TW200307814A - Probe unit and its manufacture - Google Patents

Probe unit and its manufacture Download PDF

Info

Publication number
TW200307814A
TW200307814A TW092106023A TW92106023A TW200307814A TW 200307814 A TW200307814 A TW 200307814A TW 092106023 A TW092106023 A TW 092106023A TW 92106023 A TW92106023 A TW 92106023A TW 200307814 A TW200307814 A TW 200307814A
Authority
TW
Taiwan
Prior art keywords
film
probe
substrate
forming
probe unit
Prior art date
Application number
TW092106023A
Other languages
Chinese (zh)
Other versions
TWI223076B (en
Inventor
Yoshiki Terada
Shuichi Sawada
Atsuo Hattori
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002164244A external-priority patent/JP3651451B2/en
Priority claimed from JP2002205285A external-priority patent/JP4109028B2/en
Application filed by Yamaha Corp filed Critical Yamaha Corp
Publication of TW200307814A publication Critical patent/TW200307814A/en
Application granted granted Critical
Publication of TWI223076B publication Critical patent/TWI223076B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/0735Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card arranged on a flexible frame or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips

Abstract

A probe unit to be fixed to a probe device for testing functions of a test body. The probe unit includes: a substrate; probe pins formed on the substrate by lithography, the probe pins having distal ends protruded from the substrate and being made in contact with electrodes of the test body; and a positioning member formed on the substrate by lithography at a predetermined position relative to the probe pins, the positioning means abutting upon a member for positioning the substrate relative to the probe device.

Description

200307814 玫、發明說明: 技術領域 本申請案係基於2 0 0 1年9月2 0日提出的日本專利申請案 No.2001 -287088,2002年 6 月 5 日提出的 No.2002-1 64244,及 2002年7月15日提出的No. 2002-205285,其完整内容皆在此 引用做為參考。 本發明關於一種探針單元及其製造方法,該探針單元係 用於一電子裝置(測試體)之電極、終端及類似者之導電測試 ’例如半導體積體電路及液晶顯示面板。 先前技術 面板及印刷電路板的產品來進行,藉此檢查這些產品之操 作是否可以符合規格的需求。 在此導電測試期間,形成在該探針單元尖端或在兑附近 的:針插針係緊靠在一半導體積體電路、一液晶顯示面板 …印刷電路板或類似者之並列的電極上。要用於導電測 紅探針單元包括-種「獨立配線」m型及一「活塞」麵 型。孩「獨立配線」類型的探針單元之探針插針使並以: 對-的相關性來接觸於一測試體的電& · 的獨立傳導。_「、:丄 私極 … 」知型的探針單元之探針插針係要 同争接觸於—測試體的複數個電極。 電極層目前係沿著構成一液晶顯示面板之 。 上一微細間距而並列在一起。 $坟、.豕 執行一道+、目丨'、... 為j為i14種液晶顯示面板 …m’孩導電測試裝置需要具有—探針單元, 84367 200307814 其探針插針係相容於該電極層之微細間距。 孩電極層的間距為〇 1 mm或更小。要透過機械打孔來形 成相容於這種間距的探針單元非常困難。 因此探針單元係由触刻或電鐘來製造。 例如在曰本專利公開文獻No.25 52084中揭示一種製造該 獨丄配、,泉類型之‘針單元的方法。此公開文獻係提出黏結 二彳、、泉’其工件由束帶輕合,並在黏結之後切斷該束帶。 亦在JP-B-7-5649j中揭示一種製造該獨立配線類型之探 針单元的方法。此公開文獻係提出來蝕刻導電接觸終端到 一預定的形狀及配置,黏結該導電接觸終端到一絕緣部件 ,然後切斷該導電接觸終端的兩端。200307814 Description of invention: TECHNICAL FIELD This application is based on Japanese Patent Application No. 2001-287088 filed on September 20, 2001, and No. 2002-1 64244 filed on June 5, 2002, And No. 2002-205285 filed on July 15, 2002, the entire contents of which are hereby incorporated by reference. The present invention relates to a probe unit and a method for manufacturing the same. The probe unit is used for conducting tests of electrodes, terminals, and the like of an electronic device (test body), such as a semiconductor integrated circuit and a liquid crystal display panel. Prior art panel and printed circuit board products are used to check whether the operation of these products can meet the specifications. During this conductivity test, the pins formed at or near the tip of the probe unit: the pin pins abut on a side-by-side electrode of a semiconductor integrated circuit, a liquid crystal display panel, ... a printed circuit board, or the like. The red probe unit to be used for conductive measurement consists of an "independent wiring" m-type and a "piston" surface type. The probe pins of the "independent wiring" type probe unit make contact with the electrical & independent conduction of a test body with:-correlation. _ ",: 丄 Pri ..." The probe pins of the known probe unit are in contact with each other—the electrodes of the test body. The electrode layer currently forms a liquid crystal display panel. The last fine pitch is juxtaposed. $ 墓 、. 豕 Perform a +, head 丨 ', ... for j is i14 kinds of liquid crystal display panel ... m' kid conductive test device needs to have a probe unit, 84367 200307814 The probe pin system is compatible with this Fine pitch of electrode layers. The pitch of the electrode layers is 0.1 mm or less. It is very difficult to form a probe unit compatible with this pitch through mechanical punching. Therefore, the probe unit is manufactured by a touch or an electric clock. For example, Japanese Patent Laid-Open Publication No. 25 52084 discloses a method for manufacturing the unique needle unit of the spring type. This open document proposes that the work pieces are bonded together by a strap, and the strap is cut after being bonded. A method of manufacturing a probe unit of this independent wiring type is also disclosed in JP-B-7-5649j. This publication proposes to etch a conductive contact terminal to a predetermined shape and configuration, bond the conductive contact terminal to an insulating member, and then cut off both ends of the conductive contact terminal.

該「活塞 兀係揭示於JP-A-8-U 0362及 成〉古基」類型的探針單天 JP-A-11-64425 〇 一測試體及探針插針的 電極之狹窄間距使其很難實現在 84367 200307814 該等電極及探針插針之間的位置對準。 JP-A-1 0-339740揭示〜兹 6 、 、 A 一立4 _ 種足位及固足具有探針插針形成 方法:反(涛膜)上的—探針單元(接觸探針)到-探針裝置之 但是利用在日本專利 其很難以較高的位Jr 52084中描述的方法’ 。此外,夺mV精度來黏結導線到一絕緣基座上 田束^被切断時,會破壞導線。 利用 JP-B-7-56493 中产、上 AA、 置對準浐…”田处的万法會很困難地以較高的位 和度來黏結導電接觸終端到該絕緣部件。 用在JP-A_n-337575中描述的 層具有含有、玄南丨的一 f α、 專电鍍的銅晶種 /戶丨勺 小接觸區域,所以里你谢十 a 種層’且其會花很長的時間來一 ’、’難來溶解該0曰 難利用錯4 m 相寺探針插針。其亦很 或雷射來以高精度形成 置該探針插針在相對於”孔之位置處。板U放 利用在】P.A_1G_3397辦揭示的 及固定一禊朴每-d 2 疋k用於定位之孔 铋針早兀到一探針裝置係由不 之微影方法的方法來形成穿過_基板:形成探針插針 探針插針與定位孔之 、’其很難來在 六、、2 ^ 苹乂问的位置對淮拉洛 ,在孩探針裝置與探針插針之間,以 2 了卞精度。因此 針插針所夾持的-測試體之電極之門由孩探針裝置與探 精度。 間’得到充份高的位置 發明内容 本發明的目的係要提供一種具有 高精度故置在—基板上,並以高开/二的探針單元以 , '军過遠基板之定 84367 200307814 位孔來用於安裝該探針單元到—壯班 元製造方法。 …並提供-種探針單 根據本發明一方面,其提供—探針單元 體來測試一測試體之功能,其包括:一某“固足於一測試 在該基板上的探針插針,該等探針插針^ ’由微影形成 的末端點,並使其接觸於該測試體的電極·由琢基板哭出 成在該基板上的定位部件,其位 ’及精由微影形 ^ ^ ^ 對万;咳等探針插針一 X、疋的位JL處,该等疋位構件緊靠在一 探針裝置來定位該基板。 。上而相對於該 該定位部件緊靠在一部件上來相對於該 基板,所以該基板藉由使用該定位 & 1疋位该 定位及固定於該探針裝置。該定位部件係C:來 相對於該探針插針定位在該基板上,所以該Μ^用从〜來 用高精度相對於該探針裝置來定位 4 =針插針可 -,A 口此了改善該探針單 疋的探針插針相對於—測試體之電極的位置精度。用於暖 光及_影之光源或輻射源並未受限。微影可為平板: 刷、紫外線微影、離子束微影或類似者。 Θ疋位部件可具有該較薄的夹塾圈形* 圍地延伸環繞形成穿過該基板之通孔。藉由壓力固 件來相對於該探針裝置定位該基板到具有㈣薄的夹塾圈 ㈣之定㈣# ’該等探針插針相對於該探針裝置之位置 精度可由於該定位部件之居中功能來進一步改善。 騎針單元可進—步包括固定於該基板之加強膜,並覆 蓋該等探針插針在該基板上及/或至少該定位部件的—區域 84367 200307814 f::加強膜可防止該等探針插針及/或定位邵件來與該基 = '在此說明書中,「在該基板上及/或至少該定位部 二…的探針插針」係、要代表「在該基板上的該等 休針插針」及「該定位部件之至少—區域」之一。 料=佳地是,該等探針插針及該定位部件係由相同的材 枓衣成,並具有一相同的薄膜厚度。 、+根據本發明另—方面’其提供—探針單元來固定於-測 4體來測試-測試體之功能,其包括:探針插針包括一底 :膜’及形成在該底部膜上的-探針插針圖案;及一探針 夾持為’叾形成在由該等探針插針的末端所定義的一上表 面上’並具有複數個小孔。 因為複數個小孔㈣成穿過該探針夹持器,1可擴大用 於移除-目標層之I虫刻劑的接觸區域。其較佳地是:該探 =夾持器係由形成在由—阻抗膜定義的—框架中所形成的 一電鍍層所製成。 其較佳地是,一絕緣膜係形成在該探針夾持器的表面上 ,且該等探針插針係形成在該絕緣膜的表面上。 針其較佳地是’-保護膜覆蓋該探針夾持器及該等探針插 上其較佳地是,由相輯料製成做為該探針夾持器之探針 播針係形成在由一電鍍層所製成之探針失持器的表面上。 其較佳地是’由一電鍍層所製成的該探針插針係 由樹脂所製成的探針夾持器中。 根據本發明另一方面,係提供一種製造固定於一探針裝 -10 - 200307814 置來測試-測試體㈣能之探針單元的方法,胃方法包含 、下/軌·形成具有由一基板突出的末端點之探針插針, 並使〃接觸於該測試體的電極,及一定位部件來緊靠在用 万、相鳥於β探針裝置定位該基板,藉由微影分別同時定 在該基板上。 二 因為孩等探針插針及定位部件係由微影在同時形成,可 以改善該等探針插針與定位部件之相對位置的位置精度。 因為2基板係藉由使用該定位部件做為一位置參考來$位 一及該探針裝置’胃等探針插針可用高精度來定位在 j奴針衣I上。根據該探針單元製造方法,可以改善該等 铋針插針相對於該測試體的電極之位置精度。 Λ根據本發明另—方面,其提供—種製造^於-測試體 二測測試體之功能的探針單元的方法,該方法包括: 二t—對準標記在-基板上的步驟…形成具有.由該基 末端點之探針插針,並使其接觸於該測試體之電 =驟:其藉由使用該對準標記做為-位置參考來由微 計:通基板上;及-形成-定位部件來緊靠在相對於 谁I π且疋位孩基板之部件上的步‘驟,其藉由使用該對 卞=己做為—位置參考來由微影形成在該基板上。 =該等探針插針及定位部件係使用該共用對準標記做 位仁JL +考來由微影形成,其可改善該等探針插針及定 定牛〈相對位置的位置精度。因為該基板係藉由使用該 等# 代為位且参考來定位及固定於該探針裝置,該 、、,插針可用咼精度來定位在該探針裝置上。根據該探 84367 200307814 針單元製造方法,可以改呈兮签批 、、 。^寺彳木針插針相對於該測試體 的電極之位置精度。在形成該對淮俨、 ' /钌卞圮之後,可以先執行 形成該等探針插針之方法,或來士 & ^ 次巧成孩疋位部件之方法。 根據本發明另一方面,並描视 ’、 仏一種製造固定於一測試體 來測試-測試體之功能的探針單元的方法,_方法包括厂 :形成具有由該基板突出的末端點之探針插針,並使其接 觸於泫測试體足電極,及由 • 一及由械衫同時形成在一基板上的步 驟,及形成用於腎告为 ^在U對於該探針裝置來定位該基 板i αΜ牛的疋位部件之| _ π V馭,其楮由使用該對準標記做為 -…考來由微影形成在該基板上。 因為 6 亥 -g-17 AL . 的該對準標記做為」.^形成該等探針插針的同時間形成 插針及定位部件^置參考所形成,其可改善該等探針 由使用該定位部、子l1的位置精度。因為該基板係藉 裝置,該等探i做為—位置參考來定位及固定於該探針 根據該探針單針可用高精度來定位在該探針裝置上。 該測試體的兩知 Q万法,可以改善該等探針插針相對於 ,^ ⑦拯之位置精度。 根據本發明另 、 來測試一測試髂、万面,其提供一種製造固定於一測試體 一形成緊靠 〜力此的探針單元的方法’該方法包括: -仕用於柏、 基板之部件的定、 '於遠探針裝置及一對準標記定位一 該基板上;B 部件之步驟,其藉由微影在同時形成在 接觸於該剛該觸、/、有由該基板哭出之末端點,並使其 ai、禮之心士 該對準標記做、 I 2的探針插針之步驟,其係藉由使用 , k置參考來由微影形成在該基板上。 84367 200307814 因為該接· # 、 、、 插針係由在形成該等探針邵件的同時間形成 的該對準# 2 μ、 717圮做為一位置參考所形成,其可改善該等探針 插針及定位, Q件 < 相對位置的位置精度。因為該基板係藉 由使用該定p、 枯班 1乂邵件做為一位置參考來定位及固定於該探針 、、以等探針插針可用高精度來定位在該探針裝置上。 根據該探斜》σσ 早7^製造方法,可以改善該等探針插針相對於 該測試體的兩打 ^ % 爻位置精度。 根據本發明y _、 乃一万面,提供一種製造一探針單元的方法 ,其包括:一力一 & 仕 I板的表面上形成,犧牲膜之步驟;一 :犧牲膜的表面上形成一底部膜之步驟;—在該底部膜 白勺 I 1¾ i 4·' , _ ^ ^ 有對應於一探針單元圖案之開口的一阻 才几膜並包含至少一 孔 < 步驟;一藉由電鍍來在該阻抗膜 八 中形成咸探針單元圖案的步驟,該探針單元圖案包 ^菜針插針及—探針夹持器;—移除該阻抗膜及在該阻抗 ,,I,及一移除該犧牲膜來得到一探 針早元的步驟。 根據本發明另一方面, ^ t、一種製造一探針單元的方法 ’其包括··一形成一犧牲 , 彺 基板衣面上的步驟;一形 风一弟一阻抗膜在該犧牲膜 趑目女, M M表面上之步驟,該第-阻抗 月吴具有相對應於一探針夾持哭 4r ^ 圖衣的一開口; 一藉由電鍍 在4弔一阻抗膜的開口中形成 _ , 成邊咏針夹持器圖案之步驟; 形成一絕緣膜在該探針夹# 以私、、斤 人待态圖案的表面上之步驟;一 私除孩弟一阻抗膜來得到一禊 鍍形成入η 夹持器之步驟;一藉由電 坡升y成一金屬層在該犧牲膜 表吗上之步驟,其中未形成 84367 -13 - 200307814 該探針夾持器;一形成一底部膜在該絕緣膜及該金屬層的 表面上 < 步驟;一形成一第二阻抗膜在該底部膜的表面上 之步風,該第二阻抗膜具有相對應於一探針插針圖案之開 口; 一藉由電鍍形成該探針插針圖案在該第二阻抗膜之開 口中的步驟;一移除該第二阻抗圖案之步驟;及一移除在 該第二阻抗膜下方之犧牲膜來得到一探針單元之步驟。 根據本發明另一方面,提供一種製造一探針單元的方法 ,其包括··一形成一犧牲膜在一基板的表面上之步驟;一 形成一第一底部膜在該犧牲膜的表面上之步驟;一形成具 有相對應於在琢第一底部膜的表面上一探針插針圖案之開 口的第-阻抗膜…藉由電鍍在該第—阻抗膜的開口中形 U探針插針圖案之步.驟;一移除該第一阻抗膜來得到該 探針插針圖案之步驟· 回、、 ,—利用一電鍍層來覆蓋該探.針插針 圖案之步驟,其研卢今·兩祐氏A 士 ,一 幵G d ^鍍層的一表面來使得該電鍍層的 一衣面齊平於該探針插 τ 、十圖木的衣囬,然後在該電鍍層及 孩板針插針圖案的类 ...^ . 上形成一絕緣膜;一在該絕緣膜的The "piston system is disclosed in JP-A-8-U 0362 and Cheng> Guji" type probes per day JP-A-11-64425 〇 The narrow distance between the electrodes of the test body and the probe pins makes it It is difficult to achieve position alignment between such electrodes and probe pins of 84367 200307814. JP-A-1 0-339740 reveals ~ 6, A, A4, _ a variety of foot position and fixed foot with probe pin formation method: on the (Tao Membrane)-probe unit (contact probe) to -The probe device, however, utilizes the method described in Japanese Patent Jr 52084, which is difficult to place in higher order. In addition, mV accuracy is used to bond the wires to an insulating base. When the field bundle is cut, the wires will be damaged. Utilizing JP-B-7-56493 in the middle, upper AA, aligning 浐 ... "Wan Fa of the field will have difficulty in bonding the conductive contact terminal to the insulating part with a high degree and degree. Used in JP-A_n The layer described in -337575 has a small contact area that contains Xuannan, a f α, a copper seed plate / house, and a plated spoon, so you thank you for a layer of this type, and it will take a long time to ',' Difficult to dissolve the 0 means difficult to use the wrong 4 m phase temple probe pins. It is also possible to place the probe pins with high accuracy at a position relative to the "hole" by laser. The plate U puts through the hole disclosed in P.A_1G_3397 and fixes a hole per -d 2 疋 k. The hole used for positioning the bismuth needle to a probe device is formed by the lithography method. _ Substrate: the formation of the probe pin, the probe pin and the positioning hole, 'it is difficult to come to Huailao at the position asked by Ping, between the probe device and the probe pin To 2 to 卞 precision. Therefore, the gate of the electrode of the test body held by the needle pin is equipped with a probe device and detection accuracy. The object of the present invention is to provide a high-precision placement on a substrate, and a high-opening / two-probe unit is used. Holes are used to mount the probe unit to the Zhuangban manufacturing method. ... and provide a probe sheet. According to one aspect of the present invention, it provides a probe unit body to test the function of a test body, which includes: "a probe pin fixed on a substrate, These probe pins ^ 'end points formed by lithography and brought into contact with the electrodes of the test body · the substrate is crying out into a positioning member on the substrate, its position' and fine lithography ^ ^ ^ Pair; cough and other probe pins-X, 疋 position JL, the 构件 position members abut against a probe device to position the substrate ... and close to the positioning component A component is opposed to the substrate, so the substrate is positioned and fixed to the probe device by using the positioning & 1 position. The positioning component C: is positioned on the substrate relative to the probe pin. Therefore, the M ^ is used to position the probe device with high precision relative to the probe device. 4 = pin pin can be-, A port improves the probe pin of the probe relative to the electrode of the test body. Position accuracy. The light source or radiation source for warm light and shadow is not limited. The lithography can be a flat plate: , UV lithography, ion beam lithography, or the like. The Θ position component may have the thinner ring-shaped ring shape * to extend around and form a through-hole through the substrate. Relative to the probe by pressure firmware The needle device positions the substrate to a fixed position with a thin clamping ring. The position accuracy of the probe pins relative to the probe device can be further improved due to the centering function of the positioning component. The needle riding unit can Further steps include a reinforcing film fixed to the substrate, and covering the probe pins on the substrate and / or at least the area of the positioning member 84367 200307814 f :: the reinforcing film can prevent the probe pins and / Or positioning Shao to come with the base = 'In this description, "probe pins on the substrate and / or at least the positioning section two ..." means "the rest pins on the substrate Pin "and" at least the area of the positioning component ". It is good that the probe pins and the positioning member are made of the same material and have the same film thickness. According to another aspect of the present invention, it provides a probe unit to be fixed to the test body to test the function of the test body, which includes: the probe pin includes a bottom: a film, and is formed on the bottom film. -A probe pin pattern; and a probe pinched as '叾 formed on an upper surface defined by the ends of the probe pins' and having a plurality of small holes. Since a plurality of small holes are formed through the probe holder, 1 can enlarge the contact area for removing the insecticide of the target layer. It is preferably that the probe holder is made of an electroplated layer formed in a frame defined by an impedance film. Preferably, an insulating film is formed on the surface of the probe holder, and the probe pins are formed on the surface of the insulating film. The needle is preferably a '-protective film covering the probe holder and the probes are plugged in. Preferably, the needle holder is made of a photo album as the probe sowing system of the probe holder. It is formed on the surface of a probe stopper made of a plating layer. It is preferable that the probe pin made of a plating layer is in a probe holder made of resin. According to another aspect of the present invention, there is provided a method for manufacturing a probe unit fixed to a probe device -10-200307814 to test-test body performance. The stomach method includes, a lower / rail, and a protrusion formed by a substrate. Point the probe pin at the end of the probe, and contact the probe with the electrode of the test body, and a positioning part to abut the positioning of the substrate with the β-probe device using the phase probe, and simultaneously set at On the substrate. Second, because the children's probe pins and positioning components are formed by lithography at the same time, the relative position accuracy of the probe pins and the positioning components can be improved. Because the 2 substrates are positioned by using the positioning member as a position reference, and the probe pins of the probe device, such as the stomach, can be positioned on the j-needle clothing I with high accuracy. According to the manufacturing method of the probe unit, the position accuracy of the bismuth pin pins relative to the electrodes of the test body can be improved. Λ According to another aspect of the present invention, it provides a method of manufacturing a probe unit for testing the function of a test body, the method comprising: two steps of t-aligning a mark on a substrate ... The probe pin that points at the basal end and makes it contact the test body: Step: It uses the alignment mark as a position reference to make a micrometer: on the substrate; and-form -The step of positioning the component against the component of the substrate with respect to I π and the position of the substrate, which is formed on the substrate by lithography by using the pair == as a position reference. = These probe pins and positioning components are formed from the lithography using the common alignment mark as the position JL + test, which can improve the position accuracy of the probe pins and the fixed position. Because the substrate is positioned and fixed to the probe device by using the # generation as a reference and position, the pins can be positioned on the probe device with 咼 precision. According to the probe 84367 200307814 manufacturing method of the needle unit, it can be changed to Xixian approval. ^ The accuracy of the position of the temple pin with respect to the electrode of the test body. After forming the pair of rhenium, ruthenium, and ruthenium, the method of forming the probe pins, or the method of forming the child's position part by R &S; According to another aspect of the present invention, a method of manufacturing a probe unit fixed to a test body to test the function of the test body is described. The method includes a method of forming a probe having a terminal point protruding from the substrate. The needle is inserted and brought into contact with the foot electrode of the test subject, and the steps of forming a substrate on the substrate at the same time as the mechanical shirt, and forming a kidney device for positioning the probe device _ Π VY, the positional component of the substrate i αM cattle, is formed by lithography on the substrate by using the alignment mark as ... Because the alignment mark of 6 Hai-g-17 AL. Is used as "." ^ Forming the probe pins at the same time forming the pins and positioning parts ^ reference formation, which can improve the use of these probes The positioning accuracy of the positioning part and the sub-l1. Because the substrate is a device, the probes are used as a position reference to locate and fix the probe. According to the single pin of the probe, the probe can be positioned on the probe device with high precision. The knowledge of this test body can improve the accuracy of the position of the probe pins relative to. According to the present invention, to test a test cell and a surface, a method for manufacturing a probe unit fixed to a test body and forming a close contact force is provided. The method includes:-Components for cypress and substrate The positioning of the remote probe device and an alignment mark on a substrate; the step of component B, which is formed by lithography at the same time in contact with the touch, and / or crying out of the substrate. The end point, and the steps of making the ai, the ritual heart align mark, and the probe pin of I 2 are formed by using the lithography on the substrate by using k as a reference. 84367 200307814 Because the connection #,, and pins are formed by the alignment # 2 μ, 717 圮 formed at the same time as the probes are formed, it can improve the detection Needle insertion and positioning, Q pieces < relative position accuracy. Because the substrate is positioned and fixed to the probe by using the fixed and fixed parts as a position reference, the probe pins can be positioned on the probe device with high accuracy. According to the manufacturing method of "slope detection" σσ as early as 7 ^, the position accuracy of the probe pins with respect to the test body by two dozen ^%% can be improved. According to the present invention, a method for manufacturing a probe unit is provided, which includes the steps of forming a sacrificial film on the surface of a force-amplifier plate, and forming a sacrificial film on the surface of the sacrificial film. A step of a bottom film;-at the bottom film I 1¾ i 4 · ', _ ^ ^ has a film corresponding to the opening of a probe unit pattern and includes at least one hole <step; a borrow The step of forming a salty probe unit pattern in the impedance film by electroplating, the probe unit pattern includes a vegetable pin and a probe holder; the removal of the impedance film and the impedance, , And a step of removing the sacrificial film to obtain a probe early element. According to another aspect of the present invention, a method of manufacturing a probe unit includes: a step of forming a sacrificial substrate, a substrate surface; a wind, a resistive film on the sacrificial film; Female, the step on the surface of the MM, the first-resistance moon has an opening corresponding to a probe holding a 4r ^ figure; one is formed in the opening of the four-resistance film by electroplating, forming an edge The step of chanting the pin holder pattern; the step of forming an insulating film on the surface of the probe holder # pattern, and removing the impedance film to obtain a plated film. A holder step; a step of forming a metal layer on the sacrificial film surface by electric ramping, wherein the probe holder is not formed 84367 -13-200307814; a bottom film is formed on the insulating film And < on the surface of the metal layer; a step of forming a second impedance film on the surface of the bottom film, the second impedance film having an opening corresponding to a probe pin pattern; Plating the probe pin pattern in the opening of the second impedance film Step; step of removing a second impedance of the pattern; and a removal of the sacrificial film under the second resistance film to obtain a probe unit of the step. According to another aspect of the present invention, there is provided a method of manufacturing a probe unit, comprising: a step of forming a sacrificial film on a surface of a substrate; and forming a first bottom film on the surface of the sacrificial film. Step; forming a first impedance film having an opening corresponding to a probe pin pattern on the surface of the first bottom film ... U-shaped pin patterns are formed in the opening of the first impedance film by electroplating Steps; a step of removing the first impedance film to obtain the probe pin pattern · Back ,,,-using a plating layer to cover the probe pin pattern, its research Lu Jin · Two Yushi Ashi, a surface of the G d ^ plating layer to make a coating surface of the plating layer flush with the probe insert τ, Shitomu clothing back, and then insert in the plating layer and the child pin. Needle pattern type ... ^. An insulating film is formed on the;

衣囬上形成一第二卮却 ^ J 面上形成一篦—:κ步騾;-在該第二底部膜的表 y成弟一阻抗膜之步铲,今签 且有至少一丨$ ίΛ孩弟二阻抗膜具有對應於 ,、 乂 小孔的一探針央祛哭闰安、 在哕第 又持叩圖衣〈開口; 一藉由電鍍 及一㈣ ^成該探針夾持器圖案之步驟; 于…豕罘一阻柷膜、誇^ 、 鍍層及該犧牲膜來得 ϋ邵膜、該絕緣膜、該電 該探針單元可用木針單元之步驟。 的裝置上,例如測試體=對:精度來安裝在每-個不同 ^ —液晶顯示面板或類似者之導電 84367 '14- 200307814 :、以可用高精度來進行。因為用於決定—安裝位置及探針 1 針之圖案可同時形成,定位孔可用高精度來形成。該探 針插針與—測試體之相對位置的精度可以改善。 :據s休針早(製造方法,—探針單元可以製造成具有 二插針、—探針夾持器及定位孔,用以安裝該探針單元 — 上’其刀别可用高位置精度來放置。 貫施方式 '考圖面來對於本發明之較佳具體营施例進行說 /將說明根據本發明之具體實施例的探針單元。首先將 況明圖1到)β中所顯示之一探針單元1 〇的第-到第五結構 針單元10具有形成在一基板"上的-導線圖案U及 疋仏' 件 1 6。句· a . μ 、’早兀1 0係固定於位在一測試體基座(樣 本基厓)之上的一掇斜壯宠 狹一 π 〇σ 針衣且2。在圖1到5Β所示的範例冲,雖 ^1 〇係固定於該探針裝置2,要固定於該.探針裝 二抓針早兀的數目係根據一測試體之結構來決定。舉例 而s ’四個探針罩开 十^ 卞早凡可以对於—探針裝置間隔9 0。的放射狀 來固定。 土迴吊係以一長万形板來製成。該基板I 2的材料 可為絕緣材料’例如玻撕、石英、氧化結、玻璃、氧 工樹脂或導電材料,例如鐵鎳合金、_、不錄鋼 、矽、碳化矽及AITlC。A second frame is formed on the back of the garment, but a frame is formed on the J surface—: κ 步 骡;-a stepped shovel of the impedance film on the surface of the second bottom film, which has at least one 丨 $ ίΛ The second impedance film of the younger brother has a probe corresponding to, a small hole, and a crying jacket, and a drawing coat (opening); a pattern of the probe holder is formed by electroplating and a hole. The steps are: a step of obtaining a film, an insulating film, and a probe unit by using a resistive film, a coating, a plating layer, and the sacrificial film. On the device, for example, test body = pair: the accuracy is to be installed in each-different ^ — liquid crystal display panel or similar conductive 84367 '14-200307814: to be used with high accuracy. Because it is used to determine the installation position and the pattern of the 1-pin probe, the positioning holes can be formed with high precision. The accuracy of the relative position of the probe pin to the test body can be improved. : According to s. Needle early (manufacturing method,-the probe unit can be manufactured with two pins,-probe holder and positioning holes for mounting the probe unit-on the top of the knife can be used with high position accuracy The implementation method is described in reference to the preferred embodiment of the present invention. The probe unit according to the specific embodiment of the present invention will be described. First, the details shown in Figs. The first to fifth structure needle units 10 of a probe unit 10 have a -wire pattern U and a lead 16 formed on a substrate ". Sentences a. Μ and ‘early 10’ are fixed on a base of a test body (sample base cliff), oblique and strong, narrow, π 〇σ, and 2. In the example punches shown in Figs. 1 to 5B, although ^ 1 0 is fixed to the probe device 2, it is necessary to fix to the probe. The number of the two needles is determined according to the structure of a test body. For example, the four probe covers of s' are opened ten 卞 卞 Early Fan can be-probe device spaced 90. Radial to fix. The earth sling is made of a long cardan plate. The material of the substrate I 2 may be an insulating material such as glass tear, quartz, oxidized junction, glass, oxyresin, or a conductive material such as iron-nickel alloy, stainless steel, silicon, silicon carbide, and AITlC.

該導線圖案丨4係由形成在該基板〗2的表 線2〇所構成。該等導線2。可為相互導電或不相互 寺導線2。係在以彼此對準的位置中由微影來形成在該基Z 84367 -15 - 200307814 12上。一彈性印刷配線平面纜線3係電連接到該導線2〇的靠 近側。該等導線2 〇的末端側構成探針插針2 2。這些探針插 針22係放置成一均勻的間距,並平行線性地延伸。該導線 2 0的材料可為金屬,例如鎳合金及鎳。 泫等定位部件1 6係在與該導線圖案]4的探針插針2 2有位 置對準之下由微影來形成在該基板〗2的表面上。該等定位 部件1 6緊靠在該探針裝置2之固定夹具4上。類似於該導線 22,該定位部件16係由金屬製成,例如鎳合金及鎳。相較 於人造樹脂,例如聚醯胺,金屬可具有一良好的形狀穩定 性’且較不會受到溫度或濕度而變形。該等定位部件1 6緊 靠在該固定夹具4上即決定了該基板12相對於該探針裝置2 的位置。該固定夾具4構成「相對於該探針裝置來定位該基 板之部件」。 以下將洋細明该探針單元1 〇的第一到第五结構。 (第一結構) 在圖1所示的該第一結構中,在每條導線的末端側上的該 探針插針2 2由該基板1 2的一側1 2 a突出。該定位部件丨6具有 一 L形狀,其沿著垂直於由該等探針插針22突出的該側i2a 之側邊1 2 b延伸,且沿著相對於該側邊1 2 a之側邊1 2 c,並突 出於該等側邊1 2b及1 2c。其它的定位部件丨6亦具有一 l形狀 ,其沿著垂直於由該等探針插針22突出之側邊12a之另一側 12d延伸,且沿著相對於該側12a之側邊12(:,並突出於該等 側邊1 2d及1 2c。在該基板! 2的外側上每一個定位部件〗6的側 邊1 7係緊靠在具有一 U形狀的固定夹具4之插針落5。因此該 84367 200307814 基板12係相對於該等探針插針以之延伸方向,及垂直於該 延伸万向足方向來固定。如圖6所示,複數個柱狀(圖6中的 圓柱)固足夹具4可形成為在複數個位置處將該等固定夾具4 之外壁緊靠在該定位部件1 6上。 (弟一結構) 在圖2所示的第二結構中,除了該第一結構,可形成覆蓋 該定位部件16之部份表面,並固定於該基板12之加強膜24 ’及覆盖該等探針插針22之基座位置之加強膜24。該等加 強腠24及25的材料為人造樹脂或類似者。該加強膜24可防 止該足位部件1 6被施加於該定位部件1 6之外側的外力而與 琢基板1 2分離。該加強膜25可防止該等探針插針22由一外 力而與該基板12分離。其並非皆要使用該等薄膜以及以, 而可使用覆蓋該定位部件;! 6之加強膜24及覆蓋該等探針插 針22之基座位置之加強膜25之一。其可形成覆蓋該等探針 插針22足定位邵件丨6及基座部份之加強膜。如圖7所示,複 數個孔可形成穿過該定位部件16,並填入與該加強膜以材 料相同的材料,以進一步加強該加強膜24。 (第三結構) 圖3A所示為該探針單元10之第三結構的平面圖,而圖m 所不為沿著圖3A所示之BrB3線所取出的該探針單.元丨〇之 橫截面圖。在該第三結構中,緊靠在該定位部件丨6之定位 部件1 6及該固定夾具4係不同於該第一結構。—環形的定位 4件1 6係形成在該導線圖案1 4之兩側上,並覆蓋了米成… 過違基板1 2之通孔2 6。該定位邵件1 6係以相同的材料制成 84367 -17 - 200307814 ’亚具有與孩導線圖案1 4相同的厚度。該定位部件丨6之孔 “仏小杰該通孔2 6之直徑。該定位部件1 6之孔的内壁丨8係 搭坐在咸遇孔26之開口上。一圓柱形的固定夾具4係裝配到 該定位部件16之孔中,所以該基板12係全方向地固定。 (弟四結構) 圖4A所不為該探針單元1〇之第四結構的平面圖,而圖4b 所不為沿著圖4A所示之B4-B4線所取出的該探針單元1〇之 &截面圖。在1豕第四結構中,該定位部件丨6之形狀係不同 於该第二結構。該等定位部件丨6具有這種内部夾墊圈形狀 ’如同由該内部周圍側】8延伸到該放射狀内側之突出,其 係周圍式地放置。其較佳地是該等突出丨9係以一等間距周 圍式地放置。如圖4B所示,因為該周圍固定夾具4係裝配在 該足位部件1 6之孔中,每個突出可彈性變形到該裝配方向 。此變形可吸收該定位部件之孔徑及該固定夾具4之外徑的 製公差’所以該定位部件丨6係相對於該固定夾具4而以高 精度位在其中心。 (第五結構) 圖5 A所不為該探針單元1 〇之第五結構的平面圖,而圖5 B 所不為沿著圖5A所示之35_35線所取出的該探針單元1〇之 檢截面圖。在第五結構中,兩個軸對稱導線圖案丨4形成在 該基板12上。構成每個導線圖案14之該等導線2〇之探針插 針2 2具有由遠基板1 2的表面垂直突出的棒狀。長方形定位 部件16係沿著在該等導線圖案14的探針插針22之柱子的相 對側邊上的側邊所形成。該等定位部件丨6由該等相對應的 84367 -18 - 200307814 側邊12b及1 2d突出。該等定位部件16之側邊17係平行於該 等側邊1 2 b及1 2 d。每個定位部件1 6之側邊1 7緊靠在具有一 圓柱(圖5 A及5 B中的圓柱)形狀之複數個固定夾具4之外部 周圍上。因此該基板1 2固定於該探針裝置2。固定於該基板 12足加強膜28覆蓋該等探針插針22之基座部份及該等定位 部件1 6的部份表面。該加強膜28之材料為人造樹脂或類似 者。該加強邵件2 8可防止該等探針插針22及該等定位部件 1 6受到施加於該等定位部件丨6之探針插針及側邊1 7的外力 而與該基板1 2分離。 在该第五結構中,雖然該定位部件1 6之高度(薄膜厚度) 係設足低於孩探針插針22之高度,如圖5 B所示,該定位部 件1 6足南度可設定高於該探針插針22。在此例中,該定位 部件16之侧邊17可防止受到一外力而破壞。 (第六結構) 圖8 A所tf為該探針單元1〇之第六結構的平面圖。在該第 π、结構中’係一體地形成在一狹窄間距下高度精確地並列 足一些導線20的梳狀探針插針22,及結合於該等探針插針 22( 一 "而的一探針夾持器1 10。該等探針插針22及探針夾持 器110係齊平於相同的平面。該等探針插針22及探針夾持器 1 1 0 ir、由相同的材枓製成,例如由電鍍形成的鎳合金。 邊第7、结構之探針單元的探針插針22及探針夾持器1 1 〇 係由相同的材料製成,戶斤以該等導線20係相互導電。該第 ^、结構1探針單元可適用於一活塞型式的探針單元,其同 時間執仃相同裝置之複數個電極之導電測Μ,例如一液晶 84367 -19 - 200307814 顯示面板。 定位孔丨π可形成穿過該探針夾持器11 0來以位置對準的 方式安装該探針單元10在每個裝置上。該定位孔丨丨丨的大小 、形狀及位置係根據安裝有該探針單元1 〇之每一個裝置來 決定。舉例而言,除了形成故數個多邊形孔之外,如圖8 A 所示,一單一多邊形孔可防止旋轉,或可形成複數個圓孔 (參考圖8B),或可形成橢圓孔’其可調整一安裝位置(參考 圖 8C) 〇 每個定位孔1 1 1之位置係由使用光阻來高度精確地決定 ,所以該探針單元1 0可用高精度的位置對準來安裝在每個 裝置上。因此其可能來高度精確地執行液晶顯示面板及類 似者之導電測試。 一些小孔112可形成穿過遠探針夹持器11 〇。如以-下所述 ,在製造該第六結構之探針單元的方法中,一犧牲膜由蝕 刻劑溶解來與一基振分離一金屬落與一底部膜之結合的部 份。該等小孔1 1 2係用來在該犧牲膜與蝕刻劑之間加大該接 觸面積。雖然該等小孔1 1 2的位置、大小及數目並未特定地 限制,其較佳地是形成該等小孔1 1 2的方式為姓刻劑均勻地 接觸在該底部膜之下的該犧牲膜的整個表面。該犧牲膜的 溶解時間可相當地縮短。 (第七結構) 圖9 A所示為該探針單元1 〇之第七結構的平面圖,而圖9 b 所示為沿著圖9A所示之ΒγΒ9線所取出的該探針單元丨〇之 橫截面圖。 84367 -20 - 200307814 此探針單元U)具有一探 以伟窀Μ π、, 又持1 1 〇,及形成高度精確地 以一狹乍間距亚列的一此道 4+7? s ^ .χ 一寸、.泉一0的末端側上的梳形探針插 針22。邊寺探針插針2 一’、隹宜在孩探針夾持器11〇上,並與 其整合。對於此探針單元一 泮性印刷配線平坦纜線3之 結合具有一些電極丨η丰 、 、 _. 丁也以一笮間距配置。該探針單元 1 0及彈性印刷配線平扭游 十一、、見、桌J係與母對電連接的導線20及 電極113結合在一起。 疋位孔1 1 1可形成芽過該探針夾持器1 1 〇來以位置對準的 方式安裝該探針單元在每個裝置上。該定位孔⑴的大小 、形狀及位置係根據安裝有該探針單元10之每-個裝置來 决疋。母個疋位孔} i 1之位置係由使用光阻來高度精確地決 疋所以5 |衣針單凡! 0可用高精度的位置對準來安裝在每 個裝置上。 在形成該等探針插針22的同時,由與該等探針插針。相 同材料製成的定位部件16可形成在該等定位孔ηι之外部 周圍表面上。此定位邵件丨6進一步改進該定位精度。稍後 將說明圖9A及9B中所示的一保護膜32。 (第八結構) 圖1 0所示為一探針單元的第八結構之平面圖。 在違第八結構的探針單元中’一個或複數個小孔1 1 2可形 成芽過該探針夾持器!丨〇。如以下之說明,在製造該第八結 構的探針單元的方法中,以蝕刻劑來溶解一犧牲膜及—電 鐘鋼層來由一基板分離探針插針與探針夾持器之整合的部 份。該等小孔Π 2係用來在該犧牲膜與餘刻劑之間加大該接 84367 -21- 200307814 〜。料該等小孔⑴的位置、大小及數目並未特定地 :艮制’其較佳地是形成該等小孔1 η的方式為蝕刻劑均勻地 接觸在该探針类转哭、 °" <下的該犧牲膜的整個表面。該犧 牲膜的溶解時間可以相當地縮短。 (第九結構) 圖UA所7為該探針單元W之第九結構的平面圖,而圖 斤丁為為抓針單元1〇之第九結構之橫截面圖。 、此探針單元1G具有一探針夾持器110,及形成高度精確地 '狹乍間距並列的一些導線2 〇的末端側上的梳形探針插 針22。該等探針插針22係堆疊在該探針夹持器11Q上,並與 /、正σ對於此探針單元1 0,一彈性印刷配線平坦纜線3之 結合具有一些電極Π3平行地以一窄間距配置。該探針單元 1 〇及彈性印刷配線平坦纜線3係與每對電連接的導線2〇及 電極1 1 3結合在一起。 定位孔111可形成穿過該探針夹持器丨〗〇來以位置對準的 方式安裝該探針單元10在每個裝置上。該定位孔1U的大小 、形狀及位置係根據安裝有該探針單元丨〇之每一個裝置來 決足。如以下心說明,每個定位孔丨丨丨之位置係由使用光阻 來咼度精確地決定,所以該探針單元1 〇可用高精度的位置 對準來安裝在每個裝置上。 在形成該等探針插針2 2的同時,由與該等探針插針2 2相 同材料製成的定位部件1 6可形成在該等定位孔π 1之外部 周圍表面上。 用於決定一安裝位置之圖案及該等探針插針係同時形成 84367 -22 - 200307814 因此巧等疋位孔可以高度精確地形成,所以在該, 針插針及一測試體之間的位置精度可以改善。 (第十結構) 圖1 2所TF為孩探針單元丨〇的第十結構之平面圖。 在該第十結構的探針單元中,複數個小孔丨12可形成穿過 磊抓針夾持器110。如以下之說明,在製造該第十結構的探 針單凡的方法中,以蝕刻劑來溶解一犧牲膜來由一基板分 4抓針插針與探針夾持器之整合的部份。該等小孔】12係用 來在及杈牲膜與蝕刻劑之間加大該接觸面積。雖然該等小 孔位置、大小及數目並未特定地限制,其較佳地是形 成及等小孔1 1 2的万式為蝕刻劑均勻地接觸在該探針夾持 器110之下的該犧牲膜的整個表面。該犧牲膜的溶解時間可 以相當地縮短。 (第十一結構) 圖W所示為該探針單元10之第十一結構的平面圖,而圖 13B所示為沿著圖13A所示之Bl3_Bi3線所取出 1〇之橫截面圖。 兀 琢第十一結構之探針單元具有 今u T如層110a所製成的 这私針夹持器110之一部份。 在此探針單元中,為了電地隔離該等探 — n对早凡2 2盘每您 針夾持器1 1 0,在形成該等探針插針22之 秌針夾持器1 1 0的 居4 1¾係由感光性聚醯胺或類似者之樹 么分也 臂丨10以斤製成。因 、、〜对脂層1 1 0 a具有一大的膨脹係數,並因 θ“度改蠻而.形 ,其會降低該等探針插針之位置精度。因 " 口此其較佳地是由 84367 -23 - 200307814 該探針夾持器110的樹脂屉 ^ ,, .. . . ^ 曰110a所佔有的面積較小。 田此如針單兀安裝在 個導電測試装辛,該菩 框架1 14係裝g㈣該導 ^ ^ j j 6中。 J^ K夹持器]1 5之安裝部件 (第十二結構) 一結構的平囬圖’而圖 線所取出的該探針單元 圖14A所示為該探針單元1〇之第 14B所示為沿著圖i4A所示之b"_b 1 0之橫截面圖。 架 5亥弟十一結構的探針單 1 14之定位孔1 14a。 元具有形成穿過該等定位框 如以下足成明,琢等定位框架1 14與定位孔1 14a係同時間 形成Q此4疋位框架114與定位孔114a之位置精度可以較 同。可改進点等探針插針22與一測試體之間的位置精度。 &此神木針單凡安裝在每個導電測試裝置Ji,該等導電測 試裝置之夹持器Π5的定位插針116係裝配到該等定位孔 1 14a 中。 因為由此彳木針單元的探針夾持器1丨〇之樹脂層H 〇a所佔據 的面積較小,其有可能防止該等探針插針之位置精度因為 溫度改變而降低。因為在靠近該等定位孔丨丨4 a之區域令未使 用樹脂,其可能防止因為溫度改變造成該等探針插針之位 置精度的降低。 (第十三結構) 圖1 5 A所示為垓探針單元1 〇之第十三結構的平面圖,而圖 1 5B所不為沿著圖1 5A所示之Bu-Bb線所取出的該探針單元 84367 -24 - 200307814 1 〇之橫截面圖。 该弟十三結構的探針單元具有一探針夹持器】】〇,形成在 以mi距高度精確地並列之—些導線2㈣末端侧上的 ‘形探針插針22,以及定位框架。該等探針插針22及定 位框架114係、堆疊在該探針夾持器110上,並與其整合。 、该:足位框架114係與該等導線2〇平行地放置在該探針 夾持器I1G的兩侧上。該定位框架114係由與該等探針插針 相:的材料製成。該定位框架114的大小、形狀及位置係根 據安裝有該探針單元1 〇之每一個導電裝置來決定。 如以下;5兒明,用於決定該安裝位置與該等探針插針2 2 之定位框架114係同時形成。因此該等定位框架n4之位置 精度很高。可改進該等探針插針22與—測試體之間的位置 精度。 當此探針單元安装在每一個導電測試裝置上時,該等定 位框架1 1 4係裝配在該等導電裝置之夾持器的安裝部件i ! 6 中。 琢等探針單兀1 0之结構已經在上述說明。接著,將說明 製造探針單元10之方法。首先將說明第一到第七製造方法 。該第一到第七製造方法可應用到該探針單元10之第一到 第五結構之任何一種。該第一到第六方法將採取製造具有 該第一結構之探針單元為範例來說明。該第七方法將採取 製造具有該第五結構之探針單元為範例來說明。 (第一製造方法) 圖16A到16H所示為製造該探針單元的第一方法之架構性 B4367 -25 - 200307814 橫截面圖。藉由應用此製造方法,可製造例如具有圖丨所辛 之第一結構的該探針單元10。 首先,如圖1 6 A所示,在由絕緣材料製成的—基板丨2的表 面層中形成凹處50,例如玻璃陶瓷、石英及氧化結。該等 凹處50之内壁在後續的方法之後成為該基板12之側邊12a、 12b及12d 。 如圖1 6 B所示,一犧牲膜5 2係形成在該基板1 2之表面上。 該犧牲膜52的材料可為金屬、人造樹脂,例如環氧樹脂及 尿素樹脂,或無機鹽’例如碳酸鈣。如果要使用金屬,係 使用不同於該導線圖案1 4之金屬的金屬,例如銅。如果使 用銅的話,形成一底部層52a,然後藉由電鍍、噴濺或類似 者來形成一銅膜52b在該底部層52a之表面上。舉例而言,該 底部層52a為厚度30 nm之鉻層與厚度為3〇〇 nm之銅層之複 合層。該銅膜52b係形成填入於該等凹處中5〇。 板 如圖16C所示’該犧牲膜52係被研磨來曝光及平坦化該基 1 2的表面’並僅在該等凹處50中留下該犧牲膜52。 如圖1 6 D所示 導線圖案1 4及 在該底部膜5 6 光罩係置於該 在該研磨的表面5 5上形成該 定位邵件1 6之具有一均勻厚度之底部膜5 6。 的表面上,塗佈有光阻。一具有預定圖案之 光阻的表面上。不必要的綠係由—顯影方法移除,以形 成-阻抗膜58。該阻抗膜58具有—開口 59a 兄 中形成有該導線圖案]4,及用於暴露形成有該件 16之區域的開口 59b。該等開口 59b中的兩個形成在填有該 犧牲膜52之凹處之上。 84367 -26 - 200307814 如圖1 6 E所示,一覆蓋膜57形成在該底部膜5 6之表面上, 藉由使用已知的鐵-鎳電鍍液之電鍍來暴露在該開口 59a及 5 9b中,其中含有硫酸做為主要成分。該覆蓋膜5 7係做為該 導線圖案丨4及定位部件1 6。以相同資料製成的該導線圖案 14及定位部件16因此即形成在該等開口 59a及59b之底部上。 如圖1 6F所示,該阻抗膜58係由使用像是N-methyl-2-pyrrolidone之液體來用超音波清洗該阻抗膜58之表面來移 除。接下來,未覆蓋有該覆蓋膜57之底部膜56由一例如離 子銑削的框架切除方法,或像是離子束蝕刻的蝕刻方法來 移除。 利用圖16D到16F所示的方法,由該底部膜56及覆蓋膜57 所製成的該導線圖案1 4與定位部件1 6係由微影來同時形成 。因此違導線圖案1 4及|亥足位部件1 6之探針插針2 2可用高 精度的相對位置來形成。 如圖1 6 G所示,移除留在該凹處5 〇中的該犧牲膜5 2。如杲 該犧牲膜5 2由銅製成,該犧牲膜5 2藉由使用蝕刻劑來溶解 ,其可比其它材料要優先地溶解銅。 如圖1 6H所tf,該基板1 2係沿著到達該基板底部之切割線 來切割。由沿著該切割線的基板12之側邊12a、:i2b及12d, 該導線圖案14之探針插針22(未示於圖16H)及該定位部件16 即哭出。 (第二製造方法) 圖丨7A到17C所示為製造該探針單元的第二方法之架構性 橫截面圖。藉由應用此製造方法,可製造例如具有圖1所示 84367 -27 - 200307814 之第一結構的該探針單元1 〇。 如圖17Α所示’對準標記3〇係丨成在該基板12之表面上的 預足位置處。認對準標記3〇可由微影、印刷或機械加工來 形成。該對準標記之形狀具有如圖】7 Α所示之十字形,一多 邊形或一圓形之中心可正確地代表特定的位置。 如圖1 7B所tf,僅有該導線圖案丨4由類似於該第—製造方 法之方法來形成在該基板1 2的表面上。在此例中,於對應 於圖16D之方法中,開口 59a係形成穿過該阻抗膜58,其係 位在由使用該對準標記30做為參考點來決定的預定位置處 。在對應於圖!6D到16F之方法中,該導線圖案14之探針插 針22因此可由微影來以相對於該對準標記的高位置精度來 形成。 如圖17C所示,該等定位部件16係形成在該基板12的表面 上。在此例中’於對應於圖1 6D之方法中,該等開口 59b係 形成穿過1¾阻抗膜5 8,其係位在由使用該等對準標記做為 參考點來決定的預定位置處。在對應於圖16D到16F之方法 中,該等定位部件1 6因此可由微影來以相對於該等對準標 記30的高位置精度來形成。 以高精度在由共用對準標記3 〇所決定的位置處所形成的 該等探針插針22及定位邵件1 6因此可用高的相對位置之精 度來形成。如圖1 7 B所tf之方法及如圖〗7 c所示的方法可將 順序倒轉而達到類似的預期效果。 (第三製造方法) 圖18Α及18Β所示為製造該探針單元的第三方法之架構性 84367 -28 - 200307814 平面圖。藉由應用此製造方法,可製造例如具有圖丨所示之 第一結構的該探針單元丨〇。 在該第二製造方法中,修正了部份的該第二製造方法。 意即,省略如圖1 7 A所示的方法,而如圖丨7B所示的方法即 以圖1 8 A所示的方法來取代。在如圖丨8 a所示的方法中,當 該導線圖案1 4由類似於該第一製造方法的方法形成的同時 ’即形成該對準標記3 〇。在對應於圖1 6 D所示的方法之方法 中,用於形成該導線圖案14之開口 59a以及用於暴露其中形 成有該等對準標記3 0之區域的開口即形成穿過該阻抗膜5 8 ’而不形成該等開口 59b。利用對應於圖16D到16F所示的方 法,該導線圖案14及對準標記30係由微影同時來形成。 在圖1 8 A所示的方法之後,在圖丨8]B所示的方法中,該定 位部件1 6係由類似於圖丨7c所示的第二製造方法的方法來 形成。因為該等定位部件1 6係由高精度在由與形成該導線 圖案1 4同時形成的該等對準標記3 0所決定的位置處所形成 ’它們可用高精度形成在與該導線圖案14之探針插針22的 相對位置處。 (第四製造方法) 圖1 9 A及1 9 B所示為製造該探針單元的第四方法之架構性 平面圖。藉由應用此製造方法,可製造例如具有圖1所示之 第一結構的該探針單元1 0。 在該第四製造方法中,修正了部份的該第二製造方法。 思即’省略如圖1 7 A所示的方法,而如圖1 9 A所示的方法即 以圖1 7B所示的方法來進行。在如圖1 9A所示的方法中,當 84367 -29 - 200307814 居等定位部件1 6由類似於該第一製造方法的方法形成的同 時’即形成該對準標記3 0。在對應於圖1 6D所示的方法之方 法中’用於形成該定位部件1 6之開口 5 9 b以及用於暴露其中 元成有该等對準標記3 〇之區域的開口即形成’而不形成該 等開口 59a。利用對應於圖1 6D到1 6F所示的方法,該定位部 件1 6及对準5己j 0係由微影同時來形成。 在圖]9 A所示的方法之後,在圖丨9B所示的方法中,該導 線圖案14係由類似於圖17C所示的第二製造方法的方法來 形成。因為孩等導線圖案丨4的探針插針22由高精度在由與 形成該定位部件16同時形成的該等對準標記30所決定的位 且處所形成’匕們可用高精度形成在與該定位部件丨6的相 對位置處。 々仏丁,琢寺對準標記30之材料、 薄膜厚度(高度)、該導緩圓安Ί 4 a、、_、 策圖木14及琢寺足位部件16之探針招 針2一可A疋為不同。在此例中,例如僅有該等定位部件1 之機械強度可成為高、或該等對準標記3〇可做得薄。“ 目的’構成$亥等對準择士 3。> 二 己0足展邯膜56及覆蓋膜W、導鱗 圖案14及定位部件16之姑料芬 材料及,儿和條件可設定為不同。女 果僅有該等足位部件16之機械 一、、、 … n ^度可成為高,藉由遮罩言i 等對準標記3 0及導線圖案丨4, 、a ^ ^ ^ 一步執行電鍍來沉積該Ί 鍍的薄膜在該等疋位部件1 6之表面上 (第五製造方法) 圖20A到20J所示為製造該探 门 $山、 卞早疋的第五方法之架構β 橫截面圖。精由應用此製造方、车 '’可製造例如具有圖1所€ 84367 -30 - 200307814 之第一結構的該探針單元1 〇。 如圖20 Α所示,一第一犧牲膜62形成在一基板60之表面上 。茲基板60的材料可為玻璃、陶瓷、矽、金屬或類似者。 舉例而言,該第一犧牲膜62為由噴濺形成的厚度〇 〇3 μιΉ的 格膜及厚度為〇 . 3 μιτι的銅膜之複合膜。 如圖20Β所示,一第一底部膜64係以均勻厚度形成在該第 一犧牲膜62上。該第一底部膜64在後續處理之後成為該導 線圖案1 4及定位部件1 6。舉例而言,該第一底部膜Μ為厚 度〇 · 0 2 μ m的欽膜及厚度為〇 1 5 μ m之鐵-錄合金膜之複合膜 。接下來’一阻抗膜6 6形成在該第一底邵膜6 4之上。開口 67形成穿過該阻抗膜66,暴露了形成有該導線圖案14及定 位部件16之區域。 如圖20C所示,一覆蓋膜68形成在於該等開口 67中暴露的 該第一底部膜64之表面上。該覆蓋膜6 8在後續處理之後成 為該導線圖案14及定位部件16。舉例而言,該覆蓋膜68係 使用含有硫酸為主要成分之已知的鐵-鎳電鍍液的電鐘錄合 金所形成。因此該導線圖案14及定位部件丨6係由相同的材 料構成,並具有相同的厚度。 如圖20D所示,該阻抗光罩66係使用例如有機溶劑來移除 。接下來,未覆盖該復盖膜6 8的第一底邵膜6 4即由離子銳 削或類似者來移除。 利用圖20B到20D所示的方法,構成該第一底部膜64及覆 蓋膜6 8之導線圖案1 4及定位部件1 6係由微影同時形成,而 該導線圖案14的探針插針22與該等定位部件16係以高的銷 84367 -31 - 200307814 對位置精度所形成。除了使用阻抗的電鍍之外,該覆蓋膜 6 8可由|虫刎一由電鍍所形成的導電膜、或由印刷導電漿所 形成。藉由利用微影,可以得到高尺寸精度的導線圖案Μ 及定位部件1 6。 如圖20E所示,一第二犧牲膜7〇形成在該第一犧牲膜^及 覆蓋膜68的表面上。舉例而言,該第二犧牲膜7〇係由電鍍 銅或類似者來形成在該第一犧牲膜62的表面上,並溢流該 電鍍的銅在該覆蓋膜68的表面上。接下來,該第二犧牲膜 7〇的表面即研磨及平坦化來暴露該覆蓋膜68的表面。 如圖20F所示,一絕緣膜72係形成在該第二犧牲膜川的表 面及覆蓋膜68上。該絕緣膜72與一第二底部膜以及以下提 到的一支撐膜7 8共同構成一基板1 2。該絕緣膜的材料可為 一氧化矽、氧化鋁或類似者。接下來,類似於該第一底部 膜64,一第二底部膜74形成在該絕緣膜72上。 如圖20G所示,光阻係塗佈在該第二底部膜74的表面上。 一具有一預定圖案的光罩即放置在該光阻的表面上。不必 要的光阻即由_影方法來移除,以形成一阻抗膜%。該阻 抗膜7 6具有一開口 7 7來暴露形成有該基板1 2之區域。該開 口 77具有一對應於構成該第一底部膜64及覆蓋膜68之該導 線圖案14及定位部件16之形狀。 如圖20H所示’一支撐膜78係形成在暴露於該開口 77之底 上的该第一底部膜7 4之表面上。舉例而言,該支撐膜7 8 係由電鍍金屬在該開口 7 7的底部上所形成。 該阻 如圖2 0 I所示’類似於該阻抗膜6 6及第一底部膜6 4, 84367 -32 - 200307814 抗艇76及未覆蓋有該支撐膜78之該第二底部膜74即被移除 。接下來,未覆蓋有該第二底部膜7 4之絕緣膜7 2即被移除 例如藉由離子$虫刻。 如圖20J所示,即移除該第一及第二犧牲膜62及7〇。因此 可形成具有該整合的導線圖案丨4及定位部件〗6之基板1 2。 當移除該第一犧牲膜62時,該基板60即與該導線圖案1 4及 足位部件1 6分離。如果該犧牲膜6 2及7 0由銅製成,該犧牲 膜62及70即藉由使用蝕刻劑來溶解,其可用高於其它材料 的優先性來溶解銅。在藉由蝕刻移除該犧牲膜6 2及7 〇之前 ’孔係形成穿過該支撐膜7 8、第二底部膜74及絕緣膜72, 所以該犧牲膜62及70可用較高的速率分離。 (第六製造方法) 圖2 1 A到2 1 F所示為製造該探針單元的第六方法之架構性 横截面圖。藉由應用此製造方法,可製造例如具有圖1所示 之第一結構的該探針單元1 〇。 如圖21 A所示’一犧牲膜82形成在一基板80之表面上。該 基板8 0的材料可為不銹鋼。該犧牲膜8 2係由電鍍金屬或噴 濺所形成。 如圖21 B到21 D所示,該導線圖案14及定位部件16係由類 似於圖20 B到2 0 D所示之第五製造方法之方法的方法所形成 。意即,如圖21 B所示,一阻抗膜85係形成,其具有暴露形 成有該導線圖案】4及定位邵件1 6之區域的開口 8 4。接著, 如圖2 1 C所示’該導線圖案1 4的導線20及該等定位部件1 6係 形成在暴露於該等開口 8 4之底部上的該犧牲膜8 2之表面上 ^4367 -33 - 200307814 。然後,如圖2 1 D所示,即移除該阻抗膜8 5。因為該導線圖 案1 4及足位邰件1 6係由微影同時形成,該導線圖案1 4的該 探針插針2 2與该等足位邯件1 6可用較高的相對位置精度來 形成。 如圖2 1 E所示,一薄膜88利用黏著劑89附著到該導線圖案 1 4及足位邵件1 6之表面。此薄膜8 8係做為一基板丨2。舉例 而言,如圖21E所示,該薄膜88為一金屬層88a及一人造樹 脂層88b之複合薄膜,其可相對於膨脹及收縮來增加該薄膜 8 8之機械強度。该複合薄膜的金屬層8 8 a之材料為鎳合金、銅 或類似者,而该人造樹脂層8 8 b的材料為聚醯胺或類似者。 如圖21F所示,該犧牲膜82係與該基板8〇分離。然後,該 犧牲膜8 2即由蝕刻或類似者來移除。然後如果需要的話, 居導線圖萊1 4足導線2 0的外邵表面可用電鍍的金$ 9來覆蓋 。如圖21F所示,該電鍍金89可形成在該等定位部件16之外 部表面上,或者可以形成來增加該定位部件丨6及固定夾具 1 4之間的緊靠性之位置對準精度。 (第七製造方法) 圖22A到22H所示為製造該探針單元的第七方法之架構性 橫截面圖。藉由應用此製造方法,可製造例如具有圖5 A及 5B所示之第五結構的該探針單元丨〇。 如圖2 2 A所示,由單一石夕晶、金屬沉積膜9 1及9 2所製成的 一基板9 0的表面上係由微影所形成。該金屬沉積膜9丨具有 對應於該探針插針22的配線之圖案,且該金屬沉積膜”具 有對應於該等定位部件1 6之配線的一圖案。該等金屬沉積 84367 200307814 膜9 1及92之材料可為金。 如圖22B所ΤΓ,該覆蓋有該等金屬沉積膜91及92之基板9〇 係由例如VLS(氣液固態)成長方法來成長約1到5〇〇 。 如圖22C所示,可移除覆蓋有構成該等定位部件16之成長 區域94的金屬沉積膜92。舉例而言,該金屬沉積膜92可選 擇性地由覆盍該金屬沉積膜9 1 一阻抗膜來移除,進行離子 銑削或姓刻,然後移除該阻抗膜。 如圖22D所示,僅有覆蓋有該金屬沉積膜91之成長區域% 可由該VLS方〉去進一步成長。構成該探針插針22之成長區域 93係成長成棒狀,其長度為約2〇〇到5〇〇〇,其係根據該 探針插針2 2的長度。 如圖22E所示,人造樹脂95係沉積來覆蓋該成長區域%, 並硬化。該等成長區域93之上表面被研磨來使其齊平。在 此例中,覆蓋該等成長區域93之上表面的金屬沉積膜Μ 如圖22.E所示般移除,或可留下部份的金屬沉積膜Μ。 如圖咖所示,在移除該人造樹脂95之後,該基板90的表 面及成長區域93及94即覆蓋有_導電膜%。舉例而言,該 :電膜96由電鍍像是金及鍺的金屬來形成。為了維持該; 探針插針2 2之間的電絕緣,兮 、 豕该成長區域93除了該上表面之 外,可覆蓋有人造樹月旨,例如聚醯胺。 利用圖22A到22F所示的古、、土 1 J万居,由該成長區域93及導雷臌 96構成的該導線圖案14的探針插針u '、 導電膜96所構成的該等定 以 £域94及 h-iM牛16係由微影來同時 因此該等探針插針22及定位, y成 #件16可用高的相對位 84367 200307814 來形成。 如圖2 2 G所示’該等探針插針2 2之基座部份及該等定位部 件之部份表面係覆蓋有人造樹脂來形成一加強膜28。 如圖2 2 Η所示’該等探針插針2 2、定位部件1 6及加強膜2 8 係與該基板9 0分離。接下來,此分離的結構係黏著到形成 有该導線圖案1 4之圖案9 9而沒有探針插針2 2之基板1 2上。 表導線圖案1 4係由正確地黏著該探針插針2 2及圖案9 9來完 成。 在該第七製造方法中’覆蓋構成該探針插針22之成長區 域93的金屬沉積膜9 1可留下由覆蓋構成該等定位部件丨6之 成長區域94的金屬沉積膜92來選擇性地移除。藉由設定該 等疋位部件1 6的高度(厚度)高於該等探針插針22之高度,該 等足位邵件1 6之機械強度可以增加。 (第八製造方法) 圖2〇Α到23F所示為製造該探針單元的第八方法之架構性 礼、截面圖藉由應用此製造方法,可製造例如具有圖8 A到 8C所示之第六結構的該探針單元1 〇。 在此衣迻該採針單元的方法中,首先如圖2 3 A所示,在一 ^ 、"的表面上,一犧牲膜1 3 1由噴濺、真空沉積、離子 ,鍍或類似者所形成’較佳地是由顿。在該犧牲膜131的 表面上,形成該探針單元的底部膜132。 ,二未Μ限制,该基板1 3 〇的材料為一玻璃板、一人造 樹脂板、—險次4 、/ 瓦板、一至屬板或類似具有數mm之厚度者。 ^ %牲膜131的材料較佳地是為一銅薄膜、一銅(Cu)/鉻 84367 -36 - 200307814 (Cr)薄膜或類似具有厚度為〇 1到5 〇 μΓη者。如果該銅/鉻薄 膜要做為該犧牲膜1 3 1,首先噴濺鉻來形成一緊密接觸層, 且銅噴濺在此緊密接觸層上。在此例中,舉例而言,該鉻 薄膜的厚度為0. 〇 3 μπι,而該銅薄膜的厚度約為〇. 3 μιτι。 該底部膜132較佳地是一鈦(τη)/鎳(Νι)鐵(Fe)薄膜、或類似 具有厚度約為0 · 0 5到0.5 μΐΉ者。如果該欽/鎳-鐵薄膜係要形 成為該底部膜1 3 2,首先一鈦薄膜係由喷濺形成一緊密接觸 層,且一鎳鐵薄膜由喷濺形成在該鈦薄膜上。在此例中, 舉例而言,該鈦薄膜的厚度為〇 ·〇2 μΐΏ,而該鎳-鐵薄膜的厚 度約為0.1 5 μιτι。 該底部膜1 32之使用係因為要在稍後說明的光阻阻抗膜 係要直接形成在該犧牲膜1 3 1上,其不能夠得到具有一高解 祈度的阻抗膜:。根據違元阻的種類,可省略該底部膜1 3 9。 因為该底部膜1 3 2與要在稍後說明的光阻具有良好的透濕 性,一具有南解析度及一所要的形狀之阻抗膜可形成在該 犧牲膜1 3 1上。 如圖2 3 Β所示’在遠底邯膜1 3 2的表面上,塗佈光阻到一 任意的厚度。-具有預定圖案之光罩係置於該光阻的表面 上。其執行曝光及顯影處理來移除不必要的光阻,以形成 具有相對應於一預定的探針單元圖案之開口的阻抗膜^3 。該阻抗膜133的厚度較佳地是其範圍由1〇到2〇〇 μΐΏ。 該阻抗膜丨33之開口的此探針單元圖案包含用於形成該 等探針單元及構成該探針單元的探針夾持器之圖案,以及 用於形成該定位部件之圖案,例如—個或複數個定位孔及 -37 - S4367 200307814 定位框架’及用於形成小孔之圖案,如參考圖8八到8C之說 明。 因為要使用該光阻的阻抗膜U3,構成該等探針插針之導 線的圖案可平行地形成在一狹窄間距,例如一狹窄及均勻 的間距。因此由使用此阻抗膜133所形成的該等探針插針可 平行地形成在一狹窄間距。類似地,由使用該阻抗膜133所 形成的該探針單元之探針插針及探針夾持器,其可形成在 高的相對位置精度下。該等定位孔及小孔亦可形成在一高 位置對準精度。 如圖23C所示,一鎳合金金屬箔係形成在未覆蓋有該阻抗 膜1 B之底邯膜1 324表面上,其藉由使用已知的鐵_鎳電鍍 液進行弘鍍,其含咽硫酸做為主要成分。該金屬箔1 3 4的厚 度可依需要來設定。 如圖23D所示,該阻抗膜133係由使用像是N,ethyn pyrroHdone之液體來用超音波清洗該阻抗膜1 33及底部膜 132之間的介面來移除。在此例中,藉由沉浸該基板13〇的 結構體,阻抗膜133及類似者在N-methynpyrr〇lid〇ne* ,並於85QC下執行超音波清洗,該阻抗膜133可有效率地 移除。 如圖23E所示’該曝光的底部膜132係由離子銑削移除, 所以該底部膜1 32及金屬箔} 34具有相同的外部尺寸。 如圖2 3 F所不’該金屬箔} 3 4及底部膜]3 2之整合的部份可 與該基板〗30分離。即可得到具有該金屬箔及底部膜132之 探針單元1 0。利用製造具有該第六結構之探針單元的方法 84367 -38 - 200307814 ’該等探針插針及探針夾持器可一體地形成,而不需要機 械式或利用焊料或黏結劑來結合該等探針插針及探針夹持 器。因此其有可能防止該等探針插針被破壞。其有可能來 以而的相對位置精度形成該等探針插針及探針夾持器。 因為其不需要來實際地切除該探針夾持器,該外部尺問 可高度精確地決定,且該等探針插針可防止在一切除程序 期間破損。 (第九製造方法) 圖24 AX到24LY所示為製造該探針單元的第九方法之架 構性撗戴面圖。藉由應用此製造方法,該探針單元1〇具= 例如圖9A及9B所示的第七結構,或可製造圖1〇所示的 結構。 圖-4AX、24BX、...、24LX所示為沿著平行於該探針單元 的表向万向所採取的横截面圖,及圖24Αγ、24Βγ、 、2礼丫 :不:在孩探針單元的探針夾持器中形成定位孔之程序的 在此製造該探針單元的黛 2 勺弟九万法中,首先如圖24八)(及 丁在基板140的表面上,一犧牲膜丨41由喑竣、 真空沉積、離子泰供々 ^ , ^ 4頒似者所形成,較佳地是由噴濺。 在这k牲膜1 4 1的表面上 、 至佈先阻到一任意的厚度。—具 有"t、疋圖案之光罩係罾 “ ^ ^ ^ ^ H涿光阻的表面上。執行曝光及顯 以万法來移除不必要的 、 …、 單元—俨仏+ 以形成具有相對應於該探針 器之圖案的開口之第-阻抗_。該第- 2之厚度較佳是在範圍由_2。〇_。接下來,— 84367 -39 - 200307814 荀泊1 4J形成在未覆蓋有該第一阻抗膜1 42之 犧牲膜1 4 1的砉而l -丄a • 衣面上,精由使用已知的鐵-鎳電鍍液來電鍍, /、有1 I做為主要成分。該第一金屬箔i 43的厚度可依需 要來設定。 名羔未特別限制,該基板1 40的材料為一玻璃板、一人造The lead pattern 4 is composed of a lead line 20 formed on the substrate 2.所述 线 2。 These wires 2. It may be mutually conductive or non-mutually conductive. The lithography is formed on the base Z 84367 -15-200307814 12 in a position aligned with each other. A flexible printed wiring plane cable 3 is electrically connected to the proximal side of the wire 20. The tip side of these wires 20 forms a probe pin 22. These probe pins 22 are placed at a uniform interval and extend linearly in parallel. The material of the wire 20 may be metal, such as nickel alloy and nickel. The positioning member 16 is formed on the surface of the substrate 2 by lithography under a positional alignment with the probe pins 22 of the wire pattern 4]. The positioning members 16 abut on the fixing jig 4 of the probe device 2. Similar to the wire 22, the positioning member 16 is made of metal, such as nickel alloy and nickel. Compared to synthetic resins, such as polyamides, metals can have a good shape stability 'and are less likely to be deformed by temperature or humidity. The positioning members 16 abut on the fixing jig 4 determine the position of the substrate 12 relative to the probe device 2. The fixing jig 4 constitutes "a member for positioning the substrate with respect to the probe device". Hereinafter, the first to fifth structures of the probe unit 10 will be explained in detail. (First structure) In the first structure shown in FIG. 1, the probe pin 22 on the end side of each lead is protruded from one side 1a of the substrate 12. The positioning member 6 has an L shape, which extends along a side edge 1 2 b perpendicular to the side i2a protruding from the probe pins 22 and along a side edge 1 2 a opposite to the side edge 1 2 a. 1 2 c, and protrude from these sides 1 2b and 1 2c. The other positioning members 6 also have a shape that extends along the other side 12d perpendicular to the side 12a protruding from the probe pins 22 and along the side 12 ( : And protrude from these side edges 12d and 12c. On the base plate! 2 Each positioning member on the outer side of the case 6 The side edge 17 of the 6 is abutted against the pins of a U-shaped fixing fixture 4 5. Therefore, the 84367 200307814 base plate 12 is fixed relative to the extension direction of the probe pins and perpendicular to the extended universal foot direction. As shown in FIG. 6, a plurality of columns (the cylinders in FIG. 6) ) The footholding jig 4 may be formed to abut the outer wall of the fixing jigs 4 on the positioning member 16 at a plurality of positions. (Younger Structure) In the second structure shown in FIG. A structure can be formed to cover a part of the surface of the positioning member 16 and be fixed to the reinforcing film 24 'of the base plate 12 and the reinforcing film 24 covering the base position of the probe pins 22. The reinforcements 24 and 24 The material of 25 is an artificial resin or the like. The reinforcing film 24 prevents the foot member 16 from being applied to the positioning. The external force on the outside of the piece 16 is separated from the substrate 12. The reinforcing film 25 can prevent the probe pins 22 from being separated from the substrate 12 by an external force. It is not necessary to use these films and One of the reinforcing film 24 covering the positioning member; 6 and one of the reinforcing film 25 covering the base position of the probe pins 22. It can be formed to cover the positioning pins of the probe pins 22 feet 6 And the reinforcing film of the base part. As shown in FIG. 7, a plurality of holes can be formed through the positioning member 16 and filled with the same material as the reinforcing film to further strengthen the reinforcing film 24. (No. (3 structures) FIG. 3A shows a plan view of the third structure of the probe unit 10, and FIG. 3A is a cross-sectional view of the probe unit taken along the BrB3 line shown in FIG. 3A. In the third structure, the positioning member 16 and the fixing jig 4 abutting on the positioning member 6 are different from the first structure. The ring-shaped positioning member 16 is formed on the wire pattern 1 4 On both sides, and covered with Mi ... Pass through holes 2 6 of the base plate 12. The positioning parts 16 are made of the same material Cheng 84367 -17-200307814 'Asia has the same thickness as the child wire pattern 14. The hole of the positioning member 丨 6 "diameter of the through hole 26. The inner wall of the hole of the positioning member 16 8 Sit on the opening of the Xianyu hole 26. A cylindrical fixing jig 4 is assembled into the hole of the positioning member 16, so the base plate 12 is fixed in all directions. A plan view of the fourth structure of the probe unit 10, and FIG. 4b is not a & sectional view of the probe unit 10 taken out along the line B4-B4 shown in FIG. 4A. The shape of the positioning member 6 is different from the second structure. The positioning members 6 have the shape of an internal clip washer, as shown by the protrusions extending from the inner peripheral side to the radial inner side, and are placed in a peripheral manner. It is preferable that the protrusions 9 are placed circumferentially at an equal interval. As shown in FIG. 4B, since the surrounding fixing jig 4 is assembled in the hole of the foot part 16, each protrusion can be elastically deformed to the assembly direction. This deformation can absorb the tolerance of the hole diameter of the positioning member and the outer diameter of the fixing jig 4 '. Therefore, the positioning member 6 is positioned at the center of the fixing jig 4 with high accuracy. (Fifth Structure) FIG. 5A is a plan view of a fifth structure of the probe unit 10, and FIG. 5B is not a probe unit 10 taken out along the 35-35 line shown in FIG. 5A Inspection section. In the fifth structure, two axisymmetric wire patterns 4 are formed on the substrate 12. The probe pins 22 of the wires 20 constituting each of the wire patterns 14 have a bar shape protruding vertically from the surface of the remote base plate 12. The rectangular positioning members 16 are formed along the sides on the opposite sides of the pillars of the probe pins 22 of the wire patterns 14. The positioning parts 丨 6 are protruded by the corresponding sides 84b -18-200307814 12b and 12d. The side edges 17 of the positioning members 16 are parallel to the side edges 1 2 b and 1 2 d. The side 17 of each positioning member 16 abuts on the outer periphery of the plurality of fixing jigs 4 having the shape of a cylinder (a cylinder in Figs. 5A and 5B). Therefore, the substrate 12 is fixed to the probe device 2. The foot 12 reinforced film 28 fixed on the base plate covers the base portion of the probe pins 22 and a part of the surface of the positioning members 16. The material of the reinforcing film 28 is an artificial resin or the like. The reinforcing member 28 can prevent the probe pins 22 and the positioning members 16 from being separated from the substrate 12 by external forces applied to the probe pins and the sides 17 of the positioning members 6 . In this fifth structure, although the height (thin film thickness) of the positioning member 16 is set sufficiently lower than the height of the child probe pin 22, as shown in FIG. 5B, the positioning member 16 can be set to the south of the foot. Higher than this probe pin 22. In this example, the side 17 of the positioning member 16 can be prevented from being damaged by an external force. (Sixth Structure) FIG. 8A is a plan view of a sixth structure of the probe unit 10. In this structure, the comb-shaped probe pins 22 which are highly parallel to a certain number of wires 20 are formed at a narrow pitch, and the probe pins 22 (a " A probe holder 1 10. The probe pins 22 and the probe holder 110 are flush with each other on the same plane. The probe pins 22 and the probe holder 1 1 0 ir, from The same material is made of, for example, a nickel alloy formed by electroplating. The seventh, the structure of the probe pin 22 and the probe holder 1 1 0 of the probe unit are made of the same material. The wires 20 are mutually conductive. The first and the structure 1 probe units can be applied to a piston type probe unit, which performs the conductivity measurement of a plurality of electrodes of the same device at the same time, such as a liquid crystal 84367 -19 -200307814 Display panel. Positioning holes 丨 π can be formed through the probe holder 110 to position the probe unit 10 on each device in a positionally aligned manner. The size and shape of the positioning holes 丨 丨The position and position are determined by each device in which the probe unit 10 is installed. For example, Therefore, in addition to several polygonal holes, as shown in Figure 8A, a single polygonal hole can prevent rotation, or can form a plurality of round holes (refer to Figure 8B), or can form oval holes' It can adjust an installation position (reference (Figure 8C) 〇 The position of each positioning hole 1 1 1 is highly accurately determined by using a photoresist, so the probe unit 10 can be mounted on each device with high-precision position alignment. Therefore, it may come Highly accurate conductivity testing of liquid crystal display panels and the like. Some small holes 112 may be formed through the remote probe holder 11. As described below, in the method of manufacturing the probe unit of the sixth structure In a sacrificial film, an etchant is dissolved to separate a portion of a metal film from a base film from a fundamental oscillator. The small holes 1 1 2 are used to increase the space between the sacrificial film and the etchant. Contact area. Although the position, size, and number of the small holes 1 12 are not specifically limited, it is preferable that the small holes 1 1 2 are formed in such a manner that the nicking agent uniformly contacts the bottom film. The entire surface of the sacrificial film. When the sacrificial film is dissolved (Seventh structure) FIG. 9A shows a plan view of the seventh structure of the probe unit 10, and FIG. 9b shows the same taken out along the line BγB9 shown in FIG. 9A. A cross-sectional view of the probe unit 丨 〇 84367 -20-200307814 This probe unit U) has a probe 窀 π π, which also holds 1 10, and forms a sub-column with a high accuracy at a narrow pitch. A comb probe pin 22 on the end side of 4 + 7? S ^. 1 inch,. The edge temple probe pin 2a 'is suitable for integration with the child probe holder 11o. For this probe unit, the combination of the unidirectional printed wiring flat cable 3 has a number of electrodes, which are also arranged at a pitch. The probe unit 10 and the flexible printed wiring are twisted and twisted eleven, see, and table J are combined with the lead 20 and the electrode 113 which are electrically connected to the female pair. The nipple holes 1 1 1 can be formed through the probe holder 1 1 10 to mount the probe unit on each device in a positionally aligned manner. The size, shape, and position of the positioning hole 根据 are determined according to each device in which the probe unit 10 is installed. Female hole} The position of i 1 is determined with high accuracy by using photoresistance. So 5 | 0 can be mounted on each unit with high-precision position alignment. When the probe pins 22 are formed, the probe pins are formed with the probe pins. Positioning members 16 made of the same material may be formed on the outer peripheral surface of the positioning holes ηm. This positioning element further improves the positioning accuracy. A protective film 32 shown in Figs. 9A and 9B will be described later. (Eighth Structure) FIG. 10 is a plan view showing an eighth structure of a probe unit. In the probe unit that violates the eighth structure, one or a plurality of small holes 1 1 2 can form buds through the probe holder!丨 〇. As described below, in the method of manufacturing the probe unit of the eighth structure, an etchant is used to dissolve a sacrificial film and an electrical bell steel layer to separate the integration of the probe pin and the probe holder from a substrate The part. The small holes Π 2 are used to increase the connection between the sacrificial film and the remaining agent. 84367 -21- 200307814 ~. It is expected that the positions, sizes, and numbers of the small holes are not specifically defined: 'It is preferable to form the small holes 1 η in such a way that the etchant uniformly contacts the probes, and ; < the entire surface of the sacrificial film. The dissolution time of the sacrificial film can be considerably shortened. (Ninth Structure) FIG. 7A is a plan view of the ninth structure of the probe unit W, and FIG. 7 is a cross-sectional view of the ninth structure of the needle grasping unit 10. This probe unit 1G has a probe holder 110 and a comb-shaped probe pin 22 on the end side of a number of wires 20 arranged side by side with a high degree of precision. The probe pins 22 are stacked on the probe holder 11Q and are combined with /, positive sigma. For this probe unit 10, a flexible printed wiring flat cable 3 has some electrodes Π3 in parallel with A narrow pitch configuration. The probe unit 10 and the flexible printed wiring flat cable 3 are combined with each pair of electrically connected wires 20 and electrodes 1 1 3. A positioning hole 111 may be formed to pass through the probe holder 1 to mount the probe unit 10 on each device in a positionally aligned manner. The size, shape and position of the positioning hole 1U are determined according to each device in which the probe unit 1 is installed. As explained below, the position of each positioning hole 丨 丨 丨 is accurately determined by using photoresistors, so the probe unit 10 can be mounted on each device with high-precision position alignment. While forming the probe pins 22, positioning members 16 made of the same material as the probe pins 22 may be formed on the outer peripheral surface of the positioning holes π1. The pattern used to determine a mounting position and the probe pins are formed at the same time 84367 -22-200307814. Therefore, the coincidence hole can be formed with high accuracy. Therefore, the position between the pin pin and a test body Accuracy can be improved. (Tenth Structure) FIG. 12 is a plan view of the tenth structure of the TF probe unit. In the tenth structure of the probe unit, a plurality of small holes 12 may be formed to pass through the needle holder 110. As described below, in the method for manufacturing the tenth-structured probe tip, an etchant is used to dissolve a sacrificial film to divide a substrate from a substrate by grasping the integrated part of the probe pin and the probe holder. The small holes] 12 are used to increase the contact area between the film and the etchant. Although the position, size, and number of the small holes are not specifically limited, it is preferable that the pattern of forming and equalizing the small holes 1 12 is that the etchant uniformly contacts the underside of the probe holder 110. Sacrifice the entire surface of the film. The dissolution time of the sacrificial film can be shortened considerably. (Eleventh Structure) FIG. W shows a plan view of the eleventh structure of the probe unit 10, and FIG. 13B shows a cross-sectional view of 10 taken out along the line Bl3_Bi3 shown in FIG. 13A. The probe unit of the eleventh structure has a part of the private needle holder 110 made of the layer 110a. In this probe unit, in order to electrically isolate the probes—n pairs of early Fan 2 2 trays each 1 1 0, the needle holders 1 1 0 forming the probe pins 22 Ju 4 1 ¾ is made of photosensitive polyamidine or similar tree branches and 10 jins. Because ,, ~ has a large expansion coefficient for the fat layer 1 1 0 a, and because the θ "degree is changed, it will reduce the position accuracy of these probe pins. Because" It is better The ground is made of 84367 -23-200307814. The resin drawer of the probe holder 110 ^,,... ^ 110a occupies a small area. This is like a needle installed in a conductive test device. The pu frame 1 14 is installed in the guide ^ ^ jj 6. J ^ K holder] 1 5 mounting parts (twelfth structure) A flat plan view of the structure and the probe unit taken out of the drawing Fig. 14A shows a cross-sectional view of the probe unit 10, 14B, along the b " _b 10 shown in Fig. I4A. The positioning holes of the probe sheet 1 14 of the frame 11 1 14a. The element has to pass through the positioning frames such as the following foot Chengming. The positioning frame 1 14 and the positioning hole 1 14a are formed at the same time. The position accuracy of the 4-position frame 114 and the positioning hole 114a can be the same. The position accuracy between the probe pin 22 and a test body can be improved. &Amp; This Shenmu pin is installed in each conductive test device Ji, and these conductive test devices The positioning pins 116 of the holder Π5 are fitted into the positioning holes 1 14a. Because the resin layer H 〇a of the probe holder 1 丨 of the cypress needle unit is small, It is possible to prevent the position accuracy of the probe pins from being lowered due to temperature changes. Because no resin is used in the area close to the positioning holes, it may prevent the probe pins from being caused by temperature changes. (Thirteenth structure) FIG. 15A shows a plan view of the thirteenth structure of the yttrium probe unit 10, and FIG. 15B does not show the Bu- A cross-sectional view of the probe unit 84367 -24-200307814 1 〇 taken out by the Bb line. The probe unit of the 13th structure has a probe holder]] 〇, which is formed in parallel at a height of mi -The 'shaped probe pins 22' on the end side of some wires 2㈣ and the positioning frame. The probe pins 22 and the positioning frame 114 are stacked on the probe holder 110 and integrated therewith. The: The foot frame 114 is placed on the probe holder I1G in parallel with the wires 20 On both sides. The positioning frame 114 is made of the same material as the probe pins. The size, shape, and position of the positioning frame 114 are based on each conductive device on which the probe unit 10 is installed. The decision is as follows; 5 Ming, the positioning frame 114 used to determine the installation position and the probe pins 22 are formed at the same time. Therefore, the positioning accuracy of the positioning frame n4 is very high. The probes can be improved Position accuracy between pin 22 and-test body. When this probe unit is mounted on each conductive test device, the positioning frames 1 1 4 are assembled in the mounting parts i! 6 of the holders of the conductive devices. The structure of the probe unit 10 has been described above. Next, a method of manufacturing the probe unit 10 will be described. First, the first to seventh manufacturing methods will be explained. The first to seventh manufacturing methods can be applied to any of the first to fifth structures of the probe unit 10. The first to sixth methods will be described by taking the manufacturing of a probe unit having the first structure as an example. The seventh method will be described by taking the manufacturing of a probe unit having the fifth structure as an example. (First Manufacturing Method) Figs. 16A to 16H are cross-sectional views showing the architecture of the first method of manufacturing the probe unit. B4367 -25-200307814. By applying this manufacturing method, the probe unit 10 having, for example, the first structure shown in FIG. 1 can be manufactured. First, as shown in FIG. 16A, a recess 50, such as glass ceramic, quartz, and oxidized junction, is formed in a surface layer made of an insulating material-substrate 丨 2. The inner walls of the recesses 50 become the sides 12a, 12b, and 12d of the substrate 12 after the subsequent method. As shown in FIG. 16B, a sacrificial film 52 is formed on the surface of the substrate 12. The material of the sacrificial film 52 may be metal, artificial resin such as epoxy resin and urea resin, or inorganic salt 'such as calcium carbonate. If a metal is to be used, a metal other than the metal of the wire pattern 14 is used, such as copper. If copper is used, a bottom layer 52a is formed, and then a copper film 52b is formed on the surface of the bottom layer 52a by electroplating, sputtering, or the like. For example, the bottom layer 52a is a composite layer of a chromium layer having a thickness of 30 nm and a copper layer having a thickness of 300 nm. The copper film 52b is formed and filled in the recesses 50. As shown in Fig. 16C, the plate "the sacrificial film 52 is polished to expose and planarize the surface of the substrate 12" and leave the sacrificial film 52 only in the recesses 50. As shown in FIG. 16D, a lead pattern 14 and a photomask on the bottom film 56 are placed on the ground surface 55 to form the bottom film 56 of the positioning member 16 with a uniform thickness. On the surface, coated with photoresist. On a surface of a photoresist having a predetermined pattern. The unnecessary green system is removed by a developing method to form a resistive film 58. The impedance film 58 has an opening 59a in which the wiring pattern is formed, and an opening 59b for exposing a region where the piece 16 is formed. Two of the openings 59b are formed over a recess filled with the sacrificial film 52. 84367 -26-200307814 As shown in FIG. 16E, a cover film 57 is formed on the surface of the bottom film 56, and the openings 59a and 59b are exposed by electroplating using a known iron-nickel plating solution. , Which contains sulfuric acid as the main component. The cover film 5 7 is used as the lead pattern 4 and the positioning member 16. The wire pattern 14 and the positioning member 16 made of the same material are thus formed on the bottoms of the openings 59a and 59b. As shown in FIG. 16F, the impedance film 58 is removed by ultrasonically cleaning the surface of the impedance film 58 with a liquid such as N-methyl-2-pyrrolidone. Next, the bottom film 56 not covered with the cover film 57 is removed by a frame cutting method such as ion milling, or an etching method such as ion beam etching. 16D to 16F, the lead pattern 14 and the positioning member 16 made of the bottom film 56 and the cover film 57 are simultaneously formed by lithography. Therefore, the probe pins 22 of the wire pattern 14 and the foot position member 16 can be formed with relative positions with high accuracy. As shown in FIG. 16G, the sacrificial film 52 remaining in the recess 50 is removed. For example, the sacrificial film 5 2 is made of copper, and the sacrificial film 5 2 is dissolved by using an etchant, which can dissolve copper with priority over other materials. As shown at tf in FIG. 16H, the substrate 12 is cut along a cutting line reaching the bottom of the substrate. From the sides 12a, i2b, and 12d of the substrate 12 along the cutting line, the probe pins 22 (not shown in FIG. 16H) of the wire pattern 14 and the positioning member 16 cry out. (Second Manufacturing Method) FIGS. 7A to 17C are architectural cross-sectional views showing a second method of manufacturing the probe unit. By applying this manufacturing method, for example, the probe unit 10 having a first structure of 84367-27 to 200307814 shown in FIG. 1 can be manufactured. As shown in FIG. 17A, the 'alignment mark 30' is formed at a pre-foot position on the surface of the substrate 12. The registration mark 30 can be formed by lithography, printing, or machining. The shape of the alignment mark has a cross shape as shown in Fig. 7A. A polygon or a circular center can accurately represent a specific position. As shown in FIG. 17B, only the wire pattern 4 is formed on the surface of the substrate 12 by a method similar to the first manufacturing method. In this example, in the method corresponding to FIG. 16D, the opening 59a is formed through the impedance film 58 at a predetermined position determined by using the alignment mark 30 as a reference point. Corresponds to the figure! In the methods 6D to 16F, the probe pins 22 of the wire pattern 14 can therefore be formed by lithography with high positional accuracy relative to the alignment mark. As shown in FIG. 17C, the positioning members 16 are formed on the surface of the substrate 12. In this example, 'in the method corresponding to FIG. 16D, the openings 59b are formed through a 1¾ resistive film 5 8 which is located at a predetermined position determined by using the alignment marks as reference points. . In the method corresponding to FIGS. 16D to 16F, the positioning members 16 can therefore be formed by lithography with high positional accuracy relative to the alignment marks 30. The probe pins 22 and the positioning members 16 which are formed at positions determined by the common alignment mark 30 with high accuracy can therefore be formed with high relative position accuracy. The tf method shown in Figure 17B and the method shown in Figure 7c can reverse the order to achieve similar expected results. (Third Manufacturing Method) FIGS. 18A and 18B are architectural 84367 -28-200307814 plan views showing a third method of manufacturing the probe unit. By applying this manufacturing method, for example, the probe unit having a first structure shown in FIG. In the second manufacturing method, a part of the second manufacturing method is corrected. That is, the method shown in FIG. 17A is omitted, and the method shown in FIG. 7B is replaced with the method shown in FIG. 18A. In the method shown in FIG. 8a, when the wire pattern 14 is formed by a method similar to the first manufacturing method, the alignment mark 3 is formed. In a method corresponding to the method shown in FIG. 16D, an opening 59a for forming the wire pattern 14 and an opening for exposing a region in which the alignment marks 30 are formed are formed through the impedance film 5 8 'without forming such openings 59b. The lead pattern 14 and the alignment mark 30 are formed by lithography simultaneously using a method corresponding to that shown in Figs. 16D to 16F. After the method shown in FIG. 18A, in the method shown in FIG. 8] B, the positioning member 16 is formed by a method similar to the second manufacturing method shown in FIG. 7c. Because the positioning members 16 are formed with high precision at positions determined by the alignment marks 30 formed at the same time as the wire pattern 14 is formed, they can be formed with high precision in the probe with the wire pattern 14. The relative positions of the needle pins 22. (Fourth Manufacturing Method) Figs. 19A and 19B are schematic plan views showing a fourth method of manufacturing the probe unit. By applying this manufacturing method, the probe unit 10 having the first structure shown in FIG. 1 can be manufactured, for example. In the fourth manufacturing method, a part of the second manufacturing method is corrected. That is, the method shown in FIG. 17A is omitted, and the method shown in FIG. 19A is performed by the method shown in FIG. 17B. In the method shown in FIG. 19A, the alignment mark 30 is formed when 84367-29-200307814 equal positioning member 16 is formed by a method similar to the first manufacturing method '. In the method corresponding to the method shown in FIG. 16D, 'the opening 5 9b for forming the positioning member 16 and the opening for exposing the area in which the alignment marks 30 are formed are formed' and Such openings 59a are not formed. By using methods corresponding to those shown in FIGS. 16D to 16F, the positioning member 16 and the alignment member 5 are simultaneously formed by lithography. After the method shown in FIG. 9A, in the method shown in FIG. 9B, the wiring pattern 14 is formed by a method similar to the second manufacturing method shown in FIG. 17C. Because the probe pin 22 of the child wire pattern 4 is formed at a position and location determined by the alignment marks 30 formed at the same time as the positioning member 16 is formed with high accuracy The relative position of the positioning member 6. 々 仏 丁, Zhuo Si alignment mark 30 material, film thickness (height), the guide round circle 4 a,, _, Cetum 14 and Zhuo Si foot part 16 A 疋 is different. In this example, for example, only the mechanical strength of the positioning members 1 may be high, or the alignment marks 30 may be made thin. "Purpose 'constitutes $ Hai, etc., and aligns with Shishi 3. > Erji 0 foot exhibition film 56 and cover film W, guide scale pattern 14 and positioning member 16 are made of different materials, and the conditions can be set to different The female fruit has only the mechanical one of the foot parts 16, and the n ^ degree can be high, and the mask mark i and the alignment mark 30 and the wire pattern 丨 4, and a ^ ^ ^ are executed in one step. Electroplating is used to deposit the Ί plated film on the surface of the 部件 members 16 (fifth manufacturing method). Figures 20A to 20J show the framework of the fifth method for manufacturing the probe gate, 卞 early 疋. A cross-sectional view. Using this manufacturing method, the car can be used to manufacture the probe unit 1 having a first structure of 84,367-30, 2003,078,14, as shown in FIG. 1. As shown in FIG. 20A, a first sacrificial film 62 is formed on a surface of a substrate 60. The material of the substrate 60 may be glass, ceramic, silicon, metal, or the like. For example, the first sacrificial film 62 is formed by sputtering to a thickness of 0.3 μm. Grid film and copper film with a thickness of 0.3 μm. As shown in FIG. 20B, a first bottom film 64 is uniform. Degree is formed on the first sacrificial film 62. The first bottom film 64 becomes the wire pattern 14 and the positioning member 16 after subsequent processing. For example, the first bottom film M has a thickness of 0.02 μ m film and a composite film of iron-recording alloy film with a thickness of 0.15 μm. Next, an impedance film 66 is formed on the first bottom film 64. An opening 67 is formed to pass through the impedance. The film 66 exposes the area where the wire pattern 14 and the positioning member 16 are formed. As shown in FIG. 20C, a cover film 68 is formed on the surface of the first bottom film 64 exposed in the openings 67. The cover film 6 8 becomes the wire pattern 14 and the positioning member 16 after the subsequent processing. For example, the cover film 68 is formed of an electric clock recording alloy containing a known iron-nickel plating solution containing sulfuric acid as a main component. The lead pattern 14 and the positioning member 6 are made of the same material and have the same thickness. As shown in FIG. 20D, the resist mask 66 is removed using, for example, an organic solvent. Next, the cover film is not covered. The first bottom film of 6 8 6 4 is sharpened by ions or similar 20B to 20D, the lead pattern 14 and the positioning member 16 constituting the first bottom film 64 and the cover film 68 are formed by lithography at the same time, and the detection of the lead pattern 14 The pin pins 22 and the positioning members 16 are formed with high pin positioning accuracy of 84367 -31-200307814. In addition to the electroplating using impedance, the cover film 6 8 can be formed by a conductive coating formed by galvanization A film or a printed conductive paste is formed. By using lithography, a high-precision wire pattern M and a positioning member 16 can be obtained. As shown in FIG. 20E, a second sacrificial film 70 is formed on the surfaces of the first sacrificial film ^ and the cover film 68. For example, the second sacrificial film 70 is formed on the surface of the first sacrificial film 62 by electroplated copper or the like, and overflows the electroplated copper on the surface of the cover film 68. Next, the surface of the second sacrificial film 70 is ground and planarized to expose the surface of the cover film 68. As shown in FIG. 20F, an insulating film 72 is formed on the surface and the cover film 68 of the second sacrificial film. The insulating film 72 together with a second bottom film and a support film 7 8 mentioned below constitute a substrate 12. The material of the insulating film may be silicon monoxide, aluminum oxide, or the like. Next, similar to the first bottom film 64, a second bottom film 74 is formed on the insulating film 72. As shown in FIG. 20G, a photoresist is applied on the surface of the second bottom film 74. A photomask having a predetermined pattern is placed on the surface of the photoresist. The unnecessary photoresist is removed by a shadowing method to form a resistive film%. The resistive film 7 6 has an opening 7 7 to expose a region where the substrate 12 is formed. The opening 77 has a shape corresponding to the wiring pattern 14 and the positioning member 16 constituting the first bottom film 64 and the cover film 68. As shown in FIG. 20H, a support film 78 is formed on the surface of the first bottom film 74 exposed on the bottom of the opening 77. As shown in FIG. For example, the support film 7 8 is formed by a plated metal on the bottom of the opening 7 7. The resistance is shown in FIG. 2I. 'Similar to the impedance film 66 and the first bottom film 6 4, 84367 -32-200307814 the anti-boat 76 and the second bottom film 74 not covered with the support film 78 are Removed. Next, the insulating film 72, which is not covered with the second bottom film 74, is removed, for example, by an ion $ worm. As shown in FIG. 20J, the first and second sacrificial films 62 and 70 are removed. Therefore, a substrate 12 having the integrated conductive wire pattern 4 and the positioning member 6 can be formed. When the first sacrificial film 62 is removed, the substrate 60 is separated from the wire pattern 14 and the foot part 16. If the sacrificial films 62 and 70 are made of copper, the sacrificial films 62 and 70 are dissolved by using an etchant, which can dissolve copper with a higher priority than other materials. Before the sacrificial films 62 and 70 are removed by etching, a hole system is formed through the supporting film 78, the second bottom film 74, and the insulating film 72, so the sacrificial films 62 and 70 can be separated at a higher rate. . (Sixth manufacturing method) FIGS. 2A to 21F are architectural cross-sectional views showing a sixth method of manufacturing the probe unit. By applying this manufacturing method, the probe unit 10 having the first structure shown in FIG. 1 can be manufactured, for example. As shown in FIG. 21A, a sacrificial film 82 is formed on a surface of a substrate 80. The material of the substrate 80 may be stainless steel. The sacrificial film 82 is formed by plating metal or sputtering. As shown in FIGS. 21B to 21D, the wire pattern 14 and the positioning member 16 are formed by a method similar to the fifth manufacturing method shown in FIGS. 20B to 20D. That is, as shown in FIG. 21B, a resistive film 85 is formed, which has an opening 8 4 that exposes a region where the wire pattern 4 is formed and a positioning member 16 is positioned. Next, as shown in FIG. 2C, the lead 20 of the lead pattern 14 and the positioning members 16 are formed on the surface of the sacrificial film 8 2 exposed on the bottom of the openings 8 4 ^ 4367- 33-200307814. Then, as shown in FIG. 2D, the resistance film 85 is removed. Because the wire pattern 14 and the foot piece 16 are formed by lithography at the same time, the probe pin 22 of the wire pattern 14 and the foot pieces 16 can be used with higher relative position accuracy. form. As shown in FIG. 2E, a film 88 is attached to the surface of the wire pattern 14 and the foot member 16 with an adhesive 89. The thin film 88 is used as a substrate 2. For example, as shown in FIG. 21E, the film 88 is a composite film of a metal layer 88a and an artificial resin layer 88b, which can increase the mechanical strength of the film 88 relative to expansion and contraction. The material of the metal layer 8 8 a of the composite film is nickel alloy, copper or the like, and the material of the artificial resin layer 8 8 b is polyamine or the like. As shown in FIG. 21F, the sacrificial film 82 is separated from the substrate 80. Then, the sacrificial film 82 is removed by etching or the like. Then, if needed, the outer surface of the home wire Tu Lai 1 4-foot wire 20 can be covered with plated gold $ 9. As shown in FIG. 21F, the electroplated gold 89 may be formed on the outer surfaces of the positioning members 16, or may be formed to increase the positional alignment accuracy of the abutment between the positioning member 6 and the fixing jig 14. (Seventh manufacturing method) FIGS. 22A to 22H are architectural cross-sectional views showing a seventh method of manufacturing the probe unit. By applying this manufacturing method, the probe unit having a fifth structure shown in FIGS. 5A and 5B can be manufactured, for example. As shown in FIG. 2A, a substrate 90, which is made of a single stone crystal and metal deposition films 91 and 92, is formed by lithography on the surface. The metal deposition film 9 has a pattern corresponding to the wiring of the probe pin 22, and the metal deposition film "has a pattern corresponding to the wiring of the positioning members 16. The metal deposition 84367 200307814 film 9 1 The material of 92 and 92 may be gold. As shown in FIG. 22B, the substrate 90 covered with the metal deposition films 91 and 92 is grown by, for example, a VLS (gas-liquid solid) growth method to about 1 to 5000. As shown in Fig. 22C, the metal deposition film 92 covered with the growth region 94 constituting the positioning members 16 may be removed. For example, the metal deposition film 92 may be selectively covered by the metal deposition film 9 1-an impedance To remove the film, perform ion milling or engraving, and then remove the impedance film. As shown in FIG. 22D, only the growth area% covered with the metal deposition film 91 can be further grown by the VLS method. The growth area 93 of the pin 22 is grown into a rod shape, and its length is about 2000 to 5000, which is based on the length of the probe pin 22. As shown in FIG. 22E, the artificial resin 95 is Deposition to cover the growth area% and harden. The growth areas 93 The upper surface is ground to make it flush. In this example, the metal deposition film M covering the upper surface of the growth areas 93 is removed as shown in FIG. 22.E, or a part of the metal deposition film may be left. M. As shown in the figure, after the artificial resin 95 is removed, the surface of the substrate 90 and the growth regions 93 and 94 are covered with _ conductive film%. For example, the: electric film 96 is electroplated like gold In order to maintain the electrical insulation between the probe pins 22, the growth region 93 may be covered with artificial trees, such as polyamide, in addition to the upper surface. 22A to 22F, using the ancient, ancient, and Japanese 1 million people, the probe pin u 'of the wire pattern 14 composed of the growth area 93 and the lightning conductor 96, and the conductive film 96 The £ 94 and h-iM cattle 16 series are provided by lithography at the same time. Therefore, the probe pins 22 and positioning, y into #piece 16 can be formed with a high relative position 84367 200307814. As shown in Figure 2 G The base portion of the probe pins 22 and the surface of the positioning members are covered with artificial resin to form a reinforcing film 28. 2 2 Η'The probe pins 2 2, the positioning member 16 and the reinforcing film 2 8 are separated from the substrate 90. Next, the separated structure is adhered to the wire pattern 1 4 The pattern 9 9 is on the substrate 12 without the probe pin 2 2. The surface wire pattern 1 4 is completed by correctly adhering the probe pin 22 and the pattern 9 9. In the seventh manufacturing method, 'cover The metal deposition film 91 constituting the growth region 93 of the probe pin 22 can be selectively removed by leaving the metal deposition film 92 covering the growth region 94 constituting the positioning members 6. By setting the height (thickness) of the positioning members 16 higher than the height of the probe pins 22, the mechanical strength of the foot positioning members 16 can be increased. (Eighth Manufacturing Method) FIGS. 20A to 23F are architectural diagrams and cross-sectional views showing the eighth method of manufacturing the probe unit. By applying this manufacturing method, for example, the manufacturing method having This probe unit 10 of the sixth structure. In this method for moving the needle collection unit, as shown in FIG. 2A, a sacrificial film 1 3 1 is sprayed, vacuum-deposited, ion-plated, or the like on a surface. The formed 'preferably' is made from tun. On the surface of the sacrificial film 131, a bottom film 132 of the probe unit is formed. The material of the substrate 130 is a glass plate, an artificial resin plate, a hazard plate, a watt plate, a metal plate or the like having a thickness of several mm. The material of the% film 131 is preferably a copper thin film, a copper (Cu) / chrome 84367 -36-200307814 (Cr) thin film, or the like having a thickness of 0.01 to 50 μΓη. If the copper / chromium film is to be the sacrificial film 1 3 1, chromium is first sprayed to form a close contact layer, and copper is sprayed on the close contact layer. In this example, for example, the thickness of the chromium thin film is 0.03 μπι, and the thickness of the copper thin film is about 0.3 μιτι. The bottom film 132 is preferably a titanium (τη) / nickel (Nm) iron (Fe) film, or the like having a thickness of about 0.5 to 0.5 μΐΉ. If the Chin / Ni-Fe thin film is to be formed into the bottom film 1 3 2, a titanium thin film is first formed into a close contact layer by sputtering, and a nickel-iron thin film is formed on the titanium thin film by sputtering. In this example, for example, the thickness of the titanium thin film is 0. 2 μΐΏ, and the thickness of the nickel-iron thin film is about 0.1 5 μm. The use of the bottom film 1 32 is because a photoresistance resistance film to be described later is formed directly on the sacrificial film 1 31, which cannot obtain a resistance film having a high resolution :. Depending on the type of element resistance, the bottom film 1 3 9 can be omitted. Since the bottom film 1 3 2 and the photoresist to be described later have good moisture permeability, a resistance film having a South resolution and a desired shape can be formed on the sacrificial film 1 3 1. As shown in FIG. 2B, the photoresist is coated on the surface of the far-bottom film 1 32 to an arbitrary thickness. -A photomask having a predetermined pattern is placed on the surface of the photoresist. It performs exposure and development processes to remove unnecessary photoresist to form a resistance film ^ 3 having an opening corresponding to a predetermined probe unit pattern. The thickness of the impedance film 133 is preferably in a range from 10 to 200 μΐΏ. The probe unit pattern of the opening of the impedance film 33 includes a pattern for forming the probe units and a probe holder constituting the probe unit, and a pattern for forming the positioning member, for example, a Or a plurality of positioning holes and -37-S4367 200307814 positioning frame 'and a pattern for forming small holes, as described with reference to FIGS. 8A to 8C. Since the resist film U3 of the photoresist is to be used, the pattern of the wires constituting the probe pins can be formed in parallel at a narrow pitch, such as a narrow and uniform pitch. Therefore, the probe pins formed by using the impedance film 133 can be formed in a narrow pitch in parallel. Similarly, the probe pins and probe holders of the probe unit formed by using the impedance film 133 can be formed with high relative position accuracy. The positioning holes and small holes can also be formed at a high positional alignment accuracy. As shown in FIG. 23C, a nickel alloy metal foil is formed on the surface of the bottom film 1 324 not covered with the resistance film 1 B. It is plated by using a known iron-nickel plating solution. Sulfuric acid is used as the main ingredient. The thickness of the metal foil 1 3 4 can be set as required. As shown in FIG. 23D, the impedance film 133 is removed by ultrasonically cleaning the interface between the impedance film 1 33 and the bottom film 132 using a liquid such as N, ethyn pyrroHdone. In this example, the impedance film 133 can be efficiently moved by immersing the structure of the substrate 130, the impedance film 133 and the like at N-methynpyrrolidone *, and performing ultrasonic cleaning at 85QC. except. As shown in FIG. 23E, the exposed bottom film 132 is removed by ion milling, so the bottom film 132 and the metal foil} 34 have the same external dimensions. As shown in FIG. 2 F, the metal foil} 3 4 and the bottom film] 3 2 may be separated from the substrate 30. A probe unit 10 having the metal foil and the bottom film 132 is obtained. Using a method for manufacturing a probe unit having the sixth structure 84367 -38-200307814 'The probe pins and probe holders can be integrally formed without the need to mechanically or use solder or an adhesive to bond the Wait for the probe pins and probe holder. Therefore, it is possible to prevent the probe pins from being damaged. It is possible to form such probe pins and probe holders with relative position accuracy. Since it is not necessary to physically remove the probe holder, the external scale can be determined with high accuracy, and the probe pins prevent breakage during a removal procedure. (Ninth Manufacturing Method) Figs. 24 to 24LY show the structural wearing surfaces of the ninth method of manufacturing the probe unit. By applying this manufacturing method, the probe unit 10 has the seventh structure shown in FIGS. 9A and 9B, for example, or the structure shown in FIG. 10 can be manufactured. Figure-4AX, 24BX, ..., 24LX are cross-sectional views taken along the universal direction parallel to the probe unit, and Figures 24Aγ, 24Βγ,, 2 Li Ya: No: in child detection The procedure for forming the positioning hole in the probe holder of the needle unit is shown in Fig. 24 and Fig. 8 in the method of manufacturing the probe unit. First, as shown in Fig. 24 and Fig. 8, on the surface of the substrate 140, The film 41 is formed by a vacuum coating, vacuum deposition, ion implantation, etc., preferably by spraying. On the surface of this film 1 4 1, the cloth is blocked to a first. Arbitrary thickness.—A mask with " t, 疋 pattern 罾 "^ ^ ^ ^ H 涿 on the surface of the photoresist. Perform exposure and display to remove unnecessary, ..., units-俨 仏+ To form a first-resistance_ with an opening corresponding to the pattern of the prober. The thickness of the second-2 is preferably in the range from _2.〇_. Next, — 84367 -39-200307814 Anchor 1 4J is formed on the sacrificial film 1 4 1 of the sacrificial film 1 4 1 which is not covered with the first impedance film 1 42. The clothing surface is plated with a known iron-nickel plating solution. 1 I as a main component. The thickness of the first metal foil may vary depending on i 43 needs to be set. Lamb names are not particularly limited, and the material of the substrate 140 is a glass plate, a synthetic

樹脂板、一陶次如 人尿,L 瓦板、一金屬板或類似具有數min之厚度者。 涿犧牲膜141的材料較佳地是為一銅薄膜、一銅(Cu)/鉻 (c〇薄膜或類似具有厚度為ojas.o )^]11者。如果該銅/鉻薄 月吴要做為該犧牲膜141,首先嘴濺鉻來形成一緊密接觸層, 且銅噴濺在此緊密接觸層上。在此例中,舉例而言,該鉻 薄艇的厚度為0.03 ,而該銅薄膜的厚度約為0.3 μΐΉ。 當形成該第一阻抗膜丨42時,可在同時不僅形成對應於該 休針夹持器之開口,亦可形成一個或複數個定位孔或小孔。 如圖24ΒΧ及24ΒΥ所示,一絕緣膜144形成在該第一阻抗 膜1 4 2及第一金屬箔1 4 3的表面上。該絕緣膜1 4 4可為一二氧 化石夕膜、一鋁膜或類似由喷濺、CVD或類似者形成具有厚 度約為0.1到20 μπι者。該絕緣膜1 44之形成使得電絕緣該第 一金屬箔1 4 3,及要形成在該第一金屬箔1 4 3之上的該等探 針插針,如以下所述。 如圖24CX及24CY所示,該第一阻抗膜142被移除,而留 下該探針夹持器Π 0在該犧牲膜1 4 1的表面上,該探針夾持 备Η 0係由該第一金屬箔1 4 3及絕緣膜1 4 4所構成。為了移除 该第一阻抗膜1 4 2,該第一阻抗膜1 4 2及犧牲膜1 4 1之間的介 面由N-methyl-2-pyrrolidone來清洗。在此例中,藉由沉浸該 84367 -40 - 200307814 基板140的結構體,第一阻抗膜ι42及類似者在Ν-π^1ιγ1-2- pyrrohdone中,並於85〇c下執行超音波清洗,該第一阻抗膜 142可有效率地移除。 如圖24DX及24DY所示,該犧牲膜141的整個表面將該第 一阻抗膜1 42移除,即該犧牲膜1 4丨的整個表面未形成具有 該第一金屬箔1 43,係以銅電鍍來形成一電鍍的銅層1 45。 m電鍍的銅層145之厚度係設定成厚於該探針夾持器11〇。 如圖24EX及24EY所示,該電鍍的銅層145被研磨來使其 與該探針夹持器1 1 〇齊平。 如圖24FX及24F Y所示,該探針單元的底部膜】46由噴濺形 成在該探針夾持器11〇及電鍍的銅層145之表面上。 該底邵膜146較佳地是一鈦(丁…鎳(Nl)鐵(Fe)薄膜、或類似 具有厚度約為0 · 0 5到0.5 μιη者。如果該欽/錄-鐵薄膜係要形 成為孩底部膜1 46,首先一鈦薄膜係由噴濺形成一緊密接觸 層,且一鎳鐵薄膜由噴濺形成在該鈦薄膜上。在此例中, 舉例而言,該鈦薄膜的厚度為〇.02 μΐΏ,而該鎳·鐵薄膜的厚 度約為0.1 5 μιη。 如圖24GX及24GY所示,在該底部膜146的表面上,塗佈 光阻到一任意的厚度。一具有預定圖案之光罩係置於該光 阻的表面上。其執行曝光及顯影處理來移除不必要的光阻 ,以形成具有相對應於該等探針插針圖案之開口的第二阻 抗膜147。該第二阻抗膜! 47的厚度較佳地是範圍由】〇到2〇〇 μιτι。除了對應於該等探針插針之圖案的開口之外,對應於 該等定位部件之圖案的該等開口來決定該安裝位置者可同 84367 -41 - 200307814 時來形成。 如圖24HX及24HY所示,一第二鎳合金金屬洛(圖案)i48 係形成在未覆蓋有該阻抗膜147之底部膜146之表面上,其 藉由使用已知的鐵-鎳電鍍液進行電鍍,其含有硫酸做為主 要成分。該第二金屬箔(圖案)148的厚度可依需要來令定 如圖24 IX及241Y所示,其移除該第二阻抗膜147。為了移 除該第二阻抗膜147,該第二阻抗膜147及底部膜146之間的 介面以N-methyl-2-pyrrolldone來清洗。在此例中,藉由沉浸 孩基板140的結構體,第二阻抗膜147及類似者在 N-methyl-2-pyrrolidone中,並於85°C下執行超音波清洗, 該第二阻抗膜1 4 7可有效率地移除。 如圖2 4 J X及2 4 J Y所示,該曝光的底部膜1 4 6由離子銳削移 除’所以該底部膜146及第二金屬箔(圖案)148具有相·同的外 邵尺寸’而構成該底部膜146及第二金屬箔248之探針插針 22即留在該探針夾持器n 〇上。 如圖24KX及24KY所示,為了改進該探針夾持器110及探 針插針22之間的緊密接觸,並保護該探針單元的配線,該 探針插針與該探針夾持器n 〇緊密接觸的區域覆蓋一保護 膜3 2。在此例中,感光聚醯胺、紫外線硬化黏結劑、卡型 、絕緣材料、光阻或類似者即塗佈在該區域上,其中該等探 針插針緊密接觸於該探針爽持器1 1 0,並被硬化或附著一乾 膜,以藉此形成該保護膜3 2。 如圖24LX及24LY所示,該犧牲膜141及電鍍的銅層145可 使用敍刻劑來溶解,其會比溶解其它材料要優先來溶解銅 84367 -42 - 200307814 Q此攻等探針插針2 2及探針夾持器1 1 〇之整合的部份與該 基板140分離,並可形成具有該等探針插針22及探針夾持器 U0之探針單元10。 利用製造該探針單元的第九方法,該等探針插針22及探 針夾持器1 1 〇係藉由使用堆疊許多薄膜來一體地形成,而不 用機械式或利用焊料或黏結劑來結合該等探針插針及探針 夹持咨。因此其有可能防止該等探針插針被破壞。其有可 能來以高的相對位置精度形成該等探針插針22及探針夹持 器 1 10 〇 因為其不需要來實際地切除該探針夾持器1 1 0,該外部尺 問可高度精確地決定,且該等探針插針22可防止在一切除 程序期間破損。 1¾等足位孔藉由使用光阻而以高的位置對準精度來形成 穿過該探針夹持器110。因此該探針單元10可以高的,位置對 準精度來安裝在每個裝置上。因此其可能來高度精確地執 行液晶顯示面板及類似者之導電測試。 因為用於決定該等安裝位置及該等探針插針22之定位部 件的圖案可同時形成,該等定位孔可以高精度形成,所以 可改進1¾等探針插針22與一測試體之相對位置的精度。 在此具體實施例中,雖然形成該保護膜32,可形成不具 有該保1隻膜3 2之探針單元10。另外,在該探針單元10與該 基板1 40分離之後,可形成該保護膜32。 為了縮短分離該探針單元1 0與該基板1 40之所需時間,該 基板1 4〇可由銅製成,而不用形成該犧牲膜1 4 1。在此例中 84367 -43 - 200307814 ,如果該銅基板1 40的機械強度不足,由玻璃、陶竞或類似 者所製成的一固態及穩定的基板可與該基板1 4〇排齊。 同時在此具體實施例中,於形成該探針夾持器丨丨〇之後, 該等探針插針22係堆疊在該探針夹持器11〇上。相反地,在 形成1¾等探針插針22之後,該探針夹持器丨1〇可堆疊在該等 探針插針上。 (第十製造方法) 圖25A到2:>F所示為製造該探針單元的第十方法之架構性 橫截面圖。藉由應用此製造方法’可製造具有例如第九到 第十二結構之一的探針單元1 0。 在此製造該探針單元的第十方法中,首先如圖25 A所示, 在一基板150的表面上,一犧牲膜151由噴濺、真空沉積、 離子電鍍或類似者所形成,較佳地是由噴濺。在該犧牲膜 1的衣面上,藉由噴濺形成該探針單元的底部膜15 2。在 孩辰邵膜152的表面上,塗佈光阻到一任意的厚度。一具有 =定圖案之光罩係置於該光阻的表面上。其執行曝光及顯 衫處理來移除不必要的光阻,以形成具有相對應於該等探 針插針圖案之開口的阻抗膜153。 因為用於決定該等安裝位置及該探針插針之定位部件的 圖案:系在同時形成,該等定位孔可以高精度形 <,即可改 進該等探針插針及一測試體之相對位置之精度。 表雖二未特刎限制,該基板1 5 0的材料為一玻璃板、一人造 树^板、一陶瓷板、一金屬板或類似具有數mm之厚度者。 〜铋在朕1 5 1的材料較佳地是為一銅薄膜、一銅(Cu)/鉻 84367 -44 - 200307814 (C r)薄膜或類似具有厚度為0 · 1到5.0 μπι者。如果該銅/絡薄 膜要做為該犧牲膜1 5 1 ’首先噴濺鉻來形成一緊密接觸層, 且銅噴濺在此緊密接觸層上。在此例中,舉例而言,該鉻 薄膜的厚度為0.0 3 μπι,而該銅薄膜的厚度約為〇 3 μπι。 該底部膜1 52較佳地是一鈥(Τι)/鎳(Ni)鐵(Fe)薄膜、或類似 具有厚度約為〇 . 〇 5到0.5 μιτι者。如果該鈥/鎳-鐵薄膜係要形 成為該底部膜1 5 2,首先一鈥薄膜係由噴;賤形成一緊密接觸 層,且一鎳鐵薄膜由噴濺形成在該鈦薄膜上。在此例中, 舉例而言,該鈦薄膜的厚度為〇 · 〇2 μιτι,而該鎳-鐵薄膜的厚 度約為0.1 5 μπι。 該底部膜1 52之使用係因為要在稍後說明的光阻阻抗膜 係要直接形成在該犧牲膜1 5 1上,其不能夠得到具有一高解 析度的阻抗膜。因為該底部膜1 52具有與光阻之良好妁透濕 性’具有一高解析度及所要形狀的阻抗膜可形成在該犧牲 膜1 5 1上。根據該光阻的種類,可省略該底部膜丨5 2。 該阻抗膜1 53較佳地是其厚度在1〇到200 μπι。 因為要使用該光阻的阻抗膜1 5 3,構成該等探針插針之導 線的圖案可平行地形成在一狹窄間距。類似地,該等探針 插針與探針夾持器可以高的相對位置精度來形成。該等定 位孔亦可用一高位置對準精度來形成。 如圖25Β所示’ 一探針插針之鎳合金金屬箔(圖案)154係形 成在未覆蓋有該阻抗膜153之底部膜152的表面上,其藉由 使用已知的鐵-鎳電鍍液進行電鍍,其含有硫酸做為主要成 分。该金屬箔(圖案)1 5 4的厚度可依需要來設定。 84367 -45 - 200307814 如圖2 5 C所示,移除該阻抗膜1 5 3。為了移除該第一阻抗 膜1 5 3,該第一阻抗膜1 5 3及底部膜1 5 2之間的介面以 N-methyl-2-pyrrolidone來清洗。在此例中,藉由沉浸該基板 1 50的結構體,阻抗膜1 53及類似者在N-methyl-2-pyrrolidone 中,並於85°C下執行超音波清洗,該第一阻抗膜I”可有效 率地移除。 如圖25D所示,該曝光的底部膜丨52由離子銑削移除,所 以該底部膜152及金屬箔(圖案)154具有相同的外部尺寸,而 構成該底部膜152及金屬箔154之探針插針22即留在該探針 夹持^§·151的表面上。 如圖25Ε所示,一探針夾持器U〇形成在該底部膜152及金 屬笛154彼此緊密接觸的區域中,其藉由塗佈感光聚醯胺、Resin board, a pottery such as human urine, L tile board, a metal plate or similar have a thickness of several minutes. The material of the sacrificial film 141 is preferably a copper film, a copper (Cu) / chromium (co film or similar having a thickness of ojas.o) ^] 11. If the copper / chrome thin film is to be used as the sacrificial film 141, firstly, chromium is sputtered to form a close contact layer, and copper is sprayed on the close contact layer. In this example, for example, the thickness of the chrome thin boat is 0.03, and the thickness of the copper thin film is about 0.3 μΐΉ. When the first impedance film 42 is formed, not only the opening corresponding to the rest needle holder, but also one or more positioning holes or small holes can be formed at the same time. As shown in FIGS. 24BX and 24BY, an insulating film 144 is formed on the surfaces of the first impedance film 1 4 2 and the first metal foil 1 4 3. The insulating film 1 4 4 may be a silicon dioxide film, an aluminum film, or the like formed by sputtering, CVD, or the like with a thickness of about 0.1 to 20 μm. The insulating film 1 44 is formed so as to electrically insulate the first metal foil 1 4 3 and the probe pins to be formed on the first metal foil 1 4 3 as described below. As shown in FIGS. 24CX and 24CY, the first impedance film 142 is removed, leaving the probe holder Π 0 on the surface of the sacrificial film 1 4 1. The probe holding device 0 is The first metal foil 1 4 3 and the insulating film 1 4 4 are configured. In order to remove the first impedance film 1 42, the interface between the first impedance film 1 42 and the sacrificial film 1 41 is cleaned by N-methyl-2-pyrrolidone. In this example, by immersing the structure of the 84367 -40-200307814 substrate 140, the first impedance film ι42 and the like are in N-π ^ 1ιγ1-2-pyrohdone, and ultrasonic cleaning is performed at 85 ° C. The first resistance film 142 can be removed efficiently. As shown in FIGS. 24DX and 24DY, the entire surface of the sacrificial film 141 removes the first impedance film 142, that is, the entire surface of the sacrificial film 141 does not form the first metal foil 143, and is made of copper. Electroplating to form a plated copper layer 145. The thickness of the m-plated copper layer 145 is set to be thicker than the probe holder 110. As shown in Figures 24EX and 24EY, the plated copper layer 145 is ground to be flush with the probe holder 110. As shown in FIGS. 24FX and 24F Y, the bottom film of the probe unit] 46 is formed on the surfaces of the probe holder 110 and the plated copper layer 145 by sputtering. The bottom film 146 is preferably a titanium (butyl ... nickel (Nl) iron (Fe) film, or similar having a thickness of about 0.5 to 0.5 μm. If the thin film is to be formed For the bottom film 1 46, first, a titanium thin film is formed by sputtering to form a close contact layer, and a nickel-iron film is formed on the titanium thin film by sputtering. In this example, for example, the thickness of the titanium thin film It is 0.02 μΐΏ, and the thickness of the nickel-iron film is about 0.1 5 μm. As shown in FIGS. 24GX and 24GY, a photoresist is applied to the surface of the bottom film 146 to an arbitrary thickness. The patterned photomask is placed on the surface of the photoresist. It performs exposure and development processes to remove unnecessary photoresist to form a second resistive film 147 having openings corresponding to the probe pin patterns. The second impedance film! The thickness of 47 is preferably in the range from 0 to 200 μm. Except for the openings corresponding to the patterns of the probe pins, the thicknesses corresponding to the patterns of the positioning members are Waiting for the opening to determine the installation position can be formed at the same time as 84367 -41-200307814. See Figure 24 As shown in HX and 24HY, a second nickel alloy metal pattern (pattern) i48 is formed on the surface of the bottom film 146 which is not covered with the resistance film 147, and is plated by using a known iron-nickel plating solution. It contains sulfuric acid as a main component. The thickness of the second metal foil (pattern) 148 can be determined as required, as shown in FIGS. 24 IX and 241Y, and the second impedance film 147 is removed. In order to remove the second The resistive film 147, the interface between the second resistive film 147 and the bottom film 146 is cleaned with N-methyl-2-pyrrolldone. In this example, the second resistive film 147 and Similarly, in N-methyl-2-pyrrolidone, and performing ultrasonic cleaning at 85 ° C, the second impedance film 1 4 7 can be removed efficiently. As shown in Figure 2 4 JX and 2 4 JY, The exposed bottom film 1 4 6 is removed by ion sharpening, so the bottom film 146 and the second metal foil (pattern) 148 have the same outer dimensions, and the bottom film 146 and the second metal foil 248 are formed. The probe pin 22 is left on the probe holder n 0. As shown in FIGS. 24KX and 24KY, in order to improve the probe holder The probe 110 and the probe pin 22 are in close contact and protect the wiring of the probe unit. The area where the probe pin is in close contact with the probe holder n 0 is covered with a protective film 32. Here In the example, photosensitive polyamide, ultraviolet curing adhesive, card type, insulating material, photoresist, or the like is coated on the area, and the probe pins are in close contact with the probe holder 1 1 0, and is hardened or attached with a dry film to form the protective film 3 2. As shown in FIGS. 24LX and 24LY, the sacrificial film 141 and the electroplated copper layer 145 can be dissolved with a etchant, which will be more soluble than Other materials should preferentially dissolve copper 84367 -42-200307814 Q This integrated part of probe pins 2 2 and probe holder 1 1 〇 is separated from the substrate 140 and can be formed with such probes Pin 22 and probe unit 10 of probe holder U0. With the ninth method of manufacturing the probe unit, the probe pins 22 and the probe holder 1 10 are integrally formed by stacking a plurality of films, instead of mechanically or using solder or an adhesive. Combine these probe pins and probe clamps. Therefore, it is possible to prevent the probe pins from being damaged. It is possible to form the probe pins 22 and the probe holder 1 10 with high relative position accuracy because it does not need to actually cut off the probe holder 1 1 0. The external ruler may Determined with high accuracy, and the probe pins 22 prevent breakage during a resection procedure. 1¾ equal-foot holes are formed through the probe holder 110 with high positional alignment accuracy by using a photoresist. Therefore, the probe unit 10 can be mounted on each device with high positional alignment accuracy. Therefore, it is possible to perform the conductivity test of the liquid crystal display panel and the like with high accuracy. Because the patterns used to determine the mounting positions and the positioning pins of the probe pins 22 can be formed at the same time, the positioning holes can be formed with high accuracy, so that the relativeity of the probe pins 22 and the like to a test body can be improved Position accuracy. In this embodiment, although the protective film 32 is formed, the probe unit 10 without the protective film 32 can be formed. In addition, after the probe unit 10 is separated from the substrate 1 40, the protective film 32 may be formed. In order to shorten the time required to separate the probe unit 10 and the substrate 140, the substrate 140 can be made of copper without forming the sacrificial film 1 41. In this example, 84367 -43-200307814, if the copper substrate 140 has insufficient mechanical strength, a solid and stable substrate made of glass, ceramic or the like may be aligned with the substrate 140. Meanwhile, in this specific embodiment, after the probe holder 11 is formed, the probe pins 22 are stacked on the probe holder 11. Conversely, after the probe pins 22 and the like are formed, the probe holder 10 can be stacked on the probe pins. (Tenth manufacturing method) Figs. 25A to 2: > F is a schematic cross-sectional view showing a tenth method of manufacturing the probe unit. By applying this manufacturing method ', a probe unit 10 having, for example, one of the ninth to twelfth structures can be manufactured. In this tenth method of manufacturing the probe unit, as shown in FIG. 25A, on a surface of a substrate 150, a sacrificial film 151 is preferably formed by sputtering, vacuum deposition, ion plating, or the like. The ground is splashed. On the garment surface of the sacrificial film 1, a bottom film 15 2 of the probe unit is formed by sputtering. On the surface of the film 152, a photoresist is applied to an arbitrary thickness. A photomask with a fixed pattern is placed on the surface of the photoresist. It performs exposure and display processing to remove unnecessary photoresist to form a resistive film 153 having an opening corresponding to the probe pin patterns. Because the patterns used to determine the mounting positions and the positioning parts of the probe pins are formed at the same time, the positioning holes can be shaped with high precision, and the probe pins and a test body can be improved. Relative position accuracy. Although the table is not particularly limited, the material of the substrate 150 is a glass plate, an artificial tree plate, a ceramic plate, a metal plate or the like having a thickness of several mm. The material of bismuth at 151 is preferably a copper thin film, a copper (Cu) / chrome 84367 -44-200307814 (C r) thin film or the like having a thickness of 0.1 to 5.0 μm. If the copper / cold film is to be used as the sacrificial film 1 5 1 ′, chromium is first sprayed to form a close contact layer, and copper is sprayed on the close contact layer. In this example, for example, the thickness of the chromium thin film is 0.0 3 μm, and the thickness of the copper thin film is about 0 3 μm. The bottom film 152 is preferably a (Ti) / nickel (Ni) iron (Fe) film, or the like having a thickness of about 0.05 to 0.5 μm. If the "nickel-iron film" is to be formed into the bottom film 152, first a "film" is formed by spraying; a close contact layer is formed; and a nickel-iron film is formed by spraying on the titanium film. In this example, for example, the thickness of the titanium thin film is 0. 02 μm, and the thickness of the nickel-iron thin film is about 0.1 5 μm. The use of the bottom film 152 is because a photoresistance resistance film to be described later is formed directly on the sacrificial film 151, which cannot obtain a resistance film having a high resolution. Because the bottom film 152 has good moisture permeability with photoresistance, a resistance film having a high resolution and a desired shape can be formed on the sacrificial film 151. According to the type of the photoresist, the bottom film 5 2 can be omitted. The resistance film 153 preferably has a thickness of 10 to 200 μm. Because the photoresistive resistance film 153 is to be used, the pattern of the wires constituting the probe pins can be formed in parallel at a narrow pitch. Similarly, the probe pins and probe holders can be formed with high relative position accuracy. The positioning holes can also be formed with a high positioning accuracy. As shown in FIG. 25B, a nickel alloy metal foil (pattern) 154 of a probe pin is formed on the surface of the bottom film 152 which is not covered with the impedance film 153, by using a known iron-nickel plating solution. Electroplating is performed, which contains sulfuric acid as a main component. The thickness of the metal foil (pattern) 1 5 4 can be set as required. 84367 -45-200307814 As shown in Figure 2 5 C, remove the impedance film 1 5 3. In order to remove the first impedance film 153, the interface between the first impedance film 153 and the bottom film 152 is cleaned with N-methyl-2-pyrrolidone. In this example, by immersing the structure of the substrate 150, the impedance film 153 and the like in N-methyl-2-pyrrolidone, and performing ultrasonic cleaning at 85 ° C, the first impedance film I "It can be removed efficiently. As shown in Fig. 25D, the exposed bottom film 52 is removed by ion milling, so the bottom film 152 and the metal foil (pattern) 154 have the same external dimensions to form the bottom film." The probe pins 22 of 152 and the metal foil 154 remain on the surface of the probe holder ^ § · 151. As shown in FIG. 25E, a probe holder U0 is formed on the bottom film 152 and the metal flute. In areas where 154 is in close contact with each other, it is coated with photosensitive polyamide,

居等探針插針之保護膜。 ’光阻覆蓋在該Protective film for indented probe pins. ’Photoresist covering

位孔或小孔穿過陔探針夹持器丨丨〇。 如圖2 5 F所示,該犧姓脸1 α 在藉由使用光阻形成該探針夾持器丨1〇中 該犧牲膜151藉由使用蝕 刻劑來溶解,其 84367 '46 - 200307814 插針22:其匕材料的更高優先性來溶解銅。因此該等探針 並可二探針夾持器U〇之整合的部份與該基板150分離, 元丨。具有該等探針插針22及探針夾持器丨10之探針單 針該㈣單元的第十方法’肖等探針插針22及探 _ A 1Q係、藉由使用堆疊許多薄膜來-體地形成,而不 点^式或利用卜料或黏結劑來結合該等探針插針及探針 “持咨。因此其有可能防止該等探針插針22被破壞。 〜其有可能來以高的相對位置精度形成該等探針插針Μ及 探針夾持器11 〇。 因為該探針夹持器110藉由使用光阻來形成,該等定位孔 可用-高的位置對準精度來形成。因此該探針單元10可以 咼的位置對準精度來安裝在每個裝置上。因此其可.能來高 度精確地執行液晶顯示面板及類似者之導電測試。 因為用於決足該等安裝位置及該等探針插針22之定位部 件的圖案可同時形 <,該等定位孔可以高精度形成,所以 可改進该等探針插針2 2與一測試體之相對位置的精度。 為了縮短分離該探針單元1 〇與該基板1 5〇之所需時間,該 基板1 5 0可由銅製成,而不用形成該犧牲膜丨5 1。在此例中 ’如果遠銅基板1 5 0的機械強度不足,由破璃、陶资或類似 者所製成的一固態及穩定的基板可與該基板1 5〇排齊。 如果該探針夾持器1 1 0由樹脂製成,該探針夾持器丨1 〇可 以由一溫度變化來膨脹或收縮,所以不能夠得到一高的尺 寸精度。在這彳永的狀;兄下’如圖2 6所示,由一種很難由溫 84367 -47 - 200307814 度改變來膨腺或收縮的材料所製成的一夾持器板155,例々 陶瓷、石英及_ 1可利職結斷固定職探針夹持哭 110。 °° (第十一製造方法) 元的第Η 方法之架構 ’可製造具有例如第十 圖27 A到27Q所示為製造該探針單 性橫截面圖。藉由應用此製造方法 三結構之一的探針單元1 〇。 在此製造該探針單元的第十三方法中,首先如圖27八所示 ,在一基板160的表面上,一犧牲膜161由噴濺、真空沉積 、離子電鍍或類似者所形成,較佳地是由噴濺。 雖然未特別限制,該基板1 60的材料為一玻璃板、一人造 树脂板、一陶瓷板、一金屬板或類似具有數mm之厚度者。 該犧牲膜161的材料較佳地是為一銅薄膜、一銅(〇11)/鉻 (cO薄膜或類似具有厚度為〇丨到5 〇 μπ1者。如果該銅/鉻薄 膜要做為該犧牲膜1 5 1,首先喷濺鉻來形成一緊密接觸層, 且鋼噴濺在此緊密接觸層上。在此例中,舉例而言,該鉻 薄膜的厚度為〇 . 〇 3 μηι,而該銅薄膜的厚度約為〇 . 3 μπι。 如圖27Β所示,在該犧牲膜1 6 1的表面上,該等探針插針 足第一底部膜1 62由喷濺形成。 該第一底部膜162較佳地是一鈦(Τι)/鎳(Νι)鐵(Fe)薄膜、或 類似具有厚度約為〇 . 〇 5到〇 · 5 μΓα者。如果該鈦/鎳-鐵薄膜係 要形成為該底部膜1 62,首先一鈦薄膜係由喷濺形成一緊密 接觸層,且一鎳鐵薄膜由噴濺形成在該鈦薄膜上。在此例 中,舉例而言,該鈦薄膜的厚度為0.02 ,而該鎳-鐵薄膜 Η4367 -48 - 200307814 的厚度約為0.1 5 μιη。 該第一底部膜1 6 2之使用係因為要在稍後說明的光阻阻 抗膜係要直接形成在該犧牲膜1 6 1上,其不能夠得到具有一 高解析度的阻抗膜。根據該光阻的種類,可省略該第一底 部膜1 6 2。 如圖27C所示,在該第一底部膜}62的表面上,塗佈光阻 到一任意的厚度。一具有預定圖案之光罩係置於該光阻的 表面上。其執行曝光及顯影處理來移除不必要的光阻,以 形成具有相對應於該等探針圖案之開口的第一阻抗膜1 63 。該第一阻抗膜163較佳地是其厚度在ι〇到2〇〇 μΠ}。 當形成該第一阻抗膜1 63時,除了對應於該等探針插針之 圖案之外,對應於用於決定該探針單位之位置的一或複數 個框梁之圖業,可在同時形成一或複數個定位孔及小孔。 如圖27D所示,要做為探針插針及定位部件之第一鎳合金 金屬猪(圖案)164係形成在未覆蓋有該第—阻抗膜163之底 部腠1 62的表囬上,其藉由使用已知的鐵·鎳電鍍液進行電鍍 ,其含有硫酸做為主要成分。該第一金屬洛(圖案)164的厚 度可依需要來設定。 如圖27Ε所示’移除該第—阻抗膜163。為了移除該第一 阻抗膜163,該第一阻抗膜163及第一底部膜162之間的介面 以N-methyK2-pyrrolldone來清洗。在此例中,藉由沉浸該基 板160的結構體,阻柷膜163及類似者在…methyl_2_ pyrr〇Ud〇ne中,並於85γ下執行超音波清洗,該第一阻抗膜 1 6 3可有效率地移除。 -49 - 84367 200307814 如圖27F所示,該曝光的底部膜1 62由離子銑削移除,所 以該第一底部膜1 62及第一金屬箔1 64具有相同的外部尺寸 ,而構成該第一底部膜162及第一金屬箔164之探針插針22 即留在該犧牲膜1 6 1的表面上。 如圖2 7 G所示,該犧牲膜1 6 1及探針插針2 2之表面係覆蓋 有一電鍍的銅層1 6 5。在此例中,該電鍍的銅層! 6 5即過量 地形成,所以該犧牲膜1 6 1及探針插針2 2之表面可完全地覆 苫〇 如圖2 7 Η所示,該電鍍的銅層1 6 5係以鑽石研漿來研磨, 以使得該電鍍的銅層1 65之上表面與該等探針插針22齊平。 如圖2 7 I所示,一絕緣膜1 6 6形成在該等探針插針2 2及電鍍 的銅層165之表面上。該絕緣膜166可為一二氧化碎膜、一 銘膜、或類似由噴錢、C V D或類似者形成具有厚度約為〇 1 到20 μπι者。該絕緣膜166之形成使得電絕緣該等探.針插針 22及要形成在該等探針插針22上的一探針夹持器,如以下 所述。 如圖27J所示,在該犧牲膜166的表面上,該探針夾持器的 一第一底部膜1 6 7由濺形成。该第二底部膜1 $ 7由類似於 該第一底部膜1 6 2之材料所製成。 如圖27Κ所示,在該第二底部膜167的表面上,塗饰光阻 到一任意的厚度。一具有預定圖案之光罩係置於該光阻的 表面上。其執行曝光及顯影處理來移除不必要的光阻,以形 成具有相對應於該探針夾持器圖案之開口的第二阻抗膜】6 8 。該第二阻抗膜1 68之厚度較佳地是其範圍在由1 〇到2 84367 -50 - 200307814 、除了 %應於該探針夾持器圖案之開口之外,對應於用於 决疋騎針早兀〈叙置的—或複數個框架圖案之圖案的該 等開口,可在同時間形成一或複數個定位孔及小孔。The bit hole or small hole passes through the probe holder. As shown in FIG. 2F, the sacrificial face 1α is formed by using a photoresist to form the probe holder. The sacrificial film 151 is dissolved by using an etchant, and its 84367 '46-200307814 is inserted. Needle 22: its higher priority to dissolve copper. Therefore, the probes can be separated from the substrate 150 by the integrated part of the two probe holders U0. The tenth method of the probe single pin with the probe pin 22 and the probe holder 丨 10 of this unit 'Xiao and other probe pins 22 and probe _ A 1Q series, by using a stack of many films to -It is formed in the body, without using a dot or using a material or an adhesive to combine the probe pins and probes. Therefore, it is possible to prevent the probe pins 22 from being damaged. ~ It has It is possible to form the probe pins M and the probe holder 11 with high relative position accuracy. Since the probe holder 110 is formed by using a photoresist, the positioning holes are available at a high position It is formed by the alignment accuracy. Therefore, the probe unit 10 can be mounted on each device with the positional alignment accuracy. Therefore, it can perform the conductivity test of the liquid crystal display panel and the like with high accuracy. Because it is used for Depending on the installation positions and the patterns of the positioning parts of the probe pins 22, both the positioning holes can be formed with high precision, so the probe pins 22 and a test body can be improved. Accuracy of the relative position. In order to shorten the separation between the probe unit 10 and the substrate 150. In the required time, the substrate 150 can be made of copper without forming the sacrificial film 51. In this example, 'if the mechanical strength of the far copper substrate 150 is insufficient, the glass, ceramics or the like is used. A solid and stable substrate can be aligned with the substrate 150. If the probe holder 110 is made of resin, the probe holder 1 1 0 can be expanded by a temperature change Or shrink, so you can not get a high dimensional accuracy. In this timeless state; brother 'as shown in Figure 26, a material that is difficult to bulge or shrink by changing the temperature 84367 -47-200307814 degrees A holder plate 155 made of, for example, ceramic, quartz, and _1 can be used to break the fixed position probe holding clamp 110. ° ° (Eleventh manufacturing method) The structure of the first method of the ' 27A to 27Q can be manufactured, for example, as shown in FIG. 27A to 27Q. A single cross section view of manufacturing the probe is shown. By applying one of the three structures of this manufacturing method, the probe unit 10 is manufactured. In the thirteen methods, first, as shown in FIG. 27 and FIG. 8, on a surface of a substrate 160, a sacrificial film 161 Formed by air deposition, ion plating or the like, preferably by sputtering. Although not particularly limited, the material of the substrate 160 is a glass plate, an artificial resin plate, a ceramic plate, a metal plate or the like A thickness of several mm. The material of the sacrificial film 161 is preferably a copper film, a copper (〇11) / chrome (cO film or the like having a thickness of 〇 丨 to 50 μπ1. If the copper / chrome The thin film is to be the sacrificial film 1 51, and chromium is first sprayed to form a close contact layer, and steel is sprayed on the close contact layer. In this example, for example, the thickness of the chromium thin film is 0. 〇3 μηι, and the thickness of the copper film is about 0.3 μπι. As shown in FIG. 27B, on the surface of the sacrificial film 161, the probe pins and the first bottom film 162 are formed by sputtering. The first bottom film 162 is preferably a titanium (Tm) / nickel (Nm) iron (Fe) film, or the like having a thickness of about 0.05 to 0.5 μΓα. If the titanium / nickel-iron thin film is to be formed as the bottom film 162, first, a titanium thin film is formed by sputtering to form a close contact layer, and a nickel-iron thin film is formed on the titanium film by sputtering. In this example, for example, the thickness of the titanium film is 0.02 Å, and the thickness of the nickel-iron film Η4367 -48-200307814 is about 0.1 5 μm. The use of the first bottom film 16 2 is because a photoresistance resist film to be described later is formed directly on the sacrificial film 16 1, which cannot obtain a high-resolution impedance film. Depending on the type of the photoresist, the first bottom film 162 may be omitted. As shown in Fig. 27C, on the surface of the first bottom film} 62, a photoresist is applied to an arbitrary thickness. A photomask having a predetermined pattern is placed on the surface of the photoresist. It performs exposure and development processes to remove unnecessary photoresist to form a first resistive film 1 63 having openings corresponding to the probe patterns. The first resistive film 163 preferably has a thickness of about ˜200 μπ}. When the first impedance film 163 is formed, in addition to the patterns corresponding to the probe pins, the graphics corresponding to one or more frame beams used to determine the position of the probe unit may be simultaneously Form one or more positioning holes and small holes. As shown in FIG. 27D, the first nickel alloy pig (pattern) 164, which is to be used as a probe pin and a positioning member, is formed on the surface of the back surface of the first impedance film 163, which is not covered with 162. Electroplating is performed by using a known iron-nickel plating solution, which contains sulfuric acid as a main component. The thickness of the first metal pattern (pattern) 164 can be set as required. As shown in FIG. 27E, the first impedance film 163 is removed. To remove the first resistance film 163, the interface between the first resistance film 163 and the first bottom film 162 is cleaned with N-methyK2-pyrrolldone. In this example, by immersing the structure of the substrate 160, the ytterbium film 163 and the like in ... methyl_2_pyrro_Udone and performing ultrasonic cleaning at 85γ, the first impedance film 1 6 3 may Remove efficiently. -49-84367 200307814 As shown in FIG. 27F, the exposed bottom film 1 62 is removed by ion milling, so the first bottom film 1 62 and the first metal foil 1 64 have the same external dimensions to constitute the first The probe pins 22 of the bottom film 162 and the first metal foil 164 remain on the surface of the sacrificial film 161. As shown in FIG. 27G, the surfaces of the sacrificial film 16 and the probe pins 22 are covered with an electroplated copper layer 1 65. In this example, the plated copper layer! 6 5 is formed excessively, so the surfaces of the sacrificial film 16 1 and the probe pin 22 can be completely covered. As shown in FIG. 2 7, the electroplated copper layer 1 6 5 is grinded with diamond. To grind so that the upper surface of the plated copper layer 1 65 is flush with the probe pins 22. As shown in FIG. 2I, an insulating film 16 is formed on the surfaces of the probe pins 22 and the plated copper layer 165. The insulating film 166 may be a broken film, a film, or the like formed by spraying money, CVD or the like, and having a thickness of about 0 1 to 20 μm. The insulating film 166 is formed to electrically insulate the probe pins 22 and a probe holder to be formed on the probe pins 22, as described below. As shown in FIG. 27J, on the surface of the sacrificial film 166, a first bottom film 1 7 of the probe holder is formed by sputtering. The second bottom film 1 $ 7 is made of a material similar to the first bottom film 16 2. As shown in Fig. 27K, on the surface of the second bottom film 167, the photoresist is coated to an arbitrary thickness. A photomask having a predetermined pattern is placed on the surface of the photoresist. It performs exposure and development processes to remove unnecessary photoresist to form a second resistive film having an opening corresponding to the probe holder pattern] 6 8. The thickness of the second impedance film 1 68 is preferably in the range from 10 to 2 84367 -50-200307814. Except for the openings that should correspond to the pattern of the probe holder, the thickness of the second resistance film 1 68 corresponds to that used for determining the riding position. The openings of the needles (set or set) or a plurality of frame patterns can form one or more positioning holes and small holes at the same time.

做為孩第二阻抗膜168之光阻可為類似於做為該第一阻 抗膜1 6 3之光阻Q /如圖27L所示’該探針夬持器之第二鎳合金金屬洛169係 形成在^覆蓋有該第二阻抗膜168之第二底部賴7的表面 上’其藉由使用已知的鐵.鎳電鍍液進行電鍍,其含有碗酸 做為王要成分。該第二金屬箔! 69的厚度可依需要來設定。 如圖27M所示,移除該第二阻抗膜168。為了移除該第二 阻抗膜168,該第二阻抗膜168及第二底部膜167之間的介面 以N-methyl-2-pyrroUdone來清洗。在此例中,藉由沉浸該基 板160的結構體 弟一阻抗膜16 8及類似者在 N-methyl-2-pyirolidone中,並於85。(:下執行超音波请洗 遠第二阻抗膜1 6 8可有效率地移除。 如圖27N所示,該曝光的第二底部膜1 67係由離子銑削移 除’所以該第二底部膜167及第二金屬箔169具有相同的外 部尺寸。 如圖2 7 P所示’該曝光的絕緣膜1 6 6係由離子|虫刻來移除 ’所以該絕緣膜1 6 6及第二金屬箔1 6 9具有相同的外部尺寸 ,並可得到由該絕緣膜1 66及第二金屬箔1 69所構成的—探 針夾持器Π 〇。 如圖27Q所示,該犧牲膜161及電鍍的銅層165可使用敍^ 劑來溶解,其會比溶解其它材料要優先來溶解銅。因& $ -51 - H4367 200307814 等彳木針插針22及探針夾持器1 10之整合的部份與該基板160 刀#’亚可形成具有該等探針插針22及探針夹持器n〇之探 針單元1 0。 利用衣k咸探針單元的第十一方法,該等探針插針22及 =十夹持备1 1 〇係藉由使用堆疊許多薄膜來一體地形成,而 不用機械式或利用焊料或黏結劑來結合該等探針插針及探 十:持态。因此其有可能防止該等探針插針22被破壞。 其有可能來以高的相對位置精度形成該等探針插針22及 探針夾持器1 1 0。 、、:、、、、等探針插針2 2及探針夹持器i 1 〇係使用光阻來形 成^寺疋位框架、定位孔及小孔可用-高的位置對準精 :::成。因此則罙針單元10可以高的位置對準精度來安 母們及且上。因此其可能來高度精確地執行液晶顯示 面板及類似者之導電測試。 因為可在同時形成包含該等框架、定位 探針插針22之定位 及及寺 與,體的相對::;。’即可改進該等探針插針22 說I:抓針早凡及其製造方法已經配合較佳的具體實施例來 如果複數個小孔形成穿 元可*泠女、A 休針夹持益,蚀刻該探針 兀了问度有效率地執行。 如不孩探針單元透過電鍍而形 ,該探針夾持哭的pA在由凡阻疋義的框架 不打人待為的厚度為均勻。 二、^ ' 該等定位孔、开v 〜 卜,逐寺疋位邵件包 形成牙過及在該探卦 r 、、 丈持益上的足位框架 84367 -52 - 200307814 以及該等小孔,比 、 自可以鬲的位置對準精度來放置。 緣膜形成在該探針夾持器 電鍍形成,且哕罢栌Μ』 你込過 絕緣膜的表面:係要藉由使用光阻來形成在該 , 具有一咼解析度的探針插針圖案即可形 成’所以該等探針插針可高度精確地形成。 / 果則木針夾持器及探針插針覆蓋有-保護膜’即可改 …持。。料針插針之間的緊密接觸,並可保護該 夺木針早7C的配線。 哭$:等^針插針係形成在由電鍍所形成的該探針夾持 藉由使用與孩诛針夾持器相同或概括相同的材料, 2使用㈣的合金可改進在該探針夾持器與探針插 〈間的陶’且孩等探針插針與探針夾持器可用高的相 對包置精度來放置。 如果由電鍍形成的該等探針插針係嵌入在由樹脂製成的 衣針夾持器中’即不會損害到在等探針插針及探針夾持器 :整合邵份中的該等探針插針。此外,該等探針插針及探 ’’十夹持器可以用高的相對位置精度來形成及結合。 。。圖28所示為如何使用由該具體實施例方法所製造的探針 早7"之前視圖。在圖28中,顯示出具有圖9A及扣所示的第 七結構之探針單元丨0。 該探針單元10的探針夾持器i 1〇係黏結到一未示出的一 導電測試裝置之夾持器1〇〇的接合表面1〇〇a。該探針單元1〇 係透過該彈性配線平面纜線3之電極(未示出)來電連接到該 導電測試裝置的電路上。The photoresistor used as the second impedance film 168 may be similar to the photoresistor Q used as the first impedance film 163 / as shown in FIG. 27L. The second nickel alloy metal Luo 169 of the probe holder It is formed on the surface of the second bottom layer 7 that is covered with the second impedance film 168. It is plated by using a known iron-nickel plating solution, which contains bowl acid as a main component. The second metal foil! The thickness of 69 can be set as required. As shown in FIG. 27M, the second resistance film 168 is removed. To remove the second resistive film 168, the interface between the second resistive film 168 and the second bottom film 167 is cleaned with N-methyl-2-pyrroUdone. In this example, by immersing the structure of the substrate 160, a resistive film 16 8 and the like are in N-methyl-2-pyirolidone, and at 85. (: The next execution of the ultrasound, please wash away the second impedance film 1 6 8 can be removed efficiently. As shown in Figure 27N, the exposed second bottom film 1 67 is removed by ion milling 'so the second bottom The film 167 and the second metal foil 169 have the same external dimensions. As shown in Fig. 2 7P, "the exposed insulating film 1 6 6 is removed by ion | insect etch" so the insulating film 1 6 6 and the second The metal foils 1 6 9 have the same external dimensions, and a probe holder Π 〇 composed of the insulating film 1 66 and the second metal foil 1 69 can be obtained. As shown in FIG. 27Q, the sacrificial film 161 and The electroplated copper layer 165 can be dissolved with a solvent, which will give priority to dissolving copper over other materials. Because of & $ -51-H4367 200307814 and other alder needle pins 22 and probe holders 1 10 The integrated part and the substrate 160 can be used to form a probe unit 10 having the probe pins 22 and a probe holder n0. Using the eleventh method of the probe unit, These probe pins 22 and = ten clamps 1 1 〇 are integrally formed by using a stack of many films, without using mechanical or solder or adhesive Bonding agent to combine the probe pins and probe ten: hold state. Therefore, it is possible to prevent the probe pins 22 from being damaged. It is possible to form the probe pins 22 with high relative position accuracy. And probe holder 1 1 0. The probe pins 2 2 and probe holder i 1 〇 use photoresist to form the frame, positioning holes and small holes. Available-high position alignment precision ::: Cheng. Therefore, the needle unit 10 can be mounted with high position alignment accuracy. Therefore, it is possible to perform the conductivity of the liquid crystal display panel and the like with high accuracy. Test. Because it is possible to form the frame, the positioning of the probe pin 22 and the relative position of the body and the body at the same time: '; You can improve these probe pins 22 Say I: Grab the needle early And its manufacturing method has been matched with the preferred embodiment, if a plurality of small holes are formed through the element, the needle can be clamped, and the probe can be etched to efficiently perform the task. The needle unit is shaped by electroplating. The thickness of the probe holding the crying pA in the frame which is not disturbed by any obstruction is Evenly, two, ^ 'The positioning holes, open v ~ bu, and follow the temple position to form a frame and the frame of the foot on the hexagram r, zhangzhiyi 84367 -52-200307814 and so on Small holes can be placed with precise alignment accuracy. The edge film is formed on the probe holder by electroplating, and the surface of the insulating film you pass through is formed by using a photoresist To form a probe pin pattern with a single resolution, it can be formed 'so these probe pins can be formed with a high degree of accuracy. / If the wooden pin holder and probe pin are covered with -protection The film can be changed ... . The close contact between the feed pin and the pin can protect the wiring of the wood grabbing pin as early as 7C. Cry $: etc. The needle pins are formed in the probe holder formed by electroplating. By using the same or generalized material as the child's needle holder, 2 the use of rhenium alloy can be improved in the probe holder The holder and the probe are inserted in the pottery, and the children's probe pins and the probe holder can be placed with high relative placement accuracy. If the probe pins formed by electroplating are embedded in a needle holder made of resin, it will not damage the waiting probe pins and probe holders: Wait for the probe pins. In addition, these probe pins and probes can be formed and combined with high relative position accuracy. . . Fig. 28 shows a front view of how to use the probe manufactured by the method of this embodiment. In Fig. 28, a probe unit with a seventh structure shown in Fig. 9A and a clasp is shown. The probe holder i 10 of the probe unit 10 is bonded to a joint surface 100 a of a holder 100 of a conductive test device, not shown. The probe unit 10 is electrically connected to the circuit of the conductive test device through an electrode (not shown) of the flexible wiring plane cable 3.

53 200307814 為了黏結該探針單元丨0到該夾持器丨〇〇,垂直安裝到該夾 持器1 0 0之接合衣面,並友讀菩奸从 卫在S寺插針10丨又上方部份形成有 螺紋之定位插針⑻即插入到形成穿過該探針夹持器110之 疋k孔111中’及固定夾具1Q2 ’例如螺帽由該插針來被刻 具有螺紋。 一導電測試係由推入哕熘朴眾 $採針早兀1 0 <探針插針2 2的尖端53 200307814 In order to bond the probe unit 丨 0 to the holder 丨 〇〇, install it vertically on the joint surface of the holder 1 0 0, and read the buddha ’s position in S temple pin 10 and above A part of the positioning pin 形成 formed with a thread is inserted into the 孔 k hole 111 formed through the probe holder 110 and the fixing jig 1Q2 ′, for example, a nut is engraved with the thread by the pin. A conductive test system is pushed in by Pu Puzhong $ 采 针 早 伍 1 0 < Probe pin 2 2 Tip

到一測試體(要進行量測)1 1 Q U U U的^極來執行,例如放置在由 絕緣材料製成的一測与、,Λ十, 它 1式姐基座(樣本基座)103之上的一液晶 顯示面板。 本發明已經配合該菩鲈杜θ Μ〜、 、乂佳/、岐貫施例來說明。本發明並 不僅限於以上的具體實施 、 J 具了瞭醉到由本技術專業人 士可以進行不同的修正、 改艮、組合及類似者。 圖式簡單說明 圖1所示為一探針單元的 干兀的罘一結構之平面圖。 圖2所示為一探針單元 J罘一結構 < 平面圖。 圖3A及3B所示為一探斜如—、> τ "早兀足第三結構的平面圖及橫截 107 圖。 圖4 A及4B所示為一探斜σσ 一、 早疋足第四結構的平面圖及橫截 向圖。 圖5Α及5Β所示為一探遠—、卜 面圖。 、’早疋又第五結構的平面圖及橫截 圖6所不為修正圖1之探。一, 、十卓兀的平面圖。 圖7所示為修正圖2之;^ Α 木叶單元的平面圖。 圖8Α到8C所示為一探 一 。早元的第六結構之平面圖。 84367 '54- 200307814 圖9A及9B所示為一探針單元之第七結構的平面圖及橫截 面圖。 圖1 0所示為一探針單元的第八結構之平面圖。 圖1 1 A及1 1 B所示為一探針單元之第九結構的平面圖及橫 截面圖。 圖1 2所示為一探針單元的第十結構之平面圖。 圖13A及13B所示為一探針單元之第十一結構的平面圖及 橫截面圖。 圖14A及14B所示為一探針單元之第十二結構的平面圖及 橫截面.圖。 圖15A及15B所示為一探針單元之第十三結構的平面圖及 橫截面圖。 圖1 6 A到1 6 Η所示為製造一探針單元的第一方法之莱構性 橫截面圖。 圖1 7 Α到1 7C所示為製造一探針單元的第二方法之架構性 平面圖。 圖1 8 A到1 8 B所示為製造一探針單元的第三方法之架構性 平面圖。 圖1 9 A及1 9 B所示為製造一探針單元的第四方法之架構性 平面圖。 圖2 0 A到2 0 J所示為製造一探針單元的第五方法之架、冓性 橫截面圖。 圖2 1 A到2 1 F所示為製造一探針單元的第六方法之架構性 橫截面圖。 84367 -55 - 200307814 圖22A到22H所示為製造一探針單元的第七方法之架構性 橫截面圖。 圖23A到23F所示為製造一探針單元的第八方法之架構性 橫截面圖。 圖24AX及24AY到圖24LX及24LY所示為製造一探針單元 的第九方法之架構性橫截面圖。 圖25A到25F所示為製造一探針單元的第十方法之架構性 橫截面圖。 圖2 6所示為製造一探針單元之第十方法的修正之架構性 橫截面圖。 圖2 7 A到2 7 Q所示為製造一探針單元的第十一方法之架構 性橫截面圖。 圖28所示為如何使用由該具體實施例方法所製造的探針 單元之前視圖。 圖式代表符號說明 2 探針裝置 3 彈性印刷配線平面纜線 4 固定炎具 10 探針單元 12 基板 14 導線圖案 16 定位部件 1 8 内壁 19 突出 ! 84367 -56 - 200307814 20 導線 22 探針插針 24, 25, 28 加強膜 26 通孔 30 對準標記 32 保護膜 50 凹處 52 犧牲膜 52a 底部層 52b 銅膜 5 7 覆蓋膜 58 阻抗膜 60 基板 66 阻抗光罩 67 開口 72 絕緣膜 76 阻抗膜 78 支撐膜 88a 金屬層 88b 人造樹脂層 89 黏結劑 89 電鍍金 92 金屬沉積膜 94 成長區域 -57 84367 200307814 96 導電膜 103 測試體基座 1 10 探針夾持器 1 10 測試體 111 定位孔 1 12 小孑L 1 13 電極 1 14 定位框架 1 15 夹持器 1 16 安裝部件 134 金屬箔 145 電鍍銅層 84367 〇8To a test body (to be measured) 1 1 QUUU ^ pole to perform, for example, placed on a test and made of insulating material, Λ 十, it 1 type sister base (sample base) 103 Of an LCD panel. The present invention has been described in conjunction with the perch du θ M ~, 乂, 乂 /, and Qiguan. The present invention is not limited to the above specific implementations. J is so drunk that the technical professionals can perform different corrections, modifications, combinations, and the like. Brief Description of the Drawings Figure 1 shows a plan view of the dry unitary structure of a probe unit. Fig. 2 is a plan view of a probe unit J 罘 structure. 3A and 3B show a plan view and a cross-sectional view of the third structure of the early leg, such as —, > τ " Figures 4A and 4B show a plan view and a cross-sectional view of the fourth structure of an oblique σσ. Figures 5A and 5B show a distance-seeing, and a block diagram. The plan view and cross section of the fifth structure are shown in Fig. 6, which is not a modification of Fig. 1. One, ten Zhuowu floor plan. FIG. 7 shows a plan view of a modified wooden leaf unit in FIG. 2; Figures 8A to 8C show a look-ahead. Early Yuan's sixth structure plan view. 84367 '54-200307814 Figures 9A and 9B show a plan view and a cross-sectional view of a seventh structure of a probe unit. FIG. 10 is a plan view showing an eighth structure of a probe unit. 11A and 1B show a plan view and a cross-sectional view of a ninth structure of a probe unit. FIG. 12 is a plan view showing a tenth structure of a probe unit. 13A and 13B are a plan view and a cross-sectional view showing an eleventh structure of a probe unit. 14A and 14B show a plan view and a cross-sectional view of a twelfth structure of a probe unit. 15A and 15B are a plan view and a cross-sectional view showing a thirteenth structure of a probe unit. Figs. 16A to 16A show cross-sectional views of the first method of manufacturing a probe unit. 17A to 17C are schematic plan views showing a second method of manufacturing a probe unit. Figures 18A to 18B are architectural plan views of a third method of manufacturing a probe unit. Figures 19A and 19B are architectural plan views of a fourth method of manufacturing a probe unit. Figures 20 A to 20 J show a cross-sectional view of a fifth method of manufacturing a probe unit. Figures 2 A to 2 1 F are architectural cross-sectional views of a sixth method of manufacturing a probe unit. 84367 -55-200307814 Figures 22A to 22H are architectural cross-sectional views of the seventh method of manufacturing a probe unit. 23A to 23F are architectural cross-sectional views showing an eighth method of manufacturing a probe unit. 24AX and 24AY to 24LX and 24LY are architectural cross-sectional views showing a ninth method of manufacturing a probe unit. 25A to 25F are architectural cross-sectional views showing a tenth method of manufacturing a probe unit. Figure 26 shows an architectural cross-sectional view of a modification of the tenth method of manufacturing a probe unit. Figures 27 A to 2 7 Q are architectural cross-sectional views of the eleventh method of manufacturing a probe unit. Fig. 28 is a front view showing how to use the probe unit manufactured by the method of this embodiment. Description of symbolic symbols 2 Probe device 3 Flexible printed wiring plane cable 4 Fixing fixture 10 Probe unit 12 Substrate 14 Wire pattern 16 Positioning part 1 8 Inner wall 19 protruding! 84367 -56-200307814 20 Wire 22 Probe pin 24, 25, 28 Reinforced film 26 Through hole 30 Alignment mark 32 Protective film 50 Recessed 52 Sacrifice film 52a Bottom layer 52b Copper film 5 7 Cover film 58 Resistance film 60 Substrate 66 Resistance mask 67 Opening 72 Insulation film 76 Resistance film 78 Supporting film 88a Metal layer 88b Artificial resin layer 89 Adhesive 89 Electroplated gold 92 Metal deposition film 94 Growth area-57 84367 200307814 96 Conductive film 103 Test body base 1 10 Probe holder 1 10 Test body 111 Positioning hole 1 12 孑 L 1 13 Electrode 1 14 Positioning frame 1 15 Holder 1 16 Mounting parts 134 Metal foil 145 Electroplated copper layer 84367 〇8

Claims (1)

200307814 拾、申請專利範圍·· 1 . 一種探針單元,Jt —、人 /、口疋I 一 ,罙針裝置來測試一測試體的 功能,其包括: 一基板;’ ^探針插針’藉由微影形成在該基板上,該等探針插 有由β基板大出的末端點,並使其接觸於該測試體 精由微影形成在該基板上相對於該等探 針插針之預定位置處,蚊位構件緊靠在—部件上來相 對於孩探針裝置定位該基板。 2. 4.200307814 Scope of patent application ... 1. A probe unit, Jt —, human /, mouth I — a needle device to test the function of a test body, which includes: a substrate; '^ probe pin' The lithography is formed on the substrate, and the probes are inserted with end points that are larger than the β substrate, and are brought into contact with the test body. The lithography is formed on the substrate with respect to the probe pins. At a predetermined position, the mosquito biting member abuts on the component to position the substrate relative to the child probe device. twenty four. 如申請專利範®第1項之探針單元,其巾該定位部件具 有内#夹塾圈形狀,其中彈性突出環繞形成穿過該基板 之通孔的周圍延伸。 ^申請專利範圍第!項之探針單元,進一步包含一加強 月吴.’固疋於孩基;^反,並覆蓋在該基板上該等探針插針之 區域,及/或該定位部件的至少一區域。 如申請專利範圍第1项之-* |一, τ间不i (扶針早兀,其中孩等探針插針 及該定位部件得'由相同材料製成,並具有一㈣的膜厚。 —種探針單元’其固定於―探針裝置來測試—測試骨^ 功能,包括: 、包括一底部膜之探針插針,及形成在該底部膜上的— 探針插針圖案;及 —形成在由該等探針插針之末端定義的上表面上,並 具有複數個小孔之探針失持哭。 、 84367 200307814 6 9 10 如申請專利範圍第5項之接 一 具有形4、 、十早兀,其中該探針夹持器 如由 上衣间上的一、纟巴、纟豕膜。 峋專利範圍第5項之探針單 木5八 探針4 木針早疋’進一步包含覆蓋該 卞文持益與該等探針插 f < 保謾膜。 甲凊專利範圍第6福之摄4+ σσ -除7〜 固κ抓針早兀,其中該探針夹持器 1、了该、,,巴緣膜之外,係由盥兮 Mm < 寺探針插針的材料為相同 旳材料所製成。 π w u 如申請專利範圍第5項之探針 覆蓋該等探針插針。 ^木針夹持器 ':種製造探針單元的方法,該探針單元固定於1針# 置來測試一測試體的功能,其包括· ^ (a) —預備一基板之步驟; ⑻-在該基板的一表面層中形成—凹處的步驟. ⑷-在該基板的凹處中形成一犧牲膜之步驟;’ (d) —在該基板與該犧牲膜的 步騾; 田上形成1部膜之 ⑷-在該底部膜的表面上形成具有開 步驟,其方式為形成在該犧牲膜的表面上所“吴之 部膜的至少-部份係暴露在該等開口的底部:、的該底 (f) 一在暴露於該等開口的底部 ^ _ 磺展邵膜的矣而F 办成一覆蓋膜之步騾; 表®上 (g) —移除該阻抗膜之步驟; (h) 和除未復盖有該覆蓋膜之底部膜. (i) 一移除該犧牲膜之步驟;及 200307814 (J) 一沿著通過該凹處之切割線來切割該基板之步驟, 其中該(a)到(J)之步驟係同時在該基板上形成:有"由 該基板突出&末端點之探針插針,並使其接觸於—測試 體之電極,及一定位部件,其緊靠一部件來相對於該探 針裝置定位該基板。 〆 j j /種製造探針單元的方法,該探針單元固定於一探針裝 置來剖试一測試體的功能,其包括: (a) —預備一基板之步驟; (b) —在孩基板的表面上形成一對準標記之步驟; (c) 一在該基板的一表面層中形成一凹處的步驟; (d) —在該基板的凹處中形成一犧牲膜之步,驟; (e) —在該基板與該犧牲膜的表面上形成一底部膜+ 步驟; (f) 一在該底部膜的表面上形成具有關口之阻抗膜之 步,其方式為形成在该犧牲膜的表面上所形成的兮底 部膜的至少一部份係暴露在該等開口的底部; 一 (g) —在暴露於該等開口的底部之該底部膜的表面上 形成一覆蓋膜之步驟; (h) —移除該阻抗膜之步驟; (I) 移除未覆蓋有該覆蓋膜之該底部膜; (J) 一移除該犧牲膜之步驟;及 (k) 一沿著通過該凹處之切割線來切割該基板之步驟 其中: 在該等步驟(a)及(b)之後,該等步驟到(]<)形成探釺 84367 200307814 插針來使其接觸於該測試體 其扣、 — 兒極,亚在該基板上由該 基板犬出,藉由使用該對準標今 卞知屺做為一位置參考;及 形成一定位部件來緊靠在一部 ㉛二 1千以猎由使用該對準 怯記做為一位置參考來相對於 一、 在及基板上的該探針單 疋足位該基板。 12二種製造探針單元的方法’該探針單元固定於一探針裝 置來測試一測試體的功能,其包括: 农 (a) —預備一基板之步驟; (b) —在該基板的一表面層中形成一凹處的步驟; (c) 一在該基板的凹處中形成—犧牲膜之步驟; (d) —在該基板與該犧牲膜的表面上形成—底部膜之 步驟; 一在該底部膜的表面上形成具有開口之阻抗膜之 步驟,其方式為形成在該犧牲膜的表面上所形成的該底 4膜的至少一部份係暴露在該等開口的底部; (0 —在暴露於該等開口的底部之該底部膜的表面上 形成一覆蓋膜之步驟; U) —移除該阻抗膜之步騾; Ο1)移除未覆蓋有該覆蓋膜之該底部膜; (0 —移除該犧牲膜之步驟;及 (J) 一沿著通過該凹處之切割線來切割該基板之步驟, 其中: 前該等步驟(a)到⑴分別在該基板上形成探針插針來 使其接觸於該測試體的電極,並由該基板突出,及一對 ^4367 200307814 準標記;及 然後該等步騾(b)到(j)形成一定位部件來緊靠在—部 件,以藉由使用該對準標記做為一位置參考來相對於在 該基板上的該探針單元定位該基板。 ! 3 · —種製造探針單元的方法,該探針單元固定於一探針裝 置來測試一測試體的功能,其包括: (a) —預備一基板之步驟; (b) —在該基板的_表面層中形成一凹處的步騾; (c) 一在該基板的凹處中形成一犧牲膜之步驟; (d) —在該基板與該犧牲膜的表面上形成一底部膜之 步騾; (e) —在該底部膜的表面上形成具有開口之阻抗膜之 步驟,其方式為形成在該犧牲膜的表面上所形成的該底 部膜的至少一部份係暴露在該等開口的底部; (f) 一在暴露於該等開口的底部之該底部膜的表面上 形成一覆蓋膜之步驟; (g) 一移除該阻抗膜之步驟; (h) 移除未覆蓋有該覆蓋膜之該底部膜; (I) 一移除該犧牲膜之步驟;及 (J) 一沿著通過該凹處之切割線來切割該基板之步驟, 其中: 前該等步驟(a)到G)分別在該基板上形成一定位部件 來緊靠在一部件,以相對於該探針單元定位該基板,及 一對準標記;及 84367 200307814 然後該等步‘驟(b)到(」)形成探針插針來 I彳史其接觸於梦 測試體的電極,並藉由使用該對準標記 ^ 丨又与—位置未老 來由該基板突出。 14 15 一種製造一探針單元的方法,其包括: 一在一基板的表面上形成一犧牲膜之步驟. 一在該犧牲膜的表面上形成一底部膜之步驟· 一在該底部膜的表面上形成具有對應於—探針單元 圖案之開口的一阻抗膜之步驟; -藉由電鍍在該阻抗膜的該等開口中形成該探針單 凡圖案之步驟’該探針單元圖案包括探針插針及 夹持器; 一移除該阻抗膜及在該阻抗膜之 穴心卜的琢辰邯膜之步 •驟;及 一移除該犧牲膜來得到一探針單元之步驟 一種製造探針單元的方法,其包括: T 在基板的表面上形成一犧牲膜之步驟; 一在該犧牲膜的表面上形成一篦 咏 y风弟一阻柷膜之步驟,該 弟1 且抗膜具有對應於-探針夹持器圖案之—開口; —藉由電鍍在該第一阻抗膜的 Λ, + ^ 吴0 ^寺開口中形成該探 針夾持器圖案之步驟; —在該探針夹持器圖案的表 驟; I回上形成一絕緣膜之步 移除該第一阻抗膜來得到一 卜 j彳木針夹持器之步驟; 稭由電鍍在該犧牲膜的表面 两上形成一金屬層的j 84367 200307814 驟,其中並未形成該探針夹持哭. 一在該絕緣膜及該金屬;^^主y ^丄、 十二 旬臂的表面上形成一底邵膜之 步驟; 一在該底部膜的表面上形成—第二阻抗膜之步驟’該 第二阻抗膜具有對應於一探針夾持器圖案之開口; 一藉由電鍍在該第二阻抗膜的該等開口中形成該探 針插針圖案之步騾; 一移除该弟二阻抗圖案之步驟;及 一移除在該第二阻抗膜之下的該犧牲膜來得到一探 針單元之步驟。 1 6 · —種製造一探針單元的方法,其包括: 一在一基板的表面上形成一犧牲膜之步騾; 一在該犧牲膜的表面上形成一第一底部膜之步.驟; 一在該第一底部膜的表面上形成具有對應於一探針 單元圖案之開口的一第一阻抗膜之步驟; 一藉由電鍍在該第一阻抗膜的開口中形成該探針插 針圖案之步驟; 一移除該第一阻抗膜來得到該探針插針圖案之步驟; 一利用一電鍍層來覆蓋該探針插針圖案,研磨該電鐘 層的表面來使得該電鍍層的表面可齊平於該探針插針 圖案之表面,然後在該電鍍層及該探針插針圖案的表面 上形成一絕緣膜之步驟; 一在該絕緣膜的表面上形成一第二底部膜之步赞· 一在該第二底部膜的表面上形成一第二阻抗膜之步 84367 200307814 驟,該第二阻抗膜具有對應於具有至少一小孔之探針爽 持器圖案之一開口; 一藉由違鍵在*亥弟—阻抗膜1的開口中形成咳探針火 持器圖案之步驟;及 一移除4第一阻抗膜、該第二底邵膜、該絕緣膜、該 電鍍層及該犧牲膜來得到一探針單元的步驟。 1 7 . 一種製造探針單元的方法,其包括·· 一在一基板的表面上形成一犧牲膜之步驟; 一在該犧牲膜的表面上形成一底部膜之步驟; —在該底部膜的表面上形成具有對應於一探針插針 圖案之開口的一阻抗膜之步驟; —藉由電鍍在該阻抗膜的該等開口中形成該探針插 針圖案之步驟; 下的該底部膜之步 牙夕除遠阻抗膜及在該阻抗膜之 驟; 丄衣回丄%成 二夹持器之步驟’該探針夾持器係由樹脂製成;及 1δ移除該犧牲膜來得到一探針單元之步驟。 ’製造探針單元的方法,該探針單元固定於一探針 氣來測4 一測試體的功能,其包括·· 的:藉由微影同時在該基板上形成具有由-基板突 並使其接觸於-測試體之探針插針,及— 、糸罪在一邵件來相對於該探” 位部件。 灰且疋位茲基板之 料 3f)7 -8 * 200307814 —種製造探針單元的方法,該探針單元固定於一探針裝 置來測試一測試體的功能,其包括: 一在一基板上形成一對準標記之步驟; 一藉由微影在該基板上使用該對準標記做為〜位置 芩考來形成探針插針,以使其接觸該測試體的電極,並 由該基板突出之步騾; 一&形成—^位部件來緊靠在—部件,以藉由使用該對 準標記做為-位置參考來相對於利用微影在該基板上 的該探針單元定位該基板之步驟。 20. -種製造探針單元的彳法,該探針單元固定於—探針裝 置來’試一測試體的功能,其包括: 藉由微影同時在該基板上形成具有H基板 大出的末4點並與一測試體之雪 κ兒極相接觸足探針插針 ,及〜對準標記; =形成-定位部件來緊靠在—部件,以藉由使用該對 :松:做為一位置參考來相對於在該基板上的該探針 單元疋位該基板之步驟。 21 -種製造探針單元的方法,該探針單元固定於—探針裝 置來測試一測試體的功能,其包括: ,藉由微影同時在該基板上形成一定位部件來緊靠 在-邓件’以藉由使用該對準標記做為—位置參考來相 對於在該基板上的該探針單元定位該基板,及—對準標 記之步驟; 84367 200307814 參考來形成具有由該基板突出的末端點並使其接觸該 測試體的電極之探針插針之步驟。 22. —種製造探針單元的方法,該方法包含下列步驟: (a) 預備一由銅製成的第一基板; (b) 在該第一基板的表面上形成一底部膜; (c) 形成具有對應於在該底部膜的該表面上有一或複 數個小孔的一探針單元圖案之開口的阻抗膜; (d) 在該底部膜上電鍍一金屬層,以形成具有探針插 針及探針夬持器之該探針單元圖案; (e) 移除該阻抗膜及該底部膜; (f) 溶解銅來得到一探針單元。 23 .如申請專利範圍第22項之製造探針單元的方法,進一步 包含在該(a)步騾之後的步驟: (g) 將該第一基板與為固態及穩定的一第二基板對齊。 84367 -10 -For example, the probe unit of the patent application item # 1, the positioning member of the towel has an inner #clip loop shape, wherein the elastic protrusion extends around the periphery of the through hole formed through the substrate. ^ Number of patent applications! The probe unit of this item further includes a reinforced frame, which is fixed to the child base, and covers the area of the probe pins on the substrate, and / or at least one area of the positioning component. For example, in the scope of application for the first item in the scope of patent application-* | 一, τ 间 不 i (the needle is early, in which the probe pins of the child and the positioning component must be made of the same material and have a film thickness of ㈣. A kind of probe unit, which is fixed to a probe device to test and test bone functions, including: a probe pin including a bottom film, and a probe pin pattern formed on the bottom film; and —Probes formed on the upper surface defined by the ends of these probe pins, and having a plurality of small holes are crying. 84367 200307814 6 9 10 As shown in item 5 of the scope of the patent application, the shape of the probe is 4 , , 10 early, where the probe holder is from the top, the bar, and the diaphragm on the coat room. 探针 Probe single wood 5-8 probe 4 of the patent scope 5 wooden needle early 疋Contains coverage of the text holding benefits and the probe insert f < security film. Forma patent range 6 Fuzhi photo 4+ σσ-except 7 ~ solid κ grasping needle early, where the probe holder 1. In addition to this, the material outside the limbal membrane is made of the same material as that of the Mm < Temple probe pin. Π wu If the probe in the scope of patent application No. 5 covers the probe pins. ^ Wooden needle holder ': a method for manufacturing a probe unit, which is fixed to 1 ## Testing the function of a test body includes: ^ (a)-a step of preparing a substrate; ⑻-the step of forming a recess in a surface layer of the substrate-⑷-forming a sacrificial in the recess of the substrate Film step; '(d) — step between the substrate and the sacrificial film; formation of a film on the field-forming an opening step on the surface of the bottom film by forming on the surface of the sacrificial film The above-mentioned "at least-part of the film of Wu Zhibu is exposed at the bottom of the openings :, the bottom (f)-at the bottom exposed at the openings ^ Steps of the cover film; (g) on Table®-a step of removing the impedance film; (h) and a bottom film that is not covered with the cover film. (I) a step of removing the sacrificial film; and 200307814 (J) A step of cutting the substrate along a cutting line passing through the recess, wherein the steps (a) to (J) are simultaneous Formed on the substrate are: " probe pins protruding from the substrate " terminal points, and brought into contact with the electrode of the test body, and a positioning member, which is abutted against a member opposite to the probe device基板 jj / A method of manufacturing a probe unit, which is fixed to a probe device to test the function of a test body, including: (a)-a step of preparing a substrate; (b) -A step of forming an alignment mark on the surface of the substrate; (c) a step of forming a recess in a surface layer of the substrate; (d)-forming a sacrificial film in the recess of the substrate Steps, steps; (e)-forming a bottom film on the surface of the substrate and the sacrificial film + step; (f) a step of forming an impedance film with a gate on the surface of the bottom film, in the form of At least a part of the bottom film formed on the surface of the sacrificial film is exposed at the bottom of the openings; a (g)-forming a cover film on the surface of the bottom film exposed at the bottom of the openings Steps; (h)-steps for removing the impedance film; (I) Removing the bottom film not covered with the cover film; (J) a step of removing the sacrificial film; and (k) a step of cutting the substrate along a cutting line passing through the recess wherein: in the After steps (a) and (b), these steps to () <) form a probe 84367 200307814 pin to make it contact the buckle, child pole of the test body, and the substrate dog on the substrate. Out, by using the alignment mark as a position reference; and forming a positioning member to abut a two thousand thousand to use the alignment fear as a position reference relative to a The probes on the substrate are placed on the substrate. 12 Two methods for manufacturing a probe unit 'The probe unit is fixed to a probe device to test the function of a test body, and includes: (a)-a step of preparing a substrate; (b)-on the substrate A step of forming a recess in a surface layer; (c) a step of forming a sacrificial film in the recess of the substrate; (d) a step of forming a bottom film on the surface of the substrate and the sacrificial film; A step of forming a resistive film with openings on the surface of the bottom film by forming at least a portion of the bottom 4 film formed on the surface of the sacrificial film to be exposed to the bottom of the openings; 0—the step of forming a cover film on the surface of the bottom film exposed at the bottom of the openings; U) —the step of removing the impedance film; 〇1) removing the bottom film that is not covered with the cover film (0 — a step of removing the sacrificial film; and (J) a step of cutting the substrate along a cutting line passing through the recess, wherein: the previous steps (a) to ⑴ are respectively formed on the substrate The probe pins are used to contact the electrodes of the test body, and The substrate protrudes, and a pair of ^ 4367 200307814 quasi-marks; and then these steps (b) to (j) form a positioning part to abut on the part to use the alignment mark as a position reference to The substrate is positioned relative to the probe unit on the substrate. 3 · A method of manufacturing a probe unit, the probe unit being fixed to a probe device to test the function of a test body, including: (a ) — A step of preparing a substrate; (b) — a step of forming a recess in the surface layer of the substrate; (c) a step of forming a sacrificial film in the recess of the substrate; (d) — A step of forming a bottom film on the surface of the substrate and the sacrificial film; (e)-a step of forming a resistive film with an opening on the surface of the bottom film in a manner formed on the surface of the sacrificial film At least a part of the formed bottom film is exposed at the bottom of the openings; (f) a step of forming a cover film on the surface of the bottom film exposed at the bottom of the openings; (g) a shift The step of removing the impedance film; (h) removing the uncovered film The bottom film of the film; (I) a step of removing the sacrificial film; and (J) a step of cutting the substrate along a cutting line passing through the recess, wherein: the previous steps (a) to G ) Forming a positioning component on the substrate to abut against a component to position the substrate relative to the probe unit, and an alignment mark; and 84367 200307814 Then these steps (b) to (") A probe pin is formed to contact the electrode of the dream test subject, and it is protruded from the substrate by using the alignment mark ^ and the position is not old. 14 15 A method of manufacturing a probe unit, comprising: a step of forming a sacrificial film on a surface of a substrate; a step of forming a bottom film on the surface of the sacrificial film; a surface of the bottom film A step of forming a resistive film having an opening corresponding to the -probe unit pattern;-a step of forming a unique pattern of the probe in the openings of the resistive film by electroplating 'the probe unit pattern includes a probe Pins and holders; a step of removing the resistive film and a film of the Chenchen film in the hole of the resistive film; and a step of removing the sacrificial film to obtain a probe unit A method for a needle unit, comprising: a step of forming a sacrificial film on a surface of a substrate; a step of forming a sacrificial film on the surface of the sacrificial film; Corresponding to the-opening of the probe holder pattern;-the step of forming the probe holder pattern in the Λ, + ^ Wu 0 ^ temple opening of the first impedance film by electroplating;-in the probe Table of gripper pattern; I round Forming an insulating film, removing the first impedance film, and obtaining a cypress needle holder; a step of forming a metal layer on the surface of the sacrificial film by electroplating; 84367 200307814 step; and The probe is not formed to hold a cry. A step of forming a bottom film on the surface of the insulating film and the metal; ^ ^ main y ^ 丄, the tenth arm; a formation on the surface of the bottom film- Step of the second impedance film 'The second impedance film has an opening corresponding to a probe holder pattern; a step of forming the probe pin pattern in the openings of the second impedance film by electroplating 骡A step of removing the second impedance pattern and a step of removing the sacrificial film under the second impedance film to obtain a probe unit. 16 · A method of manufacturing a probe unit, comprising: a step of forming a sacrificial film on a surface of a substrate; a step of forming a first bottom film on the surface of the sacrificial film. Step; A step of forming a first impedance film having an opening corresponding to a probe unit pattern on a surface of the first bottom film; and forming the probe pin pattern in the opening of the first impedance film by electroplating A step of removing the first impedance film to obtain the probe pin pattern; a covering layer of the probe pin pattern with a plating layer, grinding the surface of the electric clock layer to make the surface of the plating layer A step of flushing the surface of the probe pin pattern, and then forming an insulating film on the plating layer and the surface of the probe pin pattern; forming a second bottom film on the surface of the insulating film Buzan · One step of forming a second impedance film on the surface of the second bottom film 84367 200307814, the second impedance film has an opening corresponding to one of the probe holder patterns having at least one small hole; a By breaking the key in * Hidi A step of forming a cough probe fire holder pattern in the opening of the impedance film 1; and removing 4 the first impedance film, the second bottom film, the insulation film, the plating layer, and the sacrificial film to obtain a probe Unit steps. 17. A method of manufacturing a probe unit, comprising: a step of forming a sacrificial film on a surface of a substrate; a step of forming a bottom film on the surface of the sacrificial film; A step of forming an impedance film with an opening corresponding to a probe pin pattern on the surface; a step of forming the probe pin pattern in the openings of the impedance film by electroplating; a step of the bottom film Step of removing the far-impedance film and the step of the resistance film; the step of changing the clothes back into two holders' the probe holder is made of resin; and 1δ remove the sacrificial film to obtain a Steps of the probe unit. A method of manufacturing a probe unit, the probe unit being fixed to a probe gas to measure the function of a test body, which includes: It is in contact with the probe pin of the test body, and the probe is opposed to the probe part. The material of the gray and blue substrate is 3f) 7 -8 * 200307814 — a kind of manufacturing probe Unit method, the probe unit being fixed to a probe device to test the function of a test body, including: a step of forming an alignment mark on a substrate; and using the pair on the substrate by lithography The quasi-marker is used as a ~ position test to form a probe pin so that it contacts the electrode of the test body and protrudes from the substrate. A & forming a ^ position component to abut on the component, to A step of positioning the substrate with respect to the probe unit on the substrate using lithography by using the alignment mark as a position reference. 20. A method of manufacturing a probe unit, the probe unit being fixed Yu-probe device to 'test the function of the test body, which Including: by lithography simultaneously forming the foot probe pins with the last 4 points of the H substrate out of contact with the snow kappa pole of a test body on the substrate at the same time, and ~ alignment marks; = formation-positioning component Come close to the component to use the pair: loose: as a position reference to position the substrate relative to the probe unit on the substrate. 21-A method of manufacturing a probe unit, The probe unit is fixed to a probe device to test the function of a test body, and includes: by forming a positioning member on the substrate by lithography at the same time to abut the -Deng's component by using the alignment Marking is used as a position reference to position the substrate relative to the probe unit on the substrate, and a step of aligning the marks; 84367 200307814 reference to form a terminal point protruding from the substrate and making it contact the test body Steps of probing pins of electrodes. 22. A method of manufacturing a probe unit, the method includes the following steps: (a) preparing a first substrate made of copper; (b) on the surface of the first substrate A bottom film is formed thereon; (c) forming an impedance film having an opening corresponding to a probe cell pattern having one or more small holes on the surface of the bottom film; (d) electroplating a metal layer on the bottom film to form a substrate having a probe The probe unit pattern of the pin pin and the probe holder; (e) removing the impedance film and the bottom film; (f) dissolving copper to obtain a probe unit. The method for manufacturing a probe unit further includes the steps after step (a): (g) aligning the first substrate with a second substrate that is solid and stable. 84367 -10-
TW092106023A 2002-06-05 2003-03-19 Probe unit and its manufacture TWI223076B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002164244A JP3651451B2 (en) 2001-09-20 2002-06-05 Probe unit and manufacturing method thereof
JP2002205285A JP4109028B2 (en) 2002-07-15 2002-07-15 Probe unit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200307814A true TW200307814A (en) 2003-12-16
TWI223076B TWI223076B (en) 2004-11-01

Family

ID=34554080

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092106023A TWI223076B (en) 2002-06-05 2003-03-19 Probe unit and its manufacture

Country Status (2)

Country Link
KR (1) KR100684677B1 (en)
TW (1) TWI223076B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685283B (en) * 2018-11-22 2020-02-11 大陸商光寶電子(廣州)有限公司 Circuit board structure
CN115029747A (en) * 2022-07-26 2022-09-09 上海泽丰半导体科技有限公司 Probe processing method and probe
TWI787782B (en) * 2020-05-22 2022-12-21 南韓商李諾工業股份有限公司 Method of fabricating test socket and test socket fabricated thereby

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820277B1 (en) * 2007-08-21 2008-04-08 주식회사 나노픽셀 Probe apparatus and probe block include the same
JP4584972B2 (en) * 2007-10-17 2010-11-24 山一電機株式会社 Probe contact manufacturing method and probe contact
KR101378012B1 (en) 2012-03-14 2014-03-24 삼성전자주식회사 Multi array type ultrasonic probe apparatus and method for fabricating multi array type ultrasonic probe apparatus
KR101717353B1 (en) * 2015-07-14 2017-03-27 구철환 Probe structure and assembly for contracting probe structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685283B (en) * 2018-11-22 2020-02-11 大陸商光寶電子(廣州)有限公司 Circuit board structure
TWI787782B (en) * 2020-05-22 2022-12-21 南韓商李諾工業股份有限公司 Method of fabricating test socket and test socket fabricated thereby
CN115029747A (en) * 2022-07-26 2022-09-09 上海泽丰半导体科技有限公司 Probe processing method and probe

Also Published As

Publication number Publication date
KR100684677B1 (en) 2007-02-23
TWI223076B (en) 2004-11-01
KR20030093931A (en) 2003-12-11

Similar Documents

Publication Publication Date Title
TWI278627B (en) A probe card manufacturing method including sensing probe and the probe card, probe card inspection system
TWI363874B (en) Probe card and method for fabricating the same
TWI286213B (en) Test probe and circuit tester, method for manufacturing the test probe
US6998857B2 (en) Probe unit and its manufacture
US20020008530A1 (en) Micro cantilever style contact pin structure for wafer probing
TWI325962B (en)
US20090064498A1 (en) Membrane spring fabrication process
US7819668B2 (en) Electrical connecting apparatus and method for manufacturing the same
US7862733B2 (en) Method for manufacturing a probe
CN105259733A (en) Preparation method for flexible mask plate used for patterning curved surface
KR20120031141A (en) Microsprings at least partially embedded in a laminate structure and methods for producing same
TW200307814A (en) Probe unit and its manufacture
TWI242647B (en) Probe for testing flat panel display and manufacturing method thereof
JP4109028B2 (en) Probe unit and manufacturing method thereof
JP2011117761A (en) Probe card and method of manufacturing probe card
WO2008153342A2 (en) Probe substrate assembly
JP4451001B2 (en) Thin film tensile test system and thin film tensile test method
KR200405297Y1 (en) Probe unit
TW201142302A (en) Probe for electrical test and method for manufacturing the same, and electrical connecting apparatus and method for manufacturing the same
JP5058032B2 (en) Contact probe manufacturing method
JP3651451B2 (en) Probe unit and manufacturing method thereof
JP4074287B2 (en) Manufacturing method of probe unit
JP2008196914A (en) Probe and probe assembly
KR101322262B1 (en) Method for producing probe card
KR20090057208A (en) Probe substrate assembly

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees