 。該第一及奈米結構層8 5 5及840分別經由金屬的薄隧道 膜來作物理分隔。有些具體例中,該金屬膜8 5 0 A係由金 (Αιχ)構成且較佳地具有約5至15埃範圍的厚度。其他 金屬膜可用於其他具體例,附帶條件爲其係薄到足以確保 該奈米結構層的直接電洞穿隧,同時不會在界面處造成任 何明顯光學或電力損失。或者,可使用絕緣材料代替金屬 材料。要注意本發明可有效地用於相反傳導度類型的光電 伏打裝置具體例,在該情況中極N +層能替代本具體例的 P +層且該奈米結構層係設計成上接觸層爲電子傳輸且並非 -22- 200810136 (20) 電洞傳輸。 第9圖中也顯7K對應的能帶圖。可見得本發明的複合 界面,有利的能量條件爲經由薄金屬膜將來自奈米結構或 底部電池的電洞轉移至該頂部電池的極p +層’接著直接 穿隧且與—該頂肩Γ電池的N +層中的-電子再結合,藉此提供 串聯頂部與底部電池的有效率的低阻抗及最小損失關係。 因而本發明代表頂部與底部電池適當連結的問題之有效率 • 的解決方法。 具有吸收IR的層之光電伏打裝置另外的實施例 本發明另一個光電伏打裝置的具體例例示於第1 〇圖 中。大體上,在此具體例中,奈米結構材料的層係由獲得 IR的奈米粒子層合倂多晶或單晶政層構成。該多晶或單 晶矽層形成吸收實質上在太陽光譜可見光區的輻射之材料 的第一光電伏打層。在本具體例中該多晶矽光電伏打裝置 係經由此技藝中習知的方法建造,由η-型多晶性晶圓 1 040開始並在該晶圓一側利用ρ-型摻雜劑摻雜(或ρ-型 單晶晶圓可摻雜η-型摻雜劑),接著透明導體或傳導柵 極1〇5〇。在該多晶矽晶圓的第一 TCO層1050相反側上沈 積透明傳導層(例如:ΙΤΟ)或穿隧接面層1 03 0。在該 TCO或穿隧接面層1〇30上沈積在IR區800至2,000nm( 具有1.2 ev及更小的能帶間隙)中有吸收的奈米粒子層 1 02 0,接著金屬層1〇 10。多晶矽層的厚度及摻雜濃度可 經調整使在太陽光譜可見光區中的吸收最大化。與未倂入 -23- 200810136 (21) 吸收IR的奈米粒子的光電伏打裝置設計相比,在本具體 例中描述的光電伏打裝置能從太陽光譜獲得可見光及IR 光子。 又另一個具體例中,如第1 1圖所示提供第一光活性 層由CcTTe材料嘗成的光電伏打裝置。在此該奈米結構材 料層包含獲得IR的奈米粒子層。在本具體例中經由此技 藝中習知的方法沈積絕緣層1120及金屬層1 130而在玻璃 φ 、金屬或塑膠基材1110上建造光電伏打裝置。在該金屬 層1130上沈積在IR區800至2,000nm (具有1.2 ev及更 小的能帶間隙)中有吸收的奈米粒子層1 1 40,接著包含 複合層的透明傳導層(舉例來說ITO )或穿隧接面層1 150 。在這些層之後接著經由此技藝中習知的方法來形成 CdTe層1 160。接著在該矽層頂部上沈積例如ITO等的透 明傳導層TCO 1170。定光電伏打裝置的取向使日光1180 落在TCO 1 170上。該CdTe層的厚度可經調整使在太陽 φ 能光譜的可見光區的吸收最大化。與未倂入吸收IR的奈 米粒子的光電伏打裝置設計相比,本具體例中描述的光電 伏打裝置將獲得導致較高轉化效率的太陽能光譜的可見光 及IR光子。 在第12圖所示的再另一個具體例中,獲得IR的奈米 粒子層與CIGS層合倂。在本具體例中經由此技藝中習知 的方法沈積絕緣層1220及金屬層1230而在玻璃、金屬或 塑膠基材1210上建造光電伏打裝置。在該金屬層1230上 沈積在IR區800至2,000nm (具有1.2 ev及更小的能帶 -24- 200810136 (22) 間隙)中有吸收的奈米粒子層1 24 0,接著包含複合層的 透明傳導層(舉例來說ITO)或穿隧接面層1 250。在這些 層之後接著經由此技藝中習知的方法來形成CIGS層1260 。接著在該矽層頂部上沈積例如ITO等的透明傳導層 TCO- 1 270。定光電伏打裝置的取向使日光1 280落_在TCO 127 0上。該CIGS層的厚度可經調整使在太陽能光譜的可 見光區的吸收最大化。與未倂入吸收IR的奈米粒子的光 電伏打裝置設計相比,本具體例中描述的光電伏打裝置將 獲得導致較高轉化效率的太陽能光譜的可見光及IR光子 具有吸收UV的層之光電伏打裝置的實施例 又再一方面,提供一種光電伏打裝置,其中第一光活 性層係由顯示實質上在太陽光譜可見光區的輻射吸收之半 導體材料構成,且頂部光活性層係由顯示實質上在太陽光 譜UV區的輻射吸收之一或更多奈米粒子構成。複合層配 置在該第一與頂部層之間,且配置以促進該第一與頂部層 之間的電荷傳輸。參照第1 3圖顯示獲得υν的奈米粒子 層的頂部光活性層與非晶或微晶矽層構成的第一光活性層 合倂。在本具體例中經由此技藝中習知的方法沈積絕緣層 1320及金屬層1330而在玻璃、金屬或塑膠基材1310上 建造光電伏打裝置。在這些層之後接著標準非晶或微晶矽 層,其經由此技藝中習知的方法來形成本具體例中的第一 光活性層且包含η -型非晶砍1340、i -型非晶砂1350及p- -25- 200810136 (23) 型非晶矽1360。接著在該矽層頂部上沈積透明傳導層 T C Ο或穿隧接面層1 3 7 0 (在此情形中複合層)作爲複合 層。在該TCO或穿隧接面層1370上沈積在UV區(具有 2 ev及更高的能帶間隙)有吸收的奈米粒子層1 3 80,接 著例如ITO等的透明傳導層1 3 90。定光電伏打裝置的取 向使日光(1〇〇 )落在TCO ( 90 )上。非晶矽層的厚度可 經調整使在太陽能光譜的可見光區的吸收最大化。與未倂 φ 入吸收UV的奈米粒子的光電伏打裝置設計相比,本具體 例中描述的光電伏打裝置將獲得導致較高轉化效率的太陽 能光譜的可見光及UV光子。 在另一個具體例中,如第14圖所示,獲得UV的奈 米粒子層與多晶或單晶矽層合倂。在本具體例中經由此技 藝中習知的方法建造多晶或單晶矽光電伏打裝置,由η-型多晶性晶圓1 420開始並在該晶圓一側利用ρ-型摻雜劑 摻雜(或Ρ-型單晶晶圓可摻雜η-型摻雜劑),接著金屬 • 層1 4 1 0。在該多晶矽晶圓的金屬層1 4 1 0相反側上沈積透 明傳導層(例如:ΙΤΟ )或穿隧接面層1 43 0。在該TCO 或穿隧接面層1430上沈積在UV區(具有2 ev及更大的 能帶間隙)中有吸收的奈米粒子層1440,接著TCO層 1 45 0。多晶矽層的厚度及摻雜濃度可經調整使在太陽光譜 可見光區中的吸收最大化。與未倂入吸收UV的奈米粒子 的光電伏打裝置設計相比,在本具體例中描述的光電伏打 裝置能從太陽光譜獲得可見光及UV光子。 在另一個具體例中,如第15圖所示,獲得UV的奈 -26- 200810136 (24) 米粒子層與CdTe層合倂。在本具體例中經由此技藝中習 知的方法沈積絕緣層1 520及金屬層1 53 0而在玻璃、金屬 或塑膠基材1510上建造光電伏打裝置。在該CdTe層 1 540上沈積透明傳導層(例如:ITO)或穿隧接面層1550 (在此情形中複合層),接著在UV區(具有2 ev及更高 的能帶間隙)有吸收的奈米粒子層1 5 60,接著在該奈米 粒子層上沈積例如ITO等的透明傳導層TCO 1 570。定光 φ 電伏打裝置的取向使日光1 5 80落在TCO 1 570上。CdTe 層的厚度可經調整使在太陽能光譜的可見光區的吸收最大 化。與未倂入吸收UV的奈米粒子的光電伏打裝置設計相 比,本具體例中描述的光電伏打裝置將獲得導致較高轉化 效率的太陽能光譜的可見光及UV光子。 在又另一個具體例中,如第16圖所示,獲得UV的 奈米粒子層與CIGS層合倂。在本具體例中經由此技藝中 習知的方法沈積絕緣層1 620及金屬層1 63 0而在玻璃、金 φ 屬或塑膠基材1610上建造光電伏打裝置。在該CIGS層 1 640上沈積透明傳導層(例如:ITO)或穿隧接面層1650 (也稱爲複合層),接著在UV區(具有2 ev及更高的能 帶間隙)有吸收的奈米粒子層1 660,然後在該奈米粒子 層頂部上沈積例如ITO等的透明傳導層TCO 1 670。定光 電伏打裝置的取向使日光1 6 8 0落在TCO 1 670上。CIGS 層的厚度可經調整使在太陽能光譜的可見光區的吸收最大 化。與未併入吸收UV的奈米粒子的光電伏打裝置設計相 比,本具體例中描述的光電伏打裝置將獲得導致較高轉化 - 27- 200810136 (25) 效率的太陽能光譜的可見光及UV光子。 具有吸收UV及IR的層之光電伏打裝置的 又再一方面,本發明的具體例提供一 ,其包含:由顯示實質上在太陽光譜可見 之半導體材料構成的第一光活性層,及形 方由顯示實質上在太陽光譜UV區有輻射 Φ 材料構成的頂部光活性層。複合層配置在 之間,且配置以促進該第一與頂部層之間 該第一光活性層下方形成由顯示實質上在 有輻射吸收之奈米結構材料構成的底部光 一與底部電池之間配置第二複合層,且經 一與底部電池之間的電荷傳輸。 參照第1 7圖顯不獲得U V的奈米粒 獲得IR的奈米粒子層的底部層及配置在 φ 光活性層。在本具體例中,該第一光活性 晶矽層。在本具體例中經由此技藝中習知 層1 720及金屬層1 73 0而在玻璃、金屬] 上建造光電伏打裝置。在該金屬層1730 8 00至2,000nm (具有1.2 ev及更小的能 收的奈米粒子層1 7 4 0,接著透明傳導層( 或穿隧接面層(或複合層)1750。在這些 經由此技藝中習知的方法來形成包含η-型 型非晶矽1 7 7 0及ρ -型非晶矽1 7 8 0的標 實施例 種光電伏打裝置 光區有輻射吸收 成在該第一層上 吸收之奈米結構 該第一與頂部層 的電荷傳輸。在 太陽光譜IR區 活性層。在該第 配置以促成該第 子層的頂部層及 彼等之間的第一 層包含非晶或微 的方法沈積絕緣 获塑膠基材1710 上沈積在IR區 帶間隙)中有吸 舉例來說ΙΤΟ) 層之後接著,在 非晶矽1 760、i-準非晶或微晶矽 -28- 200810136 (26) 層的情形中,沈積第一光活性層。接著在該砂層頂部上沈 積透明傳導層TCO 1 790或穿隧接面層。