TW200427649A - Cover glass for semiconductor package and manufacturing method thereof - Google Patents

Cover glass for semiconductor package and manufacturing method thereof Download PDF

Info

Publication number
TW200427649A
TW200427649A TW093103712A TW93103712A TW200427649A TW 200427649 A TW200427649 A TW 200427649A TW 093103712 A TW093103712 A TW 093103712A TW 93103712 A TW93103712 A TW 93103712A TW 200427649 A TW200427649 A TW 200427649A
Authority
TW
Taiwan
Prior art keywords
glass
semiconductor package
glass cover
scope
item
Prior art date
Application number
TW093103712A
Other languages
Chinese (zh)
Other versions
TWI358396B (en
Inventor
Nobutoshi Itou
Masahiro Yodogawa
Shinkichi Miwa
Kouichi Hashimoto
Tsutomu Futagami
Original Assignee
Nippon Electric Glass Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co filed Critical Nippon Electric Glass Co
Publication of TW200427649A publication Critical patent/TW200427649A/en
Application granted granted Critical
Publication of TWI358396B publication Critical patent/TWI358396B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

A cover glass for semiconductor package 10 has: a first transmission face 10a and a second transmission face 10b in thickness direction, and side face 10c. The size of the cover glass is 14×16×0.5 mm, the first transmission face 10a and the second transmission face 10b is the face without polishing, and the surface roughness are less then 0.5 nm.

