TW200424713A - Silver alloy thin film reflector and transparent electrical conductor - Google Patents

Silver alloy thin film reflector and transparent electrical conductor Download PDF

Info

Publication number
TW200424713A
TW200424713A TW92128677A TW92128677A TW200424713A TW 200424713 A TW200424713 A TW 200424713A TW 92128677 A TW92128677 A TW 92128677A TW 92128677 A TW92128677 A TW 92128677A TW 200424713 A TW200424713 A TW 200424713A
Authority
TW
Taiwan
Prior art keywords
atomic percent
silver
transparent
metal
stack
Prior art date
Application number
TW92128677A
Other languages
Chinese (zh)
Other versions
TWI226499B (en
Inventor
Han Hanwai Nee
Original Assignee
Target Technology Co Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/431,695 external-priority patent/US20030227250A1/en
Application filed by Target Technology Co Llc filed Critical Target Technology Co Llc
Publication of TW200424713A publication Critical patent/TW200424713A/en
Application granted granted Critical
Publication of TWI226499B publication Critical patent/TWI226499B/en

Links

Abstract

A silver-based alloy thin film is provided, suitable for use as a reflective and/or a transparent electrical conductor for various opto-electronic device applications such as liquid crystal displays, flat panel displays, plasma displays, solar cells, organic light emitting diode and electrochromic or energy efficient windows. Elements alloys with silver include copper, palladium, platinum, gold, zinc, silicon, cadmium, tin, lithium, nickel, indium, chromium, antimony, gallium, boron, molybdenum, germanium, zirconium, beryllium, aluminum, magnesium, manganese, cobalt, and titanium. Over a thickness range of 3 nm to 20 nm, these silver alloy thin films can be used as transparent electrical conductors. At a thickness greater than 20 nm, they can be used as reflectors. These alloys have moderate to high reflectivity and electrical conductivity and reasonable good corrosion resistance under ambient conditions.