在該TCO或穿隧 接面層(90 )上沈積在UV區(具有2 ev及更高的能帶間 隙)有吸收的奈米粒子層1 7 1 00,接著例如ITO等的透明 傳導117110。定光電伏打裝置的取向使日光17120落在 TCO 1790上。非晶矽層的厚度可經調整使在太陽能光譜 的可見光區的吸收最大化。與未倂入吸收UV及IR的奈 φ 米粒子的光電伏打裝置設計相比,本具體例中描述的光電 伏打裝置將獲得導致較高轉化效率的太陽能光譜的可見光 、UV及IR光子。 參照第18圖描述另一個具體例,其顯示獲得UV & IR的奈米粒子層與多晶或單晶矽層合倂。在本具體例中 ,經由此技藝中習知的方法建造多晶或單晶矽光電伏打裝 置,由η-型多晶性晶圓1 840開始並在該晶圓一側利用p-型摻雜劑摻雜(或P-型單晶晶圓可摻雜η-型摻雜劑), φ 接著TCO或穿隧接面層1 830。在該多晶矽晶圓的第一 TCO或穿隧金屬層1 8 3 0相反側上沈積透明傳導層(例如 :ΙΤΟ)或穿隧接面層1860(也稱爲複合層)。在該TCO 或穿隧接面層1 8 3 0上沈積在UV區(具有大於2 ev的能 帶間隙)中有吸收的奈米粒子層I 860,接著TCO層1870 。在該TCO或穿隧接面層1830上沈積在IR區(具有1·2 ev及更小的能帶間隙)中有吸收的奈米粒子層1 820,接 著金屬電極層1 8 1 0。多晶矽層的厚度及摻雜濃度可經調 整使在太陽光譜可見光區中的吸收最大化。與未倂入吸收 -29- 200810136 (27) UV及IR的奈米結構的光電伏打裝置設計相比,在本具體 例中描述的光電伏打裝置能從太陽光譜獲得可見光UV及 IR光子。 第19圖例示另一個具體例,其中21個獲得UV & IR 的奈米粒子層與CdTe層合倂。在本具體例中經由此技藝 中習知的方法沈積絕緣層1 920及金屬層1 93 0,接著在IR 區(具有小於1.2 ev的能帶間隙)中有吸收的奈米粒子層 φ 1940,接著透明傳導層TCO層1 950或穿隧接面層而在玻 璃、金屬或塑膠基材1910上建造光電伏打裝置。然後經 由此技藝中習知的方法在TCO或穿隧接面層(或複合層 )1 95 0上沈積CdTe層1 960。在該CdTe層I 960沈積透 明傳導層(例如:ITO )或穿隧接面層1 970,接著在UV 區(具有大於2 ev的能帶間隙)中有吸收的奈米粒子層 1 9 80,接著在該奈米粒子層頂部上沈積例如TCO的透明 傳導層TCO 1 990。定光電伏打裝置的取向使日光19100 φ 落在TCO 1990上。CdTe層的厚度可經調整使在太陽能光 譜的可見光區的吸收最大化。與未倂入吸收UV及IR的 奈米粒子的光電伏打裝置設計相比,本具體例中描述的光 電伏打裝置將獲得導致較高轉化效率的太陽能光譜的可見 光、UV及IR光子。 第20圖例示又另一個具體例,其中獲得UV & IR的 奈米粒子層與CIGS層合倂。在本具體例中經由沈積絕緣 層2020及金屬層2030,接者在IR區(具有小於1.2 ev 的能帶間隙)中有吸收的奈米粒子層2040,接著透明傳 -30- 200810136 (28) 導層TCO層或穿隧接面層(或複合層)2050而在玻璃、 金屬或塑膠基材2010上建造光電伏打裝置。然後經由此 技藝中習知的方法在TCO或穿隧接面層(或複合層) 2050上沈積CIGS層2060。在該CIGS層2060沈積透明 傳導層(例如:ITO)或穿隧接面層2070,接著在UV區 (具有大於2 ev的能帶間隙)中有吸收的奈米粒子層 20 8 0,接著在該奈米粒子層頂部上沈積例如TC〇的透明 φ 傳導層TCO 2090。定光電伏打裝置的取向使日光20100 落在TCO 2090上。CIGS層的厚度可經調整使在太陽能光 譜的可見光區的吸收最大化。與未倂入吸收UV及的 奈米粒子的光電伏打裝置設計相比,本具體例中描述的光 電伏打裝置將獲得導致較高轉化效率的太陽能光譜的可見 光、UV及IR光子。 在另一個具體例中,可使用化合物半導體材料作爲實 質上在太陽光譜可見光區吸收輻射之第一光活性層。第 φ 2 1圖例示獲得UV的奈米粒子層(例如:InP量子點)合 倂III-V族半導體層(例如:GaAs )的光電伏打裝置。在 本具體例中經由此技藝中習知的方法沈積絕緣層2 1 20及 金屬層2 1 3 0而在基材2 1 1 G上建造光電伏打裝置。經由此 技藝中習知的方法在這些層之後接著由P-型半導體2140 .及η-型半導體2150組成的III-V族半導體層。接著在該 III-V族半導體層頂部上沈積透明傳導層TCO 2160或穿隧 接面層TCO 2160或穿隧接面層。在該TCO或穿隧接面層 (也稱爲複合層)2160上沈積在UV區(具有大於2 ev -31 - 200810136 (29) 的能帶間隙)有吸收的奈米粒子層2 1 70,接著透明傳導 層TCO 2180。定光電伏打裝置的取向使日光2190落在 TCO 2 180上。與未倂入吸收UV的奈米粒子的光電伏打 裝置設計相比,本具體例中描述的光電伏打裝置將獲得導 致較高轉化效率的太陽能光譜的可見光及UV光子。 四接面光電伏打裝置的實施例 0 本發明有些具體例提供四接面光電伏打裝置。第22 圖例示合倂獲得IR的奈米粒子光電伏打裝置及結晶性( 單晶或多晶)光電伏打裝置以形成四接面光電伏打裝置。 在本具體例中經由此技藝中習知的方法建造結晶矽光電伏 打裝置,由n-型結晶性矽晶圓2270開始。結晶砂光電伏 打裝置經由在該矽晶圓的第一 TCO層2270相反側上沈積 透明傳導層(例如:IT0 )或穿隧接面層(第一複合層) 229 0而完成。含有吸收IR的奈米粒子的光電伏打裝置係 # 由基材(玻璃、金屬或塑膠)2210開始,經由使用此技 藝中習知的標準方法沈積介電層22 20接著金屬層2230建 造而成。在該金屬層2230上沈積在IR區(具有小於1 ev 的能帶間隙)中有吸收的奈米粒子層2240,接著TCO或 穿隧接面層(在此情形中第二複合層)2250。經由合倂該 結晶矽光電伏打裝置及吸收IR的奈米粒子光電伏打裝置 而建造第22圖所示的四接面光電伏打裝置。光學黏著層 22 6 0可視需要用於將此二電池接合在一起。個別電池的 相對效能可經調整使在太陽能光譜的可見光及IR區的吸 -32- 200810136 (30) 收最大化。與未倂入含有吸收IR的奈米結構的光電伏打 裝置設計相比,本具體例中描述的光電伏打裝置將獲得導 致較高轉化效率的太陽能光譜的可見光及IR光子。 第23圖例示另一個具體例,其中合倂獲得UV的奈 米粒子光電伏打裝置與結晶(單晶或多晶)矽光電伏打裝 置以形成四接面光電伏打裝置。在本具體例中經由此技藝 中習知的方法建造結晶矽光電伏打裝置,由η-型結晶性 % 矽晶圓2320開始且在該晶圓一側利用摻雜ρ-型摻雜劑( 或Ρ-型單晶晶圓可摻雜η-型摻雜劑)摻雜,接著金屬層 23 1 0。結晶矽光電伏打裝置經由在該矽晶圓的金屬層 23 10相反側上沈積透明傳導層(例如:ΙΤΟ )或穿隧接面 層(在此情形中第一複合層)2 3 3 0而完成。含有吸收UV 的奈米粒子的光電伏打裝置係由透明基材(玻璃、金屬或 塑膠)23 80開始,經由使用此技藝中習知的標準方法沈 積透明傳導TCO層2370建造而成。在該TCO層2370上 % 沈積在IR區(具有小於2 ev的能帶間隙)中有吸收的奈 米粒子層23 6 0,接著TCO或穿隧接面層(在此情形中第 二複合層)2350。經由合倂該結晶矽光電伏打裝置及吸收 IR的奈米粒子光電伏打裝置而建造第23圖所示的四接面 光電伏打裝置。光學黏著層2340可視需要用於將此二電 池接合在一起。個別電池的相對效能可經調整使在太陽能 光譜的可見光及uv區的吸收最大化。與未倂入含有吸收 UV的奈米結構的光電伏打裝置設計相比’本具體例中描 述的光電伏打裝置將獲得導致較高轉化效率的太陽能光譜 -33- 200810136 (31) 的可見光及UV光子。 第24圖描述又另一個具體例,其中合倂獲得IR的奈 米粒子光電伏打裝置及薄膜(a-Si、ιχ-Si、CdTe、CIGS、 ΙΠ-V )光電伏打裝置以形成四接面光電伏打裝置。在本 具體例中經由此技藝中眾所周知的方法建造薄膜光電伏打 裝置,由透明基材24100開始並沈積透明傳導層2490接 著活性薄膜層2480及透明導體或穿隧接面層(第一複合 φ 層)2470。含有吸收IR的奈米粒子的光電伏打裝置係由 基材(玻璃、金屬或塑膠)2410開始,經由使用此技藝 中習知的標準方法沈積介電層2420接著金屬層243 0建造 而成。在該金屬層243 0上沈積在IR區(具有小於1 ev 的能帶間隙)中有吸-收的奈米-粒子層2440,接著TCO或 穿隧接面層(在此情形中第二複合層)2450。經由合倂該 結晶矽光電伏打裝置及吸收IR的奈米粒子光電伏打裝置 而建造第 24圖所示的四接面串疊型電池。光學黏著層 # 2460可視需要用於將此二電池接合在一起。個別電池的 相對效能可經調整使在太陽能光譜的可見光及IR區的吸 收最大化。與未倂入含有吸收IR的奈米結構的光電伏打 裝置設計相比,本具體例中描述的光電伏打裝置將獲得導 致較高轉化效率的太陽能光譜的可見光及IR光子。 根據本發明具體例的四接面光電伏打裝置另一個具體 例示於第2 5圖中,其中合倂獲得UV的奈米粒子光電伏 打裝置與薄膜(a-Si、u-Si、CdTe、CIGS、III-V )光電伏 打裝置以形成四接面光電伏打裝置。在本具體例中經由此 -34- 200810136 (32) 技藝中習知的方法建造薄膜光電伏打裝置,由透明基材 25 1 00開始且沈積透明傳導層25 90,接著活性薄膜層 25 80及透明導體或穿隧接面層(例如,第一複合層) 2570。含有吸收UV的奈米粒子的光電伏打裝置係由基材 (玻璃、金屬或塑膠)25 1 0開始且經由使用此技藝中習 知的標準方法沈積介電層2520,接著金屬層25 3 0。在該 金屬層25 3 0上沈積在UV區(具有小於1 ev的能帶間隙 φ )中有吸收的奈米粒子層2540,接著TCO或穿隧接面層 (例如,第二複合層)2550。