Description

200427649 玖、發明說明: 【發明所屬之技術領域】 本發明是有關於一種半導體封裝用玻璃蓋及其製造方 法,其中此玻璃蓋裝設於收納固態攝像元件或雷射二極體之 半導體封^:的則面’用以保護固態攝影兀件或雷射二極體的 同時作爲透光窗使用。 【先前技術】 在固態攝影元件的前面,爲了保護半導體元件,設置有 具有平板狀之透光面的玻璃蓋,此玻璃蓋是在以氧化鋁等的 陶瓷材料、或金屬材料、亦或是樹脂材料形成的封裝中,使 用各種的有機樹脂或是低融點玻璃所形成的接著材料封閉接 著,具有保護收納在封裝內部的固態攝影元件的同時作爲透 光窗的功能。 關於固態攝影元件,現在常使用的剛半導體爲CCD(Charge Coupled Device)或 CMOS(Complementary Metal Oxide Semiconductor),CCD是用以攝取高精細的影像,主要是裝載 在攝影機上,近年來,影像的資料處理的利用係加速並急遽 的擴展其應用範圍。特別是裝載在數位照相機或行動電話, 而大多應用於將高精細的影像轉換爲電子資訊資料。而且, CMOS稱爲互補式金屬氧化物半導體,與CCD相較之下具有 能夠小型化,消耗電力降低至5分之1左右,並且可以利用 微處理器的製程,並不會增加設備投資的費用且能夠便宜的 製造等優點,因此大多裝載在行動電話或小型個人電腦等影 像輸入裝置。 CCD或CMOS,由於需要將影像正確的轉換爲電子資訊, 對於使用於其上的玻璃蓋,關於其表面的污痕或傷痕設定有 13146pif.doc/008 5 200427649 嚴格的標準’而要求高等級的潔淨度。而且除了表面的潔淨 度之外,亦要求在玻璃內部不能存在有氣泡、紋路、結晶, 並防止鈾等異物的混入。再者爲了與各種的封裝良好的封閉 接著’要求要與封裝材料具有相近的熱膨脹係數。而且,此 種玻璃亦要求具有經過長時間表面等級亦不會降低的優良耐 候性,以及低密度而能夠輕量化。 再者’於CCD用途方面,如在玻璃蓋中含有放射線元素 如鈾(U)或钍(Th)的話,容易由玻璃放射出α射線,由於此放 射線多的s舌將會引起軟誤記(soft error),因此要求盡量不要含 有鈾、钍。因此,其對策是在製造CCD玻璃蓋之際,採用高 純度的原料,並且以放射性同位素少的耐火物或白金形成用 以熔融原料之熔融爐的內壁。例如是,下述專利文獻1〜3, 係提出減少放射性同位素,並降低α射線放出量的固態攝影 元件封裝用玻璃蓋。 專利文獻1 :日本專利第2660891號公報 專利文獻2:日本早期公開專利平6—21 1539號公報 專利文獻3:日本早期公開專利平7-21 1539號公報 如上所述,固態攝影元件封裝用玻璃蓋的使用量,由於 用途的拓廣以及影像資料利用的開展而急遽的增加。然而, 由於以往的固態攝影元件封裝用玻璃蓋是以下述的方法製 作,表面等級不佳,而且不適於大量生產。亦即是,在製作 固態攝影元件封裝用玻璃蓋的場合,首先於熔融爐將玻璃原 料熔融,並進行脫泡•紋路以均質化後,將玻璃熔融液注入 鑄模內以澆鑄成形,或是將玻璃熔融液於延伸板上連續的引 出,形成一定的形狀。其次,藉由將所得的玻璃成形體(玻璃 鑄錠)徐冷,將此些以一定厚度切下以得到切塊後,並將其表 13146pif.doc/008 6 200427649 面施以硏磨加工以得到一定厚度的大塊板狀玻璃,將此玻璃 以一定尺寸進行細切加工。依此,雖然對固態攝影元件封裝 用玻璃蓋的透光面的兩面施加硏磨加工,然而由於硏磨而會 在表面形成無數的細微凹凸(微小傷痕)。另一方面近年來固態 攝影元件係謀求高畫質化、小型化,伴隨著高畫質化、小型 化而具有每1個元件的受光量減少的傾向,並且硏磨玻璃蓋 之透光面所形成的細微凹凸會使得入射光容易散射,使得一 部分的元件的受光量不足,此結果將會具有元件發生誤動作 的疑慮。 而且,如果在固態攝影元件封裝用玻璃蓋中混入異物或 氣泡,在表面附著灰塵的話,無法得到良好的顯示影像,由 於此爲玻璃蓋的致命缺陷,在玻璃蓋出貨前一定會進行影像 檢查。但是,如上所述的,在玻璃蓋的透光面形成有無數的 細微凹凸,在影像檢查之時,玻璃蓋的透光面的凹凸照射光 會造成照射光折射,明可見部份與暗可見部份會混合,無法 正確的檢測有無異物或灰塵。 而且’對玻璃蓋的透光面,經由非常精密且長時間的硏 磨加工’可以使凹凸變得更小,然而,此等精密硏磨不適合 大量生產’爲了因應遽增的需要,必須大幅度的增設設備。 再者’此精密加工是藉由具備人工皮革的回轉硏磨加工機, 邊供應在水中分散有氧化鈽等游離硏磨粒的硏漿邊進行,然 而’因硏磨產生的玻璃粉會進入人工皮革中,於人工皮革的 一部分形成凸起部。因爲此玻璃粉所形成之人工皮革的凸起 部’在硏磨時會削取玻璃蓋的表面,而成爲形成局部溝槽的 原因。然後’由於此種溝槽具有比較廣、淺的形狀,在以電 子儀器檢查的影像檢查步驟中會被忽略,而此種的玻璃蓋裝 13146pif.doc/008 7 200427649 載在固體攝影裝置的話,在顯示影像中會產生黑紋。而且作 爲游離硏磨粒使用的氧化鈽中含有摻質Th,在硏磨後如果未 將附著於玻璃上的氧化鈽完全去除的話,亦可能成爲α射線 的來源。 如上所述之損及生產性的精密硏磨,或是進行所產生的 對固態攝影元件的惡影響,受限於進行硏磨,而爲某個程度 上無法避免的問題。 【發明內容】 鑑於上述的課題,本發明的目的是提供一種半導體封裝 用玻璃蓋’藉由使其透光面不需進行硏磨就呈平滑狀態,能 夠消除伴隨硏磨產生的各種問題。 爲了解決上述的課題,本發明的半導體封裝用玻璃蓋, 其特徵爲具有無硏磨面的透光面,表面粗糙度(Ra)爲 l.Onm 以 下。此處「Ra」爲在JIS B0601-1994中定義的算數平均粗糖 度(arithmetical mean roughness)。 而且’本發明的半導體封裝用玻璃蓋,其特徵爲使用下 拉(down draw)法或是浮(fi〇at)法成形,透光面的表面粗糙度(Ra) 爲l.Onm以下。 而且’本發明的半導體封裝用玻璃蓋,其特徵爲於質量% 含有 Si02 52 〜70%、A1203 5 〜20%、B2〇3 5 〜20%、鹼土類金 屬氧化物4〜30%、Zn0 0〜5%的基本組成,實質上不含有鹼 金屬氧化物,於溫度範圍30〜380度。C的平均熱膨脹係數爲30 〜85x l(T7rC,液相溫度的玻璃黏度爲1〇5.2dpa· s以上。 而且’本發明的半導體封裝用玻璃蓋,其特徵爲於質量% a 有 Si02 58 〜75%、Al2〇3 〇·5 〜15%、b203 5 〜20%、鹼金屬 氧化物1〜20%、鹼土類金屬氧化物〇〜2〇%、Zn〇 〇〜1〇〇/〇 13146pif.doc/008 8 的基本組成,於溫度範圍30〜380度。C的平均熱膨脹係數爲30 〜85x 10力C,液相溫度的玻璃黏度爲1〇5·2 dpa · s以上。 而且,本發明的半導體封裝用玻璃蓋的製造方法,在至 少由耐火物形成內壁的熔融槽內投入玻璃原料,熔融之後使 用下拉法或是浮法成形爲板狀。 由於本發明的半導體封裝用玻璃蓋具有無硏磨面的透光 面,且表面粗糙度(Ra)爲l.Onm以下,能夠抑制入射光散射所 引起的元件誤動作,並能夠於影像檢查正確的檢測有無異物 或灰塵’並防止如问黑條紋寺的顯7]Χ不良。而且,由於能夠 省略精密加工的步驟,能便宜且大量的生產,再者由於不需 要硏磨而未使用游離硏磨粒,能夠防止氧化鈽所導致的α射 線放出。 而且,如依照本發明的半導體封裝用玻璃蓋的製造方法 的話’能夠容易的製造鉑粒子少、於透光面無硏磨面、表面 粗糙度(Ra)爲l.Ornn以下的半導體封裝用玻璃蓋。 【ΐ施方式】 本發明的半導體封裝用玻璃蓋’其特徵爲具有無硏磨面 的透光面’表面粗糙度(Ra)爲l.Onm以下。此種表面品位高的 玻璃盖’可以使用下拉法或是浮法成形。作爲下拉法,適合 使用溢流下拉法或是狹縫下拉法,然而,特別是在使用溢流 下拉法的場合,由於玻璃的表面爲自由表面,不會與其他構 件接觸,藉由控制其熔融條件與成形條件,能夠得到旦有所 希望的厚度(於半導體封裝用玻璃蓋的場合,〇〇1〜〇7mm), 且表面平滑性優良的板玻璃而較佳。亦即是,如採用溢流下 拉法的話,由於表面(透光面)不需硏磨加工,能夠得到平滑的 表面,不會形成因硏磨造成的微小傷痕,能夠製造表面粗稳 13146pif.doc/008 9 200427649 度(Ra)爲1.0 nm以下、〇·5 nm以下、甚至0.3 nm以下的玻璃 蓋。依此玻璃蓋的透光面的表面粗糙度(Ra)愈小,因玻璃蓋表 面粗糙度的透光面的散射光所引起的元件誤動作之發生率降 低,而且提昇檢測異物等的影像檢查的精度。尙且,表面粗 糖度(Ra)是用以表示表面平滑性的品位,能夠使用基於JIS B0601的實驗方法以進行測量。 而且’作爲浮法,係能夠在將熔融玻璃供給至還原氣體 環境中的熔融金屬錫浴上以成形爲板狀的方法,或是在支撐 體上供應熔融玻璃的方法,在支撐體與玻璃之間,介由蒸汽 膜形成劑汽化的蒸汽膜薄層互相滑動以成形爲板狀的方法(請 參照日本早期公開發明平9-295819號、日本早期公開發明 2001-192219號)。尙且,由於藉由浮法形成之玻璃蓋與藉由下 法形成之玻璃蓋相較之下,其表面品位較差,較佳爲因應需 要施加表面加工。但是,即使於此場合,由於硏磨時間短, 因此能夠盡可能的減少生產性的降低,亦能夠盡可能的減少 由於硏磨所產生之對固態攝影元件的壞影響。 而且’本發明的半導體封裝用玻璃蓋,液相溫度的玻璃 黏度(液相黏度)在1〇5·2 dPa· s以上的話,在玻璃中不易產生 失去透明物’可以藉由下拉法成形。亦即是將Si02-Al203-B203-R0(或是R20)系的玻璃基板以下拉法成形的場合,成形 部分的玻璃黏度大約等於10^ dPa · S。因此,玻璃的液相黏 度在ΙΟ5·0 dPa · S附近,或是在其以下的話,成形的玻璃中容 易產生失去透明物。在玻璃中產生失去透明物的話由於會損 及透光性,而無法使用於玻璃蓋。依此在使用下拉法形成玻 璃蓋的場合,較佳爲使玻璃的液相黏度盡可能的高,作爲半 導體封裝用玻璃盖’液相黏度需要在1 〇5·2 dPa · s以上。液相 13146pif.doc/008 10 200427649 dPa · s以上 黏度較佳爲在105·4 dPa · s以上,更佳爲在ι〇: 且’本發_半導體封裝__ ’藉由使溫度範圍3〇 〜380度。C的平均熱膨脹係數爲30〜85χ 1().7/。〇, 較佳爲35 機樹脂或是低融點玻璃所形成的黏接材料的氧化銘巧壯(約Μ X urn;)或各種樹脂的封裝,在內部不會產生應‘衣以及經 過長時間仍能保有良好的封裝狀態。玻____數, 80χ 1〇-7/Ό,更佳爲 50〜75χ lQ_7/t:。 而且’本發觀轉體封裝用__,藉由使_線放 出里限制爲0.01 c/cm · hr’ 夠達成降低α射線所引起的固 體攝影元件的軟誤記。爲了使α射線放出羹限制爲〇·〇1 c/cm2 · hr以下,防止混入來自原料或是熔融爐的雜質,較佳爲將玻 璃中U量抑制在10 ppb以下,Th量抑制在2〇 ppb以下。由 於隨著固體攝影元件的高畫素化、小型化而容易產生α射線 所引起的軟誤記,玻璃蓋的α射線較佳爲0.005 c/cm2 · hr以 下,更佳爲〇·〇〇3 c/cm2 · hr以下。而且,U量爲5 ppb以下, Th量爲10 ppb以下,較佳U量爲4 ppb以下,Th量爲8 ppb 以下。尙且與Th相比之下,U容易放出α射線因此U的容許 量與Th的容許量相比之下較小。 而且,本發明的半導體封裝用玻璃蓋,其玻璃的密度爲2.55 §/〇1113以下(較佳爲2.45§/(:1113以下),鹼溶出量爲1.()11^以下(較 佳爲0.1 mg以下,更佳爲0.01 mg以下)的話,特別是適用裝 載於戶外使用的攜帶用電子機器的用途。亦即是’由於數位 照相機、數位攝影機、行動電話、個人數位助理(PDA)等的機 器,具有於戶外使用的狀況,要求輕量而適於攜行,且具有 高耐候性。因此,對於用於此些用途的固體攝影元件用蓋玻 璃,在輕量的特性之外,必須具有安定的耐候性’以及即使 13146pif.doc/008 11 200427649 在戶外的嚴苛環境下使用亦不會使表面品位降低的特性。因 此,特別是此種用途使用的玻璃蓋,較佳爲藉由降低密度而 輕量化,且降低鹼溶出量以提昇耐候性。 而且,本發明的半導體封裝用玻璃蓋,厚度較佳爲0·05 〜0.7 mm。厚度大的話透過率降低且機器的輕量化、薄型化 困難而較爲不佳。而且厚度過薄的話,實用強度不足且大塊 板狀玻璃的撓曲變大而造成操作困難。較佳的厚度爲0.1〜0·5 mm,更佳的厚度爲0.1〜〇·4 mm。 而且,本發明的半導體封裝用玻璃蓋,其楊氏率65 GPa 以上,更佳爲67 GPa以上。楊氏率表示在玻璃蓋上施加一定 之外力的狀況下的容易變形程度。楊氏率大的話則不易變形。 玻璃蓋的楊氏率愈高,能夠防止直接施加於玻璃蓋的直接壓 力,其結果能夠防止元件的損傷。 而且,本發明的半導體封裝用玻璃蓋,其比楊氏率(楊氏 率/密度)爲27 Gpa/g · cm·3的話,由於能夠滿足輕量且不易 變开^的特性,特別是適用於攜帶用電子機器所使用的固體攝 影元件用玻璃蓋。由此觀點觀之,固態攝影元件用玻璃蓋的 比楊氏率較佳爲盡可能的大,且較佳爲28 Gpa/g · cm·3以上。 而且,本發明的半導體封裝用玻璃蓋,其維氏硬度爲500 以上的話由於在表面不易形成傷痕而較佳。其理由在於如果 在電子機器的組裝步驟或搬運步驟時對表面造成微小傷痕的 話,由於在裝載於固體攝影元件後的影像檢查步驟會產生不 良。因此維氏硬度較佳爲520以上。 於本發明中,考量到耐候性的話,較佳爲於質量%含有Si02 52〜70%、Al2〇3 5〜20%、B203 5〜20%、鹼土類金屬氧化物4 〜30%、ZnO 0〜5%的基本組成,實質上不含有鹼金屬氧化物。 13146pif.doc/008 12 200427649 具有此組成的玻璃蓋,由於其鹼溶出量未滿0.01 mg,耐候性 優良,即使長時間使用外觀品位不會降低的優點。尙且,於 本發明中的「實質未含有」,意味著其成分的含有量未滿2000 ppm。而且鹼溶出量可藉由使用基於JIS R3502的實驗方法以 測量。 上述之構成玻璃蓋的各成分的限制理由係說明如下。200427649 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a glass cover for semiconductor packaging and a method for manufacturing the same, wherein the glass cover is installed in a semiconductor package containing a solid-state imaging element or a laser diode ^ : The surface is used to protect solid-state photographic elements or laser diodes and also serve as a light transmission window. [Prior art] In order to protect the semiconductor element, a glass cover with a flat plate-shaped light-transmitting surface is provided in front of the solid-state imaging device. The glass cover is made of ceramic material such as alumina, metal material, or resin. In a package made of a material, a sealing material formed by using various organic resins or low-melting-point glass is used for sealing and bonding, and has a function of protecting a solid-state imaging element stored in the package and serving as a light transmission window. Regarding solid-state imaging devices, CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) are commonly used today. CCD is used to capture high-definition images, which are mainly mounted on cameras. In recent years, image data The utilization of processing is accelerated and hastily expanded its scope of application. In particular, it is mounted on a digital camera or a mobile phone, and is mostly used to convert high-definition images into electronic information materials. In addition, CMOS is called complementary metal oxide semiconductor. Compared with CCD, it can be miniaturized, reduce power consumption to about 1/5, and can use the process of microprocessor without increasing the cost of equipment investment. Since it can be manufactured inexpensively, it is often mounted in an image input device such as a mobile phone or a small personal computer. CCD or CMOS, because the image needs to be correctly converted into electronic information, for the glass cover used on it, the surface is stained or scratched with 13146pif.doc / 008 5 200427649 strict standards' and requires a high level of cleanliness degree. In addition to the cleanliness of the surface, it is also required that there are no bubbles, lines, crystals in the glass, and that foreign matter such as uranium cannot be mixed. Furthermore, in order to seal well with various packages, it is required to have a thermal expansion coefficient similar to that of the packaging materials. In addition, such a glass is required to have excellent weather resistance that does not decrease in surface grade over a long period of time, and low density to enable weight reduction. Furthermore, in terms of CCD applications, if a glass cover contains a radioactive element such as uranium (U) or thorium (Th), α-rays are easily radiated from the glass, and the s tongue with more radiation will cause soft misremembering (soft error), so it is required not to contain uranium or plutonium. Therefore, the countermeasure is to use a high-purity raw material when manufacturing the CCD glass cover, and to form the inner wall of the melting furnace for melting the raw material with refractory or platinum with few radioactive isotopes. For example, the following Patent Documents 1 to 3 propose glass covers for solid-state imaging device packages that reduce radioisotopes and reduce the amount of α-rays emitted. Patent Literature 1: Japanese Patent No. 2660891 Patent Literature 2: Japanese Early Published Patent Publication No. 6-21 1539 Patent Literature 3: Japanese Early Published Patent Publication No. 7-21 1539 As described above, the glass for packaging solid-state imaging elements The use of covers has increased sharply due to the expansion of uses and the development of the use of image data. However, the conventional glass cover for solid-state imaging device packaging has been produced by the following method, has a poor surface grade, and is not suitable for mass production. That is, when manufacturing a glass cover for solid-state photographic element packaging, firstly melt the glass raw material in a melting furnace and defoam and texture to homogenize, and then inject the molten glass into a mold for casting or molding. The molten glass is continuously drawn on the extension plate to form a certain shape. Next, the obtained glass formed body (glass ingot) is slowly cooled, and these are cut to a certain thickness to obtain diced pieces, and the surface is subjected to honing processing in Table 13146pif.doc / 008 6 200427649. A large plate-shaped glass with a certain thickness is obtained, and this glass is finely cut with a certain size. Accordingly, although honing is applied to both sides of the light-transmitting surface of the glass cover for a solid-state imaging device package, numerous fine irregularities (micro-scratches) are formed on the surface by honing. On the other hand, in recent years, solid-state imaging elements have sought to achieve high image quality and miniaturization. With the high image quality and miniaturization, the amount of light received per element tends to decrease, and the transparent surface of the glass cover is honed. The fine unevenness formed will make incident light scattered easily, and the amount of light received by a part of the device will be insufficient. This result will cause the device to malfunction. In addition, if foreign matter or air bubbles are mixed into the glass cover for solid-state imaging device packaging, and dust is adhered to the surface, a good display image cannot be obtained. Because this is a fatal defect of the glass cover, an image inspection must be performed before the glass cover is shipped. . However, as described above, countless fine irregularities are formed on the light-transmitting surface of the glass cover. When the image is inspected, the concave-convex irradiation light on the light-transmitting surface of the glass cover will cause the light to be refracted, and the visible and dark parts will be visible. The parts are mixed, and the presence of foreign matter or dust cannot be detected correctly. In addition, 'the light-transmitting surface of the glass cover can be made smaller and finer by a very precise and long honing process. However, these precision honing is not suitable for mass production.' Additional equipment. Furthermore, 'this precision machining is performed by a rotary honing machine equipped with artificial leather, while supplying mortar with free honing particles such as hafnium oxide dispersed in water, but' glass powder produced by honing will enter the artificial In the leather, a raised portion is formed in a part of the artificial leather. This is because the raised portion ′ of the artificial leather formed by this glass frit will shave the surface of the glass cover during honing, which will cause the formation of local grooves. Then 'because this groove