Description

200424713 玖、發明說明: 【發明所屬之技術領域】 本申請案主張了於2002年5月8日提出申請之美國申 請案第60/ 378, 884號的優惠,於此一併作為參考資料。 【發明所屬之技術領域】 發明領域 本發明係有關於一種用來作為導電體、透明層或高度 反射層之銀合金薄膜,可用於光電裝置的應用,諸如 顯示器、液晶顯示器、電焚顯示器、陰極射線管、有機發 光二極體、太陽能電池、以及電化學或節能窗戶(ener二 efficient windows)等等。 【先前技術】 發明背景 就光電裝置的用途而言,透明導電體在需要大面積導 電性、以及在光譜之可見光範圍裡之光學透明度的技術當 中,形成了一必要的材料種類。目前,少數種類的透明導 電氧化物(TC0)主宰了透明導電體的市場。兩個最大的 TCOs市場為建築物玻璃和平面顯示器。將τ⑶s運 用在建築物玻璃上是為了建造節能窗戶,纟中係藉由熱解 方法將以氟摻雜之氧化錫沉積至一玻璃基板上。具有氧化 錫塗層之窗戶由於τα)纟光譜中之紅外線區域裡的低放射 率’可有效地降低輻射熱的損失。 —在美國,每年大約消耗一億平方公尺之以TC〇塗佈的 建杀物玻璃,是一個非常大的市場。在FPD的應用當中最 200424713 廣泛使用㈣TC〇為氧化銦錫(ΙΤ0)。由於所製造出來 FPDs產量持續的成長,使得ιτ〇塗層產量亦持續的成長。 上近來,用於「行動辦公室」裝置的電子裝置大量激辦 渚如個人數位助理(pDAs )、行動電話、筆記型電腦、 以及數位照相機。大多數的這些裝置都會用到FPk。在美 國,FPDs的市場於2〇〇〇年估計為大約一百五十億美元,、 並預期在2005年時成長達到超過三百億美元。由於FPDs 的市場的市場持續的擴張,增加FpDs的效能並降低成本就 變得很有必要。在過去的幾年來,已經有一種認知就是過 去所使用的TCQs,諸如氧化辞與氧化銦錫已經無法滿足當 下及未來之裝置更多的需求。由於FpDs的勞幕尺寸增加以 及筆記型電腦需要能夠進行更快速的繪圖,因此降低TC〇 f的電阻率且同時不會降低這些層的光學透明度就漸漸變 侍格外的重要。本發明之銀合金薄膜用來作為取代⑽或 者是與ΙΤ0相結合的獨立層,可以有效地滿足這樣的需求 〇 再者由於本發明之銀合金薄膜天生就比TCOs還具有 較強的導電性,因此銀合金薄膜可以成為比制⑽還要 薄上1G至5G倍的要素,且在這些應用當中執行仍然可以 7人滿思。此外,藉由傳統Dc_磁控管濺鍍方法將銀合金 薄膜施加到表面上的沉積速率,可為ταΜ皮塗佈至相同表 面上之沉積速率還要快上丨G倍的要素。純銀具有高度的導 電性及反射性,但是一般而言並不具有像ίτ〇 一樣的抗腐 蝕性,因此,本發明的目的之一在於將銀與各種不同特定 200424713 的元素加以合金,以製成更具抗腐鍅性且比先前技藝所教 示的銀合金還要有用的銀合金。 公開日本專利申請案JP—A-63-187399以及JP-A-7-1 14841揭示了一種具有三層結構之透明電極,其包括了一 層夾兩層IT0層(具有低電阻率及用於液晶顯示器中的改 良透明度)之間的銀層。然而,由於純銀的抗腐蝕性相對 的低,因此這些發明變得非常沒有用處。最近,美國專利 案第6, 014, 196號與第6, 040, 056號敘述了與金、|巴、或 鉑相結合的銀。歐洲專利申請案Ep 〇 999 536 A1揭示了 一種相似的透明層板,一銀合金層與額外的貴重金屬以可 選擇的方式由3至5層的IT0夾住。儘管添加了貴重金屬 來增加銀的抗腐蝕性,但是仍然需要花費更多的成本來製 造,這樣就降低了這些合金的整體效用。本發明的目的在 於藉由將銀與低成本的合金元素加以合金,來滿足較廉價 以及改良之透明導電體的需纟,藉此以製造出具有令人滿 意之抗腐姓性、可接受的光學及電學性質之較低成本的銀 合金。 美國專利案第6,122,。27號揭示的是一種具有鋁反射 =反射型液晶顯示器裝置。由於銀合金的反射率一般而 σ車乂铭來的局 > 因此永省么明挺. 不么月k供了一種優於此先前技術的 功成性改良。美國專利荦第6 杀罘b,U81,310號揭示的是一種使 用在反射型液晶顯示器褒置的銀或銀合金 ,;-合金是藉由電鑛來加以塗佈,且此塗佈銀合金的、方 法嚴重地侷限了有用合金 ♦登 w 素的k擇。在本發明之一較佳 0形 預合 用中 二該銀合金層是藉由真”佈來加以塗佈 =δ金層的這個方法會使得具有廣泛種類元素之 ,。…、,形成廣泛種類的銀合金以㈣廣泛種類的應 【發明内容】 發明概要 具有3至20奈米之厚择r闽 X乾圍的銀合金薄膜,可以在 種先電堆疊(optico—el + 1 ^ 牡谷 道φ遍 Ctric stacks )中用來作為透明 、…以用於各種裝置。將銀與範圍大約在G.1原子百 分比至10.0原子百分比的元素進行合金,諸如:金、鈀、 翻、銅、鋅、鎘、銦、蝴、矽、锆、銻、鈦、钥、鍅、鈹 、銘、鐘、錄、録、鉻、鎵、鍺、鎮、猛、姑和錫。本發 明之銀合金薄膜可傳送可見光譜中50至95% t間的光, 並具有導電性。具有相同組成之銀合金如同那些用在透明 應用當中的銀合金,藉由真空塗佈技術而沉積,以形成大 約20至大約2GG奈米厚度之層’其可以用來作為光電堆疊 中之高度反射I,以用於紅外光、可見光或紫外光相互作 用的裝置中。 發明詳述 在以下的說明及實施例中使用了特定的語言來公開揭 示本發明,並將其原理傳達給其他人。基於只有使用特定 的語言而並不打算限制其專利權的廣度範疇。並且包括了 就任何熟習該項技術者而言正常會發生之說明書任何的修 改及變化。 200424713 如同在說明書中所使用的「原子百分比(atomic percent或a/〇 percent)」係意指特定元素或元素族群 的原子與在特定合金中所出現之原子總數的比例。舉例來 祝’ 一種合金具有15原子百分比的元素a以及85原子百 分比的元t B,可以由以下分子式來加以表示該合金: A〇. 15B0.85 〇 如同文中所使用之術語「銀存在之數量的(〇f心 amount of Silver present)」是用來敘述包括在合金中 特定添加劑數量。以這種方式來使用此術語,就是說在不 考慮到添加劑數量的前提下,銀存在的數量比例會受到存 在之添加劑的數量而減少。舉例來說’如果在化和一個元 素「X」之間的關係。认15 (分別為85原子百分比和 15原子百分比),在不去 考慮到存在之添加劑數量的前提下 ,如果一添加劑「r , μ 士上 ^ 乂銀存在之數量的5個原子分 級出現,則會發現到介於 刀比寺 及B之間的關係會從 銀的原子百分比減少了 5個原子百分 以及β之間的關係為A r八w 贏 gUQXG.i5B〇.()5 (分別為80原子百分⑩ 比的銀、15原子百分比「 j λ」以及5原子百分比的「β 很明顯對於孰習兮+ 金薄膜(包括了由、本= ,該透明導電性銀合 之薄膜堆疊)在廣、、乏:之銀合金缚臈和其他材料所構成 廣泛夕樣化的裝置中且古摩 下之具體態樣以及實 ^ κ ,、功用。以 貫她例僅係用於說明本發明,1廿非异 用來作為本發明之任何限定。 其並非疋 i4/L3 在本發明之—且雜 e e ^ 體怨樣中,該銀合金層係非常的薄但 是Γ當古Γ並㈣於基板上,在可見光光譜中其透明度 f高之ί..典型地*於60百分比。銀合金本身即具有非 。因 f挫’只要垓銀合金為連續,就具有高的導電性 iij it 匕, 有導雷料 銀合金層將會非常的透明,但也非常具 。現在參照圖1,具有大約3至20太半r 、 厚度的銀合mn、 奈未(nra)之 伟由註, 於透明基板5上’該透明基板5 所才 =、舰、m、或者是聚碳酸酿、或其相似者 種典型沉基此種薄膜狀之透明導體的方法,係 :真:中熱蒸發或者是在氬氣氛圍中藉由DC磁控管濺 鑛,於範圍從i至5臺杠且r ·】· 、 " ^ 來 至5笔托耳(mih —t〇rrs)的分壓範圍下 :。在本發明之-具體態樣中,銀係與各種不同之元 :、仃合金’諸如金、鈀、鉑、錫、鋅、矽、鎘、鈦、鋰 、'銦、鉻、銻、鎵、硼、鉬、鍺、鍅、鈹、鋁、鎂、 猛、以及銅。 、 f I列出了在二種波長下(650奈米與45〇奈米)具 奈米厚度之各種不同的二元銀合金層的光透射;· 0 。該合金元素之濃度係以原子百分比提供。表!亦 :出了在二種波長下(65G奈米肖45G奈米),當該銀合 大、々為奈米厚時,該銀合金的反射率(%r)。在 本I月之一較佳具體態樣中,添加至銀中的合金元素數量 從^約0·1原、子百分比至大約ι〇·0原子百分比,更佳為= 大約〇· 2原子百分比至大約5· 〇原子百分比 約〇·3原子百分比至大約U原子百分比。在本發明^ 200424713 較佳具體態樣中,銀係與從大約〇〇1原子百分比 至大約10.0原子百分比的銅進行合金。 在本發明之另一個具體態樣中,具有大約0.01原子百 分比U/o)至大約10.0原子百分比之銅的銀銅合金,更 進-步地與存在以銀之約Ui原子百分比(a/Q)至大約 ι〇·〇原子百分比範圍的Au、Pd或者是pt進行合金,較佳 為從大約0.1原子百分比至大約5 0原子百分比。 在本發明之又-個具體態樣中,銀銅合金更進一步與 諸如 sn、zn、sl、cd、Ti、Li、Ni、co、cr、Incr、sb 广:B_、Μ。、、Zr、Be、A1、Mg、以及 進行合金。 這些第三合金元素係以數量範圍從大約原子百分比至 大、.、勺10. 〇原子百分比存在於合金中,較佳為從大 子百分比至大約5.〇原子百分比。 .京200424713 发明 Description of the invention: [Technical field to which the invention belongs] This application claims the benefit of US Application No. 60/378, 884, which was filed on May 8, 2002, and is hereby incorporated by reference. [Technical field to which the invention belongs] Field of the invention The present invention relates to a silver alloy thin film used as a conductor, a transparent layer or a highly reflective layer, which can be used in applications of optoelectronic devices, such as displays, liquid crystal displays, electric incineration displays, cathodes X-ray tubes, organic light emitting diodes, solar cells, and electrochemical or energy efficient windows. [PRIOR ART] BACKGROUND OF THE INVENTION For the use of optoelectronic devices, transparent conductors have formed a necessary material type in technologies that require large-area conductivity and optical transparency in the visible range of the spectrum. Currently, a few types of transparent conductive oxides (TC0) dominate the market for transparent conductors. The two largest TCOs markets are building glass and flat panel displays. The application of τ⑶s on the glass of buildings is to build energy-saving windows. In the middle, the tin oxide doped with fluorine was deposited on a glass substrate by pyrolysis. Due to the low emissivity in the infrared region in the τα) α spectrum of windows with tin oxide coatings, the loss of radiant heat can be effectively reduced. —In the United States, the consumption of approximately 100 million square meters of TC0 coated building glass is a very large market. Among the applications of FPD, 200424713 is widely used. TCO is indium tin oxide (ITO). Due to the continuous growth of the produced FPDs, the production of ιτ〇 coating also continued to grow. Recently, electronic devices such as personal office assistants (pDAs), mobile phones, notebook computers, and digital cameras have been actively used for "mobile office" devices. Most of these devices will use FPk. In the United States, the market for FPDs was estimated at approximately $ 15 billion in 2000 and is expected to grow to more than $ 30 billion in 2005. As the market for FPDs continues to expand, it becomes necessary to increase the effectiveness of FpDs and reduce costs. In the past few years, there has been a recognition that the TCQs used in the past, such as oxidants and indium tin oxide, have been unable to meet the needs of current and future devices. Due to the increase in the labor size of FpDs and the need for notebook computers to be able to draw faster, it is becoming increasingly important to reduce the resistivity of TCf without reducing the optical transparency of these layers. The silver alloy film of the present invention is used as a separate layer instead of ⑽ or combined with ITO, which can effectively meet such needs. Furthermore, because the silver alloy film of the present invention is inherently more conductive than TCOs, Therefore, the silver alloy thin film can be 1G to 5G times thinner than the production of plutonium, and implementation in these applications can still be thoughtful by 7 people. In addition, the deposition rate of the silver alloy thin film applied to the surface by the conventional DC magnetron sputtering method can be a factor that the deposition rate of ταM skin applied to the same surface is faster by G times. Pure silver has high conductivity and reflectivity, but generally does not have corrosion resistance like ίτ〇. Therefore, one of the objectives of the present invention is to alloy silver with various specific 200424713 elements to make It is a silver alloy that is more resistant to corrosion and more useful than silver alloys taught in previous techniques. Published Japanese patent applications JP-A-63-187399 and JP-A-7-1 14841 disclose a transparent electrode having a three-layer structure, which includes a layer sandwiched with two IT0 layers (having a low resistivity and is used for liquid crystals). Improved transparency in displays). However, since the corrosion resistance of pure silver is relatively low, these inventions have become very useless. More recently, U.S. Patent Nos. 6,014,196 and 6,040,056 describe silver in combination with gold, bar, or platinum. European patent application Ep 0 999 536 A1 discloses a similar transparent laminate in which a silver alloy layer and an additional precious metal are selectively sandwiched by 3 to 5 layers of IT0. Although precious metals are added to increase the corrosion resistance of silver, it still costs more to make, which reduces the overall effectiveness of these alloys. The object of the present invention is to satisfy the demand for cheaper and improved transparent conductors by alloying silver with low-cost alloying elements, thereby manufacturing acceptable, corrosion-resistant and acceptable Lower cost silver alloy with optical and electrical properties. U.S. Patent No. 6,122. No. 27 discloses a liquid crystal display device having an aluminum reflection type. Because the reflectivity of the silver alloy is average and the σ car 乂 ming comes from, > Yongming Mo Mingting. However, it provides a functional improvement over this prior technology. U.S. Patent No. 6 罘 b, U81,310 discloses a silver or silver alloy used in a reflective liquid crystal display;-the alloy is coated by electric ore, and the coated silver alloy The method seriously limits the choice of useful alloys. In one of the preferred 0-shaped pre-combinations of the present invention, the silver alloy layer is coated with a "true" cloth = δ gold layer. This method will make it have a wide variety of elements ... A wide range of alloys should be applied. [Summary of the Invention] Summary of the Invention Silver alloy films with a thickness of 3 to 20 nanometers can be stacked in the first species (optico-el + 1 ^ Mu Valley Road φ times Ctric stacks) are used as transparent, ... for various devices. Silver is alloyed with elements ranging from about G.1 atomic percent to 10.0 atomic percent, such as: gold, palladium, iron, copper, zinc, cadmium, indium , Butterfly, silicon, zirconium, antimony, titanium, molybdenum, plutonium, beryllium, inscription, clock, recording, recording, chromium, gallium, germanium, ballast, ferrous, and tin. The silver alloy film of the present invention can be transmitted in the visible spectrum 50 to 95% t and have electrical conductivity. Silver alloys with the same composition as those used in transparent applications are deposited by vacuum coating techniques to form a thickness of about 20 to about 2GG nanometers Layer 'which can be used as a photovoltaic stack Medium high reflection I for use in devices that interact with infrared light, visible light, or ultraviolet light. Detailed Description of the Invention In the following description and examples, specific languages are used to publicly disclose the present invention and to convey its principles to Others. They are based on the use of specific languages and are not intended to limit the breadth of their patent rights. They also include any modifications and changes to the description that would normally occur to anyone skilled in the technology. 200424713 As stated in the description "Atomic percent or a / Opercent" is used to mean the ratio of the atoms of a particular element or group of elements to the total number of atoms present in a particular alloy. As an example, I wish that an alloy with 15 atomic percent of element a and 85 atomic percent of element t B can be represented by the following molecular formula: A 0.15B0.85 〇 As used in the text "the amount of silver present The "of the amount of Silver present" is used to describe the amount of specific additives included in the alloy. The use of this term in this way means that, irrespective of the amount of additive, the proportion of silver present will be reduced by the amount of additive present. For example, ‘if the relationship between Hua and an element“ X ”. Recognize 15 (85 atomic percent and 15 atomic percent, respectively). Without considering the amount of additives present, if an additive "r, μ 士 上 ^ 乂 silver exists in 5 atomic grades, then It will be found that the relationship between Diaobi Temple and B will be reduced by 5 atomic percentages from the atomic percentage of silver and the relationship between β is A r eight w win gUQXG.i5B〇. () 5 (respectively 80 atomic percent silver, 15 atomic percent "j λ", and 5 atomic percent "β" are obvious for the Xi + gold film (including the film stack consisting of, transparent = silver, transparent conductive silver) In the wide, wide and lack of silver alloy binding and other materials made of a wide range of devices, and the specific appearance and function of ancient horses, ^ κ, function. To her example is only used to illustrate the present invention , 1 异 非 异 is used as any limitation of the present invention. It is not 疋 i4 / L3 in the present invention—and hybrid ee ^ body complaint, the silver alloy layer is very thin, but Γ is not as old as On the substrate, its transparency f is high in the visible light spectrum .. typically * at 6 0%. The silver alloy itself has a negative effect. As long as the silver alloy is continuous, it has high conductivity. The silver alloy layer with a lightning conductor will be very transparent, but it is also very good. Now Referring to FIG. 1, a silver alloy mn and a nanometer (nra) having a thickness of approximately 3 to 20 rr, and a thickness of Nra are noted on a transparent substrate 5 'the transparent substrate 5 is equivalent to a ship, m, or polycarbonate. The method of brewing or similar thin film-like transparent conductors such as the typical Shen base is: true: medium heat evaporation or ore splashing by DC magnetron in an argon atmosphere, ranging from i to 5 units In the range of partial pressure of 5 pens (mih — t〇rrs): In the specific aspect of the present invention, the silver system is different from various elements: Alloys such as gold, palladium, platinum, tin, zinc, silicon, cadmium, titanium, lithium, 'indium, chromium, antimony, gallium, boron, molybdenum, germanium, thorium, beryllium, aluminum, magnesium, magnesium, and copper. f I lists the light transmission of various binary silver alloy layers with nanometer thicknesses at two wavelengths (650 nanometers and 45 nanometers); The concentration of alloying elements is provided in atomic percentages. Table! Also: The reflectance of the silver alloy is shown at two wavelengths (65G nanoshaw 45G nanometer) when the silver is large and the ytterbium is nanometer thick. (% R). In a preferred embodiment of this month, the amount of alloying elements added to the silver ranges from about 0.1 to about 0.1 atomic percent to about ι0 · 0 atomic percent, and more preferably = about 〇2 atomic percent to about 5.0 atomic percent about 0.3 atomic percent to about U atomic percent. In a preferred embodiment of the present invention ^ 200424713, the silver system is from about 0.01 atomic percent to about 10.0 atomic percent. Percent copper is alloyed. In another specific aspect of the present invention, a silver-copper alloy having a copper of about 0.01 atomic percent U / o) to about 10.0 atomic percent copper is further and further present in the presence of about Ui atomic percent of silver (a / Q ) To Au, Pd or pt in the range of about 1.00 atomic percent, preferably from about 0.1 atomic percent to about 50 atomic percent. In a specific aspect of the present invention, the silver-copper alloy is further related to such as sn, zn, sl, cd, Ti, Li, Ni, co, cr, Incr, and sb: B_, M. ,, Zr, Be, A1, Mg, and alloying. These third alloying elements are present in the alloy in quantities ranging from about atomic percent to about 1.0 atomic percent, preferably from about atomic percent to about 5.0 atomic percent. .Beijing

表I % 1R@ 650 奈米 ;% R@ 450 奈来 •90 0 0 8 5 一 0 T6~ 9 0 jfej.5% Μη Li ^0.5¾ Pt jgll.O% Z工 Al J^l.5% Si ^4.0¾ Zn ΐΤΐ% Pd 0-875 表II列出了本發明各種不同之二元銀合金層的反射: 200424713 (% R)與光穿透率(% T)百分比值,其係相㈣表J中 對二元銀合金所些列出之量測值。Table I% 1R @ 650 nanometers;% R @ 450 nanometers • 90 0 0 8 5 1 0 T6 ~ 9 0 jfej.5% Μη Li ^ 0.5¾ Pt jgll.O% Z Engineering Al J ^ l.5% Si ^ 4.0¾ Zn ΐΤΐ% Pd 0-875 Table II lists the reflections of various different binary silver alloy layers of the present invention: 200424713 (% R) and light transmittance (% T) percentage values, which are relative to each other. The measured values listed in Table J for binary silver alloys.

表IITable II

在本發明之另一個具體態樣中,係將一個由ΙΤ0層所 夹起來之銀合金薄臈黏附至一基板上。現在參照圖2,藉 /、二塗佈方法,將透明導電性氧化物層別沉積到透明基 板15上而違透明基板J 5係由諸如玻璃、剛A、PET、或 者是聚碳酸酯、或其相似者所構成;藉由真空塗佈方法( 較佳為DC-磁控管賤錢方法)’將具有範圍從大約$奈米 至大約15奈米之厚度的薄臈銀合* 25沉積到層別的頂部 上,並且將另一個透明導電性氧化物層3〇 (諸如銦錫氧化 物或者是錮辞氧化物)沉積到銀合金薄膜25上。 如同圖2中所說明,該薄膜堆疊構成了 一透明導電性 相較於目i中所說明之薄膜結構,其提供了更高的 蜋蜒穩定性。圖2中所說明之該銀合金π〇薄膜堆疊,其 車乂佳之銀合金組成基本上是與圖丨中所揭示之銀合金的組 成相同。舉例而言,在本發明之一較佳具體態樣中,添加 之合金元素的數量從大約〇.丨原子百分比至大約1〇 〇原子 百分比,較佳為從大約〇· 2原子百分比至大約5· 〇原子百 12 200424713 分比,最佳為從大約0.3原子百分比至大約3 〇原子百分 比。在本發明之-較佳具體態樣中,銀係與從大約 子百分比(a/ο)至大約10.0原子百分比的銅進行合金。’、 八在本發明之另一個具體態樣中,具有大約〇 〇1原子百 刀比(a/o)至大約1〇〇原子百分比之銅的銀銅合金,更 進-步地與存在以銀之約〇.〇1原子百分比(a/〇)至大約 10.0原子百分比範圍的Au、Pd或者是pt進行合金,較佳 為從大約U原子百分比至大約5.0原子百分比。 在本發明之又-個具體態#中,冑銅合金更進斑 諸如 Sn、Zn、Si、Cd、Ti、Ll、Nl、c〇、Cr、in、Cr、sb 、、tB、M〇、Ge、Zr、Be、A1、Mg、以及 Μη 進行合金。 攻二第三合金元素係以數量範圍從大約〇 〇1原子百分比至 大、力10.0原子百分比存在於合金中,較佳為從大約0.1原 子百分比至大約5.0原子百分比,顯示於表I與表u中。 在本發明之另一個具體態樣中’該銀合金薄膜可以夾 一介電層或者是-高折射率層之間,諸如氧化錫、氧化 銦、氧化紐、氧化鈦、氧化鋅、氧化結、硫化辞等等、及 =合之氧化物。現在參照圖2,任何一種本發明之銀合 -薄膜組成物都可以在3至20奈的厚度範圍之間被塗佈, 耗25,並且被夹在介電層20和30、或者是高折 射率層20和30、或其混合物之間。 將其結合可以運用在很多種的應用領域裡,諸如節能 固(energy efficient windows)的結構中。 對於在此具體態樣中之有用的銀合金而言,在可見光 13 200424713 光譜中其光透射百分比(% τ)的值係相似於$ !和表π 對銀合金所列出之值。然而,在紅外線之700奈米至3微 米的波長下,光之反射百分比(% R)會高於表I與表π 中所列出之銀合金的反射百分比。因A ’照射在該堆疊上 的紅外線幸《射,大約會有一半或者是更多會被朝向該韓射 的來源處反射回去。在可見光範圍中所透射之光的百分比 、以及在、红外線#近紅外線範圍中所反射之輻身十的百分比 要將八最小化,可以藉由適當地選擇介電材料、銀合金 薄膜以及其厚度而達成。本發明的這個具體態樣可以被 用來創造節能窗戶。 在本發明之又一個具體態樣中,複數個透明氧化物以 ,本^明之銀合金薄膜係互相層合在_起,使得該銀合金 2膜"於透明氧化物層之間。現在參照圖3,元件符號犯 疋代表透明基板’元件符號45和55為本發明之銀合金薄 膜而70件符遽40、50和60為傳統的透明氧化物導體, 诸如ITO及其相似者。此具體態樣之銀合金薄膜可具有相 ▲同於或相似於表1和表Η中所列出、並且於圖1和圖2所 說明之具體態樣中所使用之銀合金薄膜的組成。舉例而言 i在本發明之一較佳具體態樣中,添加之合金元素的數量 從大約(M原子百分比至大約1〇 〇原子百分比,較佳為從 二約〇· 2原子百分比至大約5· 0原子百分比,最佳為從大 • 3原子百分比至大約3· 〇原子百分比。在本發明之一 較佳具體態樣中,銀係與從大約〇·01原子百分比(a/〇) 至大約10· 0原子百分比的銅進行合金。 14 200424713 在本發明之另一個具體態樣中,具有大約〇 〇1原子百 分比(a/o)至大約10·0原子百分比之銅的銀鋼合金,更 進一步地與存在以銀之約〇·〇1原子百分比(a/〇)至大約 1〇·〇原子百分比範圍的Au、Pd或者是pt進行合金,較佳 為從大約0 · 1原子百分比至大約5. 〇原子百分比。 在本發明之又一個具體態樣中,銀銅合金更進一步與 諸如 Sn、Zn、Si、Cd、Ti、Li、Ni、Co、Cr、In、Cr、Sb 、Ga、B、Mo、Ge、Zr、Be、A1、Mg、以及 Mn 進行合金。 這些第三合金元素係以數量範圍從大約〇· 〇1原子百分比至 大約10· 0原子百分比存在於合金中,較佳為從大約〇·丨原 子百分比至大約5· 0原子百分比。 在本發明之另一個具體態樣中,銀合金薄膜被用來建 構液晶顯示器(LCD)裝置。現在參照圖4, LCD100包括了 黏附於透明基板80和12G上之偏光鏡⑽和?5;鄰近於 偏光鏡75之光源70;沉基在基板8〇之側面上的透明導體 85並在偏光鏡75的對面;一液晶配列層82在透明導體奶 方,…液曰曰封條90環繞液晶86,並且鄰近於液晶配 列層82,弟二液晶配列層95係座落於液晶封條之頂部上 ,並且鄰近於第二透明導體層1〇5; 一純化層ιι〇在第二 透明導體層105之頂部上,並且鄰近於基板12〇上之色彩 :件:透明導體層85和105係為本發明之銀合金。當通電 時,該光源70會發射屮w目止★ 田 75 - ϋ $ ^ ^ ^射出了見先牙透整個裝置,從偏光鏡 75牙透至偏光鏡130。在圖4中的⑼和 如圖1和圖2所揣;4丄 α所揭不之本發明的銀合金薄膜。 15 200424713 為了更細部說明LCD的操作,可以參考美國專利案第 6, 122, 027 號、第 6, 040, 056 號、第 6, 087, 680 號、或者是 第6, 014, 196號,這些專利案均在此併入作為參考資料。 在本發明之另一個具體態樣中,可以使用在文中所揭 不之銀合金組成物於一反射式液晶顯示器,如圖5中所說 明。元件符唬135為一基板,元件符號15〇為一本發明之 銀合金反射器,元件符號14〇為一電絕緣層,元件符號 145為一導電導體,諸如IT〇或者是本發明之厚度為3至 2〇奈米薄的銀合金薄膜,元件符號155為一液晶,元件符 號170為一透明導體,諸如ΙΤ〇,元件符號16〇為一透明 基板,而元件符號165為—偏光鏡。為了在可見光範圍中 提供高的反射率,該銀合金反射層具有4〇至2〇〇奈米之厚 度範圍,較佳為50至100奈米之厚度範圍。圖i或圖2中 所提及之銀合金組成物可以用於銀合金反射器15〇或者市 銀合金透”體145。為了更細部說明反射式⑽的技術 ’任何人都可以參考美國專利案第6,〇81,31"虎,此專利 案亦在此併入作為參考資料。 、在本發明之另一個具體態樣中,本發明之薄膜銀合逢 層被用來作為一透明導體,並在 守股I且在有機發光二極體(OLE] 中作為-陽極。在0LED中’施加了 一電屋於一半導體聚 σ物上’以產生可見光。此現象可以稱為是電致發光效果 。近來在0LED技術上的研發已經證會· 工°丘貫·有機電致發光係為 在夕種運用領域裡可以實現的顯 耳見的”、、員不裔一種選擇。該發光聚 合物可以是具有數百分子量之小分 丁 Α考疋诸如聚亞苯 16 200424713 基乙烯基(polyphenylene vinylene)之具有從萬至數百 萬分子量之大的分子。使用聚亞苯基乙烯基的〇LEDs有時 候可以稱為是PLEDs。 現在參照圖6,一傳統之0LED包括了在透明導體18〇 (諸如藉由濺鍍技術而塗佈之銦錫氧化物(丨τ〇 )的塗層) 上之透明基板175 (諸如玻璃或塑膠),以及一發光聚合 物19 0,其係藉由真空蒸發而添加以用於小分子式裝置、 或者是藉由旋轉塗佈而添加以用於小分子式裝置。為了改 良裝置的效率,該發光聚合物190在正常的情形下,是被 夾在電洞導體185和電子導體195之間。在電子導體195 的頂部上有一個金屬陰極200。當電壓被施加到該裝置時 ’該有機聚合物190會發射出光。 雖然ΙΤ0被使用來作為0LED中之透明導體材料已經多 年,但是其仍然承受著至少三種缺點。第一,、ιτ〇層需 要從1GG i 150奈米或者是更厚的厚度,以提供足夠的導 電性。第二,IT〇具有非常低的濺料(常見於氧化物) 而因此需要花費數分鐘至—個小時的範圍時間,來沉積一 S ΙΤ0使其具有足夠的厚度已於這些運用當中適當地運 作。該形成之ΙΤ0表面在適當運作 y 田%忭所而之厚度下,相對是 报粗糙的,這樣會導致短路而減 叩成夕裝置的哥命,並且降你 了有用裝置的產率。第三,在2〇(Γγ沾” 4 、 也c的 >儿積溫度下,ΙΤ0無 法塗佈至多數個透明塑膠基板上, ”、、 ττπ ^ 因為其無法承受沉積 丁0所1¾要的溫度。這樣會嚴重地 嚴直地侷限了 IT0在具有機械 性可撓之顯示器裝置中的用途。 17 200424713 本發明之銀合金薄膜用於〇LED和pLED應用中係為一 種替代’ITG的絕佳取代物。當以4至15奈米之範圍厚度 /儿積日守,本發明之銀合金薄膜係作用於〇led和孔肋應用 中並且比no還要薄上10 i 25倍。當運用在〇led和 PLED應用中時,本發明夕部人人@ + 了不七月之銀合金薄膜可以高於ΙΤ0沉積速 率的1 0至1 來進行沉積。此外,本發明之銀合金薄膜 可以形成在很多適用於諸如0LEDs和PLEDs之運用的透明 塑膠基板上。 在本發明之-個具體態樣中,銀合金中添加了適當的 合金元素,諸如⑶、Pd、Pt、Au、Zn、Si、Cd、如、u、In another embodiment of the present invention, a thin silver alloy sheet sandwiched by an ITO layer is adhered to a substrate. Referring now to FIG. 2, a transparent conductive oxide layer is deposited on the transparent substrate 15 by using the two-coating method, and the transparent substrate J 5 is made of glass, steel A, PET, or polycarbonate, or It is composed of similar ones; by a vacuum coating method (preferably a DC-magnetron cheap method) ', a thin silver alloy having a thickness ranging from about $ nm to about 15nm * 25 is deposited to a layer And a transparent conductive oxide layer 30 (such as indium tin oxide or rhenium oxide) is deposited on the silver alloy film 25. As illustrated in Fig. 2, the film stack constitutes a transparent conductive material which provides higher worm-like stability than the film structure illustrated in item i. The composition of the silver alloy π thin film stack illustrated in FIG. 2 is basically the same as that of the silver alloy disclosed in FIG. For example, in a preferred embodiment of the present invention, the amount of alloying elements added is from about 0.1 atomic percent to about 100 atomic percent, preferably from about 0.2 atomic percent to about 5 〇 Atomic percentage 12 200424713 fraction, preferably from about 0.3 atomic percent to about 30 atomic percent. In a preferred embodiment of the present invention, the silver system is alloyed with copper from about a sub-percent (a / ο) to about 10.0 atomic percent. '. In another specific aspect of the present invention, a silver-copper alloy having a copper of about 0.001 atomic hundred knife ratio (a / o) to about 100 atomic percent, further and further exists with Au, Pd or pt in the range of about 0.01 atomic percent (a / 0) to about 10.0 atomic silver is alloyed, preferably from about U atomic percent to about 5.0 atomic percent. In another specific aspect of the present invention, the hafnium-copper alloy is further enhanced such as Sn, Zn, Si, Cd, Ti, Ll, Nl, co, Cr, in, Cr, sb, tB, M0, Ge, Zr, Be, Al, Mg, and Mη are alloyed. The second and third alloying elements are present in the alloy in a quantity ranging from about 0.01 atomic percent to about 10.0 atomic percent, preferably from about 0.1 atomic percent to about 5.0 atomic percent, as shown in Tables I and u. in. In another embodiment of the present invention, the silver alloy thin film may be sandwiched between a dielectric layer or a high refractive index layer, such as tin oxide, indium oxide, oxide, titanium oxide, zinc oxide, oxide junction, Vulcanizates, etc., and = combined oxides. Referring now to FIG. 2, any silver-film composition of the present invention can be coated in a thickness range of 3 to 20 nanometers, consumes 25, and is sandwiched between dielectric layers 20 and 30, or is highly refractive Rate layers between 20 and 30, or a mixture thereof. The combination can be used in many application fields, such as the structure of energy efficient windows. For the silver alloys useful in this specific aspect, the value of the percentage of light transmission (% τ) in the visible 13 200424713 spectrum is similar to the values listed in $! And Table π for silver alloys. However, at infrared wavelengths between 700 nm and 3 μm, the percentage of light reflection (% R) will be higher than that of the silver alloys listed in Tables I and π. Because of the infrared rays irradiated on the stack by A ′, about half or more of them will be reflected back towards the source of the Korean radiation. The percentage of light transmitted in the visible range, and the percentage of the radiant ten reflected in the near-infrared #IR range. To minimize the number of eight, the dielectric material, the silver alloy film, and its thickness can be selected appropriately. And reach. This particular aspect of the invention can be used to create energy efficient windows. In another specific aspect of the present invention, the plurality of transparent oxides are laminated with each other, and the silver alloy thin film of the present invention is laminated to each other, so that the silver alloy 2 film is "between the transparent oxide layers." Referring now to FIG. 3, the component symbols 疋 represent transparent substrates; the component symbols 45 and 55 are silver alloy films of the present invention and 70 components 遽 40, 50, and 60 are conventional transparent oxide conductors, such as ITO and the like. This specific aspect of the silver alloy thin film may have the same composition as that of the silver alloy thin film listed in Tables 1 and 2 and used in the specific aspects illustrated in FIG. 1 and FIG. 2. For example, in a preferred embodiment of the present invention, the amount of alloying elements added is from about (M atomic percent to about 100 atomic percent, preferably from about two to about 0.2 atomic percent to about 5 0 atomic percent, most preferably from 3 atomic percent to about 3.0 atomic percent. In a preferred embodiment of the present invention, the silver is from about 0.01 atomic percent (a / 〇) to Approximately 10.0 atomic percent of copper is alloyed. 14 200424713 In another specific aspect of the present invention, a silver steel alloy having approximately 0.001 atomic percent (a / o) to approximately 10.0 atomic percent copper, Further alloyed with the presence of Au, Pd, or pt in the range of about 0.01 atomic percent (a / 〇) to about 10.0 atomic percent of silver, preferably from about 0.1 atomic percent to About 5.0 atomic percent. In yet another aspect of the present invention, the silver-copper alloy is further combined with materials such as Sn, Zn, Si, Cd, Ti, Li, Ni, Co, Cr, In, Cr, Sb, Ga , B, Mo, Ge, Zr, Be, A1, Mg, and Mn. These third alloying elements are present in the alloy in quantities ranging from about 0.001 atomic percent to about 10.0 atomic percent, preferably from about 0.001 atomic percent to about 5.0 atomic percent. In another specific aspect of the present invention, a silver alloy thin film is used to construct a liquid crystal display (LCD) device. Referring now to FIG. 4, the LCD 100 includes polarizers ⑽ and? 5 attached to the transparent substrates 80 and 12G; The light source 70 of the polarizer 75; Shen Ji's transparent conductor 85 on the side of the substrate 80 and opposite the polarizer 75; a liquid crystal alignment layer 82 on the transparent conductor's side, ... the liquid crystal seal 90 surrounds the liquid crystal 86, and Adjacent to the liquid crystal alignment layer 82, the second liquid crystal alignment layer 95 is located on top of the liquid crystal seal, and is adjacent to the second transparent conductor layer 105; a purification layer ιι〇 on top of the second transparent conductor layer 105 And the color adjacent to the substrate 12: pieces: transparent conductor layers 85 and 105 are silver alloys of the present invention. When powered on, the light source 70 will emit 屮 w 目 止 ★ Tian 75-ϋ $ ^ ^ ^ 出 出See you first teeth through the whole equipment From the polarizer 75 through the polarizer 75 to the polarizer 130. ⑼ in Fig. 4 and Fig. 1 and Fig. 2; 4 丄 α of the silver alloy film of the present invention. 15 200424713 For a more detailed description of the LCD For operations, you can refer to US Patent Nos. 6,122,027, 6,040,056, 6,087,680, or 6,014,196, all of which are incorporated herein as Reference materials. In another specific aspect of the present invention, the silver alloy composition disclosed in the text can be used in a reflective liquid crystal display, as illustrated in FIG. 5. The element symbol 135 is a substrate, the element symbol 15 is a silver alloy reflector of the present invention, the element symbol 14 is an electrically insulating layer, and the element symbol 145 is a conductive conductor such as IT0 or the thickness of the present invention is 3 to 20 nanometer thin silver alloy film, element symbol 155 is a liquid crystal, element symbol 170 is a transparent conductor, such as ITO, element symbol 160 is a transparent substrate, and element symbol 165 is a polarizer. In order to provide high reflectance in the visible light range, the silver alloy reflective layer has a thickness range of 40 to 200 nm, preferably a thickness range of 50 to 100 nm. The silver alloy composition mentioned in Fig. I or Fig. 2 can be used for the silver alloy reflector 15 or the silver alloy transparent body 145. For a more detailed explanation of the technology of reflective chirp, anyone can refer to the US patent case No. 6,0081,31 " Tiger, this patent case is also incorporated herein as a reference. In another specific aspect of the present invention, the thin-film silver meeting layer of the present invention is used as a transparent conductor, It is used as a-anode in STO I and in organic light-emitting diodes (OLE). In 0LED, 'an electric house is applied to a semiconductor polyσ' to produce visible light. This phenomenon can be called electroluminescence Effect. The recent research and development on 0LED technology has been proven. Gongqiu Guan. Organic electroluminescence is an obvious choice that can be achieved in various fields of application. The light-emitting polymer is an option. It can be a small molecule with hundreds of molecular weights, such as polyphenylene 16 200424713 polyphenylene vinylene (polyphenylene vinylene) with large molecular weight from 10,000 to millions of molecules. Polyphenylene vinyl OLEDs Can sometimes be called 6 are PLEDs. Referring now to FIG. 6, a conventional 0LED includes a transparent substrate 175 (such as a coating of indium tin oxide (丨 τ〇) coated by sputtering) (Such as glass or plastic), and a light-emitting polymer 190, which is added by vacuum evaporation for small molecular devices, or by spin coating for small molecular devices. To improve the efficiency of the device Under normal circumstances, the light-emitting polymer 190 is sandwiched between the hole conductor 185 and the electron conductor 195. There is a metal cathode 200 on top of the electron conductor 195. When a voltage is applied to the device, the Organic polymer 190 emits light. Although ITO has been used as a transparent conductive material in OLEDs for many years, it still suffers from at least three disadvantages. First, the ιτ〇 layer needs to be from 1GG i 150 nm or thicker Thickness to provide sufficient conductivity. Second, IT0 has very low spatter (commonly found in oxides) and therefore takes a range of minutes to-hours to deposit an S The ITO has sufficient thickness to operate properly in these applications. The formed ITO surface is relatively rough under the thickness of the proper operation, which will cause short circuit and reduce the device. Brother ’s life, and reduce the yield of useful devices. Third, at 20 ° C, the ITO can not be applied to most transparent plastic substrates, ", Ττπ ^ because it cannot withstand the temperature required for deposition of D0. This will severely and directly limit the use of IT0 in mechanically flexible display devices. 17 200424713 The silver alloy film of the present invention is used for LED and pLED applications are an excellent alternative to ITG. When the thickness is in the range of 4 to 15 nanometers / day, the silver alloy film of the present invention is used in OLED and cell rib applications and is 10 times to 25 times thinner than no. When used in OLED and PLED applications, the silver alloy film of the present invention can be deposited at a deposition rate higher than 10 to 1 at ITO. In addition, the silver alloy thin film of the present invention can be formed on many transparent plastic substrates suitable for applications such as OLEDs and PLEDs. In a specific aspect of the present invention, appropriate alloying elements are added to the silver alloy, such as ⑶, Pd, Pt, Au, Zn, Si, Cd, such as, u,

Ni、In、Cr、Sb、Ga、B、M〇、Ge、Zr、Be、AiMnMg、Ni, In, Cr, Sb, Ga, B, Mo, Ge, Zr, Be, AiMnMg,

Co和Ti,這些元素可以單獨地或者是以相互結合的方式添 加三並且以大約Ο.ίΠ原子百分比至大約1G G原子百分比 的IlL圍存纟„玄銀合金係適合用來作為顯示器裝置中的透 明陽極。另外,在圖1、9 «V 。^ 2、或3中所說明的結構可以被用 來建構圖6中所說明的設備。現在參考圖6。一銀合金薄 膜沉積在透明基板;[7 5卜& m. 攸上,成為一層一致且連續的層18〇 〇該透明陽極18 〇係為一插且古士沾户丄 ★ T馮種具有穴叼3奈米厚度之銀合金 薄膜’其係與(例如)具有大約3G奈米厚度之ΙΤ0層(隨 p由電洞導體185所覆蓋)一起使用;電洞導體係由 發光聚合物190所覆签。A f m 1 、声 设盍在某些〇LED或者是PLED的應用 當中’是需要或希冀銀合金的透明導體的圖案並且該 圖案化可以透過光石印刷方法(phQtQlith〇graphy process)以及之後使用適當之㈣劑的滿式餘刻方法而完 18 200424713 成’該餘刻劑諸如(舉例而言)硝酸溶液。另外,圖案化 可以藉由將一適當之發光聚合物1 9〇以喷墨印刷取代旋轉 塗佈的方式來進行塗佈。 在本發明之又一個具體態樣中,所述用於〇LED和 PLED應用中之銀合金薄膜被用來作為太陽能電池中的透明 導體。現在參照圖7,在p型半導體215和η型半導體220 勺w面上形成了一個ρ—η接合面。在η_ρ對的一側上為透 月半導體215而在η-ρ對之相面的一側上為歐姆性接觸 210。歐姆導體21〇同樣黏附於金屬基板2〇5上。金屬基板 205 —般而言都是堅硬且由諸如不銹鋼之材料所形成;導 電〖生金屬電極210 —般而言都是由諸如鋁之材料所製成, 並且典型地藉由賤艘的方式施加在金屬基板205上。整個 裝置可以封裝於-個透m 237之中…般而言是一種 UV固化樹脂、環氧或其相似者,以提供一種適合於戶外使 用之财候性的表面。 在正常的操作之下,日光通過透明塗裝237以及透明 導體銀合金薄膜225,並且到達"#合面,以產生電子 與電洞對。該電子向上方移動使其成為負電荷,而該電洞 項下方移動使其成為正電荷。因A,日光創造了橫跨該裝 置的電動勢(雷厭後^;、 太、,B &梯度)。將具有範圍在大約4至大約20 奈米之厚度的銀合金薄膜用來作為透明㈣225,其可使 得曰光達到電力逄& a 生層。可以更進一步藉由在透明導體銀 合金缚膜2 2 5和透明取人Λ 遗月聚合物237之間,提供一層具有大約 10至20奈米厚声τ X的ΙΤΟ層,來增強該透明導體銀合金薄 19 200424713 臈225之抗腐蝕性。 在本發明之另一個且轉能样由 、““ ”體恶樣中,建構了 -個用於高光 透疊,其包括-層沉基在一基板上之銀合金薄膜 ”接:了料層有機或無機層來加以覆蓋。該有機或無機 主層^ 了對該堆疊額外的抗腐錢。❹ =金包括了任何一種具有本發明所希冀之光透射性質 金。適用於實施本發明之有機塗層包括了以丙烯酸 為基之UV樹脂、環氧、璟4 ^輪 衣虱化物或其相似者。適用於實施 t發明之無機塗層包括了介電材料、金屬氧化物、或者是 堵如氧化石夕之氧化物、氧化鈦、氧化銦、氧化鋅、氧化錫 、氧化銘專等’這樣之氧化物與氮化物或碳化物的混合物 ,諸如氮化石夕、氮化紹、鈦化石夕等等,以及這樣之氧化物 、虱化物、碳化物及其混合物的混合物。 現在參照圖8,在只有需要或希冀光穿透需求之應用 中’,層225的選擇需求則是光透明度。如果透明基板 245疋一種可撓性基板,諸如聚醋薄膜或其相似者,則以 上所提及之金屬氧化物、氮化物或碳化物的水氣載體層可 =併入至介於該基板245和銀合金薄冑25()之間的薄膜堆 豐中。如果該薄膜堆疊被用來作為一種透明導體,則在銀 合金薄膜250之頂部上方的該塗層225可以成為一種透明 導電性氧化物,諸如IT0、氧化銦、氧化錫、氧化鋅、其 他金屬氧化物及其混合物。 在本發明之又一個具體態樣中,該薄膜堆疊可以類似 於如圖2或圖3中所說明之結構,其中該銀合金薄膜託、 20 200424713 A R、 ^ C η-ηρ 、 〆 以夾在ITO和其他導電性金屬氧化物之間。 【實施方式】 實施例1 括本杂明銀合金之穿透式液晶顯示器,用於其 中之堆疊的_、生士 衣k方法如下。藉由充分清潔並沖洗來製備一 玻璃基板。如圖9 rb Μ Μ α 3 2中所說明一般,分別具有厚度為40、l〇 以及8〇奈米之連續的ΙΤ0層20、銀合金25、以及ΙΓ 層30,糟由Dc—磁控管濺鍍裝置將其沉積,以於玻璃基相Co and Ti, these elements can be added individually or in combination with each other and surrounded by IlL of about 0. Π atomic percentage to about 1G G atomic percentage. 玄 silver alloy system is suitable for use in display devices Transparent anode. In addition, the structure illustrated in Figures 1, 9 «V. ^ 2, or 3 can be used to construct the device illustrated in Figure 6. Reference is now made to Figure 6. A silver alloy thin film is deposited on a transparent substrate; [75 5 & m. In addition, it becomes a consistent and continuous layer 1 800. The transparent anode 18 0 is a plug and the ancient Shizou 丄 T T Feng species of silver alloy with a hole thickness of 3 nanometers Thin film 'is used, for example, with an ITO layer (with p covered by hole conductor 185) with a thickness of about 3G nanometers; the hole conduction system is covered by a light-emitting polymer 190. A fm 1, acoustic device盍 In some 〇LED or PLED applications, it is necessary or hoped that the pattern of the transparent conductor of silver alloy and the patterning can be passed through the light stone printing method (phQtQlith〇graphy process) and later using a suitable tincture. Carved method 18 200424713 into the after-treatment agent such as (for example) nitric acid solution. In addition, the patterning can be applied by replacing a spin coating with an appropriate light-emitting polymer 1 90 by inkjet printing. In yet another specific aspect of the present invention, the silver alloy thin film used in OLED and PLED applications is used as a transparent conductor in a solar cell. Referring now to FIG. 7, the p-type semiconductor 215 and the n-type semiconductor 220 A ρ-η junction surface is formed on the w surface of the spoon. On the side of the η_ρ pair, there is a translucent semiconductor 215 and on the side opposite to the η-ρ pair is an ohmic contact 210. The ohmic conductor 21 is also adhered. On a metal substrate 205. The metal substrate 205 is generally hard and is formed of a material such as stainless steel; the conductive metal electrode 210 is generally made of a material such as aluminum, and is typically The ground is applied on the metal substrate 205 by means of a base boat. The entire device can be encapsulated in a transparent m 237 ... generally a UV curing resin, epoxy or the like to provide a suitable for outdoor use Financiality Under normal operation, sunlight passes through the transparent coating 237 and the transparent conductor silver alloy thin film 225, and reaches the "combination surface" to generate an electron and hole pair. The electron moves upward to make it a negative charge, And the hole item moves underneath to make it a positive charge. Because of A, daylight creates an electromotive force across the device (after thunder, ^, ,, B & gradient). It will have a range of about 4 to about 20 Nano-thickness silver alloy film is used as transparent ㈣225, which can make light reach electric power 逄 &a; a layer. It can be further taken by the transparent conductor silver alloy film 2 2 5 and transparent Λ 月 月Between the polymers 237, an ITO layer having a thickness of about 10 to 20 nanometers and a thick acoustic τ X is provided to enhance the corrosion resistance of the transparent conductor silver alloy thin 19 200424713 臈 225. In another embodiment of the present invention, the "energy transfer" sample, a "" "body evil sample, is constructed for a high light transmission, which includes-a layer of a silver alloy film based on a substrate on a substrate". Organic or inorganic layers. The organic or inorganic main layer ^ provides additional corrosion resistance to the stack. ❹ = gold includes any kind of gold having the light transmission properties desired by the present invention. Organic coatings suitable for use in the practice of the present invention include acrylic resins based on UV resins, epoxy resins, plutonium compounds or the like. Inorganic coatings suitable for the implementation of the invention include dielectric materials, metal oxides, or oxides such as oxides of stone oxide, titanium oxide, indium oxide, zinc oxide, tin oxide, oxide oxide, etc. Mixtures of substances with nitrides or carbides, such as nitrides of nitrides, nitrides of nitrides, titanium fossils, etc., and mixtures of such oxides, liceides, carbides, and mixtures thereof. Referring now to FIG. 8, in applications where only light transmission is required or desired, the selection requirement for layer 225 is light transparency. If the transparent substrate 245 is a flexible substrate, such as a polyacetate film or the like, the water vapor carrier layer of the metal oxide, nitride, or carbide mentioned above may be incorporated into the substrate 245. And silver alloy thin 胄 25 (). If the film stack is used as a transparent conductor, the coating 225 above the top of the silver alloy film 250 can become a transparent conductive oxide such as ITO, indium oxide, tin oxide, zinc oxide, other metal oxides And its mixtures. In another specific aspect of the present invention, the thin film stack may be similar to the structure illustrated in FIG. 2 or FIG. 3, wherein the silver alloy thin film holder, 20 200424713 AR, ^ C η-ηρ, 〆 are sandwiched between Between ITO and other conductive metal oxides. [Embodiment] Embodiment 1 The transmissive liquid crystal display including the present mixed silver alloy, and the method of stacking _, and _, which are used for the stacking, are as follows. A glass substrate was prepared by sufficiently cleaning and rinsing. As shown in FIG. 9 rb Μ Μ α 3 2, generally, it has continuous ITO layer 20, silver alloy 25, and Γ layer 30 with thicknesses of 40, 10, and 80 nanometers, respectively. Dc—magnetron It is deposited by a sputtering device for the glass-based phase

15上形成一透明導體堆疊。在此實施例所使用之該銀合逢 /賤鑛無係由銀、2·0原子百分比的Zn、以及1.2原子百央 ”的1、所構成。其次,還使用了—種濺鍍光石印刷方法來 沉積:光阻材料,並且藉由使用包含鹽酸之溶液餘刻該表 面i來形成一特定圖案。蝕刻的結果為具有寬度為40微米 :導體之間的空間為2〇微米之導體圖案。可以使用此 、、工圖案化之透明導體來形成(舉例而言)液晶顯示器之部 分裝配。 實施例2 哭參;^ 一種包括了本發明銀合金薄膜之反射式液晶顯示 的的方法,其敛述如下。現在參照圖5。使用此一磁控管減 波置以及一個包括銀、1 · 〇原子百分比的Cu、以及 〇· 3原子百分比之Ti的銀合金濺鍍靶,將一層具有大約60 至8〇不米厚度範圍之銀合金薄膜15G沉基在-透明玻璃基 、 亥’儿基在透明玻璃基板上之銀合金薄膜係用來 作為一種反射薄膜。在該反射薄冑150上形成—層電絕緣 21 200424713 曰或者疋 有機材料層14 0,並使用一錢錢方法將一層 IT〇145沉基在該層140上。將一層ITO170沉基在基板16〇 上,並且可加以蝕刻以形成一電極圖案。將一層液晶155 夾在IΤ0層140和1 7〇之間,以形成顯示器泉置之一個元 件。 . 實施例3 、’十對包括了本發明之銀合金薄膜的堆疊進行了抗腐钱 性的測試。現在參照圖3。藉由^磁控管濺錢方法將銀合 金薄膜40 (其包括〇 6重量%的鋁、1〇重量%的銅、以 ^ 98· 4重量%的銀)沉基在基板35上,至厚度為大約50 不米,其次在將具有5〇奈米厚度之n型半導體45沉基在 層40上,然後在將具有大約5〇奈米之厚度的ρ型半導體 :儿基在該η型半導體45 i,之後再將具有大約6奈米 2厚度的銀合金薄膜55 (其包括1.〇重量%的鈀、1〇重 量%的銅、以及98.〇重量%的銀)藉由DC_磁控管賤鑛方 法沉基在肖p型半導m,最後在冑整個裝配上喷霧塗 佈-層清晰之有機塗層6〇,並經由uv固化來形成一種適 2於戶外使用之耐候性層狀堆疊。該堆疊之穩定性可以在 加速時效試驗中進行測試,其中該裝置被維持在帆、 ,❶的相對渔度(RH)歷時1G天。在這期間並沒有觀察到 任何顯著之裝置性能的退化。 實施例4 針對本發明在建構節能窗戶(^灯efficient Wlnd〇WS)中所使用之銀合金薄臈進行-項測試。將諸如聚 22 200424713 乙二醇對苯二曱酸酯(PET )之塑膠薄膜用來作為透明基板 。連續薄膜:大約50奈米厚之氧化銦、大約6奈米厚之銀 合金薄膜、以及一層大約50奈米厚之氧化銦,將其藉由賤 鍍的方式沉積在一基板上。使用反應性離子濺鍍方法以及 一個純的銦把來形成該氧化銦薄膜。藉由Dc—磁控管錢錢 方法來沉積該銀合金薄膜,其中係使用一種包括銀、} 〇 原子百分比的銅、以及〇· 2原子百分比之鈦的濺鍍靶。該 薄膜堆疊在可見光光譜中具有70至8〇%之整體的光透射 範圍,並且將超過50%之具有波長大於丨· 5微米的紅外線 輻射反射回來。在一個經加速之時效化試驗中,對該薄膜 堆疊的穩定性進行測試,將該堆疊保持在7(rc之下、5〇% 的相對溼度(RH),歷時4天。在這期間該堆疊性能並沒 有任何顯著的退化。 貫施例5 將本發明之銀合金薄膜用來作為聚合物發光二極體( PLED)中的透明導體。將一層大約6奈米厚之經結構化的 銀σ至薄膜層,利用DC_磁控管濺鍍方法沉積在一玻璃基 板上。在該濺鍍方法中所使用之銀合金靶的組成,為大約 〇原子百分比的鋅、大約0. 5原子百分比的鋁、以及大 約98.5原子百分比的銀。將一種厚度大約為ι〇〇奈米之電 洞=導聚合物p型半導體(pQlyanyline)沉積在來自於一 水:液之銀薄膜上。將一種發光聚合物,有機溶劑中之聚 亞本基乙烯基(P〇1yphenylene Vinyiene ),藉由旋轉塗 佈或者是嘴墨印刷’塗佈在該堆疊上。-種低功函數金屬 23 200424713 ,諸如厚度大約為5奈米的鈣、以及大約為7Q奈米的鋁, 藉由熱蒸發來將其塗佈,以形成陰極。該銀合金薄膜的功 月b在於作為裝置中的陽極。當施加一電壓至該裝置上時, 電子會從該陰極射出,進入到發光聚合物中,而電洞從該 陽極射出,進入到電洞導體中,然後在進入到該發光聚‘ 物中。在發光聚合物中,該電子與電洞結合,形成激子, 該激子會在過程當中退化成發射穩定光的基態。 雖然本發明已經以細節說明及敘述,但是此本身即被 認為是說明性敘述,並非為用來侷限本案之專利權的用途 。閱讀者應該要了解到本說明書只有提出較佳之具體態樣 三,果以下之申請專利範圍或者是這些申請專利範圍的法 疋等同物對其加以敘述,在不違背本發明之精神下,可包 括任何的變化及修改。 【圖式簡單說明】 (一)圖式部分 圖1為一透明、導電性堆疊的橫剖面觀圖,一透明導 電性薄膜黏附於一透明基板上。 圖2為黏附於一透明基板上之透明、導電性的薄膜堆 疊橫剖面觀圖,其中該透明導體堆疊包含了夾在透明導電 氧化物之間的薄銀合金薄膜。 圖3為黏附於一透明基板上之透明、導電性的薄膜堆 疊橫剖面觀圖,其中該透明導體堆疊包含了夾在氧化物之 間的薄銀合金薄膜層。取決於所使用的層,此可為電致變 色窗戶(electro-chromic window)的橫剖面觀圖。 24 圖4為一透射式液晶顯示器的 (舉例而言)使用了 _ 饒圖。該顯示器 性薄膜堆疊。 之銀合金薄膜的導電 圖5為-反射式液晶顯示器的 (舉例而言)使用了-種包括本發明^圖。該顯示器 明導電性薄膜堆疊。 銀5金薄膜的本發 圖6為一使用有機 _ 本發明之銀人全薄腹“體之元素的橫剖面觀圖。 的透明導電層。 (牛例而言)作為裝置中 =7為-太陽能電池的橫剖面觀圖。本發明之銀合金 厚膜的功用可2^ ^ 牛,a)作為太陽能電池中的透明導 體0 ^圖8為基板上之導電透明或反射層上的有機或無機薄 \八透明塗層的橫剖面觀圖。該導電透明或反射層可為 (舉例而言)本發明之銀合金薄膜。 (二)元件代表符號 5透明基板 10銀合金薄膜 15透明基板 20透明導電性氧化物層 25薄膜銀合金 30透明導電性氧化物層 35透明基板 4〇傳統的透明氧化物導體 25 200424713 45銀合金薄膜 50傳統的透明氧化物導體 5 5銀合金薄膜 60傳統的透明氧化物導體 7 0光源 75偏光鏡 80透明基板 82液晶配列層 85透明導體 8 6壤繞液晶 90液晶封條A transparent conductor stack is formed on 15. The silver ensemble / base ore used in this embodiment is not composed of silver, 2.0 atomic percent Zn, and 1.2 atomic percent ". Secondly, a type of sputtered stone printing is also used. Method to deposit: a photoresist material, and a specific pattern is formed by etching the surface i using a solution containing hydrochloric acid. The result of the etching is a conductor pattern having a width of 40 micrometers: a space between the conductors of 20 micrometers. This, patterned transparent conductor can be used to form (for example) a part of an assembly of a liquid crystal display. Example 2 Cryopogon; ^ A method of reflective liquid crystal display including the silver alloy film of the present invention, which converges The description is as follows. Now refer to FIG. 5. Using this magnetron wave reduction device and a silver alloy sputtering target including silver, 1.0 atomic percent Cu, and 0.3 atomic percent Ti, a layer having about 60 The thickness of the silver alloy film ranging from 15 to 80mm is 15G-based, transparent glass-based, and silver-plated on the transparent glass substrate. The silver-based alloy film is used as a reflective film. —Layer electrical insulation 21 200424713 or 疋 Organic material layer 14 0, and a layer of IT0145 sinker on the layer 140 using a penny method. A layer of ITO170 sinker on the substrate 16 and can be etched to An electrode pattern is formed. A layer of liquid crystal 155 is sandwiched between the ITO layer 140 and 170 to form an element of the display. Example 3 and '10 pairs of stacks including the silver alloy film of the present invention were performed Test of anti-corrosion property. Now refer to FIG. 3. The silver alloy film 40 (which includes 6% by weight of aluminum, 10% by weight of copper, ^ 98 · 4% by weight) Silver) on the substrate 35 to a thickness of about 50 μm, followed by a n-type semiconductor 45 having a thickness of 50 nm on the layer 40, and then on a layer 40 having a thickness of about 50 nm P-type semiconductor: the pedestal is on the n-type semiconductor 45 i, and then a silver alloy film 55 (including 1.0% by weight palladium, 10% by weight copper, and 98%) having a thickness of about 6 nm 2 .〇wt% silver) by DC_ magnetron base ore method Shen Ji in Xiao p-type semiconductor m Finally, the entire assembly is spray-coated with a clear organic coating 60 and cured by UV to form a weather-resistant layered stack suitable for outdoor use. The stability of the stack can be tested in accelerated aging tests. Tests were performed, in which the device was maintained at a relative fishery rate (RH) of 1 d for 15 days. No significant degradation in device performance was observed during this period. Example 4 According to the present invention, the construction of energy-saving windows ( ^ The silver alloy thin film used in the lamp efficient Wlnds) was subjected to the item test. A plastic film such as poly 22 200424713 ethylene glycol terephthalate (PET) was used as a transparent substrate. Continuous film: about 50 nanometers thick indium oxide, about 6 nanometers thick silver alloy film, and a layer of about 50 nanometers thick indium oxide, which were deposited on a substrate by means of low-level plating. The indium oxide film was formed using a reactive ion sputtering method and a pure indium handle. The silver alloy thin film was deposited by a DC-magnetron method, in which a sputtering target including silver, copper with a concentration of 0%, and titanium with a concentration of 0.2% was used. The thin film stack has an overall light transmission range of 70 to 80% in the visible light spectrum, and reflects back more than 50% of infrared radiation having a wavelength greater than 5 μm. In an accelerated aging test, the stability of the film stack was tested. The stack was maintained at 7 (rc, 50% relative humidity (RH) for 4 days. During this time the stack There is no significant degradation in performance. Example 5 The silver alloy film of the present invention is used as a transparent conductor in a polymer light emitting diode (PLED). A layer of structured silver σ of about 6 nm thick is used To the thin film layer, a DC_magnetron sputtering method was used to deposit a glass substrate. The composition of the silver alloy target used in the sputtering method was about 0 atomic percent zinc, about 0.5 atomic percent of Aluminum, and about 98.5 atomic percent silver. A hole with a thickness of about IOnm = conductive polymer p-type semiconductor (pQlyanyline) is deposited on a silver film from a water: liquid. A light-emitting polymer Material, polyethylenylvinylene in organic solvents (Polyylene Vinyiene), is applied on the stack by spin coating or nozzle printing.-A kind of low work function metal 23 200424713, such as the thickness of about 5nm Calcium, and aluminum of about 7Q nanometers, are coated by thermal evaporation to form a cathode. The work of the silver alloy film b is to serve as the anode in the device. When a voltage is applied to the device, Electrons are emitted from the cathode and enter the light-emitting polymer, and holes are emitted from the anode, enter the hole conductor, and then enter the light-emitting polymer. In the light-emitting polymer, the electrons and electricity Holes combine to form excitons, which will degenerate into a ground state that emits stable light in the process. Although the present invention has been described and described in detail, this is considered to be an illustrative narrative and is not intended to limit the case. The use of patent rights. The reader should understand that this specification only proposes a better specific form. If the scope of the patent application below or the legal equivalent of these patent applications is described, it does not violate the scope of the present invention. In spirit, it can include any changes and modifications. [Simplified description of the drawings] (A) Schematic part Figure 1 is a transparent, cross-sectional view of a conductive stack, a transparent An electrical film is adhered to a transparent substrate. Figure 2 is a cross-sectional view of a transparent, conductive film stack adhered to a transparent substrate, where the transparent conductor stack includes a thin silver layer sandwiched between transparent conductive oxides. Alloy film. Figure 3 is a cross-sectional view of a transparent, conductive film stack adhered to a transparent substrate, where the transparent conductor stack includes a thin silver alloy film layer sandwiched between oxides. Depends on the used Layer, which can be a cross-sectional view of an electro-chromic window. 24 Figure 4 is an illustration of a transmissive liquid crystal display (for example). The display film stack. Silver Conductivity of the alloy thin film FIG. 5 is a reflection type liquid crystal display (for example) using a type including the invention. The display shows a stack of conductive films. The present invention of a silver 5 gold thin film FIG. 6 is a cross-sectional view of an element of the silver man's full-thick belly “body element of the present invention. A transparent conductive layer. (In the case of cattle) as a device = 7 is- A cross-sectional view of a solar cell. The function of the silver alloy thick film of the present invention can be 2 ^^, a) as a transparent conductor in a solar cell 0 ^ Figure 8 is an organic or inorganic on a conductive transparent or reflective layer on a substrate A cross-sectional view of a thin, eight-transparent coating. The conductive transparent or reflective layer can be, for example, the silver alloy film of the present invention. (II) Element representative symbols 5 transparent substrate 10 silver alloy film 15 transparent substrate 20 transparent Conductive oxide layer 25 thin film silver alloy 30 transparent conductive oxide layer 35 transparent substrate 40 traditional transparent oxide conductor 25 200424713 45 silver alloy film 50 traditional transparent oxide conductor 5 5 silver alloy film 60 traditional transparent oxidation Object conductor 7 0 Light source 75 Polarizer 80 Transparent substrate 82 Liquid crystal alignment layer 85 Transparent conductor 8 6 Soil around liquid crystal 90 Liquid crystal seal

95第二液晶配列層 100 LCD 105第二透明導體層 110鈍化層 120透明基板 130偏光鏡 135基板 14 0電絕緣層 145導電導體 150銀合金反射器 15 5液晶 160透明基板 16 5偏光鏡 26 200424713 170透明導體 175透明基板 180透明導體 185電洞導體 190發光聚合物 195電子導體 200金屬陰極 205金屬基板 21 0歐姆性接觸 215 p型半導體 220 η型半導體 225透明導體銀合金薄膜 245透明基板 250銀合金薄膜 2795 second liquid crystal alignment layer 100 LCD 105 second transparent conductor layer 110 passivation layer 120 transparent substrate 130 polarizer 135 substrate 14 0 electrical insulating layer 145 conductive conductor 150 silver alloy reflector 15 5 liquid crystal 160 transparent substrate 16 5 polarizer 26 200424713 170 transparent conductor 175 transparent substrate 180 transparent conductor 185 hole conductor 190 light-emitting polymer 195 electronic conductor 200 metal cathode 205 metal substrate 21 0 ohmic contact 215 p-type semiconductor 220 n-type semiconductor 225 transparent conductor silver alloy film 245 transparent substrate 250 silver Alloy film 27

Claims (1)

200424713 拾、申請專利範圍: i· 一種光電堆疊,其包括: —個透明基板;以及 一個鄰近於該透明基板之透明導體,其中該透明導體 係為一金屬合金,該金屬合金包括: 範圍在90原子百分比至99. 9原子百分比的銀;以及 範圍在〇·1原子百分比至1〇〇原子百分比的第二金屬 其中5亥第二金屬係選自於下列金屬:金、把、鉑、銅、 鋅鎘、鋁、鈦、Μ、鎂、锰、石夕、鍺、鈹、錫、銦、鎳 、始、鉻、錄、鎵、硼、鉬、和錯。 2·根據申請專利範圍第丨項之光電堆疊,其中該金 屬合金係為銀合金,其包括: 銀; ,其中该第二金屬係選自於下列金屬: 鋁、欽、鎂、鎘、鋰、錳、矽、鍺、鈹 2圍在0. 1原子百分比至1〇· 〇原子百分比的銅;以及 範圍在0.1原子百分比至5·〇原子百分比的第三金屬 金、|巴、銘、鋅、 、錫、銦、鎳、鉻 、鈷、銻、鎵、鉬、硼、和鍅。 3· 一種光電堆疊,其包括·· 一個透明基板;以及 一個透明且具導電性 複數個透明氧化物層 至少一層銀合金薄膜 銀;以及 之堆疊,該堆疊包括了 ;以及 ,該銀合金薄膜包括了 28 200424713 範圍在0·1原子百分比至原子百分比的第二元素, /、中β亥第元素係選自於由下列元素所組成之群組中:銅 、鈀、鉑、金、鎘、鋰、辞、鎳、鈷、鉻、銻、鎵、堋、 鉬、鋁、鈦、鎂、錳、矽、鍺、鈹、錫、銦、和锆,其中 口亥透明導電性堆疊之每—個銀合金薄膜均位於至少該透明 氧化物的二層之間。 4.根據申請專利範圍第3項之光電堆疊,其中 屬合金包括: ' 銀; ::圍在〇.1原子百分比至5. 〇原子百分比的銅;以及 範圍在原子百分比至5. 〇原子百分比的第三金屬 ,其中該第三金屬係選自於下列金屬:金、鈀、鉑、鎘、 鐘、錫、自、錄、鉻、链、錄、删、錯、鋅、鈦、鎂、雜 、錳、矽、鍺、和鈹。 5.根據申請專利範圍第卜2、3、或 ,其更進一步包括: 且 一第二透明基板;以及 一有機液體,其中該有機液體传 如·诉a含在該第一盥篦一 透明基板之間,使續gg + 4日杜# 使”亥顯不為組件係為一種透射式液晶顯示 态0 〇· m像甲請專利範 中該光電組件或堆疊係為一種電致變色窗/ chromic window) 〇 7· 一種顯示器裝置,其包括: 29 /13 個包括一陣列圖素電極的第一基板; 一個包括一相對電極之第二基板;以及 …層介於該第一與該第二基板之間的有機流體層, 。亥第-基板包含了高反射率之層,該高反射率層係 屬合金,該金屬合金包括 ~、、、 銀; 以及 发範=在〇·1原子百分比至1〇原、子百分比的第二元素, /、亥第一元素係選自於由下列元素所組成之群組中··銅 錳、鎂、鈹、鋅、鎘、鋰、鍅、矽、鋁、銦、鈦、鎳、 鉻、姑、銻、鎵、硼、錫、鉬、和鍺。 8·根據申睛專利範圍第7項之顯示器裝置,其中該 金屬合金包括: 、 銀; 辈巳圍在〇· 1原子百分比至5· 〇原子百分比的銅;以及 苴範圍在〇·1原子百分比至5〇原子百分比的第三金屬 中。亥第—金屬係選自於下列金屬:鍅、鎘、鋰、鋅、 夕鍺1呂、欽、鋼、鈹、鍾、鎳、鉻、#、錄、鎵、_ 、硼、和鎂。 9.根據申請專利範圍第7或8項之顯示器裝置,其 中該顯示器組件係為-種反射式液晶顯示器。 10· 一種窗型塗層,其包括: 一個透明基板;以及 -薄膜堆疊’其包括一層銀合金之薄膜,包括: 30 200424713 鈑;以及 範圍在0·1原子百分比至10.0原子百分比的第二元素 其中該第二元素係選自於由下列元素所組成之群組中: 金、鈀、鉑、銅、鋅、鎘、鋁、鈦、鋰、鎂、錳、矽、鍺 、鎚、錫、銦、鎳、鈷、鉻、銻、鎵、硼、鉬、和鍅。 11·根據申請專利範圍第1 〇項之窗型塗層,其包括: 該薄膜銀合金; 一介電層;以及 氧化物層’其中該薄膜銀合金係介於該介電層與該 氧化物層之間。 12· —種光電堆疊,其包括·· 一個透明基板;以及 一個透明且具導電性之堆疊,該堆疊包括了: 一層透明導電氧化物;以及 一金屬合金層,該金屬合金包括了 :200424713 Patent application scope: i · A photovoltaic stack including: a transparent substrate; and a transparent conductor adjacent to the transparent substrate, wherein the transparent conductive system is a metal alloy, the metal alloy includes: a range of 90 Atomic percent to 99.9 atomic percent silver; and second metals ranging from 0.1 atomic percent to 100 atomic percent, wherein the second metal is selected from the following metals: gold, platinum, platinum, copper, Zinc, cadmium, aluminum, titanium, magnesium, manganese, manganese, stone, germanium, beryllium, tin, indium, nickel, zinc, chromium, zinc, gallium, boron, molybdenum, and copper. 2. The photovoltaic stack according to item 丨 of the patent application scope, wherein the metal alloy is a silver alloy including: silver; wherein the second metal system is selected from the following metals: aluminum, zinc, magnesium, cadmium, lithium, Manganese, silicon, germanium, and beryllium 2 are copper in the range of 0.1 atomic percent to 10.0 atomic percent; and third metal gold, | bar, Ming, zinc, in the range of 0.1 atomic percent to 5.0 atomic percent, , Tin, indium, nickel, chromium, cobalt, antimony, gallium, molybdenum, boron, and thallium. 3. A photovoltaic stack comprising: a transparent substrate; and a transparent and conductive plurality of transparent oxide layers of at least one silver alloy thin film silver; and a stack including the stack; and the silver alloy thin film including 28 200424713 The second element in the range of 0 · 1 atomic percent to atomic percent, and the element ββHadi is selected from the group consisting of copper, palladium, platinum, gold, cadmium, and lithium , Nickel, cobalt, chromium, antimony, gallium, thallium, molybdenum, aluminum, titanium, magnesium, manganese, silicon, germanium, beryllium, tin, indium, and zirconium, each of which is a transparent conductive stack of silver The alloy thin films are located between at least two layers of the transparent oxide. 4. The photovoltaic stack according to item 3 of the scope of patent application, wherein the alloy includes: 'silver; :: copper between 0.1 atomic percent to 5.0 atomic percent; and atomic percent to 5.0 atomic percent A third metal, wherein the third metal is selected from the following metals: gold, palladium, platinum, cadmium, bell, tin, metal, metal, chromium, chain, metal, metal, zinc, titanium, magnesium, miscellaneous , Manganese, silicon, germanium, and beryllium. 5. According to the scope of the applied patent No. 2, 3, or, it further includes: and a second transparent substrate; and an organic liquid, wherein the organic liquid is transferred to a transparent substrate in the first container. Between, make continued gg + 4 日 杜 # Make "Hai Xianwei for the module is a transmissive liquid crystal display state 0 〇 · m like a patent please the photovoltaic module or stacking system is an electrochromic window / chromic window) 〇7. A display device comprising: 29/13 first substrates including an array of pixel electrodes; a second substrate including an opposite electrode; and a layer interposed between the first and the second substrates The organic fluid layer between the helium-substrate includes a layer of high reflectivity, the high reflectivity layer is an alloy, the metal alloy includes ~ ,,, and silver; and the range = between 0.1 atomic percent to 10 The second element of the original and sub-percentages, /, the first element is selected from the group consisting of copper, manganese, magnesium, beryllium, zinc, cadmium, lithium, thallium, silicon, aluminum , Indium, titanium, nickel, chromium, titanium, antimony, gallium, , Tin, molybdenum, and germanium. 8. The display device according to item 7 of Shenyan's patent scope, wherein the metal alloy includes:, silver; copper that ranges from 0.1 atomic percent to 5.0 atomic percent; and Terbium is among the third metals ranging from 0.1 atomic percent to 50 atomic percent. The Hedi-metal system is selected from the following metals: thorium, cadmium, lithium, zinc, germanium, 1 Lu, Qin, steel, beryllium, bell , Nickel, chromium, #, recording, gallium, _, boron, and magnesium. 9. The display device according to item 7 or 8 of the scope of patent application, wherein the display component is a reflective liquid crystal display. 10. A window Type coating, which includes: a transparent substrate; and-a thin film stack including a thin film of a silver alloy including: 30 200424713 sheet metal; and a second element ranging from 0.1 atomic percent to 10.0 atomic percent wherein the second The element is selected from the group consisting of: gold, palladium, platinum, copper, zinc, cadmium, aluminum, titanium, lithium, magnesium, manganese, silicon, germanium, hammer, tin, indium, nickel, cobalt , Chromium, antimony, gallium, boron, molybdenum,鍅. 11. The window coating according to item 10 of the patent application scope, comprising: the thin film silver alloy; a dielectric layer; and an oxide layer, wherein the thin film silver alloy is interposed between the dielectric layer and the Between oxide layers. 12 · A photovoltaic stack including a transparent substrate; and a transparent and conductive stack, the stack includes: a transparent conductive oxide; and a metal alloy layer, the metal The alloy includes: 銀;以及 範圍在0· 1原子百分比至丨〇原子百分比的第二元 其中該第二元素係選自於由下列元素所組成之群 、鈀、始、金、録、鋰、鋅、鎳、鈷、鉻、銻、鎵、硼 鉬、!呂、鈦、鎂、錳、矽、鍺、鈹、錫、銦、和鍅。 U·根據申請專利範圍第1、2、3、4、或12工 電堆疊,其中該光電組件係在—太陽能電池中。項之 14.根據申請專利範圍第丨、2、3、4 取12項之 31 200424713 電堆疊,其中該光電組件係在一聚合物發光二極體中。 15. 根據申請專利範圍第1、2、3、4、或12項之光 電堆疊,其中該光電組件或堆疊係在一平板顯示器中。 16. 根據申請專利範圍第1、2、3、4、或12項之光 電堆疊,其中該光電組件或堆疊係在一電致變色窗戶中。 拾壹、圖式:Silver; and a second element ranging from 0.1 atomic percent to 10 atomic percent, wherein the second element is selected from the group consisting of palladium, starting, gold, lithium, zinc, nickel, Cobalt, chromium, antimony, gallium, boron molybdenum, aluminum, titanium, magnesium, manganese, silicon, germanium, beryllium, tin, indium, and thallium. U · According to the scope of the patent application, No. 1, 2, 3, 4, or 12 power stacks, wherein the photovoltaic module is in a solar cell. Item 14. According to the patent application scope Nos. 1, 2, 3, and 4, take 31 of the 2004 200413 electrical stack, wherein the photovoltaic module is in a polymer light-emitting diode. 15. The photovoltaic stack according to item 1, 2, 3, 4, or 12 of the patent application scope, wherein the photovoltaic module or stack is tied in a flat panel display. 16. The photovoltaic stack according to claim 1, 2, 3, 4, or 12, wherein the photovoltaic module or stack is tied in an electrochromic window. Pick up, schema: 如次頁Like the next page 3232
TW92128677A 2003-05-08 2003-10-16 Silver alloy thin film reflector and transparent electrical conductor TWI226499B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/431,695 US20030227250A1 (en) 2002-05-08 2003-05-08 Silver alloy thin film reflector and transparent electrical conductor

Publications (2)

Publication Number Publication Date
TW200424713A true TW200424713A (en) 2004-11-16
TWI226499B TWI226499B (en) 2005-01-11

Family

ID=35634232

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92128677A TWI226499B (en) 2003-05-08 2003-10-16 Silver alloy thin film reflector and transparent electrical conductor

Country Status (1)

Country Link
TW (1) TWI226499B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507712B (en) * 2013-10-23 2015-11-11 Licon Technologies Inc The structure of an electrochromic vehicle rear view mirror body and its manufacturing method
CN113444914A (en) * 2021-07-19 2021-09-28 福建阿石创新材料股份有限公司 Silver-based alloy and preparation method thereof, silver alloy composite film and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1701395B1 (en) 2005-03-11 2012-09-12 Novaled AG Transparent light emitting element
JP5590258B2 (en) * 2013-01-23 2014-09-17 三菱マテリアル株式会社 Ag alloy film forming sputtering target, Ag alloy film, Ag alloy reflective film, Ag alloy conductive film, Ag alloy semi-transmissive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507712B (en) * 2013-10-23 2015-11-11 Licon Technologies Inc The structure of an electrochromic vehicle rear view mirror body and its manufacturing method
CN113444914A (en) * 2021-07-19 2021-09-28 福建阿石创新材料股份有限公司 Silver-based alloy and preparation method thereof, silver alloy composite film and application thereof

Also Published As

Publication number Publication date
TWI226499B (en) 2005-01-11

Similar Documents

Publication Publication Date Title
US20060255727A1 (en) Silver alloy thin film reflector and transparent electrical conductor
TWI292286B (en) A method of producing organic light-emitting surface elements and an organic light-emitting surface element
CN104979037B (en) Enhanced transparent conductive film of a kind of heat endurance and its preparation method and application
JP4961786B2 (en) Transparent conductive film and transparent conductive film using the same
JP5330400B2 (en) Glass substrate coated with a layer having improved resistivity
US20130040516A1 (en) Transparent electrode based on combination of transparent conductive oxides, metals and oxides
JP4730300B2 (en) Transparent conductive film and transparent conductive substrate using the same
US20120260983A1 (en) Multilayer metallic electrodes for optoelectronics
TW201246578A (en) Transparent electrode substrate, method for producing the same, electronic device and solar cell having the transparent electrode substrate
KR20100046040A (en) Photovoltaic cell front face substrate and use of a substrate for a photovoltaic cell front face
CN108074991A (en) A kind of composite transparent conductive film
JP2005108467A (en) Transparent conductive sheet, and photosensitive solar cell
CN103219472A (en) Top-emitting organic light-emitting diode (OLED) device anode structure and preparation technology thereof
CN101246928A (en) Back contact layer of thin film silicon solar cell
CN101661811A (en) Near-infrared reflective transparent conductive film and preparation method thereof
CN102054938A (en) Sandwich anode structure of organic electroluminescent device and preparation method thereof
EP2645442A2 (en) Multiple light management textures
US9444068B2 (en) Transparent conductive oxide coatings for organic light emitting diodes and solar devices
Cheylan et al. Organic light-emitting diode with indium-free metallic bilayer as transparent anode
CN104733547B (en) Flexible cadmium telluride thin-film solar cell based on graphene and preparation method of flexible cadmium telluride thin-film solar cell
CN108987491A (en) Photovoltaic cell with anti-reflection coating
TW200424713A (en) Silver alloy thin film reflector and transparent electrical conductor
Cirpan et al. Indium tin oxide nanoparticles as anode for light‐emitting diodes
CN108986955A (en) Transparent conductive film and its manufacturing method
KR20130014270A (en) Solar cell and manufacturing method of the same