經由合倂該結晶矽光電伏打 裝置及吸收UV的奈米粒子光電伏打裝置而建造第25圖 所示的四接面光電伏打裝置。光學黏著層25 60可視需要 用於將此二電池接合在一起。個別電池的相對效能可經調 整使在太陽能光譜的可見光及UV區的吸收最大化。與未 倂入含有吸收UV的奈米結構的光電伏打裝置設計相比, 本具體例中描述的光電伏打裝置將獲得導致較高轉化效率 Φ 的太陽能光譜的可見光及UV光子。 具有經官能化的奈米粒子的光電伏打裝置的實施例 又再一方面中,本發明的具體例提供一種光電伏打裝 置,其包含:由顯示實質上在太陽光譜可見光區的輻射吸 收之半導體材料構成的第一光活性層,及一或更多由顯示 實質上在太陽光譜UV及/或可見光區的輻射吸收之奈米 結構材料構成的光活性層,其中該等奈米結構材料包含經 官能化的奈米粒子。第26圖例示根據本發明之一奈米複 -35- 200810136 (33) 合材料光電伏打裝置具體例。此光電伏打裝置係經由在經 塗佈例如ITO等透明導體2620的玻璃基材2610上塗佈含 有光敏性奈米粒子及例如稠五苯等高移動性聚合物的前驅 物的奈米複合材料薄層2 640,接著沈積陰極金屬層2 6 6 0 而形成。光敏性奈米粒子可由 IV、II-IV、II-VI、IV-VI 、III-V族材料製成。光敏性奈米粒子的例子包括,但不 限於 Si、Ge、CdSe、PbSe、ZnSe、CdTe、CdS 或 PbS。 ^ 奈米粒子可,舉例來說在約2 nm至1 0 nm的範圍內變化 以獲得能帶間隙範圍。這些奈米粒子可經由此技藝中習知 的方法製備。奈米粒子可經由此技藝中習知的方法予以官 能化。適當官能基的例子包括,但不限於:羧基(-COOH )、胺(·ΝΗ2)、膦酸根(-P04)、磺酸根(-HS03)及 胺乙基硫醇等等。分散在例如稠五苯等高移動性聚合物的 前驅物中之光敏性奈米粒子的奈米複合材料層2640可經 由旋塗法或其他眾所周知的溶液處理技術沈積在經塗佈 φ ITO的玻璃基材上。此層可爲一個單層或多個單層。在奈 米複合材料層2640中的前驅物係經由將該等膜加熱至適 當溫度以引發稠五苯前驅物的聚合。若使用UV可聚合的 前驅物,該聚合作用可經由使第26圖的膜的ITO側262 0 暴露於UV而達到。該光電伏打裝置的具體例可根據第3 2 圖例示的方法製造。在此裝置中當日光被奈米粒子吸收時 將產生電子電洞對,且所得的電子迅速被例如稠五苯等高 移動性聚合物傳輸至用於收集的陰極。從該等奈米粒子所 產生的電子電洞對快速移走電子將消除在奈米粒子爲底的 -36- 200810136 (34) 光電伏打裝置中常見到的電子-電洞再結合的可能性。 根據第26圖所示的具體例中,可在ITO 2620與奈米 複合材料層2640之間配置電洞注入/傳輸界面層或緩衝層 2630。或者,可在金屬層2660與奈米複合材料層264〇之 間配置電子注入/傳輸界面層,也稱爲複合層265〇。 第2 7圖描述奈米複合材料光電伏打裝置的另一個具 體例。此光電伏打裝置係經由在經塗佈例如IΤ Ο等透明導 馨 體2 7 2 〇的玻璃基材2 7 1 0上塗佈包含光敏性奈米粒子、例 如PVK或P3HT等高移動性聚合物及例如稠五苯等高移動 性聚合物2740的前驅物之奈米複合材料層2740,接著沈 積陰極金屬層2 7 6 0而製造。光敏性奈米粒子包含1〜、11-IV、II-VI、IV-VI、III-V族材料。光敏性奈米粒子的例 子包括,但不限於下列之任一或多者:Si、Ge、CdSe、 PbSe、ZnSe、CdTe、CdS或PbS。奈米粒子尺寸可加以變 化(舉例來說在約2 nm至1 0 nm的範圍)以獲得能帶間 • 隙範圍。這些奈米粒子可經由此技藝中習知的方法製備。 奈米粒子可經由此技藝中習知的方法予以官能化。官能基 包括,但不限於··羧基(-COOH )、胺(·ΝΗ2 )、膦酸根 (-Ρ04 )、磺酸根(-HS03 )及胺乙基硫醇等等。分散在 例如PVK或P3HT等高移動性聚合物及例如稠五苯等高移 動性聚合物的前驅物中之光敏性奈米粒子的奈米複合材料 層2740可經由旋塗法或其他眾所周知的溶液處理技術沈 積在經塗佈ITO的玻璃基材上。奈米複合材料層2740可 爲一個單層或多個單層。有些具體例中,該奈米複合材料 -37- (35) 200810136 層2740中的前驅物係經由將該等膜加熱至適當溫度以引 發稠五苯前驅物的聚合。若使用UV可聚合的前驅物,該 聚合作用可經由使該膜的ITO側2720暴露於UV而達到 。有些具體例中,該光電伏打裝置係根據第32圖例示的 方法製造。預期根據本具體例建造的光電伏打裝置具有高 效率。在此裝置中當日光被奈米粒子吸收時將產生電子電 洞對,且所得的電子迅速被例如稠五苯等高移動性聚合物 φ 傳輸至用於收集的陰極。從該等奈米粒子所產生的電子電 洞對快速移走電子將消除在奈米粒子爲底的光電伏打裝置 中常見到的電子-電洞再結合的可能性。 此外,有些具體例中電洞注入/傳輸界面層或緩衝層 27 30可用於ITO 2720與奈米複合材料層2740之間。在 替代性具體例中,可在金屬層2 7 6 0與奈米複合材料層 2740之間使用電子注入/傳輸界面層2750 ° φ 具有經官能化的奈米粒子及傳導性奈米粒子/奈米結構的 光電伏打裝置的實施例 有些具體例中,該奈米結構材料係由光敏性奈米粒子 及傳導性奈米粒子的混合物構成。該等光敏性及傳導性奈 米粒子之一或二者可經官能化。傳導性奈米粒子的例子係 由任何一或更多下列之物構成:單壁碳奈米管(SWCNT )、Ti〇2奈米管或ZnO奈米線。光敏性奈米粒子的例子 係由任何一或更多下列之物構成:CdSe、ZnSe、pbSe、
InP、Si、Ge、SiGe 或 ΠΙ-V 族材料。 -38- 200810136 (36) 第28圖例示一奈米複合材料光電伏打裝置的具體例 。此光電伏打裝置係經由在經塗佈例如1T0等透明導體 2820的玻璃基材2810上塗佈奈米複合材料薄層2840,該 薄層含有附接至分散在例如稠五本寺局移動性聚合物的目U 驅物中的傳導性奈米結構之光敏性奈米粒子,接著沈積陰 極金屬層2860而建造。光敏性奈米粒子可由IV、II-IV、 II-VI、IV-VI、III-V族材料製成。光敏性奈米粒子的例子 φ 包括,但不限於 Si、Ge、CdSe、PbSe、ZnSe、CdTe、 CdS、PbS。奈米粒子尺寸可加以變化(舉例來說:2 nm 至1 0 nm )以獲得能帶間隙範圍。這些奈米粒子可經由遵 照此技藝中習知的方法製備。奈米粒子可經由遵照此技藝 中眾所周知的方法予以官能化。官能基可包括羧基(-COOH ) 、胺(-NH2 ) '膦酸根(-P04 )、磺酸根(-HS03 )及胺 乙基硫醇等等。傳導性奈米結構可由碳奈米管(S WCNT ) 、Ti02奈米管或Zn〇奈米線製成。傳導性奈米結構可經 # 官能化以促成光敏性奈米粒子接附至傳導性奈米結構的表 面。光敏性奈米粒子的奈米複合材料層2 8 4 0係附接且分 散在例如稠五苯等高移動性聚合物的前驅物中。經由旋塗 法或其他眾所周知的溶液處理技術將此層2840沈積在經 塗佈ITO的玻璃基材上。此層可爲一個單層或多個單層。 在奈米複合材料層2840中的前驅物係經由將該等膜加熱 至適當溫度而聚合。若使用UV可聚合的前驅物,該聚合 作用可經由使該膜的ITO側2820暴露於UV而達到。第 3 2圖例示的方法可被進行以形成該光電伏打裝置。在此 -39- 200810136 (37) 裝置中當日光被奈米粒子吸收時將產生電子電洞對,且所 得的電子迅速被傳導性奈米結構及例如稠五苯等高移動性 聚合物傳輸至用於收集的陰極。從該等奈米粒子所產生的 電子-電洞對快速移走電子將消除在奈米粒子爲底的光電 伏打裝置中常見到的電子-電洞再結合的可能性。此外可 在ITO 2820與奈米複合材料層2840之間使用電洞注入/ 傳輸界面層或緩衝層2830。另一個具體例中’可在金屬 φ 層2860與奈米複合材料層2840之間使用電子注入/傳輸 界面層28 50。 第2 9圖中顯示奈米複合材料光電伏打裝置的又再另 一個具體例。此光電伏打裝置可經由在經塗佈例如ITO等 透明導體2920的玻璃基材291〇上塗佈奈米複合材料層 2940,該層含有附接至分散在例如PVK或P3HT等筒移動 性聚合物及例如稠五苯等高移動性聚合物2940的前驅物 中之傳導性奈米結構中的傳導性奈米結構之光敏性奈米粒 φ 子,接著沈積陰極金屬層2960而建造。光敏性奈米粒子 可包含IV、II-IV、II-VI、IV-VI、III-V族材料。光敏性 奈米粒子的例子包括,但不限於下列之一或多者:Si、Ge 、CdSe、PbSe、ZnSe、CdTe、CdS、PbS° 奈米粒子尺寸 可加以變化(舉例來說:2 至1 0 nm )以獲得能帶間隙 範圍。這些奈米粒子可經由此技藝中眾所周知的方法製備 。奈米粒子可經由此技藝中眾所周知的方法來官能化。官 能基可包括羧基(-COOH)、胺(-NH2)、膦酸根(-P〇4) 、磺酸根(-HS03 )及胺乙基硫醇等等。傳導性奈米結構 -40 - 200810136 (38) 可由碳奈米管(SWCNT ) 、Ti〇2奈米管或ZnO奈米線製 成。 傳導性奈米結構可經官能化以促成光敏性奈米粒子接 附至傳導性奈米結構的表面。有些具體例中,光敏性奈米 粒子的奈米複合材料層2940係附接且分散在例如PVK或 P 3 HT等高移動性聚合物的前驅物中。例如稠五苯等高移 動性聚合物的前驅物可經由旋塗法或其他眾所周知的溶液 φ 處理技術沈積在經塗佈ITO的玻璃基材上。此層可爲一個 單層或多個單層。在奈米複合材料層2940中的前驅物係 經由將該等膜加熱至適當溫度以引發稠五苯前驅物的聚合 作用而聚合。若使用uv可聚合的前驅物,該聚合作用可 經由使該膜的ITO側2920暴露於UV而達到。此光電伏 打裝置可經由使用第3 2圖所示的加工流程而製造。在此 裝置中當日光被奈米粒子吸收時將產生電子電洞對’且所 得的電子迅速被傳導性奈米結構及稠五苯的高移動性聚合 φ 物傳輸至用於收集的陰極。從該等奈米粒子所產生的電 子-電洞對快速移走電子將消除在奈米粒子爲底的光電伏 打裝置中常見到的電子-電洞再結合的可能性。 另一個具體例中,電洞注入/傳輸界面層或緩衝層 2930可用於ITO 2920與奈米複合材料層2940之間。或 者,可在金屬層2960與奈米複合材料層2940之間使用電 子注入/傳輸界面層2950。 第3 0圖中顯示奈米複合材料光電伏打裝置的又再另 一個具體例。此光電伏打裝置可經由在經塗佈例如IT0等 -41 - 200810136 (39) 透明導體3 020的玻璃基材3010上塗佈奈米複合材料層 3 040,該層含有分散在例如稠五苯等高移動性聚合物的前 驅物中的光敏性奈米粒子及傳導性奈米結構’接著沈積陰 極金屬層3060而建造。光敏性奈米粒子可由IV、II-IV、 II-VL、IV-VI、III-V族材料製成。光敏性奈米粒子的例子 包括 Si、Ge、CdSe、PbSe、ZnSe、CdTe、CdS、PbS。奈 米粒子尺寸可加以變化(舉例來說:2 nm至1 〇 nm )以獲 φ 得能帶間隙範圍。這些奈米粒子可經由此技藝中眾所周知 的方法製備。奈米粒子可經由此技藝中眾所周知的方法來 官能化。官能基可包括羧基(-COOH)、胺(-NH2)、膦 酸根(-P 〇 4 )、磺酸根(· H S Ο 3 )及胺乙基硫醇等等。傳 導性奈米結構可由碳奈米管(SWCNT ) 、Ti02奈米管或
ZnO奈米線製成。該傳導性奈米結構可經官能化以促成其 分散在高移動性聚合物的前驅物中。分散在例如稠五苯等 高移動性聚合物的前驅物中之光敏性奈米粒子及傳導性奈 φ 米結構的奈米複合材料層3 040可經由旋塗法或其他眾所 周知的溶液處理技術沈積在經塗佈ITO的玻璃基材上。此 層可爲一個單層或多個單層。在奈米複合材料層3040中 的前驅物係經由將該等膜加熱至適當溫度以引發前驅物的 聚合作用而聚合。若使用UV可聚合的前驅物,該聚合作 用可經由使該膜的ITO側3020暴露於UV而達到。預期 根據本具體例建造的光電伏打裝置具有高效率。在此裝置 中當日光被奈米粒子吸收時將產生電子電洞對,且所得的 電子迅速被傳導性奈米結構及例如稠五苯的高移動性聚合 -42- 200810136 (40) 物傳輸至用於收集的陰極。從該等奈米粒子所產生的電 子·電洞對快速移走電子將消除在奈米粒子爲底的光電伏 打裝置中常見到的電子-電洞再結合的可能性。有些具體 例中’電洞注入/傳輸界面層或緩衝層3 03 0可用於ITO 3 020與奈米複合材料層3〇4〇之間。或者,可在金屬層 3 060與奈米複合材料層3 040之間使用電子注入/傳輸界面 層 3 0 5 0 〇 φ 第31圖描述奈米複合材料光電伏打裝置的又另一個 具體例。此光電伏打裝置可經由在經塗佈例如ITO等透朗 導體3 1 2 0的玻璃基材3 1 1 0上塗佈奈米複合材料層3 1 4 0 ,該層含有分散在例如PVK或P 3 HT等高移動性聚合物及 例如稠五苯等高移動性聚合物3 1 4 0的前驅物中的光敏性 奈米粒子及傳導性奈米結構,接著沈積陰極金屬層3 1 60 而建造。光敏性奈米粒子的例子可由IV、II-IV、II-VI、 IV-VI、ιπ-ν族材料製成。光敏性奈米粒子的例子包括Si • 、Ge、CdSe、PbSe、ZnSe、CdTe、CdS、PbS ° 奈米粒子 尺寸可加以變化(舉例來說:2 nmS 10 nm)以獲得能帶 間隙範圍。這些奈米粒子可經由此技藝中眾所周知的方法 製備。奈米粒子可經由此技藝中眾所周知的方法來官能化 。官能基可包括羧基(_C00H )、胺(-NHb )、膦酸根 (-PCU )、磺酸根(-HSO3 )及胺乙基硫醇等等。傳導性 奈米結構可由碳奈米管(SWCNT) 、Ti〇2奈米管或ΖιιΟ 奈米線製成。傳導性奈米結構可經官能化以促成其分散在 汽移動性聚合物的前驅物中。分散在例如p v κ或p 3 Η T等 -43 - 200810136 (41) 高移動性聚合物及例如稠五苯等高移動性聚合物的前驅物 中之光敏性奈米粒子及傳導性奈米結構的奈米複合材料層 3140可經由旋塗法或其他眾所周知的溶液處理技術沈積 在經塗佈ITO的玻璃基材上。此層可爲一個單層或多個單 層。在奈米複合材料層3 1 4〇中的前驅物係經由將該等膜 加熱至適當溫度以引發稠五苯前驅物的聚合作用而聚合。 若使用UV可聚合的前驅物,該聚合作用可經由使該膜的 φ ITO側3 120暴露於UV而達到。第21圖所示的光電伏打 裝置可經由使用第3 2圖所示的方法步驟製成。預期根據 本具體例建造的光電伏打裝置具有高效率。在此裝置中當 曰光被奈米粒子吸收時將產生電子電洞對,且所得的電子 迅速被傳導性奈米結構及稠五苯的高移動性聚合物傳輸至 用於收集的陰極。從該等奈米粒子所產生的電子-電洞對 快速移走電子將消除在奈米粒子爲底的光電伏打裝置中常 見到的電子-電洞再結合的可能性。 φ 在第3 1圖所示的具體例版本中,電洞注入/傳輸界面 層或緩衝層3 130可用於ITO 3 12〇與奈米複合材料層 3 140之間。或者,可在金屬層3 160與奈米複合材料層 3140之間使用電子注入/傳輸界面層3150。 上述具體例爲應用本發明的一些實施例。任一熟習此 技藝者將明瞭例如氧化鋅、氧化錫、氧化銦錫、氧化銦鋅 等的其他透明傳導材料可用於上述具體例中。任一熟習此 技藝者將明瞭該光敏性奈米粒子可具有不同形狀-點、棒 、二足、多足、線等等。任一熟習此技藝者將明瞭其他傳 -44- 200810136 (42) 導性奈米管材料可用來代替該等具體例所述的碳奈米管、 Τι02奈米管及Zn〇奈米管。任一熟習此技藝者將明瞭其 他熱可固化或輻射可固化的前驅物可用來代替稠五苯前驅 物。任一熟習此技藝者將明瞭其他傳導性聚合物可用來代 替PVK、P3HT及PED0T。任一熟習此技藝者將明瞭其他 傳導性聚合物可用來代替該等具體例所述的P V κ、P 3 Η T 及 PEDOT 〇 φ 第3 2圖例示可用於製備根據本發明一些具體例的光 電伏打裝置之方法的一個具體例。明確地說,在步驟 3210時利用ΙΤΟ塗佈基材。在步驟3220時緩衝層可視需 要地沈積在經塗佈ΙΤΟ的基材上。在步驟3240時該裝置 接著進行溶液塗佈。視需要地,該溶液可含有光敏性奈米 粒子、聚合物前驅物及聚合物,步驟3 2 3 0。緩衝層可視 需要地在溶液塗佈之後沈積,步驟3 2 5 0。接下來,在步 驟3 2 6 0時沈積金屬,最後在步驟3 2 7 0時聚合該前驅物。 φ 聚合可經由熱或UV暴露的方式進行。 僅爲達例示及說明的目的而呈現前述指定具體例及本 發明最佳模式的描述。彼等並非試圖徹底揭示或將本發明 限於所揭示的精確形式。本發明的具體特徵顯示於一些圖 形中而其他地方沒有,僅爲求方便起見,且任何特徵都可 與依據本發明的其他特徵合倂。製程所述的步驟可加以重 排或合倂,且可包括其他步驟。具體例係經選擇及描述以 便最適地說明本發明的原理及其實際應用,藉以使其他熟 習此技藝者能最適地利用本發明且具有不同修飾的不同具 -45- 200810136 (43) 進一k 此等 在此 本發 考符
InP 發明 等的 的奈 獲得 槪要 體例適於特定的預期用途。根據此揭示內容本發明的 步的變化對熟習此技藝者而言將顯而易見,且試圖將 變化歸在後附申請專利範圍及其等效例的範圍以內。 以引用方式將上述引用的刊物的全文倂入本文中。 【圖式簡單說明】 經由考量下列的詳細描述,關聯隨附的圖形將使 φ 明的前述及其他方面顯而易見,其中在全文中類似參 號表示類似的零件,且其中: 第1圖顯示非晶矽的習知吸收光譜; 第2圖例示微晶矽的習知吸收光譜; 第3圖顯示傳統的非晶矽太陽能電池設計; 第4圖爲內核-外殼量子點(例子:PbSe、PbS及 ); 第5圖例示不同尺寸的量子點(QD)在根據本 φ 的不同色彩下吸收且放射; 第6圖例示利用例如氧化三正辛基磷(TOP Ο ) 溶劑封端的奈米粒子; 第7圖顯示根據本發明的具體例製備的經官能化 米粒子; 第8圖爲顯示具有合併非晶或微晶矽層的吸收或 IR的奈米粒子層之本發明一光電伏打裝置具體例的 圖; 第9圖爲例示本發明之一複合層具體例的槪要圖 -46- •200810136 (44) 第1 0圖例示顯示具有合倂多晶或單晶矽層的吸收或 獲得IR的奈米粒子層之本發明另一光電伏打裝置具體例 的槪要圖; 第11圖顯示具有合倂根據本發明具體例的CdTe層 的- IR獲-得奈米粒子層之本發明的光電伏打|置; 第12圖描述具有合倂根據本發明具體例的CIGS層 的IR獲得奈米粒子層之本發明的光電伏打裝置; 第1 3圖顯示具有合倂非晶或微晶矽層之吸收或獲得 UV的奈米粒子層之本發明一光電伏打裝置的槪要圖; 第1 4圖爲顯示具有合倂多晶矽或單晶矽層之獲得UV 的奈米粒子層之本發明一光電伏打裝置的槪要圖; 第1 5圖描述顯示具有合倂CdTe層之獲得UV的奈米 粒子層之本發明一光電伏打裝置的槪要圖; 第16圖例示顯示具有合倂CIGS層之獲得UV的奈米 粒子層之本發明一光電伏打裝置的槪要圖; 第1 7圖顯示具有合倂根據本發明具體例的非晶或微 晶矽層之吸收或獲得UV & IR的奈米粒子層之光電伏打 裝置; 第1 8圖例示具有合倂根據本發明具體例的多晶或單 晶矽層之吸收或獲得UV & ir的奈米粒子層之光電伏打 裝置; 第19圖顯示合倂根據本發明具體例的cdTe層之獲 得UV & IR的奈米粒子層; 第20圖顯示合倂根據本發明具體例的ciGS層之獲 -47- •200810136 (45) 得UV & IR的奈米粒子層; 第21圖例示具有合倂ΙΠ-ν族半導體層之獲得UV的 奈米粒子層之光電伏打裝置另一個具體例; 第2 2圖例不合倂根據本發明具體例的獲得I r的奈米 粒子之四接面結晶砂太陽能~電池; 第2 3圖顯示合倂根據本發明具體例的獲得UV的奈 米粒子之四接面結晶矽太陽能電池; 0 第2 4圖顯示合倂根據本發明具體例的獲得IR的奈米 粒子之四接面薄膜太陽能電池; 弟2 5圖描述合併根據本發明具體例的獲得U V的奈 米粒子之四接面薄膜太陽能電池; 第2 6圖顯示具有分散在根據本發明具體例的聚合物 前驅物中的光敏性奈米粒子之獲得光的層之奈米複合材料 光電伏打裝置的槪要圖; 第2 7圖顯示具有分散在根據本發明具體例的聚合物 φ 與聚合物前驅物混合物中的光敏性奈米粒子之獲得光的層 之奈米複合材料光電伏打裝置的槪要圖; 第28圖描述具有分散在根據本發明具體例的聚合物 前驅物中之經光敏性奈米粒子敏化的碳奈米管(S WCNT )之獲得光的層之奈米複合材料光電伏打裝置的槪要圖; 第29圖例示具有分散在根據本發明具體例的聚合物 與聚合物前驅物混合物中之經光敏性奈米粒子敏化的碳奈 米管(SWCNT )之獲得光的層之奈米複合材料光電伏打 裝置; -48 - 200810136 (46) 第3 0圖顯示具有分散在根據本發明具體例的聚合物 與聚合物前驅物混合物中之光敏性奈米粒子及例如 SWCNT等傳導性奈米結構之獲得光的層之奈米複合材料 光電伏打裝置; 第3 1圖顯示具有分散在根-據本發明具體例的-聚合物 與聚合物前驅物混合物中之光敏性奈米粒子及例如 SWCNT等傳導性奈米結構之獲得光的層之奈米複合材料 光電伏打裝置;以及 第3 2圖爲顯示用於製備具有含根據本發明具體例的 可聚合前驅物之獲得光的層之光電伏打裝置加工流程圖。 【主要元件符號說明】 1 0 ··核心 20 :·外殼 3 0 :奈米粒子 4 0 :官能基 8 0 0 :光電伏打裝置 810 :基材 8 2 0 :絕緣層 83 0 :金屬層 8 4 0 :奈米結構材料層 8 5 〇 :穿隧接面層 850A :金屬層 《50B :摻雜層 -49- 200810136 (47)
8 5 5 :第一光活性層 8 6 0: π -型非晶石夕 870 : i-型非晶矽 8 8 0 : p -型非晶矽 8 90 :透明傳導層 1 〇1 〇 :金屬層 1020:奈米粒子層 1 030 :穿隧接面層 1 040 : η-型多晶性晶圓 1 0 5 0 :傳導柵極 1 1 1 0 :基材 1 1 2 0 :絕緣層 1 1 30 :金屬層 1 1 4 0 :奈米粒子層 1 1 5 0 :穿隧接面層 1160: CdTe 層 1170 :透明傳導層 1180 :日光 1 2 1 0 :基材 1 2 2 0 :絕緣層 1 23 0 :金屬層 1240 :奈米粒子層 1 2 5 0 :穿隧接面層 1260 : CIGS 層 200810136 (48)
1270 :透明傳導層 1280 :日光 1 3 1 0 :基材 1 3 2 0 :絕緣層 1 3 3 〇 :金屬層 1 3 40 : η-型非晶矽 1 3 5 0 : i-型非晶矽 1 3 60 : p-型非晶矽 1 3 7 0 :穿隧接面層 1 3 8 0 :奈米粒子層 1 3 9 0 :透明傳導層 1 4 1 0 :金屬層 1 420 : η-型多晶性晶圓 1 43 0 :穿隧接面層 1 440 :奈米粒子層 1 45 0 : T C Ο 層 1 5 1 0 :基材 1 5 2 0 :絕緣層 1 5 3 0 :金屬層 1540 : CdTe 層 1 5 5 0 :穿隧接面層 1560:奈米粒子層 1 570 :透明傳導層 1 5 8 0 :曰光 -51 200810136 (49)
1 6 1 0 :基材 1 6 2 0 :絕緣層 1 63 0 :金屬層 1640 : CIGS 層 1 650 :穿隧接面層 1 6 6 0 :奈米粒子層 1 670 :透明傳導層 1 6 8 0 :日光 1 7 1 0 :基材 1 7 2 0 :絕緣層 1 73 0 :金屬層 1 74 0 :奈米粒子層 1 75 0 :穿隧接面層 1 760 : η-型非晶矽 1 770 : i-型非晶矽 1780: p-型非晶石夕 1 7 9 0 :透明傳導層 1810 :金屬電極層 1 820 :奈米粒子層 1 8 3 0 :穿隧接面層 1 8 4 0 · η -型多晶性晶圓 1 8 6 0 :穿隧接面層 1 8 7 0 :透明傳導層 1 9 1 0 :基材 -52- 200810136 (50) 1 920 : 絕緣層 1 93 0 : 金屬層 1 940 : 奈米粒子層 1 95 0: 穿隧接面層 1 960 : CdTe 層 1 970 : 穿隧接面層 1 98 0 : 奈米粒子層 • 1 990 : 透明傳導層 2210: 基材 2 22 0 : 介電層 223 0 : 金屬層 2 24 0 : 奈米粒子層 225 0 : 穿隧接面層 2260 : 光學黏著層 2 27 0 : η-型結晶性矽晶圓 • 2290 : 穿隧接面層 2310 : 金屬層 2320 : η-型結晶性矽晶圓 23 3 0 : 穿隧接面層 2340 : :光學黏著層 23 5 0 : :穿隧接面層 2360 : :奈米粒子層 237 0 : :透明傳導層 23 8 0 : :透明基材 -53- 200810136 (51) 2410 :基材 2420 :介電層 2430 :金屬層 2440 :奈米粒子層 245Ό :穿隧養面層 2460 :光學黏著層 2470 :穿隧接面層 φ 2480 :活性薄膜層 2490 :透明傳導層 2510:基材 2 5 2 0 :介電層 25 3 0 :金屬層 2540 :奈米粒子層 2 5 5 0 :穿隧接面層 2 5 6 0 :光學黏著層 φ 2570:穿隧接面層 25 8 0 :活性薄膜層 25 9 0 :透明傳導層 2 610 :玻璃基材 2620 :透明導體 2 6 3 0 :緩衝層 2 6 4 0 :奈米複合材料薄層 2650 :複合層 2660:陰極金屬層 -54 200810136 (52) 2 7 1 0 :玻璃基材 2720 :透明導體 273 0 :緩衝層 2 7 4 0 :奈米複合材料層 2750 :電子注入/傳輸界面層 2760 :陰極金屬層 2 8 1 0 :玻璃基材
2820 :透明導體 2 8 3 0 :緩衝層 2840 :奈米複合材料薄層 28 5 0:電子注入/傳輸界面層 2860:陰極金屬層 2910 :玻璃基材 2920 :透明導體 293 0 :緩衝層 2940 :奈米複合材料層 295 0 :電子注入/傳輸界面層 2 9 6 0 :陰極金屬層 3010 :玻璃基材 3 020 :透明導體 3 0 3 0 :緩衝層 3 040 :奈米複合材料層 3 05 0 :電子注入/傳輸界面層 3 0 60 :陰極金屬層 -55- 200810136 (53) 3 1 1 0 :玻璃基材 3120 :透明導體 3 1 3 0 :緩衝層 3 140 :奈米複合材料層 3 1 5Ό :電子注入/傳輸界面層 3160:陰極金屬層 8 1 0 0 :日光 φ 17100 :奈米粒子層 1 7 1 1 0 :透明傳導層 17120 :日光 19100 :日光 24 1 00 :透明基材 2 5 1 0 0 :透明基材
-56-

Claims (1)

  1. 200810136 (1) 十、申請專利範圍 1·一種光電伏打裝置,其包含: 由顯示實質上在太陽光譜可見光區的輻射吸收之半導 體材料構成的第一光活性層; 由顯示實質上在太陽光譜1及區的輻射吸收之奈米結 構材料構成的第二光活性層;及 配置在該第一與第二層之間,且配置以促進該第一與 Φ 第二層之間的電荷傳輸的複合層。 2 .如申請專利範圍第1項之光電伏打裝置,其中該奈 米結構材料係包含電洞傳導或電子傳導聚合物及互補奈米 粒子的奈米複合材料。 3 ·如申請專利範圍第2項之光電伏打裝置,其中該複 合層係由傳導與該傳導聚合物的電荷相反的電荷之材料構 成的摻雜層。 4 .如申請專利範圍第2項之光電伏打裝置,其中該複 φ 合層係由傳導與該奈米粒子的電荷相反的電荷之材料構成 的摻雜層。 5 .如申請專利範圍第2項之光電伏打裝置,其中該複 合層進一步包含親合慘雜層的金屬層。 6 ·如申請專利範圍第2項之光電伏打裝置,其中該複 合層進一步包含耦合摻雜層的絕緣層。 7 ·如申請專利範圍第1項之光電伏打裝置,其中該奈 米結構材料係由任何一或更多下列之物構成:半導性點、 棒或多足。 -57- 200810136 (2) 8 ·如申請專利範圍第2項之光電伏打裝置,其中該奈 米複合材料係由任何一或更多配置在聚合物中的奈米粒子 構成。 9·如申請專利範圍第7項之光電伏打裝置,其中該一 或更多奈米粒子係由任何一或更多下列之物構成:Pb S e、 PbS、CdHgTe、Si 或 SiGe。 10.如申儒專利範圍第8項之光電伏打裝置,其中該 φ 一或更多奈米粒子係由任何一或更多下列之物構成:Pb S e 、PbS、CdHgTe、Si 或 SiGe。 1 1 ·如申請專利範圍第8項之光電伏打裝置,其中該 聚合物係由任何一或更多下列之物構成:P3HT、稠五苯 或 MEH-PPV。 1 2 .如申請專利範圍第1項之光電伏打裝置,其中該 奈米結構材料係由光敏性奈米粒子及傳導性奈米粒子的混 合物構成。 0 1 3 .如申請專利範圍第1 2項之光電伏打裝置,其中該 光敏性及傳導性奈米粒子中之一或二者係被官能化。 1 4 .如申請專利範圍第1 2項之光電伏打裝置’其中該 傳導性奈米粒子係由任何一或更多下列之物構成:單壁碳 奈米管(SWCNT)、Ti02奈米管或Zn0奈米線。 丨5 .如申請專利範圍第1 2項之光電伏打裝置’其中該 光敏性奈米粒子係由任何一或更多下列之物構成:CdSe、 ZnSe、PbSe、InP、Si、Ge、SiGe 或 III-V 族材料。 i 6 •如申請專利範圍第1項之光電伏打裝置’其中該 -58- 200810136 (3) 第二層包含一或更多配置在電洞傳導聚合物的無機奈米粒 子,且該複合層進一步包含: N +摻雜層;及 耦合至該N +摻雜層的金屬層。 17·如申請擎利範-圍第1項之光電伏打裝置,其中該 第一光活性層係由下列任一者構成:非晶矽、單晶矽、多 晶矽、微晶矽、奈米結晶矽、CdTe、二硒化銅銦鎵( φ CIGS )或III-V族半導體材料。 1 8 ·如申請專利範圍第1項之光電伏打裝置,其中該 第一光活性層係由電洞傳導或電子傳導之有機材料構成。 1 9.如申請專利範圍第1項之光電伏打裝置,其中該 第一光活性層係由任何一或更多下列之物構成:P3HT、 P30T、MEH-PPV、PCBM、CuPe、PCTBI 或 C60。 20.如申請專利範圍第1項之光電伏打裝置,其中該 第一光活性層包含P-I-N半導體或P-N半導體。 φ 2 1 .如申請專利範圍第1項之光電伏打裝置,其中該 第一光活性層係由多層構成’各層係配置以吸收該可見光 譜的特定範圍。 2 2 .如申請專利範圍第2 1項之光電伏打裝置’其進一 步包含:一或更多配置在一或更多多層之間的複合層,該 複合層係配置以促進橫越該等多層的電荷傳輸。 2 3 .如申請專利範圔第1項之光電伏打裝置’其中該 第二光活性層係由多層構成,各層係配置以吸收該1R光 譜的特定範圍。 -59- 200810136 (4) 24·如申請專利範圍第23項之光電伏打裝置, 步包含:一或更多配置在一或更多多層之間的複合 複合層係配置以促進橫越該等多層的電荷傳輸。 25.如申請專利範圍第1項之光電伏打裝置, 步包-含:配置在該IT一層上的頂部'光活性層,該頂 性層包含顯示實質上在該太陽光譜UV區的輻射吸 枓。 φ 26.如申請專利範圍第25項之光電伏打裝置, 步包含配置在該第一及頂部層之間,且配置以促進 與第一層之間的電荷傳輸之第二複合層。 27.如申請專利範圍第25項之光電伏打裝置, 頂部光活性層係由一或更多奈米粒子構成。 2 8 .如申請專利範圍第25項之光電伏打裝置, 頂部光活性層係由一或更多分散在聚合物基質中的 子構成。 φ 29.如申請專利範圍第28項之光電伏打裝置, 一或更多奈米粒子係由任何一或更多下列之物構成 或 CdZnTe ° 30.—種光電伏打裝置,其包含: 第一光活性層; 配置在該第一層上的頂部光活性層,該頂部光 係由顯示比該第一層更大的能帶間隙的材料構成; 配置在該第一層下的底部光活性層’該底部光 係由顯示比該第一層更小的能帶間隙的材料_成。 其進一 層,該 其進一 部光活 收之材 其進一 該頂部 其中該 其中該 奈米粒 其中該 :ZnS e 活性層 及 活性層 -60- 200810136 (5) 3 1·如申請專利範圍第30項之光電伏打裝置,其中該 頂部光活性層顯示2電子伏特及更高的能帶間隙。 32·如申請專利範圍第3 0項之光電伏打裝置,其中該 底部光活性層顯示1.2電子伏特及更低的能帶間隙。 3 3.—種光電伏打裝置,其包含: 由顯示實質上在太陽光譜可見光區的輻射吸收之半導 體材料構成的第一光活性層; φ 由顯示實質上在太陽光譜UV區的輻射吸收之一或更 多奈米粒子構成的頂部光活性層;及 配置在該第一與頂部層之間,且配置以促進該第一與 頂部層之間的電荷傳輸的複合層。 3 4 .如申請專利範圍第3 3項之光電伏打裝置,其中該 複合層係由Ρ +摻雜層構成。 3 5 .如申請專利範圍第3 3項之光電伏打裝置,其中該 第一光活性層包含Ρ-Ι-Ν半導體。 φ 3 6 .如申請專利範圍第3 3項之光電伏打裝置,其中該 一或更多奈米粒子係分散在聚合物基質中。 37.—種光電伏打裝置,其包含: 由顯示實質上在太陽光譜可見光區的輻射吸收之奈# 結構材料構成的第一光活性層; 由顯示實質上在太陽光譜UV區的輻射吸收之奈米結 構材料構成的頂部光活性層, 配置在該第一與頂部層之間’且配置以促進該第一與 頂部層之間的電荷2傳輸的複合層; -61 - 200810136 (6) 由顯示實質上在太陽光譜IR區的輻射吸收之奈米結 構材料構成的底部光活性層;及 配置在該第一與底部層之間’且配置以促進該第一與 底部層之間的電荷傳輸的第二複合層。
    -62-
TW096105278A 2006-02-13 2007-02-13 Photovoltaic device with nanostructured layers TW200810136A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US77254806P 2006-02-13 2006-02-13
US79682006P 2006-05-02 2006-05-02

Publications (1)

Publication Number Publication Date
TW200810136A true TW200810136A (en) 2008-02-16

Family

ID=38372164

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096105278A TW200810136A (en) 2006-02-13 2007-02-13 Photovoltaic device with nanostructured layers

Country Status (8)

Country Link
US (1) US20080230120A1 (zh)
EP (1) EP1996342A4 (zh)
JP (1) JP2009527108A (zh)
KR (1) KR20080095288A (zh)
AU (1) AU2007214967A1 (zh)
CA (1) CA2641490A1 (zh)
TW (1) TW200810136A (zh)
WO (1) WO2007095386A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658889B2 (en) 2009-05-18 2014-02-25 Industrial Technology Research Institute Quantum dot thin film solar cell
US8715536B2 (en) 2009-09-14 2014-05-06 Industrial Technology Research Institute Conductive material formed using light or thermal energy, method for forming the same and nano-scale composition
TWI487128B (zh) * 2010-08-20 2015-06-01 Iner Aec Executive Yuan 一種新穎的堆疊式奈米晶矽薄膜太陽電池結構

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718437B2 (en) 2006-03-07 2014-05-06 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US8849087B2 (en) 2006-03-07 2014-09-30 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US9874674B2 (en) 2006-03-07 2018-01-23 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US8558105B2 (en) * 2006-05-01 2013-10-15 Wake Forest University Organic optoelectronic devices and applications thereof
AU2007248170B2 (en) 2006-05-01 2012-08-16 Arrowhead Center, Inc. Fiber photovoltaic devices and applications thereof
US20080149178A1 (en) * 2006-06-27 2008-06-26 Marisol Reyes-Reyes Composite organic materials and applications thereof
EP2050151B1 (en) 2006-08-07 2011-10-12 Wake Forest University Method of producing composite organic materials
CN101558348B (zh) 2006-09-29 2013-03-06 佛罗里达大学研究基金公司 用于红外检测和显示的方法和设备
WO2008073373A1 (en) * 2006-12-11 2008-06-19 Evident Technologies Nanostructured layers, method of making nanostructured layers, and application thereof
WO2009002551A1 (en) * 2007-06-26 2008-12-31 Qd Vision, Inc. Photovoltaic devices including quantum dot down-conversion materials useful for solar cells and materials including quantum dots
JP2009260209A (ja) * 2007-09-20 2009-11-05 Kyocera Corp 積層型光電変換装置及び光電変換モジュール
WO2009048983A2 (en) * 2007-10-09 2009-04-16 Nanomas Technologies, Inc. Conductive nanoparticle inks and pastes and applications using the same
WO2009049048A2 (en) 2007-10-12 2009-04-16 Ultradots, Inc. Solar modules with enhanced efficiencies via use of spectral concentrators
CA2704554A1 (en) * 2007-11-01 2009-05-07 Wake Forest University Lateral organic optoelectronic devices and applications thereof
US20100326506A1 (en) * 2007-12-13 2010-12-30 Merck Patent Gmbh Photovoltaic Cells Comprising Group IV-VI Semiconductor Core-Shell Nanocrystals
US20110048534A1 (en) * 2008-01-24 2011-03-03 University Of Toledo Nanodipole Photovoltaic Devices, Methods of Making and Methods of Use Thereof
US8003070B2 (en) * 2008-03-13 2011-08-23 Battelle Energy Alliance, Llc Methods for forming particles from single source precursors
US9371226B2 (en) 2011-02-02 2016-06-21 Battelle Energy Alliance, Llc Methods for forming particles
US8324414B2 (en) 2009-12-23 2012-12-04 Battelle Energy Alliance, Llc Methods of forming single source precursors, methods of forming polymeric single source precursors, and single source precursors and intermediate products formed by such methods
US8951446B2 (en) 2008-03-13 2015-02-10 Battelle Energy Alliance, Llc Hybrid particles and associated methods
WO2009151515A1 (en) 2008-05-06 2009-12-17 Qd Vision, Inc. Solid state lighting devices including quantum confined semiconductor nanoparticles
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
WO2009137053A1 (en) 2008-05-06 2009-11-12 Qd Vision, Inc. Optical components, systems including an optical component, and devices
US8093488B2 (en) 2008-08-28 2012-01-10 Seagate Technology Llc Hybrid photovoltaic cell using amorphous silicon germanium absorbers with wide bandgap dopant layers and an up-converter
TWI369789B (en) * 2008-10-24 2012-08-01 Iner Aec Executive Yuan Coating for solar cell and method for making the same
DE102009007908A1 (de) * 2009-02-06 2010-08-12 Zylum Beteiligungsgesellschaft Mbh & Co. Patente Ii Kg Verfahren zur Herstellung eines Dünnschicht-Photovoltaik-Systems und Dünnschicht-Photovoltaik-System
US10297707B1 (en) * 2009-02-23 2019-05-21 Tatiana Globus Thin film photovoltaic cell system and method of manufacture
US20100276071A1 (en) * 2009-04-29 2010-11-04 Solarmer Energy, Inc. Tandem solar cell
US9054262B2 (en) 2009-09-29 2015-06-09 Research Triangle Institute Integrated optical upconversion devices and related methods
US9349970B2 (en) 2009-09-29 2016-05-24 Research Triangle Institute Quantum dot-fullerene junction based photodetectors
DK2483926T3 (en) 2009-09-29 2019-03-25 Res Triangle Inst Optoelectronic devices with quantum dot-fullerene transition
KR101103770B1 (ko) * 2009-10-12 2012-01-06 이화여자대학교 산학협력단 화합물 반도체 태양 전지 및 그 제조 방법
WO2011046664A2 (en) * 2009-10-15 2011-04-21 Applied Materials, Inc. A barrier layer disposed between a substrate and a transparent conductive oxide layer for thin film silicon solar cells
US8208252B2 (en) * 2009-11-05 2012-06-26 Alcatel-Lucent Usa Inc. Infrared energy powered cooling apparatus and computer chassis comprising same
US20110108102A1 (en) * 2009-11-06 2011-05-12 Honeywell International Inc. Solar cell with enhanced efficiency
US20110155233A1 (en) * 2009-12-29 2011-06-30 Honeywell International Inc. Hybrid solar cells
KR101683095B1 (ko) * 2010-03-09 2016-12-06 유로피안 나노 인베스트 아베 고효율 나노구조 광전지 소자 제조
EP2577747B1 (en) 2010-05-24 2018-10-17 University of Florida Research Foundation, Inc. Method and apparatus for providing a charge blocking layer on an infrared up-conversion device
US8975509B2 (en) * 2010-06-07 2015-03-10 The Governing Council Of The University Of Toronto Photovoltaic devices with multiple junctions separated by a graded recombination layer
US8926761B2 (en) * 2010-08-06 2015-01-06 First Solar, Inc. Photovoltaic module cleaner
AU2011289620C1 (en) * 2010-08-07 2014-08-21 Tpk Holding Co., Ltd. Device components with surface-embedded additives and related manufacturing methods
KR20120018604A (ko) * 2010-08-23 2012-03-05 삼성전자주식회사 태양 전지
CN102097592B (zh) * 2010-11-22 2012-11-21 中山爱科数字科技股份有限公司 一种叠层复合型太阳能电池
JP2012129278A (ja) * 2010-12-14 2012-07-05 Konica Minolta Holdings Inc 有機光電変換素子、その製造方法及び太陽電池
BR112013025596A2 (pt) * 2011-04-05 2016-12-27 Nanoholdings Llc método e aparelho para integrar uma célula fotovoltaica infravermelha (ir) em uma célula fotovoltaica de película fina
MX2013015214A (es) 2011-06-30 2014-03-21 Nanoholdings Llc Metodo y aparato para detectar radiacion infrarroja con ganancia.
JP5875124B2 (ja) * 2011-10-17 2016-03-02 国立研究開発法人産業技術総合研究所 半導体素子の接合方法および接合構造
DE102012201457A1 (de) * 2012-02-01 2013-08-01 Osram Opto Semiconductors Gmbh Verfahren zum herstellen eines optoelektronischen bauelements und optoelektronisches bauelement
WO2013152132A1 (en) * 2012-04-03 2013-10-10 The California Institute Of Technology Semiconductor structures for fuel generation
CA2787584A1 (en) 2012-08-22 2014-02-22 Hy-Power Nano Inc. Method for continuous preparation of indium-tin coprecipitates and indium-tin-oxide nanopowders with substantially homogeneous indium/tin composition, controllable shape and particle size
KR101541357B1 (ko) 2013-05-13 2015-08-06 한국과학기술연구원 저가 용액공정 기반의 창호용 박막 태양전지 및 이의 제조방법
JP5955305B2 (ja) * 2012-12-26 2016-07-20 富士フイルム株式会社 半導体膜、半導体膜の製造方法、太陽電池、発光ダイオード、薄膜トランジスタ、および、電子デバイス
KR101448041B1 (ko) * 2013-04-22 2014-10-10 한국기계연구원 배리어층이 형성된 유기 박막 태양전지 및 이의 제조방법
CN103346176A (zh) * 2013-06-18 2013-10-09 天津理工大学 基于不同粒径PbS量子点的叠层太阳能电池及制备方法
KR101520784B1 (ko) * 2013-12-09 2015-05-15 한국생산기술연구원 실리콘 나노입자에 의한 양자점 효과를 결합시킨 유기 태양전지
JP2015128105A (ja) * 2013-12-27 2015-07-09 ソニー株式会社 半導体ナノ粒子分散体、光電変換素子および撮像装置
US9741882B2 (en) 2014-08-25 2017-08-22 IntriEnergy Inc. Tandem junction photovoltaic cell
WO2017039774A2 (en) 2015-06-11 2017-03-09 University Of Florida Research Foundation, Incorporated Monodisperse, ir-absorbing nanoparticles and related methods and devices
WO2017037693A1 (en) * 2015-09-01 2017-03-09 Technion Research & Development Foundation Limited Heterojunction photovoltaic device
CN105428538B (zh) * 2015-12-17 2018-02-27 南开大学 一种具有纳米颗粒密堆积结构的有机太阳电池
KR101789930B1 (ko) * 2016-07-07 2017-10-26 경북대학교 산학협력단 광감성 유기 커패시턴스 소자
US20240145118A1 (en) * 2020-03-17 2024-05-02 Korea Institute Of Machinery & Materials Transparent conductor including nanostructure and manufacturing method thereof
CN112349801B (zh) * 2020-10-16 2023-12-01 泰州隆基乐叶光伏科技有限公司 叠层电池的中间串联层及生产方法、叠层电池

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19518668A1 (de) * 1995-05-22 1996-11-28 Bosch Gmbh Robert Elektrolumineszierendes Schichtsystem
EP1347518A3 (en) * 1995-11-28 2005-11-09 International Business Machines Corporation Organic/inorganic alloys used to improve organic electroluminescent devices
US5720827A (en) * 1996-07-19 1998-02-24 University Of Florida Design for the fabrication of high efficiency solar cells
US5958573A (en) * 1997-02-10 1999-09-28 Quantum Energy Technologies Electroluminescent device having a structured particle electron conductor
US6121541A (en) * 1997-07-28 2000-09-19 Bp Solarex Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US6005707A (en) * 1997-11-21 1999-12-21 Lucent Technologies Inc. Optical devices comprising polymer-dispersed crystalline materials
JP4024009B2 (ja) * 2000-04-21 2007-12-19 Tdk株式会社 有機el素子
US6657378B2 (en) * 2001-09-06 2003-12-02 The Trustees Of Princeton University Organic photovoltaic devices
FR2827854B1 (fr) * 2001-07-25 2003-09-19 Saint Gobain Rech Substrat revetu d'un film composite, procede de fabrication et applications
GB0118258D0 (en) * 2001-07-26 2001-09-19 Cambridge Display Tech Ltd Electrode compositions
KR100477746B1 (ko) * 2002-06-22 2005-03-18 삼성에스디아이 주식회사 다층 구조의 애노드를 채용한 유기 전계 발광 소자
AU2003249324A1 (en) * 2002-07-19 2004-02-09 University Of Florida Transparent electrodes from single wall carbon nanotubes
US20040031519A1 (en) * 2002-08-13 2004-02-19 Agfa-Gevaert Nano-porous metal oxide semiconductor spectrally sensitized with metal oxide chalcogenide nano-particles
WO2004023527A2 (en) * 2002-09-05 2004-03-18 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US20050126628A1 (en) * 2002-09-05 2005-06-16 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US20040067324A1 (en) * 2002-09-13 2004-04-08 Lazarev Pavel I Organic photosensitive optoelectronic device
US6833201B2 (en) * 2003-01-31 2004-12-21 Clemson University Nanostructured-doped compound for use in an EL element
WO2004083958A2 (de) * 2003-03-19 2004-09-30 Technische Universität Dresden Photoaktives bauelement mit organischen schichten
US7605327B2 (en) * 2003-05-21 2009-10-20 Nanosolar, Inc. Photovoltaic devices fabricated from nanostructured template
US20050000565A1 (en) * 2003-05-22 2005-01-06 Tingying Zeng Self-assembly methods for the fabrication of McFarland-Tang photovoltaic devices
DE10326547A1 (de) * 2003-06-12 2005-01-05 Siemens Ag Tandemsolarzelle mit einer gemeinsamen organischen Elektrode
EP1636853A4 (en) * 2003-06-12 2007-04-04 Sirica Corp STATIONARY NON-BALANCE DISTRIBUTION FREE CARRIER AND PHOTOENENERGY UPGRADING THEREFORE
US20050061363A1 (en) * 2003-09-23 2005-03-24 Ginley David S. Organic solar cells including group IV nanocrystals and method of manufacture
US7605534B2 (en) * 2003-12-02 2009-10-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element having metal oxide and light-emitting device using the same
CA2551123A1 (en) * 2004-01-20 2005-07-28 Cyrium Technologies Incorporated Solar cell with epitaxially grown quantum dot material
US7604843B1 (en) * 2005-03-16 2009-10-20 Nanosolar, Inc. Metallic dispersion
US8586967B2 (en) * 2004-04-13 2013-11-19 The Trustees Of Princeton University High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions
US20050253502A1 (en) * 2004-05-12 2005-11-17 Matsushita Electric Works, Ltd. Optically enhanced nanomaterials
US7329709B2 (en) * 2004-06-02 2008-02-12 Konarka Technologies, Inc. Photoactive materials and related compounds, devices, and methods
WO2006023206A2 (en) * 2004-07-23 2006-03-02 University Of Florida Research Foundation, Inc. One-pot synthesis of high-quality metal chalcogenide nanocrystals without precursor injection
GB0422913D0 (en) * 2004-10-15 2004-11-17 Elam T Ltd Electroluminescent devices
WO2006073562A2 (en) * 2004-11-17 2006-07-13 Nanosys, Inc. Photoactive devices and components with enhanced efficiency
JP2009506546A (ja) * 2005-08-24 2009-02-12 ザ トラスティーズ オブ ボストン カレッジ ナノスケール共金属構造を用いた太陽エネルギー変換のための装置および方法
CA2642169A1 (en) * 2006-02-16 2007-08-30 Solexant Corporation Nanoparticle sensitized nanostructured solar cells
CA2642678A1 (en) * 2006-02-17 2007-08-30 Solexant Corporation Nanostructured electroluminescent device and display
JP2009531837A (ja) * 2006-03-23 2009-09-03 ソレクサント・コーポレイション ナノ粒子により増感させたカーボンナノチューブを含む光起電装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658889B2 (en) 2009-05-18 2014-02-25 Industrial Technology Research Institute Quantum dot thin film solar cell
US8715536B2 (en) 2009-09-14 2014-05-06 Industrial Technology Research Institute Conductive material formed using light or thermal energy, method for forming the same and nano-scale composition
TWI487128B (zh) * 2010-08-20 2015-06-01 Iner Aec Executive Yuan 一種新穎的堆疊式奈米晶矽薄膜太陽電池結構

Also Published As

Publication number Publication date
WO2007095386A3 (en) 2008-04-24
WO2007095386A2 (en) 2007-08-23
EP1996342A4 (en) 2010-12-29
AU2007214967A1 (en) 2007-08-23
CA2641490A1 (en) 2007-08-23
JP2009527108A (ja) 2009-07-23
EP1996342A2 (en) 2008-12-03
KR20080095288A (ko) 2008-10-28
US20080230120A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
TW200810136A (en) Photovoltaic device with nanostructured layers
Kumar et al. Quantum-sized nanomaterials for solar cell applications
TW200847449A (en) Nanophotovoltaic device with improved quantum efficiency
Asim et al. A review on the role of materials science in solar cells
Tsakalakos Nanostructures for photovoltaics
US20080066802A1 (en) Photovoltaic device containing nanoparticle sensitized carbon nanotubes
JP2009532851A (ja) ナノ粒子増感ナノ構造太陽電池
CN101411001A (zh) 纳米颗粒敏化的纳米结构的太阳能电池
KR20100124446A (ko) 일체형 코어/쉘 구조의 고분자-양자점 복합체를 포함하는 태양전지 소자 및 이의 제조방법
JP2010532574A (ja) 分散型コアックス光起電装置
TW201314931A (zh) 電荷耦合之光伏打裝置
Girtan et al. New trends in solar cells research
KR101003807B1 (ko) 투명 태양 전지 및 이의 제조 방법
Taft et al. Overview: Photovoltaic Solar Cells, Science, Materials, Artificial Intelligence, Nanotechnology and State of the Art
Goodnick et al. Solar cells
Deshpande et al. Review of hybrid solar cells based on CdSe and TiO2 materials
Anwar et al. Quantum Dot Solar Cells
JP2024500972A (ja) 太陽電池の製造方法及びそれから製造された太陽電池
Mondal et al. Nanotools and devices in solar power energy
KR101079214B1 (ko) 태양전지 구조
Maitra et al. A Theoretical Exploration of Quantum Dots and Nanowires as Next-Generation Photovoltaics
Sahoo et al. Nanoscience and Nanotechnologies for Photovoltaics
CN101421051A (zh) 具有纳米结构层的光伏装置
Iqbal et al. Advances in solar cell fabrication and applications using nanotechnology
Sharma et al. Quantum dot solar cell: an emerging nanomaterial-based device in the solar industry