has a relatively wide and shallow shape, it will be ignored in the image inspection step of electronic equipment inspection, and if this glass cover is mounted on a solid-state imaging device, 13146pif.doc / 008 7 200427649, Black streaks appear in the displayed image. In addition, thorium oxide used as a free honing particle contains a dopant Th, and if the thorium oxide attached to the glass is not completely removed after honing, it may also be a source of alpha rays. As described above, the precision honing that impairs the productivity or the adverse effects on solid-state imaging elements produced by the process is limited to the honing, which is a problem that cannot be avoided to some extent. SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a glass cover for a semiconductor package, which can smooth a light-transmitting surface without honing, and can eliminate various problems associated with honing. In order to solve the above-mentioned problems, the glass cover for a semiconductor package of the present invention has a light-transmitting surface without a honing surface, and has a surface roughness (Ra) of 1.0 nm or less. Here, "Ra" is an arithmetic mean roughness as defined in JIS B0601-1994. Furthermore, the glass cover for a semiconductor package of the present invention is characterized by being formed by using a down draw method or a float method, and the surface roughness (Ra) of the light-transmitting surface is equal to or less than 1.0 nm. Furthermore, the glass cover for a semiconductor package of the present invention is characterized in that it contains Si02 52 to 70%, A1203 5 to 20%, B2 03 to 20%, alkaline earth metal oxide 4 to 30%, and Zn0 0 in mass%. The basic composition is ~ 5%, which does not substantially contain alkali metal oxides, and has a temperature range of 30 ~ 380 degrees. The average thermal expansion coefficient of C is 30 to 85 × 1 (T7rC, and the glass viscosity of the liquidus temperature is 10.2 dpa · s or more. In addition, the glass cover for a semiconductor package of the present invention is characterized by having Si02 58 to 5% by mass. 75%, Al203 ~ 0.5%, b203 5 ~ 20%, alkali metal oxide 1 ~ 20%, alkaline earth metal oxide 〇 ~ 20%, Zn〇〇〜〇〇 / 〇13146pif. The basic composition of doc / 008 8 is in the temperature range of 30 to 380 degrees. The average thermal expansion coefficient of C is 30 to 85 x 10 force C, and the glass viscosity of the liquidus temperature is 105 · 2 dpa · s or more. Moreover, the present invention In the method for manufacturing a glass cover for semiconductor packaging, a glass raw material is put into a melting tank having an inner wall formed of at least a refractory, and after melting, it is formed into a plate shape by a down-draw method or a float method. A light-transmissive surface without a honing surface and a surface roughness (Ra) of less than or equal to l.Onm, which can suppress the malfunction of components caused by incident light scattering, and can accurately detect the presence of foreign objects or dust during image inspection, and prevent such problems as Hei Stripe Temple's Hyun 7] χ is bad. It is enough to omit the steps of precision processing, and it can be produced inexpensively and in large quantities. Furthermore, since no honing abrasive grains are not used because honing is not required, alpha rays caused by hafnium oxide can be prevented from being emitted. In the method of manufacturing a glass cover, a glass cover for a semiconductor package having a small number of platinum particles, a non-honed surface on a light-transmitting surface, and a surface roughness (Ra) of 1. Ornn or less can be easily produced. The glass cover for a semiconductor package is characterized in that a light-transmitting surface having no honing surface has a surface roughness (Ra) of 1 nm or less. Such a glass cover having a high surface quality can be formed by a down-draw method or a float method. As the down-drawing method, an overflow down-drawing method or a slit down-drawing method is suitable. However, especially when the overflow down-drawing method is used, since the surface of the glass is a free surface, it does not contact with other members, and the melting is controlled by it. Conditions and molding conditions, it is preferable to obtain a desired thickness (in the case of a glass cover for a semiconductor package, 0.001 to 〇7 mm), and a plate glass with excellent surface smoothness is preferred. That is, if the overflow down-draw method is used, since the surface (light-transmitting surface) does not need honing, a smooth surface can be obtained without forming micro-scratches caused by honing. It can produce a rough surface. 13146pif.doc / 008 9 200427649 A glass cover with a degree (Ra) of 1.0 nm or less, 0.5 nm or less, or even 0.3 nm or less. The smaller the surface roughness (Ra) of the light-transmitting surface of the glass cover, the rougher the surface of the glass cover. The incidence of device malfunction caused by scattered light on the light-transmitting surface is reduced, and the accuracy of image inspections such as detecting foreign objects is improved. Moreover, the surface coarseness (Ra) is a grade used to indicate surface smoothness and can be used. The measurement was performed based on the experimental method of JIS B0601. Moreover, as the float method, a method of forming a plate shape on a molten metal tin bath in which molten glass is supplied to a reducing gas environment, or a method of supplying molten glass on a support, is used for the support and glass. In the meantime, thin layers of the vapor film vaporized by the vapor film-forming agent are slid on each other to form a plate shape (refer to Japanese Early Published Invention No. 9-295819, Japanese Early Published Invention No. 2001-192219). Moreover, since the glass cover formed by the float method is inferior to the glass cover formed by the lower method, its surface quality is inferior, and it is preferable to apply surface processing in accordance with needs. However, even in this case, since the honing time is short, it is possible to reduce the reduction in productivity as much as possible, and it is also possible to reduce the adverse effect on the solid-state imaging element caused by the honing as much as possible. In addition, if the glass cover for a semiconductor package of the present invention has a glass viscosity (liquid phase viscosity) at a liquidus temperature of 105 · 2 dPa · s or more, it is difficult to cause loss of transparent materials in the glass, and it can be formed by a down-draw method. That is, when a Si02-Al203-B203-R0 (or R20) glass substrate is formed by drawing, the glass viscosity of the formed part is approximately equal to 10 ^ dPa · S. Therefore, if the liquidus viscosity of the glass is near or below 105.0 dPa · S, it is easy to lose transparency in the formed glass. The loss of transparency in glass can impair the light transmission and cannot be used for glass covers. Accordingly, when the glass lid is formed using the down-draw method, it is preferred that the liquid phase viscosity of the glass be as high as possible, and as the glass lid for semiconductor packaging, the liquid phase viscosity needs to be above 105 · 2 dPa · s. Liquid phase 13146pif.doc / 008 10 200427649 dPa · s or higher viscosity is preferably 105.4 dPa · s or higher, more preferably ι〇: and '本 发 _semiconductor package__' by making the temperature range 3〇 ~ 380 degrees. The average thermal expansion coefficient of C is 30 ~ 85χ 1 (). 7 /. 〇, preferably 35 organic resin or low melting point glass formed of oxidized adhesive materials (about M X urn;) or packaging of various resins, there will be no internal clothing and after a long time Can still maintain a good packaging state. The number of glass ____, 80χ 1〇-7 / Ό, more preferably 50 ~ 75χ lQ_7 / t :. In addition, ‘__ for swivel packaging of the present invention is limited to 0.01 c / cm · hr’ by reducing the _ line emission, which can reduce the soft misremembering of solid-state imaging elements caused by α rays. In order to limit the emission of α-rays to 0 · 〇1 c / cm2 · hr and prevent impurities from the raw materials or melting furnace, it is preferable to suppress the amount of U in the glass to 10 ppb or less and the amount of Th to 2%. ppb or less. Due to the increase in pixel size and miniaturization of solid-state imaging elements, soft misremembering caused by alpha rays is easy to occur. The alpha rays of glass covers are preferably 0.005 c / cm2 · hr or less, and more preferably 0.03 c. / cm2 · hr or less. The amount of U is 5 ppb or less, the amount of Th is 10 ppb or less, preferably the amount of U is 4 ppb or less, and the amount of Th is 8 ppb or less.尙 Also, compared to Th, U easily emits α rays, so the allowable amount of U is smaller than the allowable amount of Th. Moreover, the glass cover for a semiconductor package of the present invention has a glass density of 2.55 § / 〇1113 or less (preferably 2.45§ / (: 1113 or less)) and an alkali elution amount of 1. () 11 ^ or less (preferably 0.1 mg or less, more preferably 0.01 mg or less), especially suitable for use in portable electronic equipment for outdoor use. That is, 'due to digital cameras, digital video cameras, mobile phones, personal digital assistants (PDAs), etc. The device is used outdoors, and it is required to be lightweight and suitable for carrying, and it has high weather resistance. Therefore, the cover glass for solid-state imaging devices used for these applications must have the characteristics of light weight and have Stable weather resistance 'and the characteristic that the surface quality will not be reduced even when used in the harsh environment of 13146pif.doc / 008 11 200427649. Therefore, the glass cover used for this purpose is particularly preferred to be reduced by It is lighter in density and lighter in weight, and reduces the amount of alkali elution to improve weather resistance. In addition, the thickness of the glass cover for a semiconductor package of the present invention is preferably from 0.05 to 0.7 mm. When the thickness is large, the transmittance decreases and the machine It is difficult to reduce the weight and thickness of the glass. If the thickness is too thin, the practical strength will be insufficient and the large plate-shaped glass will be deformed to cause difficulty in operation. The preferred thickness is 0.1 to 0.5 mm. A more preferable thickness is 0.1 to 0.4 mm. Furthermore, the glass cover for a semiconductor package of the present invention has a Young's ratio of 65 GPa or more, and more preferably 67 GPa or more. The Young's ratio indicates that a certain external force is applied to the glass cover. It is easy to deform under the condition of large. When the Young's ratio is large, it is not easy to deform. The higher the Young's ratio of the glass cover, the direct pressure directly applied to the glass cover can be prevented. As a result, the damage of the element can be prevented. A glass cover for a semiconductor package having a specific Young's ratio (Young's ratio / density) of 27 Gpa / g · cm · 3 can satisfy the characteristics of being lightweight and difficult to change, especially suitable for portable electronic devices. A glass cover for a solid-state imaging element to be used. From this point of view, the glass cover for a solid-state imaging element is preferably as large as possible, and more preferably 28 Gpa / g · cm · 3 or more. , The semiconductor of the present invention For glass covers, a Vickers hardness of 500 or higher is preferred because scratches are unlikely to form on the surface. The reason is that if small scratches are caused to the surface during the assembly or transportation steps of an electronic device, it is because it is mounted on solid-state photography. The image inspection step after the element may cause defects. Therefore, the Vickers hardness is preferably 520 or more. In the present invention, considering weather resistance, it is preferable to contain Si02 52 to 70% and Al2 03 to 20 in mass%. %, B203 5 to 20%, alkaline earth metal oxides 4 to 30%, ZnO 0 to 5%, the basic composition does not substantially contain alkali metal oxides. 13146pif.doc / 008 12 200427649 A glass cover with this composition, Because its alkali dissolution amount is less than 0.01 mg, it has excellent weather resistance, even if it is used for a long time, the appearance quality will not be reduced. In addition, "substantially not contained" in the present invention means that the content of its components is less than 2000 ppm. The amount of alkali elution can be measured by using an experimental method based on JIS R3502. The reasons for limiting the components constituting the glass cover described above are explained below.

Si〇2爲成爲構成玻璃之骨骼的主成分,並具有提昇玻璃 耐候性的效果,然而過多的話,具有玻璃的高溫黏度上升, 且熔融性惡化的同時,液相黏度變高的傾向。依此,Si02的 含量爲52〜70%,較佳爲53〜67%,更佳爲55〜65%。 ai2o3爲提高玻璃的耐候性與液相黏度的成分,過多的話, 具有玻璃的高溫黏度上升,且熔融性惡化的同時,液相黏度 變高的傾向。依此,A1203的含量爲5〜20%,較佳爲8〜19%, 更佳爲10〜18%。 B2〇3爲發揮融劑的作用,降低玻璃的黏性,改善熔融性 的^分。再者,其爲用以提高液相黏度的成分。但是,B2〇3 過多的話玻璃的耐候性具有降低的傾向。依此,B2〇3的含量 爲5〜20%,較佳爲6〜15%,更佳爲7〜13%。 鹼土類金屬氧化物(MgO、CaO、SrO、BaO),在提昇玻璃 的耐候性的同時,降低玻璃的黏性,而爲改善熔融性的成分, 然而過多的話,玻璃具有在容易失去透明的同時密度上升的 傾向。依此,鹼土類金屬氧化物的含量爲4〜30%,較佳爲5 〜20%,更佳爲6〜16%。 特別是CaO,是比較容易入手的局純度原料’是顯著改 善玻璃的熔融性以及耐候性的成分。CaO的含量小於1.5%的 場合,上述效果小,反之超過的場合,耐候性降低。爲 13146pif.doc/008 13 200427649 了達成更安定的品位,CaO的含量較佳爲2〜12%,更佳爲3 〜10%。 而且,由於BaO與SrO顯著的使玻璃的密度上升,在玻 璃密度低的場合,將各別的含量限制在12%、以下,再者 較佳爲將兩者含量的合計量限制爲6.5〜13%。而且,由於BaO 與SrO容易在原料中含有放射性同位元素,在希望降低α射 線的場合,兩者含量的合計量限制爲8.5%以下,較佳爲3%以 下,更佳爲1.4以下%。 ΖηΟ係改善玻璃的熔融性,具有抑制Β2〇3或鹼土類金屬 氧化物由熔融玻璃中揮發的效果,然而含量過多的話,由於 玻璃容易失去透明且密度上升而較爲不佳。因此,其含量的 上限爲5%以下,較佳爲3%以下,更佳爲1以下%。 然而,含有鹼金屬氧化物(Na20、K20、Li20)的話,由於 從玻璃中溶出的鹼溶出量增加,耐候性降低之故其含量較佳 爲抑制在未滿0.2%。爲了達成更安定的耐候性,鹼金屬氧化 丄 物的含量較佳爲未滿0.1%,更佳爲未滿0.05%。 而且,玻璃中的鹼金屬氧化物少的話,具有抑制用以封 合封裝之黏著劑劣化的優點。亦即是,固態攝影元件封裝用 的玻璃蓋,多使用有機樹脂(例如環氧樹脂)以進行黏著,如果 玻璃蓋中含有鹼成分的話,鹼成分會徐徐的溶出到黏著劑中。 由於環氧樹脂等有機樹脂具有由於鹼成分而降低黏著強度的 特性,因而容易徐徐的降低玻璃蓋與封裝之間的黏著強度。 其結果,兩者之間產生間隙,且玻璃蓋會剝離,從而無法達 到所期望之保護固態攝影元件的效果。 而且,於本發明中,特別在考慮到製造面,於質量%含有 Si02 58 〜75%、Al2〇3 0.5 〜15%、B2〇3 5 〜20%、鹼金屬氧化 13146pif.doc/008 14 200427649 物1〜20%、鹼土類金屬氧化物〇〜20%、ZnOO〜1〇%的基 本組成,具有此種組成的玻璃蓋,其熔融性提昇,液相黏度 容易調整。 構成上述玻璃蓋之各成分的限定理由如下所述。 >SiO2 is the main component of the skeleton of glass, and has the effect of improving the weather resistance of glass. However, if it is too much, the high-temperature viscosity of the glass will increase, and the meltability will deteriorate, and the liquid phase viscosity will tend to increase. Accordingly, the content of Si02 is 52 to 70%, preferably 53 to 67%, and more preferably 55 to 65%. ai2o3 is a component that enhances the weather resistance and liquid phase viscosity of the glass. If it is too much, the high-temperature viscosity of the glass increases, and the meltability deteriorates, and the liquid phase viscosity tends to increase. Accordingly, the content of A1203 is 5 to 20%, preferably 8 to 19%, and more preferably 10 to 18%. B203 is used as a flux to reduce the viscosity of glass and improve its melting properties. Furthermore, it is a component for increasing the viscosity of the liquid phase. However, when there is too much B2O3, the weather resistance of glass tends to fall. Accordingly, the content of B203 is 5 to 20%, preferably 6 to 15%, and more preferably 7 to 13%. Alkaline earth metal oxides (MgO, CaO, SrO, BaO) improve the weatherability of the glass and reduce the viscosity of the glass. The component is to improve the meltability. However, if it is too much, the glass has a tendency to lose transparency. The tendency for density to rise. Accordingly, the content of the alkaline earth metal oxide is 4 to 30%, preferably 5 to 20%, and more preferably 6 to 16%. In particular, CaO is a local-purity raw material that is relatively easy to obtain, and is a component that significantly improves the melting and weatherability of glass. When the content of CaO is less than 1.5%, the above effects are small, whereas when the content of CaO is exceeded, the weather resistance is reduced. For 13146pif.doc / 008 13 200427649 to achieve a more stable grade, the content of CaO is preferably 2-12%, and more preferably 3-10%. In addition, since BaO and SrO significantly increase the density of glass, when the glass density is low, the respective contents are limited to 12% or less, and it is more preferable to limit the total content of the two to 6.5 to 13. %. In addition, since BaO and SrO are apt to contain radioisotope elements in the raw materials, when it is desired to reduce the alpha ray, the total content of both is limited to 8.5% or less, preferably 3% or less, and more preferably 1.4% or less. ZηΟ improves the meltability of glass and has the effect of inhibiting the evaporation of B203 or alkaline earth metal oxides from molten glass. However, if the content is too large, the glass tends to lose transparency and its density rises, which is not good. Therefore, the upper limit of the content is 5% or less, preferably 3% or less, and more preferably 1% or less. However, if alkali metal oxides (Na20, K20, Li20) are contained, the amount of alkali dissolved from the glass increases and the weather resistance decreases. Therefore, the content is preferably suppressed to less than 0.2%. In order to achieve more stable weather resistance, the content of alkali metal hafnium oxide is preferably less than 0.1%, and more preferably less than 0.05%. In addition, when there is little alkali metal oxide in the glass, there is an advantage that the deterioration of the adhesive used to seal the package is suppressed. That is, the glass cover for solid-state imaging device packaging uses organic resins (such as epoxy resin) for adhesion. If the glass cover contains an alkali component, the alkali component will slowly dissolve into the adhesive. Organic resins such as epoxy resins have the property of reducing the adhesive strength due to the alkali component, so it is easy to gradually reduce the adhesive strength between the glass cover and the package. As a result, a gap is generated between the two, and the glass cover is peeled off, so that the desired effect of protecting the solid-state imaging element cannot be achieved. Moreover, in the present invention, in particular, considering the manufacturing surface, 58% to 75% of Si02, 0.5% to 15% of Al2O3, 5% to 20% of B2O3, and alkali metal oxidation are contained in mass% 13146pif.doc / 008 14 200427649. The basic composition of the product is 1 to 20%, alkaline earth metal oxides to 0 to 20%, and ZnOO to 10%. A glass cover with such a composition has improved melting properties and easy adjustment of liquid phase viscosity. The reasons for limiting the components constituting the glass cover are as follows. >

Si〇2爲成爲構成玻璃之骨豁的主成分,並具有批昇*皮胃 耐候性的效果,然而過多的話,具有玻璃的高溫黏度上升’ 且熔融性惡化的同時,液相黏度變高的傾向。依此’ Sl02的 含量爲58〜75%,較佳爲58〜72%,更佳爲60〜70% ’最佳 爲 60〜68.5% 〇 A12 〇3爲提局液相黏度必須的成分,過多的§舌’具有*玻胃 的高溫黏度上升,且熔融性惡化的傾向。依此,Al2〇3的含量 爲0_5〜15%,較佳爲1.1〜12%,更佳爲3.5〜12%,最佳爲6 〜11 % 〇 比〇3爲發揮融劑的作用,降低玻璃的黏性,改善熔融个生 的成分。再者,其爲用以提高液相黏度的成分。但是’ t03 過多的話玻璃的耐候性具有降低的傾向。依此,B2〇3的含量 爲5〜20%,較佳爲9〜18%,更佳爲11〜18%,最佳爲12〜 18%。 鹼金屬氧化物(Na20、K20、Li20)爲降低玻璃黏度、改善 熔融性的同時,有效的調整熱膨脹係數與液相黏度的成分’ 然而量多的話會顯著的使玻璃的耐候性惡化。依此,鹼金屬 氧化物的含量爲1〜20%,較佳爲5〜18%,更佳爲7〜13%。 特別是Na20在熱膨脹係數的調整上具有大的效果,而且 K20在提昇液相黏度上具有大的效果。因此,倂用Na20、K20 的話,能夠一邊維持高液相黏度,一邊調整熱膨脹係數。依 此,Na20的含量較佳爲0.1〜11%,Κ20的含量較佳爲0.1〜 13146pif.doc/008 15 200427649 8%,而且,兩者並用的場合含量較佳爲7.8〜18%。 於本發明中,如將(Na20+K20)/ Na20的比限制爲1.1〜10 的話容易得到高的液相黏度。此(Na20+K20)/ Na20的比,較 佳爲1.1〜5,更佳爲1.2〜3。 而且,於本發明中,隨著Si02的降低,A1203與K20增 加的程度,液相黏度有上升的傾向,Si02/(Na20+K20)的比限 制爲3〜12,較佳爲4〜10的話,能夠維持玻璃的耐候性與熔 融性,並得到高的液相黏度。 但是,由於Li20容易在原料中含有放射線同位元素,其 含量爲0〜5%,較佳爲0〜3%,更佳爲0〜1%,最佳爲0〜0.5% 鹼土類金屬氧化物(MgO、CaO、SrO、BaO),在提昇玻璃 的耐候性的同時,降低玻璃的黏性,而爲改善熔融性的成分, 然而過多的話,玻璃具有在容易失去透明的同時密度上升的 傾向。依此,鹼土類金屬氧化物的含量爲0〜20%,較佳爲0.5 〜18%,更佳爲L0〜18%。 >特別是CaO,是比較容易入手的高純度原料,是顯著改 善玻璃的熔融性以及耐候性的成分。其含量較佳爲0.5〜10%, 更佳爲1〜8%。但是,此些之含量的合計量必須限制爲13% 以下,較佳爲10%以下,更佳爲7%以下。而且,由於BaO與 SrO容易在原料中含有放射性同位元素,在希望將α射線降低 至0.01 c/cm2 · hr以下的場合,兩者含量的合計量限制爲3% 以下,較佳爲1.4%以下。Si〇2 is the main component of glass, and it has the effect of improving the weatherability of the skin and stomach. However, if it is too much, it has a high temperature viscosity of the glass, and its meltability deteriorates, and the viscosity of the liquid phase becomes higher. tendency. Accordingly, the content of Sl02 is 58 to 75%, preferably 58 to 72%, and more preferably 60 to 70%. The most preferable is 60 to 68.5%. 〇A12 〇3 is an essential component of the liquid phase viscosity of the bureau, too much § Tongue 'has a tendency to increase the high-temperature viscosity of the glass stomach and deteriorate the meltability. According to this, the content of Al203 is 0-5 to 15%, preferably 1.1 to 12%, more preferably 3.5 to 12%, and most preferably 6 to 11%. 〇3 is to play the role of a flux and reduce the glass The viscosity, improve the melting of raw ingredients. Furthermore, it is a component for increasing the viscosity of the liquid phase. However, when 't03 is too much, the weather resistance of the glass tends to decrease. Accordingly, the content of B203 is 5 to 20%, preferably 9 to 18%, more preferably 11 to 18%, and most preferably 12 to 18%. Alkali metal oxides (Na20, K20, Li20) are components that effectively adjust the coefficient of thermal expansion and the viscosity of the liquid phase while reducing the viscosity of the glass and improving the meltability. However, a large amount will significantly deteriorate the weatherability of the glass. Accordingly, the content of the alkali metal oxide is 1 to 20%, preferably 5 to 18%, and more preferably 7 to 13%. In particular, Na20 has a large effect in adjusting the thermal expansion coefficient, and K20 has a large effect in increasing the viscosity of the liquid phase. Therefore, if Na20 and K20 are used, the thermal expansion coefficient can be adjusted while maintaining the high liquid phase viscosity. Accordingly, the content of Na20 is preferably from 0.1 to 11%, and the content of K20 is preferably from 0.1 to 13146 pif.doc / 008 15 200427649 8%, and when both are used, the content is preferably from 7.8 to 18%. In the present invention, if the ratio of (Na20 + K20) / Na20 is limited to 1.1 to 10, a high liquid viscosity is easily obtained. This (Na20 + K20) / Na20 ratio is preferably 1.1 to 5, and more preferably 1.2 to 3. Moreover, in the present invention, with the decrease of Si02, the degree of increase of A1203 and K20, the liquid viscosity tends to increase, and the ratio of Si02 / (Na20 + K20) is limited to 3 ~ 12, preferably 4 ~ 10 , Can maintain the weather resistance and melting properties of the glass, and obtain a high liquid phase viscosity. However, since Li20 easily contains radioisotope elements in the raw material, its content is 0 to 5%, preferably 0 to 3%, more preferably 0 to 1%, and most preferably 0 to 0.5% of alkaline earth metal oxides ( MgO, CaO, SrO, and BaO) are components that improve the weatherability of glass while reducing the viscosity of the glass, and improve the meltability. However, if there are too many components, the glass tends to lose its transparency and the density tends to increase. Accordingly, the content of the alkaline earth metal oxide is 0 to 20%, preferably 0.5 to 18%, and more preferably L0 to 18%. > CaO, in particular, is a high-purity raw material that is relatively easy to obtain, and is a component that significantly improves the melting and weatherability of glass. Its content is preferably 0.5 to 10%, and more preferably 1 to 8%. However, the total amount of these contents must be limited to 13% or less, preferably 10% or less, and more preferably 7% or less. In addition, since BaO and SrO easily contain radioisotope elements in the raw materials, when it is desired to reduce α rays to 0.01 c / cm2 · hr or less, the total content of the two is limited to 3% or less, preferably 1.4% or less. .

ZnO之提昇耐候性的效果優良,並改善玻璃的熔融性, 具有抑制B203或鹼金屬氧化物由熔融玻璃中揮發的效果。特 別是由於A1203的含量在3%以下時,耐候性顯著降低之故,ZnO 之含量爲2%以上,較佳爲4.5%以上。然而ZnO的含量過多 13146pif.doc/008 16 200427649 的話,由於玻璃容易失去透明且密度上升,因此,ZnO的含 量的限制在10%以下,較佳爲9%以下,更佳爲6以下%。 再者,於本發明中,在上述成分以外,在不損及玻璃特 性的範圍內,能夠含有P2〇5、Y2〇3、Nb203、La203等成分5% 以下,各種澄淸劑3%以下。淸澄劑例如是可以使用SB203、 Sb205、F2、Cl2、C、S03、Sn02或是A卜Si等的金屬粉末的 1種或兩種以上。 由於As203能夠在廣泛的溫度範圍(1300〜1700°C的程度) 內產生澄淸氣體,以往此種澄淸劑係被廣泛的應用,然而由 於容易在原料中含有放射線同位元素。尙且的毒性非常的強, 在玻璃製造步驟中以及廢玻璃的處理時會造成環境污染的問 題。依此必須實質的不含有As203。而且,由於PbO、CdO的 毒性亦強,必須避免使用。再者,SB203、Sb205亦與As203 — 樣爲具有優良澄淸效果的成分,然而,由於其毒性亦強,較 佳爲盡可能不要含有。 依此,在本發明之Si02-Al203-B20rR0系玻璃的場合, 澄淸劑成分的比例較佳爲SB203、Sb205的合計量爲0.05〜 2·0% ’ F2、Cl2、C、S03、Sn02 的合計量爲 〇.1 〜3.0%(特別是 Cl2 爲 0.005 〜1.0%,Sn02 爲(^(^〜1〇%)。而且,在 Si〇2-ai2o3-b2o3-ro系玻璃的場合,爲了使熔融性優良,其比例較 佳爲 SB203、Sb205 的合計量爲 〇.2%,f2、C12、c、S03、Sn02 的合計量爲0.1〜3.0%。 而且,FhO3亦可以作爲澄淸劑使用,然而爲了使玻璃著 色,其含量限制爲500 ppm以下,較佳爲3〇〇 ppm以下,更 佳爲200 ppm以下。Ce02亦可以作爲澄淸劑使用,然而爲了 將玻璃著色,其含量爲2%以下,較佳爲1%以下,更佳爲〇.7% 13146pif.doc/008 17 200427649 以下。Ti02具有改善玻璃的耐候性,並降低高溫黏度的效果, 但是由於會助長Fe2〇3所致的著色’多量含有的話並不佳。但 是,Fe203在200 ppm以下的話,能夠含有至5%。ΖιΌ2爲提 昇耐候性的成分’然而由於容易含有放射性同位元素,其含 量爲〇〜2%,較佳爲〇〜0.5%,更佳爲500 ppm以下。 本發明的半導體封裝用玻璃蓋,藉由具有上述的基本組 成,並採用高純度原料與雜質不易混入的熔融環境,而能夠 精密的控制 U、Th、Fe203、PbO、Ti02、Mn02、Zr02 等的含 量。特別是會影響在紫外線附近透過率的Fe203、Pb〇、Ti02、 Μη02,能夠將之個別管理在1〜100 ppm的等級,造成α射線 所致的CCD元件的軟誤記的U、Th,個別管理在1〜;1〇 ppb 的等級。尙且,CCD容易因爲α射線產生軟誤記,今日希望 由玻璃蓋的射線放出量未滿0.005 c/cm2· hr,CMOS的場合, 不易產生α射線引起的軟誤記,由玻璃蓋的α射線放出量未 滿0·5 c/cm2 · hr亦可以使用。因此,在製作CMOS用玻璃蓋 的場合’並非一定要使用高純度原料,而且熔融時之降低U、 Th的混入亦無必要。 其次’以一個範例說明α射線放出量少的半導體封裝用 玻璃蓋的製造方法。 ’準備能夠形成具有所希望組成玻璃的玻璃原料調 合物。玻璃原料使用U、Th等雜質少的高純度原料。更具體 而言’使用U與Th的含量各5 ppb以下的高純度原料。其次, 將調合的玻璃原料投入熔融槽熔融。熔融槽可使用鉛容器(包 含隹自_老谷器)’然而由於容易在玻璃中混入白金粒子,較佳爲 至少溶融槽的內壁(天頂、側面、底面)以U、Th含量少的耐 火物1製作。具體而言,由於氧化鋁耐火物(例如氧化鋁質電鑄 13146pif.doc/008 18 200427649 磚)或石英耐火物(例如是砂block)不易腐蝕,而且能夠使U、 Th含量各在1 ppm以下,^、Th向玻璃的溶出量低而較佳。 其次,於澄淸槽進行熔融玻璃的均質化(脫泡·去除紋路)。此 澄淸槽能夠以耐火物或白金製作。尙且,一般的氧化锆耐火 物’在具有非常優良耐腐蝕性的反面,由於具有多量的放射 線同位元素,在使用上必須避免,然而如將氧化锆耐火物中 的雜質降低,且將U、Th含量降低至1 ppm以下的話,將其 作爲熔融槽的內壁使用,能夠製造出α射線放出量少的半導 體封裝用玻璃蓋。 其後,均質化的玻璃以下拉法成形爲板狀,得到所希望 厚度的板狀玻璃。下拉法可以使用溢流下拉法或是狹縫下拉 法。依此得到的板狀玻璃以一定的尺寸進行細切加工,並視 需要進行整平加工以製作玻璃蓋。 以下基於實施例說明本發明的封裝用玻璃蓋。 圖1所示爲實施例半導體封裝用玻璃蓋10。此半導體封 裝扁玻璃蓋10,係爲具備有與板厚度方向相對向的第1透光 面l〇a以及第2透光面l〇b,構成邊緣的側面i〇c的板狀玻璃。 此玻璃蓋10的尺寸爲14χ 16χ 〇·5 mm,第1透光面i〇a以及 第2透光面l〇b爲無硏磨面,其表面粗糙度(Ra)的其中任一爲 〇.5nm以下。而且雖然於圖式中省略側面l〇c具有平整的形狀。 其次,對於上述半導體封裝用玻璃蓋的製造方法與其性 能的評價試驗的結果進行說明。 板狀玻璃的最初製造步驟,爲製作一邊500mm以上的大 塊板狀玻璃的步驟。如上所述,形成表面品位優良的板狀坡 璃,最好是使用溢流下拉法。溢流下拉法,如圖2所示,是 由耐火物所形成的簷溝11使熔融玻璃12流動,由簷溝^的 13146pif.doc/008 19 200427649 兩側溢出的熔融玻璃12於簷溝11的底部融合,形成板狀而 向下方移動的方法。依此方法的話,由於熔融玻璃的自由表 面形成板狀玻璃的表裡面,能夠得到平滑性優良的大塊板狀 玻璃13。而且,藉由控制熔融條件與成形條件,能夠容易形 成厚度0.05〜0.7 mm,表面粗糙度(Ra)l.O nm以下的大塊板狀 玻璃。依此,能夠製作不需對大塊板狀玻璃13的表面硏磨, 僅以一定大小進行細切加工的半導體封裝用玻璃蓋。 此大塊板狀玻璃的細切方法,可使用機械切割或是雷射 切割。雷射切割首先使用熱加工雷射切斷裝置,在大塊板狀 玻璃的一側的面上,以雷射光束移動速度180± 5mm/sec或是 220± 5mm/sec,雷射出力120± 5W,或是160± 5W的條件, 進行切割至約板厚方向之約20%厚度,加工爲棋盤眼狀。其 次如圖3的槪念所示的,對於大塊板狀玻璃13的加工面13a, 由其相反側以動作方向Μ移動金屬製的線狀頭14,同時藉由 於大塊板狀玻璃13的加工面13a側以模具(圖式省略)押壓, 於夫塊版狀13的加工面13a施加應力以進行切割。依此進行 切斷,則得到沿著形成於棋盤眼狀的預定線分割的短冊狀的 板狀玻璃。依此押壓切割的短條狀玻璃的板狀玻璃,個別利 用真空鉗(圖示省略)搬運至至下一個步驟。然後,將短條狀板 狀玻璃再次進行切割加工,以得到具有一定尺寸的玻璃蓋。 表1所示爲Si02-Al203-B203-R0系玻璃構成之本發明的 封裝用玻璃蓋的實施例(試樣No. 1〜5)。 13146pif.doc/008 20 200427649 表1 (質量%) 樣本No 組成 1 2 3 4 5 Si02 59.0 63.0 58.0 59.0 59.0 ai2o3 15.0 16.0 16.0 15.0 17.0 B2〇3 10.0 10.0 8.0 10.0 8.0 MgO —— —— 1.0 1.0 3.0 CaO 6.0 8.0 4.0 5.0 4.0 SrO 5.0 1.0 2.0 3.0 8.0 BaO 3.0 1.0 10.0 6.0 一 ZnO 1.0 —— — 一 一 N^O —— —— — — 一 K20 —— —— 一 一 一 Li20 —— —— — 一 一 Sb203 1.0 1.0 1.0 1.0 1.0 驗溶出量 (mg) <0.01 <0.01 <0.01 <0.01 ,0.01 密度(g/cm3) 2.49 2.38 2.55 2.49 2.51 楊式率(Gpa) 77 70 70 68 77 比楊式率 (Gpa/g*cm3) 28 29 27 27 31 維式硬度 600 580 590 570 610 熱膨脹係數 [30-380〇C] (X 10'7°〇 38 33 37 37 37 液相溫度(°C) 1065 1105 1030 1055 1130 液相黏度 (dPa · s) 6.0 6.0 6.7 6.1 5.2 α射線放出 量(c/cm2 · hr) 0.0076 0.0035 0.0156 0.0108 0.0075 將表1的玻璃試樣,如下述的進行製作。首先,將如表1 21 13146pif.doc/008 200427649 中組成所調製的高純度玻璃原料投入鉑鍺坩鍋中,在具有攪 拌功能的電熔爐以攝氏1600度、20小時的條件熔融。其次, 將此熔融玻璃在碳板上流出並徐冷以製作玻璃樣本,並且調 查各特性。 如表1所明不的,無論是哪一個玻璃,鹼溶出量非常少, 而且密度、楊氏率、比楊氏率、維氏硬度、熱膨脹係數,能 夠滿足半導體封裝用玻璃蓋所要求的條件。而且,由於液相 溫度在1130°c以下,液相黏度爲1〇5·2 dPa .S以上,耐失去透 明性優良。 而且,表2、3所示爲Si〇2_Al2CVB2〇3_R2〇系玻璃所形成 之本發明的封裝用坡璃蓋的實施例(樣本ZnO has an excellent effect of improving weather resistance, improves the melting property of glass, and has an effect of suppressing the volatilization of B203 or an alkali metal oxide from molten glass. In particular, when the content of A1203 is less than 3%, the weather resistance is significantly reduced, and the content of ZnO is 2% or more, preferably 4.5% or more. However, if the content of ZnO is too much, 13146pif.doc / 008 16 200427649, since the glass easily loses transparency and the density increases, the content of ZnO is limited to 10% or less, preferably 9% or less, and more preferably 6% or less. In addition, in the present invention, in addition to the above components, the components such as P205, Y203, Nb203, and La203 can be contained in an amount of 5% or less, and 3% or less of various tinctures, as long as the glass properties are not impaired. The clarifying agent may be, for example, one or two or more kinds of metal powders such as SB203, Sb205, F2, Cl2, C, S03, Sn02, or Al Si. As203 can produce clear gas in a wide temperature range (about 1300 ~ 1700 ° C). In the past, such clear agents have been widely used. However, it is easy to contain radioisotope elements in the raw materials. It is very toxic and causes environmental pollution during glass manufacturing steps and waste glass processing. Therefore, it must be substantially free of As203. In addition, since PbO and CdO are also toxic, they must be avoided. In addition, SB203 and Sb205 are the same as As203. They have excellent clarifying effect. However, because of their strong toxicity, it is better not to contain them as much as possible. Accordingly, in the case of the Si02-Al203-B20rR0-based glass of the present invention, the ratio of the clarifying agent component is preferably 0.05 to 2.0% of the total amount of SB203 and Sb205 'F2, Cl2, C, S03, and Sn02. The total amount is 0.1 to 3.0% (especially Cl2 is 0.005 to 1.0%, and Sn02 is (^ (^ ~ 10%). In addition, in the case of Si〇2-ai2o3-b2o3-ro-based glass, in order to make Excellent meltability, the ratio is preferably 0.2% of the total amount of SB203 and Sb205, and 0.1 ~ 3.0% of the total amount of f2, C12, c, S03, and Sn02. In addition, FhO3 can also be used as a tincture. However, in order to color the glass, its content is limited to 500 ppm or less, preferably 300 ppm or less, and more preferably 200 ppm or less. Ce02 can also be used as a tincture, but in order to color the glass, its content is 2% Below, it is preferably 1% or less, and more preferably 0.7%. 13146pif.doc / 008 17 200427649 or less. Ti02 has the effect of improving the weather resistance of glass and reducing the viscosity at high temperature, but it is caused by Fe203. Coloring is not good if it is contained in a large amount. However, if Fe203 is 200 ppm or less, it can be contained up to 5%. ZιΌ2 A component for improving weather resistance 'However, since it easily contains a radioisotope, its content is 0 to 2%, preferably 0 to 0.5%, and more preferably 500 ppm or less. The glass cover for a semiconductor package of the present invention has the above Basic composition, and uses a high-purity raw material and a melting environment where impurities are not easily mixed, and can accurately control the content of U, Th, Fe203, PbO, Ti02, Mn02, Zr02, etc. Especially Fe203, which affects the transmittance near ultraviolet , Pb〇, Ti02, Μη02, can be individually managed at the level of 1 ~ 100 ppm, causing soft misremembering of CCD elements caused by alpha rays, U, Th, individually managed at the level of 1 ~; 10ppb. 尙Moreover, CCDs are prone to soft misremembering due to alpha rays. Today, it is expected that the amount of radiation emitted by the glass cover is less than 0.005 c / cm2 · hr. In CMOS, soft misremembering caused by alpha rays is not easy to occur. It can also be used under 0.5 c / cm2 · hr. Therefore, when manufacturing CMOS glass covers, it is not necessary to use high-purity raw materials, and it is not necessary to reduce the mixing of U and Th during melting. 'Explain an example of a method for manufacturing a glass cover for a semiconductor package with a small amount of α-ray emission.' Prepare a glass raw material blend capable of forming a glass having a desired composition. The glass raw material is a high-purity raw material with few impurities such as U and Th. Specifically, 'high-purity raw materials having contents of U and Th of 5 ppb or less are used. Next, the prepared glass raw material is put into a melting tank to be melted. The melting tank can use a lead container (including 隹 Lao Guqi). However, since it is easy to mix platinum particles into the glass, it is preferred that at least the inner wall (zenith, side, bottom) of the melting tank be refractory with a small U and Th content.物 1 制作。 Object 1 production. Specifically, alumina refractory (such as alumina electroformed 13146pif.doc / 008 18 200427649 brick) or quartz refractory (such as sand block) are not easily corroded, and the U and Th content can be less than 1 ppm each. The amount of dissolution of ^ and Th to the glass is low and better. Next, homogenization (defoaming and de-ripping) of the molten glass was performed in a clear bath. This clear tank can be made of refractory or platinum. In addition, the general zirconia refractory 'has a very good corrosion resistance, because it has a large amount of radioisotope elements, it must be avoided in use. However, if the impurities in the zirconia refractory are reduced, and U, When the Th content is reduced to 1 ppm or less, the glass can be used as an inner wall of a melting tank to produce a glass cover for a semiconductor package with a small amount of α-rays. Thereafter, the homogenized glass is formed into a plate shape by a pull-down method to obtain a plate-shaped glass having a desired thickness. The pull-down method can be an overflow pull-down method or a slit pull-down method. The plate-shaped glass thus obtained is finely cut to a certain size, and if necessary flattened, a glass cover is produced. Hereinafter, the glass cover for packaging of this invention is demonstrated based on an Example. FIG. 1 shows a glass cover 10 for a semiconductor package according to an embodiment. The semiconductor package flat glass cover 10 is a plate-shaped glass including a first light-transmitting surface 10a and a second light-transmitting surface 10b which are opposed to the plate thickness direction, and constitutes an edge side surface ioc. The size of this glass cover 10 is 14 × 16 × 0.5 mm, the first light-transmitting surface i0a and the second light-transmitting surface 10b are honing-free surfaces, and any one of the surface roughnesses (Ra) is 0. .5nm or less. Moreover, although the side surface 10c is omitted in the drawing, it has a flat shape. Next, the method for manufacturing the glass cover for a semiconductor package and the results of an evaluation test of its performance will be described. The first step of manufacturing sheet glass is a step of making a sheet glass having a size of 500 mm or more on one side. As described above, it is preferable to use an overflow down-draw method to form a plate-shaped glass having excellent surface quality. The overflow down-draw method, as shown in FIG. 2, is the gutter 11 formed by the refractory to make the molten glass 12 flow, and the gutter 11 overflows from both sides 13146pif.doc / 008 19 200427649 on both sides of the gutter 11 The bottom of the method is merged to form a plate and move downward. According to this method, since the free surface of the molten glass forms the front and back surfaces of the plate-shaped glass, a large plate-shaped glass 13 having excellent smoothness can be obtained. In addition, by controlling the melting conditions and the molding conditions, it is possible to easily form a large plate-like glass having a thickness of 0.05 to 0.7 mm and a surface roughness (Ra) of 1.0 nm or less. According to this, it is possible to produce a glass cover for a semiconductor package that does not require honing the surface of the large plate-shaped glass 13 and performs only fine-cut processing with a constant size. The method of fine cutting of this large plate glass can be performed by mechanical cutting or laser cutting. Laser cutting first uses a thermal processing laser cutting device. On one side of a large sheet of glass, the laser beam moves at a speed of 180 ± 5mm / sec or 220 ± 5mm / sec, and the laser output force is 120 ± 5W, or 160 ± 5W, cut to about 20% of the thickness of the plate, and machine it into a checkerboard shape. Next, as shown in FIG. 3, for the processing surface 13a of the large plate-shaped glass 13, the metal linear head 14 is moved in the operation direction M from the opposite side. The processing surface 13a side is pressed with a die (not shown in the drawing), and a stress is applied to the processing surface 13a of the block plate shape 13 to perform cutting. By cutting in this manner, a sheet-like plate-shaped glass divided along a predetermined line formed in a checkerboard shape was obtained. The plate-shaped glass of the short strip-shaped glass that is pressed and cut according to this is individually transferred to the next step using vacuum pliers (not shown). Then, the short strip-shaped glass is cut again to obtain a glass cover having a certain size. Table 1 shows examples of the glass cover for packaging according to the present invention made of Si02-Al203-B203-R0-based glass (Sample Nos. 1 to 5). 13146pif.doc / 008 20 200427649 Table 1 (% by mass) Sample No Composition 1 2 3 4 5 Si02 59.0 63.0 58.0 59.0 59.0 ai2o3 15.0 16.0 16.0 15.0 17.0 B2 03 10.0 10.0 8.0 10.0 8.0 MgO ---- 1.0 1.0 3.0 CaO 6.0 8.0 4.0 5.0 4.0 SrO 5.0 1.0 2.0 3.0 8.0 BaO 3.0 1.0 10.0 6.0 One ZnO 1.0 —— One One N ^ O —— —— — One K20 —— —— One One One Li20 —— —— — One One Sb203 1.0 1.0 1.0 1.0 1.0 Examination dissolution amount (mg) < 0.01 < 0.01 < 0.01 < 0.01, 0.01 density (g / cm3) 2.49 2.38 2.55 2.49 2.51 Young's rate (Gpa) 77 70 70 68 77 (Gpa / g * cm3) 28 29 27 27 31 Vickers hardness 600 580 590 570 610 Thermal expansion coefficient [30-380 ° C] (X 10'7 ° 〇38 33 37 37 37 Liquidus temperature (° C) 1065 1105 1030 1055 1130 Liquid viscosity (dPa · s) 6.0 6.0 6.7 6.1 5.2 Alpha-ray emission (c / cm2 · hr) 0.0076 0.0035 0.0156 0.0108 0.0075 The glass sample in Table 1 was prepared as follows. First, Table 1 21 13146pif.doc / 008 200427649 Composition of high-purity glass raw materials prepared by platinum The germanium crucible was melted in an electric furnace with a stirring function at 1600 ° C for 20 hours. Next, this molten glass was poured on a carbon plate and slowly cooled to make a glass sample, and the characteristics were investigated. Table 1 It is clear that no matter which glass is used, the amount of alkali dissolution is very small, and the density, Young's ratio, specific Young's ratio, Vickers hardness, and thermal expansion coefficient can meet the requirements of the glass cover for semiconductor packaging. Since the liquidus temperature is below 1130 ° c, the liquidus viscosity is 105 · 2 dPa · S or more, and it has excellent resistance to loss of transparency. In addition, Tables 2 and 3 show the formation of Si02_Al2CVB203_R20 glass. Example of a sloped glass lid for packaging according to the present invention (sample

No. 6〜17) 〇 13146pif.doc/008 22 200427649 表2 (質量%) 樣本No 組成 6 7 8 9 10 11 Si02 68.8 65.8 68.4 68.3 68.8 67.8 ai2o3 7.0 8.0 5.2 7.5 7.0 8.0 B2〇3 13.1 13.1 1.09 13.1 13.1 13.1 MgO —— 0.4 一 — 一 一 CaO 2.2 0.6 3.2 —— 0.6 0.6 SrO —— —— —— 一 —— 一 BaO —— —— —— 一 —— 一 ZnO —— 1.2 0.9 — 一 一 N^O 6.7 8.6 5.6 8.9 6.7 8.6 K20 1.9 2.0 5.7 1.9 3.5 1.6 Li20 —— —— —— 一 — 一 Ti02 —— —— —— 一 —— — Sb203 0.3 0.3 0.3 0.3 0.3 0.3 Cl —— —— — — 一 一 Sn02 —— —— 一 — — 一 S〇3 —— —— — — 一 一 Fe203 30ppm 30ppm 30ppm 30ppm 30ppm 30ppm U(ppb) 4 未測量 未測量 未測量 未測量 4 Th(ppb) 2 未測量 未測量 未測量 未測量 2 熱膨讎數 (x 10_7/°C) 55.8 62.8 64.9 62.0 59.0 60.4 密度(g/cm3) 2.35 2.37 2.42 2.36 2.35 2.35 黏度應變點 (°C) 535 517 536 518 514 520 徐冷點fc) 571 554 576 561 558 561 軟化點ΓΟ 765 743 760 755 760 754 104(°C) 1119 1091 1093 1077 1102 1087 103(°C) 1345 1301 1292 1282 1316 1300 1025(〇C) 1500 1456 1434 1434 1471 1455 液相溫度 (°C) 884 728 882 817 822 未失去透 明 液相黏度 (dPa · s) 5.9 7.9 5.8 6.6 6.6 未失去透 明 ^射線放出 量(c/cm2 · hr) 0.0020 0.0022 0.0021 0.0021 0.0020 0.0021 23 13146pif.doc/008 200427649 表3 (質量%) 樣本No 組成 12 13 14 159 16 17 Si02 66.5 68.8 66.8 65.8 66.9 68.3 ai2o3 8.0 7.0 7.0 8.0 7.5 7.0 B2〇3 13.1 12.0 13.1 13.1 13.1 13.1 MgO —— —— —— 一 —— 一 CaO 0.6 2.2 2.2 0.6 2.2 0.6 SrO —— — — 一 一 0.8 BaO —— —— 一 — 一 0.8 ZnO 1.6 — 一 — 一 一 Ν\〇 7.9 6.7 8.6 8.6 6.2 6.7 k2o 2.0 3.0 2.0 2.0 3.0 2.4 Li20 一 — 一 一 0.5 一 Ti02 1.6 Sb203 0.3 0.3 0.3 0.3 一 一 Cl —— —— —— —— 0.2 一 Sn02 0.3 0.3 S〇3 —— —— —— 一 — lOOpprn Fe203 30ppm 30ppm 30ppm 10ppm 30ppm 30ppm U(ppb) 未測量 未測量 4 4 未測量 未測量 Th(ppb) 未測量 未測量 2 2 未測量 未測量 熱膨脹係數 (x l〇-7/°C) 59.9 59.1 62.8 61.4 60.6 55.8 密度(g/cm3) 2.36 2.37 2.39 2.36 2.36 2.33 黏度應變點 (°C) 509 531 530 510 527 521 徐冷點(。〇 552 574 568 552 568 561 軟化點(。C) 752 764 745 744 759 761 i〇Tc) 1106 1117 1059 1086 1095 1109 103(°C) 1331 1341 1261 1306 1306 1333 1025(〇C) 1483 1494 1401 1461 1454 1486 液相溫度 (°C) 未失去透 明 867 855 822 842 853 液相黏度 (dPa · s) 未失去透 明 6.1 5.9 6.4 6.3 6.2 ^射線放出 量(c/cm2 · hr) 0.0021 0.0021 0.0021 0.0021 0.0023 0.0030 13146pif.doc/008 24 200427649 表2、3中的各玻璃試樣,如下述的進行製作。 首先’將如表中組成所調製的高純度玻璃原料,投入鉑 錯、氧化銘、石英的其中之一種所製作的纟甘鍋中,在具有攪 样功通的電溶爐以攝氏1550度、6小時的條件熔融,並將此 熔融玻璃在碳板上流出,將此板玻璃徐冷以得到玻璃樣本。 如表所明確表示的,各玻璃試料滿足熱膨脹係數、密度、 α射線放出量滿足半導體用玻璃蓋的要求,且由於1〇2·5 dPa· s相當的黏度爲1500°C以下其熔融性優良,由於液相黏度爲 1〇5·8 dPa · s以上耐失去透明性優良。 尙且,表中的鹼溶出量是基於JIS R3502測量。密度以公 知的阿基米德法測量。楊氏率以鐘紡(股)製非破壞彈性測量裝 置(KI-11),計算出藉由共振法測量的楊氏率與密度。維氏硬 度基於JIS Z2244-1992測量。熱膨脹係數係使用膨脹計測量30 〜380°C溫度範圍內的平均熱膨脹係數。液相溫度係將各別粉 碎爲300〜500//m的粒徑,將此置入鉑船中,並與溫度匹配 爐中保持8小時,以顯微鏡進行觀察,測量見到玻璃試樣內 部失去透明(結晶異物)的最高溫度,此溫度作爲液相溫度。而 且,液相溫度時的玻璃的黏度作爲液相黏度。No. 11、12的 玻璃試樣,不會失去透明,特別是具有優良的耐失去透明性。 U、Th的含量,係藉由ICP-MASS測量。而且,應變點以及 徐冷點係依據ASTM C336-71的方法測定,軟化點係依據 C338-93 的方法測量。104 dPa · S、1〇3 dPa · S 以及 102.5 dPa · S,藉由周知的白金球上升法求得。102·5 dPa · S溫度係測量 高溫黏度爲1〇2·5泊相當的溫度,此値愈低的話熔融性愈優良。 α射線放出量使用超低等級α射線測量裝置(住友化學公司製 LACS-400M)以進行測量。 13146pif.doc/008 25 200427649 而且,將表1〜3的第No· 1、6、11、14以及15的玻璃 試料於實驗熔融槽(氧化鋁耐火物)熔融,以溢流下拉法形成厚 度0·5 mm的板狀,其表面不進行硏磨,以雷射切割進行細切 加工,製作縱尺寸14 mm、橫尺寸16 mm的玻璃蓋。 而且,爲了進行比較,將構成試樣No· 1之玻璃的原料容 溶於上述的實驗熔融槽後,以800x 300x 300 mm的尺寸澆鑄 成形,藉由鋼絲鋸切斷,加工爲板厚1.5mm的板狀。其後, 將此板狀玻璃的兩面以回轉硏磨機施以精密硏磨加工以形成 大塊板狀玻璃(厚度0.5 mm),以雷射切割進行細切加工,製 作縱尺寸14 mm、橫尺寸16 mm的玻璃蓋。 依此製作的各玻璃蓋的表裡的透光面(第1透光面與第2 透光面)的表面粗糙度(Ra),以探針式表面粗糙測量機 Talystep(Tayler-Hobson社製)進行測量,其結果如表4所示。 表4 試樣No. 1 6 11 14 15 比較例 表面粗糙度 (Ra) 第1透光面 第2透光面 0.1 5nm 0.20nm 0.20 nm 0.15 nm 0.23 nm 0.19 nm 0.20 nm 0.18 nm 0.1 8nm 0.16 nm 0.56 nm 0.95 nm 如表4所明確表示的,實施例的玻璃蓋,無論是第1透 光面或第2透光面的表面粗糙度(Ra)爲0.23 nm以下,具有極 爲良好的平滑面,而比較例的玻璃蓋,即使是施加精密硏磨 加工,其表面粗糙度(Ra)爲0.56以上。而且,各玻璃蓋的透 光面以原子力顯微鏡(AFM)觀察,於比較例的玻璃蓋,於其全 部表面形成有無述的微小傷痕,而於實施例的玻璃蓋,認定 13146pif.doc/008 26 200427649 沒有此種傷痕。 產業上可利用性 本發明的封裝用玻璃蓋適用於固體攝影元件封裝用玻璃 蓋,此外亦適用於封裝雷射二極體等的各種半導體封裝的玻 璃蓋。而且,此玻璃蓋於30〜38〇t的溫度範圍之平均熱膨脹 係數爲3 0〜8 5 X 10 7/ C ’除了與化銘封裝之外,對於以樹脂、 鶴金屬、钻合金、組合金、36Ni-Fe合金、42 Ni-Fe合金、45Ni-Fe 合金、46Ni-Fe合金、52Ni-Fe合金製作的各種封裝,能夠以 有機樹脂或低融點玻璃進行封裝。 【圖式簡單說明】 圖1所繪示爲實施例的半導體封裝用玻璃蓋的斜視圖。 圖2所繪示爲使用溢流下拉法以形成板狀玻璃的方法的 說明圖。 圖3所繪示爲使用雷射切割對大塊板狀玻璃進行細切加 工的方法。 【圖式標示說明】 10 :半導體封裝用玻璃棻 l〇a :第1透光面 l〇b :第2透光面 l〇c :側面 Η :簷溝 12:熔融玻璃 13 :大塊板狀玻璃 13a :加工面 Η :線狀頭 Μ:動作方向 13146pif.doc/008 27No. 6 to 17) 〇13146pif.doc / 008 22 200427649 Table 2 (% by mass) Sample No Composition 6 7 8 9 10 11 Si02 68.8 65.8 68.4 68.3 68.8 67.8 ai2o3 7.0 8.0 5.2 7.5 7.0 8.0 B2〇3 13.1 13.1 1.09 13.1 13.1 13.1 MgO —— 0.4 One—One CaO 2.2 0.6 3.2 —— 0.6 0.6 SrO —— —— —— One BaO —— —— —— One ZnO —— 1.2 0.9 — One N ^ O 6.7 8.6 5.6 8.9 6.7 8.6 K20 1.9 2.0 5.7 1.9 3.5 1.6 Li20 —— —— —— One — One Ti02 —— —— — — Sb203 0.3 0.3 0.3 0.3 0.3 0.3 Cl —— —— — — One One Sn02 —— —— One — — One S03 — —— — — One Fe203 30ppm 30ppm 30ppm 30ppm 30ppm 30ppm U (ppb) 4 Not measured Not measured Not measured Not measured 4 Th (ppb) 2 Not measured Not Measured but not measured 2 Thermal expansion coefficient (x 10_7 / ° C) 55.8 62.8 64.9 62.0 59.0 60.4 Density (g / cm3) 2.35 2.37 2.42 2.36 2.35 2.35 Viscosity strain point (° C) 535 517 536 518 514 520 Xu Leng Point fc) 571 554 576 561 558 561 Softening point Γ Ο 765 743 760 755 760 754 104 (° C) 1119 1091 1093 1077 1102 1087 103 (° C) 1345 1301 1292 1282 1316 1300 1025 (〇C) 1500 1456 1434 1434 1471 1455 Liquid temperature (° C) 884 728 882 817 822 No loss of transparent liquid viscosity (dPa · s) 5.9 7.9 5.8 6.6 6.6 No loss of transparent ^ ray emission (c / cm2 · hr) 0.0020 0.0022 0.0021 0.0021 0.0020 0.0021 23 13146pif.doc / 008 200427649 Table 3 (mass% ) Sample No Composition 12 13 14 159 16 17 Si02 66.5 68.8 66.8 65.8 66.9 68.3 ai2o3 8.0 7.0 7.0 8.0 7.5 7.0 B2〇3 13.1 12.0 13.1 13.1 13.1 13.1 MgO —— —— —— One——One CaO 0.6 2.2 2.2 0.6 2.2 0.6 SrO —— — — One 0.8 BaO — — One — 0.8 0.8 ZnO 1.6 — One — One N \ 〇7.9 6.7 8.6 8.6 6.2 6.7 k2o 2.0 3.0 2.0 2.0 3.0 2.4 Li20 One — One one 0.5 One Ti02 1.6 Sb203 0.3 0.3 0.3 0.3-Cl----- ---- ---- 0.2-Sn02 0.3 0.3 S〇3 ---- -----lOOpprn Fe203 30ppm 30ppm 30ppm 10ppm 30ppm 30ppm U (ppb) Not measured Amount 4 4 Not measured Not measured Th (ppb) Not measured Not measured 2 2 Not measured Not measured Thermal expansion coefficient (xl0-7 / ° C) 59.9 59.1 62.8 61.4 60.6 55.8 Density (g / cm3) 2.36 2.37 2.39 2.36 2.36 2.33 Viscosity Strain Point (° C) 509 531 530 510 527 521 Xu Lengdian (. 〇552 574 568 552 568 561 Softening point (.C) 752 764 745 744 759 761 i〇Tc) 1106 1117 1059 1086 1095 1109 103 (° C) 1331 1341 1261 1306 1306 1333 1025 (〇C) 1483 1494 1401 1461 1454 1486 Liquid temperature (° C) Without loss of transparency 867 855 822 842 853 Liquid viscosity (dPa · s) Without loss of transparency 6.1 5.9 6.4 6.3 6.2 ^ Emission amount (c / cm2 · hr) 0.0021 0.0021 0.0021 0.0021 0.0023 0.0030 13146 pif .doc / 008 24 200427649 The glass samples in Tables 2 and 3 were prepared as follows. First, 'high purity glass raw materials prepared according to the composition shown in the table are put into a pan-sweet pot made of one of platinum, oxide, and quartz, and the temperature is 1550 degrees Celsius in an electric melting furnace with a sample stirring function. The glass was melted under the conditions of 6 hours, and the molten glass was flowed out on a carbon plate, and the plate glass was slowly cooled to obtain a glass sample. As clearly shown in the table, each glass sample satisfies the thermal expansion coefficient, density, and amount of α-ray emission to meet the requirements of the glass cover for semiconductors. Since the equivalent viscosity of 10 · 5 dPa · s is 1500 ° C or less, its meltability is excellent. Since the liquid phase viscosity is 105 · 8 dPa · s or more, it has excellent resistance to loss of transparency. The amount of alkali elution in the table is measured based on JIS R3502. The density is measured by the well-known Archimedes method. The Young's rate was measured by a non-destructive elasticity measuring device (KI-11) made by bell spinning (strand), and the Young's rate and density measured by the resonance method were calculated. Vickers hardness is measured based on JIS Z2244-1992. The coefficient of thermal expansion is the average coefficient of thermal expansion measured in the temperature range of 30 to 380 ° C using a dilatometer. The liquidus temperature is pulverized to a particle size of 300 ~ 500 // m. This is placed in a platinum boat and kept in a temperature-matching furnace for 8 hours. Observation with a microscope shows that the inside of the glass sample is lost. The highest temperature of transparent (crystalline foreign matter). This temperature is used as the liquidus temperature. In addition, the viscosity of glass at the liquidus temperature is taken as the liquidus viscosity. The glass samples of Nos. 11 and 12 do not lose their transparency, and in particular have excellent resistance to loss of transparency. The contents of U and Th are measured by ICP-MASS. In addition, the strain point and Xu cold point are measured according to the method of ASTM C336-71, and the softening point is measured according to the method of C338-93. 104 dPa · S, 103 dPa · S, and 102.5 dPa · S were obtained by the well-known platinum ball rising method. The temperature of 102.5 dPa · S is measured. The high-temperature viscosity is a temperature equivalent to 10 · 5 poise. The lower the temperature, the better the meltability. The α-ray emission amount was measured using an ultra-low-grade α-ray measuring device (LACS-400M manufactured by Sumitomo Chemical Co., Ltd.). 13146pif.doc / 008 25 200427649 Furthermore, the glass samples No. 1, 6, 11, 14, and 15 in Tables 1 to 3 were melted in the experimental melting tank (alumina refractory), and the thickness was 0 by the overflow down-draw method. 5 mm plate shape, without honing the surface, fine cutting with laser cutting to produce a glass cover with a vertical size of 14 mm and a horizontal size of 16 mm. Furthermore, for comparison, the raw materials of the glass constituting the sample No. 1 were contained in the experimental melting tank described above, and then cast into a size of 800x300x300mm, cut by a wire saw, and processed to a thickness of 1.5mm. Plate-like. Thereafter, both sides of this plate-shaped glass were subjected to precision honing with a rotary honing machine to form a large plate-shaped glass (thickness 0.5 mm), and fine cutting was performed by laser cutting to produce a vertical size of 14 mm, a horizontal 16 mm glass cover. The surface roughness (Ra) of the light-transmitting surfaces (the first light-transmitting surface and the second light-transmitting surface) of each glass cover manufactured in this way was measured by a probe-type surface roughness measuring machine Talystep (manufactured by Taylor-Hobson). ). The results are shown in Table 4. Table 4 Sample No. 1 6 11 14 15 Comparative Example Surface Roughness (Ra) 1st transparent surface 2nd transparent surface 0.1 5nm 0.20nm 0.20 nm 0.15 nm 0.23 nm 0.19 nm 0.20 nm 0.18 nm 0.1 8nm 0.16 nm 0.56 nm 0.95 nm As clearly shown in Table 4, the glass cover of the example has a surface roughness (Ra) of 0.23 nm or less, regardless of whether it is the first light-transmitting surface or the second light-transmitting surface. The glass cover of the comparative example had a surface roughness (Ra) of 0.56 or more even when precision honing was applied. In addition, the light transmitting surface of each glass cover was observed with an atomic force microscope (AFM). In the glass cover of the comparative example, minute scratches were formed on its entire surface. The glass cover of the example was identified as 13146pif.doc / 008 26 200427649 No such scars. Industrial Applicability The glass cover for packaging of the present invention is suitable for a glass cover for solid-state imaging device packaging, and also suitable for glass covers for various semiconductor packages such as laser diodes. In addition, the average thermal expansion coefficient of this glass cover in the temperature range of 30 ~ 38〇t is 30 ~ 8 5 X 10 7 / C. In addition to encapsulation with Huaming, the glass cover is made of resin, crane metal, diamond alloy, and combination gold. , 36Ni-Fe alloy, 42 Ni-Fe alloy, 45Ni-Fe alloy, 46Ni-Fe alloy, 52Ni-Fe alloy, all kinds of packages can be packaged with organic resin or low melting point glass. [Brief Description of the Drawings] FIG. 1 is a perspective view of a glass cover for a semiconductor package according to an embodiment. FIG. 2 is an explanatory diagram showing a method for forming a sheet glass using an overflow down-draw method. Figure 3 illustrates a method for finely cutting a large plate-shaped glass using laser cutting. [Schematic description] 10: Glass for semiconductor packaging 棻 10a: First transparent surface 10b: Second transparent surface 10c: Side surface Η: Gutter 12: Fused glass 13: Large plate shape Glass 13a: Machined surface Η: Linear head M: Movement direction 13146pif.doc / 008 27

Claims (1)

200427649 拾、申請專利範圍: 1. 一種半導體封裝用玻璃蓋,其特徵爲具有無硏磨面的透 光面,表面粗糙度(Ra)爲l.Onm以下。 2. 如申請專利範圍第1項所述的半導體封裝用玻璃蓋,其 特徵爲使用下拉法或是浮法成形。 3. 如申請專利範圍第2項所述的半導體封裝用玻璃蓋,其 特徵爲前述下拉法爲溢流下拉法。 4. 如申請專利範圍第1項所述的半導體封裝用玻璃蓋,其 特徵爲液相溫度的玻璃黏度爲1〇5·2 dPa · s以上。 5. 如申請專利範圍第1項所述的半導體封裝用玻璃蓋,其 特徵爲溫度範圍30〜380度°〇的平均熱膨脹係數爲30〜85x 10_7/〇C。 6. 如申請專利範圍第1項所述的半導體封裝用玻璃蓋,其 特徵爲α射線放出量爲0.01 c/cm2 · hr以下。 7. 如申請專利範圍第1項所述的半導體封裝用玻璃蓋,其 特tfe爲鹼溶出量爲l.Omg以下。 8. 如申請專利範圍第1項所述的半導體封裝用玻璃蓋,其 特徵爲厚度爲0.05〜0.7 mm。 9. 如申請專利範圍第1項所述的半導體封裝用玻璃蓋,其 特徵爲密度2.55 g/cm3以下。 10. 如申請專利範圍第1項至第9項的其中之一項所述的 半導體封裝用玻璃蓋,其特徵爲具有於質量%含有52〜 70%、A1203 5〜20%、B203 5〜20%、鹼土類金屬氧化物4〜 30%、ZnO 0〜5%的基本組成,實質上不含有鹼金屬氧化物。 11. 如申請專利範圍第1項至第9項的其中之一項所述的 半導體封裝用玻璃蓋,其特徵爲具有於質量%含有58〜 13146pif.doc/008 28 200427649 75%、Al2〇3 0.5 〜15%、B2〇3 5 〜20%、鹼金屬氧化物 1 〜2〇0/〇、 鹼土類金屬氧化物〇〜20%、ZnO 〇〜1〇%的基本組成。 12. 如申請專利範圍第1項所述的半導體封裝用玻璃蓋, 其特徵爲使用收納有固態攝影元件的封裝。 13. 如申請專利範圍第1項所述的半導體封裝用玻璃蓋, 其特徵爲使用收納有雷射二極體的封裝。 14·一種半導體封裝用玻璃蓋,其特徵爲具有無硏磨面的 透光面,表面粗糙度(Ra)爲l.Onm以下,使用下拉法或是浮法 成形。 15·—種半導體封裝用玻璃蓋,其特徵爲於質量%含有si〇2 52〜70%、A1203 5〜20%、B2〇3 5〜20%、鹼土類金屬氧化物4 〜30%、ZnO 0〜5%的基本組成,實質上不含有鹼金屬氧化物, 於溫度範圍30〜380度°〇的平均熱膨脹係數爲30〜85χ 10-7/ °C,液相溫度的玻璃黏度爲1〇5·2 dPa · s以上。 16_如申請專利範圍第15項所述的半導體封裝用玻璃蓋, 其特徵爲α射線放出量爲0.01 c/cm2 · hr以下。 17·如申請專利範圍第15項所述的半導體封裝用玻璃蓋, 其特徵爲玻璃中的U含量爲10 ppb以下,Th含量爲20 ppb 以下。 18·如申請專利範圍第15項至第17項的其中之一項所述 的半導體封裝用玻璃蓋,其特徵爲實質上未含有As203。 19.一種半導體封裝用玻璃蓋,其特徵爲於質量%含有si〇2 58 〜75%、Al2〇3 0.5 〜15%、B2〇3 5 〜20%、鹼金屬氧化物 1 〜20%、鹼土類金屬氧化物〇〜20%、ZnO〇〜10%的基本組成, 於溫度範圍30〜380度。C的平均熱膨脹係數爲30〜85χ ΙΟ·7/ T:,液相溫度的玻璃黏度爲1〇5·2 dPa · s以上。 13146pif.doc/008 29 200427649 20·如申請專利範圍第19項所述的半導體封裝用玻璃蓋, 其特徵爲α射線放出量爲〇.01 c/cm2 · hr以下。 21·如申請專利範圍第19項所述的半導體封裝用玻璃蓋, 其特徵爲玻璃中的u含量爲10 ppb以下,Th含量爲2〇 ppb 以下。 22·如申請專利範圍第19項至第21項的其中之一項所述 的半導體封裝用玻璃蓋,其特徵爲實質上未含有As2〇3。 23·—種半導體封裝用玻璃蓋的製造方法,在至少由耐火 物形成內壁的熔融槽內投入玻璃原料,熔融之後使用下拉法 或是浮法成形爲板狀。 24·如申請專利範圍第23項所述的半導體封裝用玻璃蓋的 製造方法,其特徵爲使用下拉法或是浮法成形。 25·如申請專利範圍第23項所述的半導體封裝用玻璃蓋的 製造方法,其特徵爲前述耐火物由氧化鋁耐火物、石英耐火 物以及氧化锆耐火物所組之族群選擇1種或2種以上。 26·如申請專利範圍第23項所述的半導體封裝用玻璃蓋的 製造方法,其特徵爲前述耐火物所含有之U、Th的含量爲各 1 ppm以下。 27.如申請專利範圍第23項所述的半導體封裝用玻璃蓋的 製造方法,其特徵鋪麵賴Μ含有之U、Th的含量爲 各0·5 ppb以下。 B2〇35〜20%、鹼金屬氧化物1〜 〜20%、ZnO 0〜10%的基本組成, 28·如申請專利範圍第23項麥第27項的其中之-項所述 的半導體雜歷賴關造化,浦顚將_玻璃原 料調製成製造出於質量%含有S1〇2外〜微Ah Q卜is%、 2〇°/〇、驗土類金屬氧化物〇 於溫度範圍3〇〜380度。C 13146pif.doc/〇〇8 200427649 的平均熱膨脹係數爲30〜85x 1(T7/°C,液相溫度的玻璃黏度 爲105·2 dPa · s以上,α射線放出量爲0.01 c/cm2 · hr以下的 玻璃。 29. 如申請專利範圍第23項至第27項的其中之一項所述 的半導體封裝用玻璃蓋的製造方法,其特徵爲將前述玻璃原 料調製成製造出於質量%含有Si02 52〜70%、Al2〇3 5〜20%、 B203 5〜20%、鹼土類金屬氧化物4〜30%、ZnO 0〜5%的基 本組成,實質上不含有鹼金屬氧化物,於溫度範圍30〜380 度°C的平均熱膨脹係數爲30〜85x 10_7/°C,液相溫度的玻璃 黏度爲1〇5·2 dPa · s以上的玻璃。 30. 如申請專利範圍第29項所述的半導體封裝用玻璃蓋的 製造方法,其特徵爲前述玻璃原料的α射線放出量爲0.01 c/cm2 · hr 以下0 13146pif.doc/008 31200427649 Scope of patent application: 1. A glass cover for a semiconductor package, which is characterized by a light-transmissive surface without a honing surface, and has a surface roughness (Ra) of less than l. Onm. 2. The glass cover for a semiconductor package according to item 1 of the scope of patent application, which is characterized by using a down-draw method or a float method. 3. The glass cover for a semiconductor package according to item 2 of the scope of patent application, wherein the aforementioned pull-down method is an overflow pull-down method. 4. The glass cover for a semiconductor package according to item 1 of the scope of patent application, characterized in that the glass viscosity at the liquidus temperature is 105 · 2 dPa · s or more. 5. The glass cover for a semiconductor package according to item 1 of the scope of patent application, characterized in that the average thermal expansion coefficient of the temperature range of 30 to 380 degrees ° 0 is 30 to 85x 10_7 / 〇C. 6. The glass cover for a semiconductor package according to item 1 of the scope of patent application, characterized in that the amount of α-ray emission is 0.01 c / cm2 · hr or less. 7. The glass cover for semiconductor packaging according to item 1 of the scope of patent application, wherein tfe is an alkali dissolution amount of 1.0 mg or less. 8. The glass cover for a semiconductor package according to item 1 of the scope of patent application, which has a thickness of 0.05 to 0.7 mm. 9. The glass cover for semiconductor packaging according to item 1 of the scope of patent application, which has a density of 2.55 g / cm3 or less. 10. The glass cover for a semiconductor package according to any one of claims 1 to 9 of the scope of patent application, characterized in that it has a content of 52 to 70% by mass, A1203 5 to 20%, and B203 5 to 20 Basic composition of 4% to 30% of alkaline earth metal oxides and 0 to 5% of ZnO. Alkali metal oxides are not substantially contained. 11. The glass cover for a semiconductor package according to any one of claims 1 to 9 of the scope of patent application, characterized in that it has a content of 58 to 13146 pif.doc / 008 28 200427649 75% and Al203 Basic composition of 0.5 to 15%, B203 to 5 to 20%, alkali metal oxides 1 to 2000 / 〇, alkaline earth metal oxides 0 to 20%, and ZnO 0 to 10%. 12. The glass cover for a semiconductor package according to item 1 of the scope of patent application, characterized in that a package containing a solid-state imaging element is used. 13. The glass cover for a semiconductor package according to item 1 of the scope of patent application, characterized in that a package containing a laser diode is used. 14. A glass cover for a semiconductor package, characterized in that it has a light-transmitting surface without a honing surface and a surface roughness (Ra) of 1.0 nm or less, and is formed by a down-draw method or a float method. 15 · —A glass cover for a semiconductor package, characterized in that it contains SiO 2 52 to 70%, A1203 5 to 20%, B2 03 5 to 20%, alkaline earth metal oxide 4 to 30%, and ZnO. The basic composition of 0 to 5%, which does not substantially contain alkali metal oxides, has an average thermal expansion coefficient of 30 to 85 × 10-7 / ° C at a temperature range of 30 to 380 °°, and a glass viscosity of 1 at the liquidus temperature. 5 · 2 dPa · s or more. 16_ The glass cover for a semiconductor package according to item 15 of the scope of patent application, wherein the alpha ray emission amount is 0.01 c / cm2 · hr or less. 17. The cover glass for a semiconductor package according to item 15 of the scope of patent application, characterized in that the U content in the glass is 10 ppb or less and the Th content is 20 ppb or less. 18. The glass cover for a semiconductor package according to any one of claims 15 to 17 of the scope of patent application, characterized in that it does not substantially contain As203. 19. A glass cover for a semiconductor package, comprising SiO2 58 to 75% by mass, Al2O3 0.5 to 15%, B2O3 5 to 20%, alkali metal oxide 1 to 20%, alkaline earth The basic composition of the metalloid oxide is 0 to 20% and ZnO is 0 to 10%, and the temperature range is 30 to 380 degrees. The average thermal expansion coefficient of C is 30 to 85 × 10 · 7 / T :, and the glass viscosity at the liquidus temperature is 105 · 2 dPa · s or more. 13146pif.doc / 008 29 200427649 20. The glass cover for a semiconductor package according to item 19 of the scope of application for patent, characterized in that the amount of α-ray emission is less than 0.01 c / cm2 · hr. 21. The cover glass for a semiconductor package according to item 19 of the scope of patent application, wherein the u content in the glass is 10 ppb or less and the Th content is 20 ppb or less. 22. The glass cover for a semiconductor package according to any one of claims 19 to 21, which is characterized in that it does not substantially contain As203. 23. A method of manufacturing a glass cover for a semiconductor package, in which a glass raw material is put into a melting tank having an inner wall formed of at least a refractory material, and after melting, it is formed into a plate shape by a down-draw method or a float method. 24. The method for manufacturing a glass cover for a semiconductor package according to item 23 of the scope of patent application, which is characterized by using a down-draw method or a float method. 25. The method for manufacturing a glass cover for a semiconductor package according to item 23 of the scope of application for a patent, wherein the refractory is selected from the group consisting of alumina refractory, quartz refractory, and zirconia refractory. More than that. 26. The method for manufacturing a glass cover for a semiconductor package according to item 23 of the scope of patent application, wherein the U and Th content of the refractory is 1 ppm or less each. 27. The method for manufacturing a glass cover for a semiconductor package according to item 23 of the scope of application for a patent, wherein the content of U and Th contained in the coating is not more than 0.5 ppb each. Basic composition of B205 ~ 20%, alkali metal oxide 1 ~~ 20%, ZnO 0 ~ 10%, 28 · Semiconductor miscellaneous items described in item 23 of item 27 of the scope of patent application and item 27 of item 27 Laiguan Chemical Co., Ltd., Puyang prepared _ glass raw materials to produce mass% containing S1 02 ~ micro Ah Q is is, 20 ° / 0, soil test metal oxides 0 in the temperature range of 30 ~ 380 degree. The average thermal expansion coefficient of C 13146pif.doc / 〇〇20042004649 is 30 ~ 85x 1 (T7 / ° C, the glass viscosity of the liquid phase temperature is 105 · 2 dPa · s or more, and the amount of α-ray emission is 0.01 c / cm2 · hr The following glass: 29. The method for manufacturing a glass cover for a semiconductor package according to any one of the scope of claims 23 to 27, wherein the glass raw material is prepared so as to contain Si02 by mass%. Basic composition of 52 to 70%, Al203 to 5 to 20%, B203 5 to 20%, alkaline earth metal oxides 4 to 30%, and ZnO 0 to 5%, which basically do not contain alkali metal oxides. In the temperature range The average thermal expansion coefficient of 30 ~ 380 degrees ° C is 30 ~ 85x 10_7 / ° C, and the glass viscosity of the liquidus temperature is 10.5 · 2 dPa · s or more. 30. As described in item 29 of the scope of patent application A method for manufacturing a glass cover for a semiconductor package, characterized in that an alpha ray emission amount of the aforementioned glass raw material is 0.01 c / cm2 · hr or less. 0 13146pif.doc / 008 31
TW093103712A 2003-02-19 2004-02-17 Cover glass for semiconductor package TWI358396B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003041411 2003-02-19
JP2003339209 2003-09-30
JP2004035383A JP4432110B2 (en) 2003-02-19 2004-02-12 Cover glass for semiconductor packages

Publications (2)

Publication Number Publication Date
TW200427649A true TW200427649A (en) 2004-12-16
TWI358396B TWI358396B (en) 2012-02-21

Family

ID=32912836

Family Applications (2)

Application Number Title Priority Date Filing Date
TW099139999A TWI400208B (en) 2003-02-19 2004-02-17 Cover glass for semiconductor package
TW093103712A TWI358396B (en) 2003-02-19 2004-02-17 Cover glass for semiconductor package

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW099139999A TWI400208B (en) 2003-02-19 2004-02-17 Cover glass for semiconductor package

Country Status (4)

Country Link
JP (1) JP4432110B2 (en)
KR (2) KR101015428B1 (en)
TW (2) TWI400208B (en)
WO (1) WO2004075289A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI594832B (en) * 2011-09-16 2017-08-11 Hamamatsu Photonics Kk Laser processing method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756337B2 (en) * 2004-10-12 2011-08-24 日本電気硝子株式会社 Cover glass for solid-state image sensor
JP4923556B2 (en) * 2005-12-16 2012-04-25 日本電気硝子株式会社 Glass substrate for information recording media
JP5071878B2 (en) * 2006-09-12 2012-11-14 日本電気硝子株式会社 Alkali-free glass and alkali-free glass substrate using the same
US7666511B2 (en) * 2007-05-18 2010-02-23 Corning Incorporated Down-drawable, chemically strengthened glass for cover plate
US20100215862A1 (en) * 2009-02-26 2010-08-26 Sinue Gomez Method for forming an opal glass
JP5594522B2 (en) * 2009-07-03 2014-09-24 日本電気硝子株式会社 Glass film laminate for manufacturing electronic devices
JPWO2011132603A1 (en) * 2010-04-20 2013-07-18 旭硝子株式会社 Glass substrate for semiconductor device through electrode formation
WO2014003188A1 (en) * 2012-06-25 2014-01-03 日本電気硝子株式会社 Toughened glass substrate and manufacturing process therefor
JP6571398B2 (en) * 2015-06-04 2019-09-04 リンテック株式会社 Protective film for semiconductor, semiconductor device and composite sheet
WO2017204167A1 (en) * 2016-05-25 2017-11-30 旭硝子株式会社 Alkali-free glass substrate, laminated substrate, and method for manufacturing glass substrate
CN110885972A (en) * 2019-10-30 2020-03-17 杭州美迪凯光电科技股份有限公司 ALD preparation method for eliminating dot defects of camera module and product thereof
CN110767668B (en) 2019-12-30 2020-03-27 杭州美迪凯光电科技股份有限公司 CLCC packaging body cover plate with nanoscale surface, packaging body and camera module

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374935A (en) * 1986-09-17 1988-04-05 Nippon Electric Glass Co Ltd Glass composition for substrate, having improved chemical resistance
JPH11209145A (en) * 1998-01-20 1999-08-03 Nippon Electric Glass Co Ltd Window glass for optical semiconductor
JP2000143286A (en) * 1998-09-04 2000-05-23 Nippon Electric Glass Co Ltd Tube glass less liable to leach lead
DE10005088C1 (en) * 2000-02-04 2001-03-15 Schott Glas Aluminoborosilicate glass used e.g. as substrate glass in thin layer photovoltaic cells contains oxides of silicon, boron, aluminum, sodium, potassium, calcium, strontium, barium, tin, zirconium, titanium and zinc
JP3506237B2 (en) * 2000-10-19 2004-03-15 日本電気硝子株式会社 Cover glass for solid-state imaging device
JP2002308643A (en) * 2001-02-01 2002-10-23 Nippon Electric Glass Co Ltd Alkali-free glass and glass substrate for display
JP2003188450A (en) * 2001-12-17 2003-07-04 Nippon Electric Glass Co Ltd Cover glass for optical semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI594832B (en) * 2011-09-16 2017-08-11 Hamamatsu Photonics Kk Laser processing method

Also Published As

Publication number Publication date
TWI358396B (en) 2012-02-21
TWI400208B (en) 2013-07-01
KR101156984B1 (en) 2012-06-20
TW201118052A (en) 2011-06-01
WO2004075289A1 (en) 2004-09-02
JP2005126311A (en) 2005-05-19
JP4432110B2 (en) 2010-03-17
KR101015428B1 (en) 2011-02-22
KR20100119828A (en) 2010-11-10
KR20050103276A (en) 2005-10-28

Similar Documents

Publication Publication Date Title
JP6604337B2 (en) Glass substrate, laminated substrate, and method for manufacturing glass substrate
KR101446971B1 (en) Alkali-free glass
JP5378158B2 (en) Cover glass for semiconductor packages
JP5909937B2 (en) Cover glass for semiconductor package and manufacturing method thereof
TW200427649A (en) Cover glass for semiconductor package and manufacturing method thereof
JP2005162600A (en) Cover glass plate for semiconductor package
JP6992847B2 (en) Glass substrates, laminated substrates, and laminates
JP5234387B2 (en) Alkali-free glass, alkali-free glass substrate and method for producing the same
JP7047757B2 (en) Alkaline-free glass substrate, laminated substrate, and manufacturing method of glass substrate
TWI428305B (en) A semiconductor substrate for a semiconductor element, and a print size thereof
JP2005126320A (en) Window glass for solid imaging element package
JP2005008509A (en) Cover glass for optical semiconductor package, and its production method
JP2005200289A (en) Cover glass for solid imaging element and its manufacturing method
CN100390968C (en) Cover glass for semiconductor package and method for producing same
JP5467538B2 (en) Glass substrate for semiconductor device and chip scale package using the same
JP2002249323A (en) Cover glass for semiconductor packaging and method for manufacturing the same
KR20040042771A (en) Cover glass for charge coupled device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees