TW200303647A - Electric power amplifier - Google Patents

Electric power amplifier Download PDF

Info

Publication number
TW200303647A
TW200303647A TW92101829A TW92101829A TW200303647A TW 200303647 A TW200303647 A TW 200303647A TW 92101829 A TW92101829 A TW 92101829A TW 92101829 A TW92101829 A TW 92101829A TW 200303647 A TW200303647 A TW 200303647A
Authority
TW
Taiwan
Prior art keywords
terminal
base
impedance circuit
component
power amplifier
Prior art date
Application number
TW92101829A
Other languages
Chinese (zh)
Other versions
TW580786B (en
Inventor
Keiichi Sakuno
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Publication of TW200303647A publication Critical patent/TW200303647A/en
Application granted granted Critical
Publication of TW580786B publication Critical patent/TW580786B/en

Links

Landscapes

  • Amplifiers (AREA)

Abstract

The purpose of the present invention is to provide an electric power amplifier that can operates stably with heat and has low loss of fidelity. In the electric power amplifier, a related bypass route passing through high-frequency contents of the first and the second impedance circuits Z1, ZZ is formed at both ends of the resistor RB connected between the base terminal B of a bipolar transistor Q1 and the base bias-voltage supplying terminal VB. Therefore, one part of the AC content in the base current flowing from the base bias-voltage supplying terminal VB to the resistor RB will be distributed to the bypass route stated above. Consequently, it is possible to effectively suppress the increase of voltage drop in the resistor RB and suppress the gain shrinkage so as to conduct an operation of low fidelity loss for the electric power amplifier. Additionally, at least one of the first and the second impedance circuits Z1, ZZ, its impedance generates an OFF-state with regard to the DC content and an ON-state with regard to the AC content such that it is possible to suppress the increase of base current caused by temperature rise through the use of voltage drop of the resistor RB.

Description

200303647200303647

玖、發明說明 (發月說明應敘明.發明所屬之技術領域、先前技術、内容、實施方式及圖式簡單說明) 發明的技術領域 本發明係關於使用於手機等之高頻帶之低失真且對發熱 之動作穩定度極高之電力放大器。 先前技藝 雙極性電晶體係以GaAs異質接合式雙極性電晶體為代 表,應用於手機等之電力放大器(或稱功率放大器)。 又又極性電晶體為具有熱的正反饋特性之元件,其基 極,集極電流會因發熱而增大,為謀求在發熱狀態下仍能 穩疋地執行其動作,一般附加有抑制溫度上升所引起之基 極及集極電流之增大之電路。 •雙極性電晶體使用於訊號發射用電力放大器時,為增大 7出電力,—般係將多數電力放大器並聯連接,以獲得特 2之輸出電力。此時,因個別電晶體間之溫度之差異,電 σ訑木中於特疋之電晶體,以致於無法獲得理想的並聯 動作效益’最差的情況甚至於可能導致元件遭受破壞。因 此,附加有抑制溫度上升所引起之集極電流之 為必須之條件。 ^ 作為抑制溫度上升所引起之集極電流之增大之電路, 有j基極端子與基極偏壓電源之間插入電阻之電路。在 此甩路中’由於可藉在上述電阻之電壓下降,抑制溫度 :升所引起之基極電流之增大,其結果,可極電 流之增大。 圖11係表示將此電路構成應用於多數雙極性電晶體之並 200303647发明 Description of the invention (The description of the month should be stated. The technical field to which the invention belongs, the prior art, the content, the embodiments, and the drawings are briefly explained) Technical Field of the Invention The present invention relates to low distortion of high frequency bands used in mobile phones and the like Power amplifier with extremely high stability against heat. Prior art Bipolar transistor systems are represented by GaAs heterojunction bipolar transistors, which are used in power amplifiers (or power amplifiers) for mobile phones. The polar transistor is a component with positive thermal feedback characteristics. The base and collector currents will increase due to heat generation. In order to perform the operation stably under the heating state, it is generally added to suppress the temperature rise. Circuits that cause increased base and collector currents. • When a bipolar transistor is used in a signal transmitting power amplifier, in order to increase the power of 7 outputs, most power amplifiers are connected in parallel to obtain the special 2 output power. At this time, due to the temperature difference between the individual transistors, the special transistor in the electric σ 訑 wood cannot achieve the ideal parallel operation benefit. In the worst case, the component may be damaged. Therefore, it is necessary to suppress the collector current caused by temperature rise. ^ As a circuit to suppress the increase of the collector current caused by the temperature rise, there is a circuit in which a resistor is inserted between the j-base terminal and the base bias power supply. In this dump circuit, the increase in the base current caused by the temperature: rise can be suppressed by the voltage drop of the resistor, and as a result, the increase in the polar current can be suppressed. Figure 11 shows the combination of this circuit structure and most bipolar transistors 200303647

(2) 聯動作上之以往例(美國專利(US 5 608353))。 此以往例係可施行η個(η : 2以上之整數)個雙極性電晶體 之電路Q101〜Q10n之並聯動作之電路之例,Ql〇i〜Qi〇n 為發射極接地型雙極性電晶體,RB 10 1〜RB 1 On為連接於各 電晶體Q 10 1〜Q1 On之基極端子與基極電源VB間之電阻。又 ,(:101〜C10n為連接於各電晶體qi〇i〜Qi〇n之基極端子與 訊號輸入端子RFIN間之電容器。此電容器C101〜C10n具有 可一面使訊號輸入端子RFIN與基極電源端子VB對直流保 持分離,一面將訊號輸入端子RFIN所輸入之高頻訊號導至 各雙極性電晶體Q 101〜Ql〇n之基極端子之機能。 又’在此電路中,即使在個別之雙極性電晶體q1(H〜 Q10n之溫度不均勻,產生雙極性電晶體qi〇 1〜Q1〇n之基極 電流之不均勻之分布時,在其電阻RB 1〇丨〜RB1〇n之電壓下 降之幅度上,在基極電流較少之電晶體Ql〇k(k=l〜n)會變 小’在基極電流較多之電晶體Q1〇k(k=l〜n)會變大。其結 果’可使各雙極性電晶體Q1〇k(k=1〜n)之集極電流保持均 勻’獲得熱的穩定動作。 發明所欲解決之問題 但,在使用近年來之數位調制解調方式之通訊裝置用之 電力放大器中,使用上述之雙極性電晶體電路時,卻有下 列之問題。 即,作為數位調制解調方式,一般採用QPSK(4相移調制) 或QAM(正交調幅)等將資訊載入訊號之振幅與相位雙方之 方式’因此’需要將訊號波形忠實地加以放大,電力放大 (3) (3)200303647 器被要求必須能施行低失真動作…,在此種電力放大 器中,有必要輸出與輸入訊號之電流振幅(基極電流振幅) 之增大成正比之輸出電流振幅(集極電流振幅)。 而’在上述以往例中,隨著集極電流振幅之變大,會因 基極電流之增大,而擴大在電阻义扪㈧〜尺⑴如之電壓下降 幅度,因而撕法再維持基極電流振幅之增大與集極電流振 幅之增大之正比例關係,此即所謂增益壓縮現象,會使放 大為產生振幅失真9 因此,本發明係為解決上述問題而研發者,其目的在於 提供可施行熱的穩定動作,且低朱真之電力放大器。 解決問題之手段 為達成上述目的,本發明之電力放大器之特徵在於包含: 發射極接地型雙極性電晶體,其係將集極端子連接於訊 號輸出端子者; 電阻,其係連接於上述發射極接地型雙極性電晶體之基 極端子與基極偏壓供應端子之間者;及 阻抗電路部’其係在上述發射極接地型雙極性電晶體之 基極端子與上述基極偏壓供應端子之間,並聯連接於上述 電阻’且對直流成分開放,對交流成分導通者。 在本發明之電力放大器中,並聯連接於上述電阻,且對 直流成分開放,對交流成分導通之阻抗電路部係構成對交 流訊號,可旁通上述電阻之旁路路徑。藉以將由上述基極 偏壓供應端子流向上述電阻之基極電流之交流成分之_部 分分配至上述旁路路徑。因此,可有效地抑制在上述電阻 200303647(2) Conventional example of joint operation (US Patent (US 5 608353)). This conventional example is an example of a circuit in which n bipolar transistors Q101 to Q10n can be implemented in parallel (n: integers greater than 2). QlOi to Qion are bipolar transistors with grounded emitters. RB 10 1 to RB 1 On are the resistances between the base terminals of the transistors Q 10 1 to Q1 On and the base power source VB. Also, (: 101 ~ C10n is a capacitor connected between the base terminal of each transistor qi〇i ~ Qi〇n and the signal input terminal RFIN. The capacitors C101 ~ C10n have a signal input terminal RFIN and a base power source on one side The terminal VB is kept separated from the DC, while the high-frequency signal input from the signal input terminal RFIN is guided to the function of the base terminal of each of the bipolar transistors Q 101 ~ Q lon. Also in this circuit, even in individual When the bipolar transistor q1 (H ~ Q10n has an uneven temperature and generates an uneven distribution of the base current of the bipolar transistor qi〇1 ~ Q1〇n, the voltage at its resistance RB 1 丨 ~ RB1〇n In the decreasing range, the transistor Q10k (k = l ~ n) with a smaller base current will become smaller. 'The transistor Q10k (k = l ~ n) with a larger base current will become larger. As a result, the stable current of the bipolar transistors Q10k (k = 1 ~ n) can be maintained uniformly. The problem to be solved by the invention, however, is the use of digital modulation in recent years. In the power amplifier for communication devices of the modulation method, when the above-mentioned bipolar transistor circuit is used, There are the following problems. That is, as a digital modulation and demodulation method, generally QPSK (4-phase shift modulation) or QAM (quadrature amplitude modulation) is used to load information into both the amplitude and phase of the signal. Amplify faithfully, the power amplifier (3) (3) 200303647 is required to be able to perform a low distortion action ... In this type of power amplifier, it is necessary to output and increase the current amplitude (base current amplitude) of the input signal into It is proportional to the output current amplitude (collector current amplitude). However, in the above-mentioned conventional example, as the collector current amplitude becomes larger, the base current becomes larger, which increases the resistance in the resistor meaning ~ The voltage drops, so the tearing method maintains the proportional relationship between the increase of the amplitude of the base current and the increase of the amplitude of the collector current. This is the so-called gain compression phenomenon, which will cause amplification to produce amplitude distortion. 9 Therefore, the present invention is The developer who solves the above problems aims to provide a low-jitter electric power amplifier that can perform thermal stable operation. The means to solve the problems The characteristics of the Ming power amplifier include: an emitter-grounded bipolar transistor, which connects the collector terminal to the signal output terminal; a resistor, which is connected to the base terminal of the above-mentioned emitter-grounded bipolar transistor and Between the base bias supply terminal; and the impedance circuit section 'which is connected between the base terminal of the emitter-grounded bipolar transistor and the base bias supply terminal in parallel and connected to the resistor' and In the power amplifier of the present invention, the impedance circuit unit connected to the above resistor in parallel and open to the DC component and conducting to the AC component constitutes an AC signal and can bypass the above resistance. Bypass path. The _ part of the AC component of the base current flowing from the base bias supply terminal to the resistor is distributed to the bypass path. Therefore, the above resistance can be effectively suppressed.

之電壓下降之增大,並可抑制上述增益壓縮,以施行電力 放大器之低失真動作。 又,上述阻抗電路部因對直流成分開放,並對交流成分 導通,故可藉在上述電阻之電壓下降,抑制溫度上升所引 起之基極電流之增大,其結果,可抑制集極電流之增大, 並可兼顧熱的穩定動作與低失真動作。 又,在一實施形態中,在上述電力放大器中,上述阻抗 電路部係包含:第一阻抗電路,其係一方端子連接於上述 發射極接地型雙極性電晶體之基極端子,他方端子連接於 訊號輸入端子者;與 第二阻抗電路,其係一方端子連接於上述訊號輸入端子 ,他方端子連接於上述基極偏壓供應端子者; 上述第一阻抗電路或上述第二阻抗電路之至少一方對直 流成分開放,並對交流成分導通者。 在本實施形態中,在雙極性電晶體之基極端子與基極偏 壓供應端子之間所連接之電阻之兩端,形成有關經由第一 及第二阻抗電路之高頻成分之旁路路徑。因此,可將由上 述基極偏壓供應端子流向上述電阻之基極電流之交流成分 之一部分分配至上述旁路路徑。因此,可有效地抑制在上 述電阻之電壓下降之增大,並可抑制上述增益壓縮,以施 行電力放大器之低失真動作。 又’由於上述第一及第二阻抗電路之至少一方之兩端阻 抗對直流成分開放,並對交流成分導通,故可藉在上述電 阻之電壓下降,抑制溫度上升所引起之基極電流之增大, 200303647The voltage drop can be increased, and the above-mentioned gain compression can be suppressed to perform the low distortion operation of the power amplifier. In addition, since the impedance circuit section is open to the DC component and is turned on to the AC component, it is possible to suppress the increase of the base current caused by the temperature rise by reducing the voltage of the resistor, and as a result, the collector current can be suppressed. Increased, and can take into account thermal stable action and low distortion action. Furthermore, in one embodiment, in the power amplifier, the impedance circuit unit includes a first impedance circuit having one terminal connected to a base terminal of the emitter-grounded bipolar transistor and the other terminal connected to A signal input terminal; and a second impedance circuit in which one terminal is connected to the signal input terminal and the other terminal is connected to the base bias supply terminal; at least one of the first impedance circuit or the second impedance circuit is opposite The DC component is open and conductive to the AC component. In this embodiment, at both ends of the resistor connected between the base terminal of the bipolar transistor and the base bias supply terminal, a bypass path is formed about the high-frequency component through the first and second impedance circuits. . Therefore, a part of the AC component of the base current flowing from the base bias supply terminal to the resistor can be distributed to the bypass path. Therefore, it is possible to effectively suppress an increase in the voltage drop of the resistor, and it is possible to suppress the above-mentioned gain compression to perform a low distortion operation of the power amplifier. Also, since the impedance at both ends of at least one of the first and second impedance circuits is open to the DC component and turned on to the AC component, the increase in the base current caused by the temperature rise can be suppressed by the voltage drop of the resistor. Big, 200303647

(5) 其結果,可抑制集極電流之增大,並可兼顧熱的穩定動作 與低失真動作β 又,在一實施形態中,電力放大器係包含多數個放大部 ’其係由上述發射極接地型雙極性電晶體、上述電阻、及 上述第一阻抗電路所構成者;且 上述多數個放大部之上述第一阻抗電路或上述第二阻 抗電路之至少一方係對直流成分開放,並對交流成分導通 者。 又’在本一實施形態中,包含多數個放大部,且將上述 發射極接地型雙極性電晶體多數個並聯連接所構成而構成 電力放大器。此時,也可利用對直流開放之第_阻抗電路 或上述第二阻抗電路之至少一方構成在交流訊號中旁通上 述電阻之旁路路徑。 利用此構成,可將上述基極偏壓供應端子與各雙極性電 曰曰體之基極端子之間之基極電流之交流成分之一部分分配 至上述旁路路徑。因此,可有效地抑制在各電阻之電壓下 降之增大,並可抑制上述以往例所見之增益壓縮,以施行 電力玫大器之低失真動作。 又,由於可藉在各電阻之電壓下降,抑制溫度上升所引 起之基極電流之增大,因此,其結果,可抑制各雙極性電 晶體之集極電流之增大,並可兼顧熱的均句且穩之定動作 與低失真動作。 又,在_實施形態中,上述阻抗電路部係包含:第一阻 抗電路’其係一方端子連接於訊號輸入端子,他方端子連 200303647(5) As a result, the increase of the collector current can be suppressed, and both the stable operation of heat and the low distortion operation can be taken into account. In addition, in one embodiment, the power amplifier system includes a plurality of amplifiers. A grounded bipolar transistor, the resistor, and the first impedance circuit; and at least one of the first impedance circuit or the second impedance circuit of the plurality of amplifying sections is open to a direct current component and is open to an alternating current Constituents. In addition, in this embodiment, a plurality of amplifier sections are included, and a plurality of the above-mentioned emitter-grounded bipolar transistors are connected in parallel to form a power amplifier. At this time, at least one of the _ impedance circuit or the second impedance circuit which is open to DC may be used to constitute a bypass path for bypassing the above resistor in the AC signal. With this configuration, a part of the AC component of the base current between the base bias supply terminal and the base terminal of each bipolar electric body can be distributed to the bypass path. Therefore, the increase in the voltage drop of each resistor can be effectively suppressed, and the gain compression seen in the above-mentioned conventional example can be suppressed to implement the low distortion operation of the power amplifier. In addition, the increase in the base current caused by the temperature rise can be suppressed by the voltage drop of each resistor. As a result, the increase of the collector current of each bipolar transistor can be suppressed, and the thermal Uniform and steady motion and low distortion motion. Furthermore, in the embodiment, the impedance circuit unit includes: a first impedance circuit ', which has one terminal connected to a signal input terminal and the other terminal connected to 200303647.

⑹ 接於上述發射極接地型雙極性電晶體之基極端子者’與 第二阻抗電路,其係一方瑞子連接於上述基極偏壓供應 端子,他方端子連接於上述基極端子者; 上述第二阻抗電路對直流成分開放,並對交流成分導通 者。 在本一實施形態之電力放大器中,連接於上述基極偏壓 供應端子與基極端子之第二阻抗電路係對直流成分開放, 並對交流成分導通。 因此,上述第二阻抗電路係構成對交流訊號,可直接旁 通上述電阻之旁路路徑。藉以將由上述基極偏壓供應端子 流向上述電阻之基極電流之交流成分之一部分分配至上述 旁路路徑。因此,可有效地抑制在上述電阻之電壓下降之 增大,並可抑制上述增益壓縮,以施行電力放大器之低失 真動作。 又,上述第二阻抗電路因對直流成分開放,並對交流成 分導通,故可藉在上述電阻之電壓下降,抑制溫度上升所 引起之基極電流之增大’因此,其結果,可抑制集極電流 之增大,並可兼顧熱的穩定動作與低失真動作。 又,在一實施形態中,係包含多數個放大部,其係由上 述發射極接地型雙極性電晶體、上述電阻、上述第一阻抗 電路及上述第二阻抗電路所構成者;且上述多數個放大部 之上述第二阻抗電路係對直流成分開放,並對交流成分導 通者。 在本實施形態中,各放大部具有之第二阻抗電路係對直 200303647 ⑺ 流成分開放,並對交流成分導通。 因此’上述第二阻抗電路係構成對交流訊號,可直接旁 通上述電阻之旁路路徑。藉以將由上述基極偏壓供應端子 流向上述電阻之基極電流之交流成分之一部分分配至上述 旁路路徑。因此,可有效地抑制在上述電阻之電壓下降之 增大’並可抑制上述增益壓縮,以施行電力放大器之低失 真動作^ 又’上述第二阻抗電路因對直流成分開放,並對交流成 分導通,故可藉在上述電阻之電壓下降,抑制溫度上升所 引起之基極電流之增大,因此,其結果,可抑制集極電流 之增大’並可兼顧熱的穩定動作與低失真動作。 又,在一實施形態中,上述第一或第二阻抗電路中至少 一方包含電容器,可利用此電容器構成對直流成分開放, 並對交流成分導通。 在本實施形態之電力放大器中,上述第一或第二阻抗電 路中至少一方可利用上述電容器,對直流成分開放,並對 交流成分導通。因此,可藉簡單之電路構成,實現上述第 一或第二阻抗電路中至少一方。 又,在一實施形態中,上述第二阻抗電路包含電容器 ,可利用此電容器構成對直流成分開玫,並對交流成分 導通。 在本實施形態中,上述第二阻抗電路可利用上述電容器 ’對直流成分開放,並對交流成分導通。因此,可藉簡單 之電路構成,實現上述第二阻抗電路。 200303647基 Connected to the base terminal of the emitter-grounded bipolar transistor and the second impedance circuit, one of which is connected to the base bias supply terminal and the other terminal is connected to the base terminal; The two-impedance circuit is open to the DC component and is conductive to the AC component. In the power amplifier of this embodiment, the second impedance circuit connected to the base bias supply terminal and the base terminal is open to the DC component and is turned on to the AC component. Therefore, the second impedance circuit constitutes a bypass path for the AC signal and can directly bypass the resistor. A part of the AC component of the base current flowing from the base bias supply terminal to the resistor is distributed to the bypass path. Therefore, the increase in the voltage drop of the resistor can be effectively suppressed, and the gain compression can be suppressed to implement the low distortion operation of the power amplifier. In addition, since the second impedance circuit is open to the DC component and is turned on to the AC component, it is possible to suppress the increase in the base current caused by the temperature rise by reducing the voltage of the resistor. Therefore, as a result, the current can be suppressed. The increase of the pole current can take into account both the thermal stable operation and the low distortion operation. Furthermore, in one embodiment, a plurality of amplifying sections are included, which are composed of the emitter-grounded bipolar transistor, the resistor, the first impedance circuit, and the second impedance circuit; and the plurality of The aforesaid second impedance circuit of the amplifying section is open to the DC component and is conductive to the AC component. In this embodiment, the second impedance circuit included in each amplifying section is open to the direct current component and the AC component is turned on. Therefore, the above-mentioned second impedance circuit constitutes a bypass path for the AC signal and can directly bypass the above-mentioned resistor. A part of the AC component of the base current flowing from the base bias supply terminal to the resistor is distributed to the bypass path. Therefore, the increase in the voltage drop of the resistor can be effectively suppressed, and the gain compression can be suppressed to perform a low distortion operation of the power amplifier. Also, the second impedance circuit is opened to the DC component and turned on to the AC component. Therefore, the increase in the base current caused by the temperature rise can be suppressed by the voltage drop of the resistor, and as a result, the increase in the collector current can be suppressed, and the stable operation of heat and the operation of low distortion can be taken into account. In one embodiment, at least one of the first or second impedance circuits includes a capacitor, and the capacitor can be configured to be open to a DC component and to conduct an AC component. In the power amplifier according to this embodiment, at least one of the first or second impedance circuits may use the capacitor to open the DC component and conduct the AC component. Therefore, at least one of the first or second impedance circuits can be realized by a simple circuit configuration. In one embodiment, the second impedance circuit includes a capacitor, and the capacitor can be used to open the DC component and turn on the AC component. In the present embodiment, the second impedance circuit may be opened to a DC component by the capacitor ′ and turned on to an AC component. Therefore, the second impedance circuit can be realized by a simple circuit configuration. 200303647

又’在一實施形態中,包含基極電壓供應手段,並在上 述基極電壓供應端子與上述基極電壓供應手段之間連接可 變阻抗電路。 在本實施形態中,上述可變阻抗電路之阻抗係依存於所 輸入之訊號之振幅而變化。此種可變阻抗電路例如包含作 為可變阻抗元件之二極體或雙極性電晶體。依據此可變阻 抗電路’當基極電壓供應手段供應之電流隨著輸入訊號電 力之增大而增大時’基極電壓供應手段與基極電廢供應端 子之間之阻抗會降低,並可降低在可變阻抗電路之電壓下 降值,因此,本實施形態可構成進一步抑制失真之電力放 大器。 另_方面,上述可變阻抗電路因具有溫度依存特性,因 此’上述可變阻抗電路之附加雖可能成為電力放大器之熱 的不穩定動作之要因,但可利用連接於上述發射極接地型 雙極性電晶體之基極端子與基極偏壓供應端子之間之電阻 所產生之熱的穩定動作效應避免上述熱的不穩定動作。 發明之實施形態 以下,參照圖式說明本發明之實施形態。 (第1實施形態) 圖1係表示本發明之電力放大器之第1實施形態。本第1 實施形態之電力放大器Amp 1係具有設有基極端子B、集極 端子Co之發射極接地型雙極性電晶體Q 1、連接於基極偏壓 供應端子VB與基極端子B之間之電阻RB。上述發射極接地 型雙極性電晶體Q1之集極端子Co係連接於訊號輸出端子 200303647In one embodiment, a base voltage supply means is included, and a variable impedance circuit is connected between the base voltage supply terminal and the base voltage supply means. In this embodiment, the impedance of the variable impedance circuit changes depending on the amplitude of the input signal. Such a variable impedance circuit includes, for example, a diode or a bipolar transistor as a variable impedance element. According to this variable impedance circuit, when the current supplied by the base voltage supply means increases as the input signal power increases, the impedance between the base voltage supply means and the base electrical waste supply terminal will decrease, and Since the voltage drop value in the variable impedance circuit is reduced, this embodiment can constitute a power amplifier that further suppresses distortion. On the other hand, the above-mentioned variable impedance circuit has a temperature-dependent characteristic. Therefore, although the addition of the above-mentioned variable impedance circuit may be the cause of the thermal unstable operation of the power amplifier, it is possible to use a bipolar connected to the emitter ground. The stable operation effect of the heat generated by the resistance between the base terminal of the transistor and the base bias supply terminal avoids the above-mentioned thermal unstable operation. Embodiments of the Invention Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) Fig. 1 shows a first embodiment of an electric power amplifier according to the present invention. The power amplifier Amp 1 of the first embodiment has an emitter-grounded bipolar transistor Q 1 provided with a base terminal B and a collector terminal Co, and is connected to the base bias supply terminal VB and the base terminal B. Between the resistance RB. The collector terminal Co of the above emitter-grounded bipolar transistor Q1 is connected to the signal output terminal 200303647

(9) RFOUT。 又’本第1實施形態之電力放大器Ampi具有設有2個端子 Pal、Pbl之第一阻抗電路Z1,此第一阻抗電路Z1之端子Pal 連接於訊號輸入端子RFIN,端子Pbi連接於上述基極端子b °又’本第1實施形態之電力放大器Amp 1具有第二阻抗電 路2^ ’此第二阻抗電路ZZ之端子Pa連接於上述訊號輸入端 子RFIN ’端子Pb連接於上述基極偏壓供應端子vb。 在此’第一阻抗電路Z丨與第二阻抗電路ZZ中至少一方之 2個端子間對直流成分成為開放狀態,並對交流成分成為導 通狀態。上述第一阻抗電路z丨與第二阻抗電路ZZ構成阻抗 電路ΖΠ。 因此,在本第1實施形態令,對直流而言,僅電阻RB在 基極偏壓供應知子VB與基極端子B之間,因此,可藉在上 述電阻RB之電壓下降,抑制溫度上升所引起之基極電流之 增大。因此’其結果,可抑制發射極接地型雙極性電晶體 Q1之集極電流之增大,故對電晶體q丨之周圍溫度之變化或 自我發熱,可確保穩定動作。 另一方面,由訊號輸入端子rFIN被輸入之高頻訊號係經 由阻抗電路Z1被導至基極端子B。在高頻方面,在雙極性電 晶體Q1之基極端子B與基極偏壓供應端子VB之間所連接之 電阻RB之兩端,可形成有關經由第一及第二阻抗電路z 1、 ZZ之高頻成分之旁路路徑。因此,可將流向上述電阻rb之 基極電流之交流成分之一部分分配至上述旁路路徑。因此 ,可有效地抑制在上述電阻RB之電壓下降之增大,並可抑 200303647 (ίο) 制上述增益壓縮,以施行電力放大器之低失真動作。 又’在本第1實施形態中,由於利用第一及第二阻抗電路 Zl、ZZ形成有關對電阻RB之高頻成分之旁路路徑,故也可 藉改變在此旁路路徑之訊號之通過相位或通過振幅,調整 植入於基極端子B之電流波形。又,在本第1實施形態申, 由於利用2個阻抗電路Zl、ZZ構成上述旁路路徑,故可構 成如上所述植入基極端子B之電流波形之調整自由度相當 高之電路。 (第2實施形態) 其次’圖2係表示本發明之電力放大器之第2實施形態。 本第2實施形態係比前述第1實施形態更具體且簡單之實施 形態之一例,即以電容器C1構成圖1之第一阻抗電路Z1,以 電容器Cal構成圖1之第二阻抗電路ZZ之情形。 依據本第2實施形態,可利用電容器Cl、Cal之類之簡單 元件構成對直流成分開放,並對交流成分導通之第一、第 二阻抗電路Z1、ZZ,故與前述第1實施形態同樣地,可兼 顧熱的穩定動作與低失真動作。 (第3實施形態) 其次,圖3係表示本發明之第3實施形態。本第3實施形態 係在前述第2實施形態中,使用在電容器Cai串聯連接電阻 Ra 1之_聯電路作為第二阻抗電路之情形。第一阻抗電路係 與第2實施形態同樣地,由電容器c 1所構成。 依據本第3實施形態,可藉構成此第二阻抗電路之電阻 Ra 1之電阻值,調整流過電阻RB之基極電流之交流成分, 200303647 (11) 因此,依據本第3實施形態,與依據第2實施形態相比,可 更高精確度地抑制電力放大器之增益壓縮。 (第4實施形態) 其次,圖4係表示本發明之電力放大器之第4實施形態。 本第4實施形態係具有設有基極端子b與集極端子c〇之發 射極接地型雙極性電晶體Q 1、連接於基極偏壓供應端子VB 與基極端子B之間之電阻RB。上述發射極接地型雙極性電 晶體Q 1之集極端子Co係連接於訊號輸出端子rf OUT。 又’本第4實施形態係具有將端子pa丨連接於訊號輸入端 子RFIN,將端子Pbl連接於上述基極端子b之第一阻抗電路 Z1、與將端子pa連接於基極偏壓供應端子vb,將端子Pb連 接於基極端子B之第二阻抗電路Zz。此第一、第二阻抗電 路Zl、ZZ構成阻抗電路ZI2。 在本第4實施形態中,第二阻抗電路ZZ之2個端子Pa ' Pb 間對直μ成分成為開放狀態’並對交流成分成為導通狀態 。因此,在本第4實施形態中,對直流而言,僅電阻尺3在 基極偏壓供應端子VB與基極端子Β之間β 因此’在本第4實施形態_,可藉在上述電阻RB之電壓 下降’抑制溫度上升所引起之基極電流之增大。因此,其 結果,可抑制集極電流之增大,故對電晶體Q1之周圍溫度 之變化或自我發熱,可確保穩定動作。 另一方面,由訊號輸入端子RFIN被輸入之高頻訊號係經 由阻抗電路Z1被導至基極端子8。在本第4實施形態中,兔 高頻方面,在雙極性電晶體Q1之基極端子β與基極偏壓供 •15· 200303647(9) RFOUT. The power amplifier Ampi of the first embodiment has a first impedance circuit Z1 provided with two terminals Pal and Pbl. The terminal Pal of the first impedance circuit Z1 is connected to the signal input terminal RFIN, and the terminal Pbi is connected to the base terminal. Sub-b ° 'The power amplifier Amp 1 of the first embodiment has a second impedance circuit 2 ^' The terminal Pa of this second impedance circuit ZZ is connected to the signal input terminal RFIN 'The terminal Pb is connected to the base bias supply Terminal vb. Here, at least one of the two terminals of the first impedance circuit Z 丨 and the second impedance circuit ZZ is open to the DC component and is turned on to the AC component. The first impedance circuit z 丨 and the second impedance circuit ZZ constitute an impedance circuit ZΠ. Therefore, in the first embodiment, for DC, only the resistor RB is between the base bias supply terminal VB and the base terminal B. Therefore, the voltage drop of the resistor RB can be used to suppress the temperature rise. The resulting increase in base current. As a result, the increase in the collector current of the emitter-grounded bipolar transistor Q1 can be suppressed, and stable operation can be ensured with respect to changes in the ambient temperature of the transistor q 丨 or self-heating. On the other hand, the high-frequency signal input from the signal input terminal rFIN is guided to the base terminal B via the impedance circuit Z1. In terms of high frequency, the two ends of the resistor RB connected between the base terminal B of the bipolar transistor Q1 and the base bias supply terminal VB can be formed through the first and second impedance circuits z 1, ZZ. High-frequency bypass path. Therefore, a part of the AC component of the base current flowing to the resistor rb can be distributed to the bypass path. Therefore, the increase in the voltage drop of the resistor RB can be effectively suppressed, and the above-mentioned gain compression can be suppressed 200303647 (ίο) to implement the low distortion operation of the power amplifier. In addition, in the first embodiment, since the first and second impedance circuits Z1 and ZZ are used to form a bypass path for the high-frequency component of the resistor RB, it is also possible to change the signal passing through this bypass path. Phase or amplitude to adjust the current waveform implanted in the base terminal B. Furthermore, in the first embodiment, since the above-mentioned bypass path is constituted by two impedance circuits Z1 and ZZ, a circuit having a relatively high degree of freedom in adjusting the current waveform embedded in the base terminal B as described above can be constructed. (Second Embodiment) Next, Fig. 2 shows a second embodiment of the power amplifier of the present invention. This second embodiment is an example of a more specific and simple embodiment than the aforementioned first embodiment, that is, the case where the first impedance circuit Z1 of FIG. 1 is constituted by the capacitor C1 and the second impedance circuit ZZ of FIG. 1 is constituted by the capacitor Cal. . According to the second embodiment, the first and second impedance circuits Z1 and ZZ, which are open to the DC component and are turned on to the AC component, can be constituted by simple elements such as the capacitors Cl and Cal. Therefore, it is the same as the first embodiment. , Can take into account the thermal stable action and low distortion action. (Third Embodiment) Next, Fig. 3 shows a third embodiment of the present invention. This third embodiment is the case where the resistor circuit connected in series with the capacitor Cai is used as the second impedance circuit in the second embodiment described above. The first impedance circuit is composed of a capacitor c 1 as in the second embodiment. According to the third embodiment, the AC component of the base current flowing through the resistor RB can be adjusted by the resistance value of the resistor Ra 1 constituting the second impedance circuit. 200303647 (11) Therefore, according to the third embodiment, According to the second embodiment, the gain compression of the power amplifier can be suppressed more accurately. (Fourth Embodiment) Next, Fig. 4 shows a fourth embodiment of the power amplifier of the present invention. The fourth embodiment has an emitter-grounded bipolar transistor Q1 provided with a base terminal b and a collector terminal c0, and a resistor RB connected between the base bias supply terminal VB and the base terminal B. . The collector terminal Co of the above-mentioned emitter-grounded bipolar transistor Q 1 is connected to the signal output terminal rf OUT. The fourth embodiment has a first impedance circuit Z1 that connects the terminal pa 丨 to the signal input terminal RFIN, the terminal Pbl to the base terminal b, and the terminal pa connected to the base bias supply terminal vb. Connect the terminal Pb to the second impedance circuit Zz of the base terminal B. The first and second impedance circuits Z1 and ZZ constitute an impedance circuit ZI2. In the fourth embodiment, the two terminals Pa'Pb of the second impedance circuit ZZ are in an open state with respect to the mu component 'and an AC component is in a conducting state. Therefore, in the fourth embodiment, for DC, only the resistance scale 3 is between the base bias supply terminal VB and the base terminal B. Therefore, in the fourth embodiment, the above-mentioned resistance can be borrowed. The voltage drop of RB 'suppresses the increase of the base current caused by the temperature rise. Therefore, as a result, an increase in the collector current can be suppressed, so that a stable operation can be ensured against a change in the ambient temperature of the transistor Q1 or self-heating. On the other hand, the high-frequency signal inputted from the signal input terminal RFIN is guided to the base terminal 8 via the impedance circuit Z1. In the fourth embodiment, in the rabbit high frequency, the base terminal β and the base bias voltage of the bipolar transistor Q1 are provided.

(12) 應端子VB之間所連接之電阻RB之兩端,可形成有關構成第 二阻抗電路ZZ之高頻成分之旁路路徑。因此,可將流向上 述電阻RB之基極電流之交流成分之一部分分配至上述旁 路路徑。因此,可有效地抑制在上述電阻RB之電壓下降之 增大,並可抑制上述以往例之問題之增益壓縮,以施行電 力放大器之低失真動作。 (第5實施形態) 其次’圖5係表示本發明之電力放大器之第5實施形態。 本第5實施形態係比第4實施形態更具體且簡單之實施形態 之一例’即’在本第5實施形態中,以圖4之第一阻抗電路 Z1作為電容器C1,以第二阻抗電路ZZ作為電容器Cal之情 形。 依據本第5實施形態,可利用此種電容器ci、Cal形成之 簡單電路構成之第一阻抗電路Z 1、第二阻抗電路zz,與第 4實施形態同樣地兼顧熱的穩定動作與低失真動作。 又,在上述第一至第5實施形態中,雖僅具有1個雙極性 電晶體Q1,但也可具有並聯連接於訊號輸入端子RFIN與 訊號輸出端子RFOUT之間之多數發射極接地型雙極性電 晶體® (第6實施形態) 其次’圖6係表示本發明之第6實施形態。本第6實施形態 具有發射極接地型之η個雙極性電晶體Q1〜Qn。發射極接 地型雙極性電晶體Q1〜Qn之集極端子Col〜Con連接於訊 號輸出端子RFOUT,發射極則被接地。 •16- 200303647(12) Both ends of the resistor RB connected between the terminals VB can form a bypass path related to the high-frequency component constituting the second impedance circuit ZZ. Therefore, a part of the AC component of the base current flowing to the resistor RB can be distributed to the bypass path. Therefore, it is possible to effectively suppress an increase in the voltage drop of the resistor RB, and to suppress the gain compression of the problems of the conventional examples described above, so as to perform a low distortion operation of the power amplifier. (Fifth Embodiment) Next, Fig. 5 shows a fifth embodiment of the power amplifier of the present invention. This fifth embodiment is an example of a more specific and simple embodiment than the fourth embodiment, that is, in the fifth embodiment, the first impedance circuit Z1 of FIG. 4 is used as the capacitor C1, and the second impedance circuit ZZ is used As the case of the capacitor Cal. According to the fifth embodiment, the first impedance circuit Z 1 and the second impedance circuit zz, which are simple circuits formed by such capacitors ci and Cal, can be used, and the heat stable operation and low distortion operation can be taken into consideration in the same manner as in the fourth embodiment. . In the first to fifth embodiments described above, although there is only one bipolar transistor Q1, it may have a plurality of emitter grounded bipolars connected in parallel between the signal input terminal RFIN and the signal output terminal RFOUT. Transistor® (Sixth Embodiment) Next, FIG. 6 shows a sixth embodiment of the present invention. The sixth embodiment has n bipolar transistors Q1 to Qn of an emitter ground type. Collector terminals Col ~ Con of the grounded bipolar transistors Q1 ~ Qn are connected to the signal output terminal RFOUT, and the emitter is grounded. 16- 200303647

(13) 又,第一發射極接地型雙極性電晶體Q 1之基極端+ B 1連 接於第一阻抗電路Z1之端子Pbl及電阻RB1。又,上述第_ 阻抗電路Z1之端子Pal連接於訊號輸入端手RFIN,電阻RB1 連接於基極端子B1與基極偏壓供應端子VB之間。(13) The base terminal + B 1 of the first emitter grounded bipolar transistor Q 1 is connected to the terminal Pbl and the resistor RB1 of the first impedance circuit Z1. In addition, the terminal Pal of the first impedance circuit Z1 is connected to the signal input terminal RFIN, and the resistor RB1 is connected between the base terminal B1 and the base bias supply terminal VB.

同樣情形,第k(k=2〜η)發射極接地型雙極性電晶體 Qk(k=2〜η)之基極端子Bk連接於第k之第一阻抗電路Ζ k(k=2〜η)之端子Pb k(k=2〜η)及第k電阻RB k。又,第k阻 抗電路Z k(k=2〜η)之端子Pa k(k=2〜η)連接於訊號輸入端 子RFIN,第k電阻RB k(k=2〜η)連接於第k(k^2〜η)電晶體 Qk(k=2〜η)之基極端子Bk與基極偏壓供應端子VB之間。 又,1個第二阻抗電路ZZ連接於訊號輸入端子RFIN與基 極偏壓供應端子VB之間。In the same situation, the base terminal Bk of the k-th (k = 2 ~ η) emitter-grounded bipolar transistor Qk (k = 2 ~ η) is connected to the k-th first impedance circuit Zk (k = 2 ~ η ) Terminal Pb k (k = 2˜η) and k-th resistor RB k. In addition, a terminal Pa k (k = 2 to η) of the k-th impedance circuit Z k (k = 2 to η) is connected to the signal input terminal RFIN, and a k-th resistor RB k (k = 2 to η) is connected to the k-th ( k ^ 2 ~ η) between the base terminal Bk of the transistor Qk (k = 2 ~ η) and the base bias supply terminal VB. A second impedance circuit ZZ is connected between the signal input terminal RFIN and the base bias supply terminal VB.

上述第一發射極接地型雙極性電晶體Q1、第一阻抗電路 Z1與電阻RB 1構成第一放大部U1,上述第k發射極接地型雙 極性電晶體Qk、第一阻抗電路Zk與電阻RBk構成第k放大部 Uk ’因此,在本第6實施形態中,具有η個發射極接地型雙 極性電晶體Q1〜Qn、η個電阻RB1〜RBn、與η個第一阻抗 電路Ζ1〜Ζη所構成之η個放大部U1〜Un,此η個放大部U1 〜Un並聯連接於訊號輸出端子RFOUT、訊號輸入端子RFIN 與基極偏壓供應端子VB之間。 在本第6實施形態中,η個第一阻抗電路Z1〜Zn之全部、 與1個第二阻抗電路ZZ中至少一方之2個端子間對直流成分 成為開玫狀態,並對交流成分成為導通狀態。 因此,在本第6實施形態中,對直流而言,僅n個電阻RB 1 -17- 200303647The first emitter-grounded bipolar transistor Q1, the first impedance circuit Z1, and the resistor RB1 constitute a first amplifying portion U1. The k-th emitter-grounded bipolar transistor Qk, the first impedance circuit Zk, and the resistor RBk. The kth amplifying section Uk ′ is configured. Therefore, in the sixth embodiment, it has n emitter grounded bipolar transistors Q1 to Qn, n resistors RB1 to RBn, and n first impedance circuits Z1 to Zη. The n amplifier units U1 to Un are configured, and the n amplifier units U1 to Un are connected in parallel between the signal output terminal RFOUT, the signal input terminal RFIN, and the base bias supply terminal VB. In the sixth embodiment, all of the n first impedance circuits Z1 to Zn and at least one of the two terminals of the second impedance circuit ZZ are turned on to the DC component, and the AC component is turned on. status. Therefore, in the sixth embodiment, only n resistors RB 1 -17- 200303647 are provided for DC.

(14) 〜RBη在基極偏壓供應端子VB與各雙極性電晶體Q丨〜 之基極端子B 1〜Β η之間。 因此,在本第6實施形態中,可藉在上述電阻RB 〜η)之電壓下降,抑制溫度上升所引起之各雙極性電晶體 Q 1〜Qn之基極電流之增大。因此,其結果,可抑制各雙極 性電aa體Q 1〜Q η之集極電流之增大,故對各雙極性電晶體 Q1〜Qn之周圍溫度之變化或自我發熱,可確保穩定動作。 另一方面’由訊號輸入端子RFIN被輸入之高頻訊號係經 由第一阻抗電路Z1〜Zn被導至各雙極性電晶體Q1〜Qn之 基極端子B1〜Bn。 在本第6實施形態中,在高頻方面,在各雙極性電晶體q k(k=l〜η)之基極端子B k(k=l〜η)與基極偏壓供應端子vb 之間所連接之電阻RB k(k= 1〜η)之兩端,可形成有關經由 第二阻抗電路ΖΖ與第一阻抗電路Z k(k= 1〜η)之高頻成分 之旁路路徑。因此,可將流向上述電阻RB k(k==l〜η)之基 極電流之交流成分之一部分分配至上述旁路路徑。因此, 可有效地抑制在上述電阻RB k(k=l〜η)之電壓下降之增大 ,並可抑制上述以往例之問題之增益壓縮,以施行電力放 大器之低失真動作。 又’在本第6實施形態中,由於利用1個第二阻抗電路ΖΖ 與η個第一阻抗電路Z k(k=l〜η)形成有關η個電阻RB k(k==l〜η)之高頻成分之旁路路徑。此時,也可藉改變在 此旁路路徑之訊號之通過相位或通過振幅,調整植入於各 雙極性電晶體Q1〜Qn之基極端子Β1〜Bn之電流波形。又 -18- 200303647(14) to RBη are between the base bias supply terminal VB and the base terminals B1 to Βη of each bipolar transistor Q1 ~. Therefore, in the sixth embodiment, the increase in the base current of each of the bipolar transistors Q 1 to Qn caused by the temperature rise can be suppressed by the voltage drop of the resistors RB to η). Therefore, as a result, the increase in the collector current of each of the bipolar transistors aa to Q1 to Qn can be suppressed, and stable operation can be ensured with respect to changes in the ambient temperature of the bipolar transistors Q1 to Qn or self-heating. On the other hand, the high-frequency signal input from the signal input terminal RFIN is guided to the base terminals B1 to Bn of the bipolar transistors Q1 to Qn via the first impedance circuits Z1 to Zn. In the sixth embodiment, at a high frequency, between the base terminal B k (k = 1 to η) of each bipolar transistor qk (k = 1 to η) and the base bias supply terminal vb The two ends of the connected resistor RB k (k = 1 to η) can form a bypass path related to the high-frequency component through the second impedance circuit ZZ and the first impedance circuit Z k (k = 1 to η). Therefore, a part of the AC component of the base current flowing to the resistor RB k (k == 1 to η) can be distributed to the bypass path. Therefore, it is possible to effectively suppress an increase in the voltage drop of the resistor RB k (k = 1 to η), and to suppress the gain compression of the problems of the conventional examples described above, so as to perform the low distortion operation of the power amplifier. Furthermore, in the sixth embodiment, since one second impedance circuit ZZ and n first impedance circuits Z k (k = 1 to η) are used to form n resistances RB k (k == l to η) High-frequency bypass path. At this time, the current waveforms of the base terminals B1 to Bn implanted in the bipolar transistors Q1 to Qn can also be adjusted by changing the passage phase or amplitude of the signal in this bypass path. Again -18- 200303647

(15) ,在本第6實施形態中,由於在上述旁路路徑中,介著此2 個阻抗電路ZZ、Z k(k=l〜η),故可利用此2個阻抗電路zz 、Z k(k=l〜η)提高植入各基極端子Β1〜Bn之電流波形之 調整自由度。 又,在使用於手機及無線LAN(社區網路)等通訊裝置之訊 號發射用電力放大器中,為了獲得特定之輸出,如本第6 實施形態所示,一般係將多數雙極性電晶體並聯連接,以 施行放大動作。因此,本第6實施形態之電力玫大器可成為 使用於此等用途時之理想之實施形態。 (第7實施形態) 其次,圖7係表示本發明之電力放大器之第7實施形態。 本第7實施形態係比前述第6實施形態更具體且簡單之實施 形態。即本第7實施形態係以η個電容器C1〜Cn構成圖6之η 個第一阻抗電路Ζ1〜Ζη,以1個電容器Cax構成1個第二阻 抗電路ZZ之情形9 依據本第7實施形態,可利用η個電容器C1〜Cn、與1個 電容器Cax構成第一、第二阻抗電路之簡單之電路構成,與 前述第6實施形態同樣地,可兼顧熱的穩定動作與低失真動 作。 (第8實施形態) 其次,圖8係表示本發明之電力放大器之第8實施形態。 本第8實施形態係設有將電容器Cax電阻與Rax串聯連接之 串聯電路,以取代前述第7實施形態中之電容器Cax,利用 此串聯電路構成第二阻抗電路。 200303647(15) In the sixth embodiment, since the two impedance circuits ZZ and Z k (k = 1 to η) are interposed in the bypass path, the two impedance circuits zz and Z can be used. k (k = 1 to η) increases the degree of freedom in adjusting the current waveforms implanted in the base terminals B1 to Bn. In addition, in order to obtain a specific output in a power amplifier for signal transmission of a communication device such as a mobile phone and a wireless LAN (community network), as shown in the sixth embodiment, most bipolar transistors are generally connected in parallel. To perform a zoom-in action. Therefore, the power rose device according to the sixth embodiment can be an ideal embodiment when used in such applications. (Seventh Embodiment) Next, Fig. 7 shows a seventh embodiment of the power amplifier of the present invention. The seventh embodiment is a more specific and simpler embodiment than the sixth embodiment. That is, the seventh embodiment is the case where n capacitors C1 to Cn are used to form the n first impedance circuits Z1 to Zη in FIG. 6, and one capacitor Cax is used to form a second impedance circuit ZZ. 9 According to the seventh embodiment A simple circuit configuration of the first and second impedance circuits with n capacitors C1 to Cn and one capacitor Cax can be used. Similar to the above-mentioned sixth embodiment, it is possible to take into account both thermal stable operation and low distortion operation. (Eighth Embodiment) Next, Fig. 8 shows an eighth embodiment of the power amplifier of the present invention. The eighth embodiment is provided with a series circuit in which a capacitor Cax resistor and Rax are connected in series, instead of the capacitor Cax in the seventh embodiment, and a second impedance circuit is formed by using this series circuit. 200303647

(16) 在本第8實施形態中,可藉丨個電阻汉⑽之電阻值,調整流 過η個之各電阻b k(k=l〜η)之基極電流之交流成分,因此, 依據本第8實施形態’與第7實施形態相比,可更高精確度 地抑制電力放大器之增益壓縮。 (第9實施形態) 其次,圖九係表示本發明之電力放大器之第9實施形態。 本第9實施形態係具有11個發射極接地型雙極性電晶體q 1〜 Qn,此以固發射極接地型雙極性電晶體Q丨〜Qn之集極端子 Col〜Con係連接於訊號輸出端子rfout。 此η個發射極接地型雙極性電晶體q丨〜Qn中之第一發射 極接地型雙極性電晶體Q1之基極端子B1與訊號輸入端子 RFIN之間連接第一之第一阻抗電路又,在上述基極端 子B 1與基極偏壓供應端子VB之間並聯連接第一之電阻rb 1 與第_之第二阻抗電路Zxl。 同樣地,第k發射極接地型雙極性電晶體q k(k=2〜η)之 基極端子B k(k=2〜η)與訊號輸入端子RFIN之間連接第k之 第一阻抗電路Zk(k==2〜η)。又,在上述基極端子Bk與基極 偏壓供應端子VB之間並聯連接第k電阻RBk與第k之第二阻 抗電路Zxk(k=2〜η)。 上述第一發射極接地型雙極性電晶體Q1、第一阻抗電路 Z1、電阻RB1與第二阻抗電路Zxl構成第一放大部VI,上述 第k發射極接地型雙極性電晶體Qk、第一阻抗電路Z!c、電 阻RBk與第二阻抗電路Zxk構成第k放大部Vk。因此,在本 第9實施形態中,具有η個發射極接地型雙極性電晶體qi〜 200303647(16) In the eighth embodiment, the AC component of the base current flowing through each of the n resistances bk (k = 1 to η) can be adjusted by the resistance value of the resistance ⑽. Therefore, according to this According to the eighth embodiment, the gain compression of the power amplifier can be suppressed more accurately than the seventh embodiment. (Ninth Embodiment) Next, Fig. 9 shows a ninth embodiment of the power amplifier of the present invention. The ninth embodiment has 11 emitter-grounded bipolar transistors q 1 to Qn. The solid-emitter-grounded bipolar transistors Q 1 to Qn are connected to the signal output terminals Col to Con. rfout. A first first impedance circuit is connected between the base terminal B1 of the first emitter-grounded bipolar transistor Q1 and the signal input terminal RFIN among the n emitter-grounded bipolar transistors q 丨 ~ Qn. A first resistor rb 1 and a second impedance circuit Zxl are connected in parallel between the base terminal B 1 and the base bias supply terminal VB in parallel. Similarly, the k-th first impedance circuit Zk is connected between the base terminal B k (k = 2 ~ η) of the k-th emitter grounded bipolar transistor qk (k = 2 ~ η) and the signal input terminal RFIN. (k == 2 ~ η). A k-th resistor RBk and a k-th second impedance circuit Zxk (k = 2 to η) are connected in parallel between the base terminal Bk and the base bias supply terminal VB. The first emitter-grounded bipolar transistor Q1, the first impedance circuit Z1, the resistor RB1, and the second impedance circuit Zxl constitute a first amplification section VI, and the k-th emitter-grounded bipolar transistor Qk and the first impedance The circuit Z! C, the resistor RBk, and the second impedance circuit Zxk constitute a k-th amplifier Vk. Therefore, in the ninth embodiment, there are n emitter-grounded bipolar transistors qi ~ 200303647

Qn、η個電阻RB1〜RBn、η個第一阻抗電路Z1〜Zn、n個第 二阻抗電路Ζχ 1〜Ζχη所構成之η個放大部VI〜Vn,此η個放 大部VI〜Vn被並聯連接於訊號輸出端子RFOUT、訊號輸入 端子RFIN與基極偏壓供應端子VB之間。 在本第9實施形態中,上述η個第二阻抗電路Zxk(k=l〜 之2個端子Pxak、Pxb k(k=l〜η)間對直流成分開玫,並對交 流成分導通。 因此,在本第9實施形態中,對直流而言,僅電阻rb 1 〜η)在基極偏壓供應端子VB與各雙極性電晶體q k(k=1〜 η)之基極端子B k(k=l〜η)之間。因此,在本第9實施形態中 ,可藉在上述電阻RB k(k==l〜η)之電壓下降,抑制溫度上 升所引起之基極電流之增大。因此,其結果,可抑制各雙 極性電晶體Q k(k= 1〜η)之集極電流之增大,故對各雙極性 電晶體Q1〜Qn之周圍溫度之變化或自我發熱,可確保穩定 動作。 另一方面’由訊號輸入端子RFIN被輸入之高頻訊號係經 由η個第一阻抗電路Z1〜Zri被導至各雙極性電晶體Q1〜Qn 之基極端子B1〜Bn。 在本實施形態中’在高頻方面,在各雙極性電晶體q 1〜 Qn之基極端子B 1〜Bn與基極偏壓供應端子vb之間所連接 之電阻RB 1〜RBn之兩端’可形成有關經由第二阻抗電路 Zxl〜Ζχη之高頻成分之旁路路徑。因此,可將流向上述電 阻RB 1〜RB η之基極電流之交流成分之一部分分配至上述 旁路路徑。因此,可有效地抑制在上述電阻RB丨〜RBn之電 -21- 200303647Qn, n resistors RB1 to RBn, n first impedance circuits Z1 to Zn, n second impedance circuits Zχ 1 to Zχη constitute n amplifier sections VI to Vn, and the n amplifier sections VI to Vn are connected in parallel Connected between the signal output terminal RFOUT, the signal input terminal RFIN and the base bias supply terminal VB. In this ninth embodiment, the η second impedance circuits Zxk (k = 1 to 2 terminals Pxak, Pxb k (k = 1 to η) open the DC component and conduct the AC component. In this ninth embodiment, for DC, only the resistors rb 1 to η) are at the base terminal Bk of the base bias supply terminal VB and each bipolar transistor qk (k = 1 to η) B k ( k = 1 to η). Therefore, in the ninth embodiment, the increase in the base current caused by the temperature rise can be suppressed by the voltage drop of the resistor RB k (k = = 1 to η). Therefore, as a result, an increase in the collector current of each of the bipolar transistors Q k (k = 1 to η) can be suppressed. Therefore, the change in the ambient temperature of the bipolar transistors Q1 to Qn or self-heating can be ensured. Stable action. On the other hand, the high-frequency signal input from the signal input terminal RFIN is guided to the base terminals B1 to Bn of the bipolar transistors Q1 to Qn via the n first impedance circuits Z1 to Zri. In this embodiment, at the high frequency, both ends of the resistors RB 1 to RBn connected between the base terminals B 1 to Bn of the bipolar transistors q 1 to Qn and the base bias supply terminal vb 'It is possible to form a bypass path regarding the high-frequency component via the second impedance circuit Zxl ~ Zxη. Therefore, a part of the AC component of the base current flowing to the resistors RB 1 to RB η can be distributed to the bypass path. Therefore, the electricity in the above resistors RB 丨 ~ RBn can be effectively suppressed -21- 200303647

(18) 壓下降之增大’並可抑制上述以往例之問題之增益壓縮, 以施行電力放大器之低失真動作。 又,在使用於手機及無線LAN等通訊裝置之訊號發射用 電力放大器中,為了獲得特定之輸出,一般係將多數雙極 性電晶體並聯連接,以施行放大動作。因此,本第9實施形 態之電力放大器可成為使用於此等用途時之理想之實施形 態。 (第10實施形態) 其次,圖10係表示本發明之電力放大器之第10實施形態 。本第1 〇實施形態係比前述第9實施形態更具體且簡單之實 施形態之一例。即本第10實施形態係以電容器Cxi〜Cxn構 成圖9之第二阻抗電路Zxl〜Ζχη,以電容器C1〜Cn構成第 一阻抗電路Z1〜Zn之情形。 依據本第10實施形態,可利用此種簡單之電路構成,實 現兼顧熱的穩定動作與低失真動作之效果。 (第11實施形態) 其次,圖1 2係表示本發明之第11實施形態。本第11實施 形態之電力放大器係在與上述圖1所示之第1實施形態之電 力放大器Amp 1相同之電力放大器Amp 1之基極偏壓供應端 子VB與基極電壓供應手段之基極電壓供應電路12 1之間連 接有可變阻抗電路1 22。即,在本第11實施形態中,在上述 電力放大器Amp 1(參照圖1及圖12)之放大用雙極性電晶體 Q1之基極B與基極電壓供應電路12 1之間連接有可變阻抗 電路122。 -22- 200303647(18) Increase in voltage drop 'can suppress the gain compression of the problems of the above-mentioned conventional examples, so as to perform the low distortion operation of the power amplifier. In addition, in order to obtain a specific output in a power amplifier for signal transmission of a communication device such as a mobile phone and a wireless LAN, a plurality of bipolar transistors are generally connected in parallel to perform an amplification operation. Therefore, the power amplifier of the ninth embodiment can be an ideal embodiment when used in such applications. (Tenth Embodiment) Next, Fig. 10 shows a tenth embodiment of the power amplifier of the present invention. The tenth embodiment is an example of a more specific and simpler embodiment than the ninth embodiment. That is, the tenth embodiment is a case where the second impedance circuits Zxl to Zxη of Fig. 9 are constituted by capacitors Cxi to Cxn, and the first impedance circuits Z1 to Zn are constituted by capacitors C1 to Cn. According to the tenth embodiment, such a simple circuit configuration can be used to achieve the effect of considering both thermal stable operation and low distortion operation. (Eleventh Embodiment) Next, Fig. 12 shows an eleventh embodiment of the present invention. The power amplifier of the eleventh embodiment is based on the base voltage supply terminal VB of the power amplifier Amp 1 and the base voltage supply means of the same power amplifier Amp 1 as the first embodiment shown in FIG. 1 described above. A variable impedance circuit 1 22 is connected between the supply circuits 12 1. That is, in the eleventh embodiment, a variable is connected between the base B of the amplifying bipolar transistor Q1 of the power amplifier Amp 1 (see FIGS. 1 and 12) and the base voltage supply circuit 121. Impedance circuit 122. -22- 200303647

(19) 上述可變阻抗電路122之阻抗依存於流過此可變阻抗電 路122之電流值。也就是說,由於此可變阻抗電路122之存 在,當上述基極電壓供應供應電路1 2 1供應之電流隨著輸入 訊號電力之增大而增大時,基極偏壓供應端子VB與基極電 壓供應供應電路121之間之阻抗會降低,因此,輸入於上述 放大用雙極性電晶體Q 1之基極B之輸入訊號之訊號電力增 大時,在上述可變阻抗電路1 22之電壓下降值會降低。因此 ,可進一步抑制作為電力放大器之失真。 又,上述可變阻抗電路122例如可利用作為可變阻抗元件 之二極體、雙極性電晶體之基極一發射極接合、或基極一 集極接合等加以實現。此等可變阻抗元件因具有溫度依存 性,故可將上述可變阻抗元件具有之溫度特性重疊於放第 用雙極性電晶體Q 1之基極—發射極接合之溫度特性。在以 往,由於此原因,使得溫度上升所引起之基極電流之增大 更為顯著’而成為電力放大器之熱的不穩定動作之要因。 相對地,在本第Π實施形態中,可藉構成電力放大器八⑺… 之圖1之電阻RB之電壓下降,抑制溫度上升所引起之基極 電流之增大,且即使附加此電阻RB,也可實現電力放大器 之低失真動作。 (第12實施形態) 其-人,圖1 3係表示第12實施形態。本第12實施形態係將 圖丨2所示之第n實施形態之可變阻抗電路122構成更具體 之電路搆成之可變阻抗電路1 3 2。 在本第12實施形態中,係將可變阻抗元件構成二極體Dx -23- 200303647 (20) 。此二極體〇χ係在基極電壓供應手段之基極電壓供應電路 121與基極偏壓供應端子vb之間向基極偏壓供應端子VB被 連接於順方向。此二極體Dx與基極電壓供應電路1 2 1之間連 接電阻Rxl,此二極體;Dx與電阻RX1之連接點?乂與接地之間 串聯連接電阻Rx2與電容器Cx。(19) The impedance of the variable impedance circuit 122 depends on the value of the current flowing through the variable impedance circuit 122. That is, due to the existence of the variable impedance circuit 122, when the current supplied by the base voltage supply circuit 1 2 1 increases with the increase of the input signal power, the base bias supply terminal VB and the base The impedance between the pole voltage supply circuit 121 will decrease. Therefore, when the signal power input to the input signal of the base B of the amplifying bipolar transistor Q 1 increases, the voltage in the variable impedance circuit 1 22 will increase. The decrease will decrease. Therefore, distortion as a power amplifier can be further suppressed. The variable impedance circuit 122 can be realized by, for example, a diode as a variable impedance element, a base-emitter junction of a bipolar transistor, or a base-collector junction. Since these variable impedance elements are temperature-dependent, the temperature characteristics of the variable impedance elements described above can be superimposed on the temperature characteristics of the base-emitter junction of the bipolar transistor Q1. In the past, for this reason, the increase in the base current caused by the temperature rise has become more significant ', and it has become a cause of the thermally unstable operation of the power amplifier. In contrast, in the present embodiment, the increase in the base current caused by the temperature rise can be suppressed by reducing the voltage of the resistor RB in FIG. 1 constituting the power amplifier ⑺…, and even if the resistor RB is added, Can achieve low distortion action of power amplifier. (Twelfth Embodiment) Fig. 13 shows a twelfth embodiment of the present invention. The twelfth embodiment is a variable impedance circuit 1 3 2 in which the variable impedance circuit 122 of the nth embodiment shown in FIG. In the twelfth embodiment, the variable impedance element is configured as a diode Dx -23-200303647 (20). This diode 0x is connected to the base bias supply terminal VB in the forward direction between the base voltage supply circuit 121 of the base voltage supply means and the base bias supply terminal vb. A resistor Rxl is connected between the diode Dx and the base voltage supply circuit 1 2 1. This diode; the connection point between Dx and the resistor RX1? Connect resistor Rx2 and capacitor Cx in series between 乂 and ground.

此電阻Rxi、Rx2及電容器Cx係用於施行偏壓調整及可變 阻抗量之調整,各元件(電阻Rxl、 RX2及電容器Cx)之電阻 值、電容值被設定於適當值。 (第13實施形態) 其次,圖14係表示第13實施形態。本第13實施形態係將 圖12所示之第11實施形態之可變阻抗電路122構成更具體 之電路構成之可變阻抗電路142。The resistors Rxi, Rx2 and capacitor Cx are used for bias adjustment and variable impedance adjustment. The resistance and capacitance of each element (resistors Rxl, RX2 and capacitor Cx) are set to appropriate values. (Thirteenth Embodiment) Next, Fig. 14 shows a thirteenth embodiment. The thirteenth embodiment is a variable impedance circuit 142 in which the variable impedance circuit 122 of the eleventh embodiment shown in Fig. 12 is a more specific circuit configuration.

在本第13實施形態中,可變阻抗元件係由雙極性電晶體 Qx之基極一發射極接合所構成。此雙極性電晶體QX之發射 極係被連接於基極偏壓供應端子VB,集極經由電阻Rx 1被 連接於基極電壓供應手段之基極電壓供應電路121。又,此 雙極性電晶體Qx之基極係被連接於上述集極。 上述集極與電阻Rx 1之連接點Px 1係被連接於上述集極與 基極之連接點Px2,此連接點Px2與接地之間串聯連接電阻 Rx2與電容器Cx。 此電阻Rxl、Rx2及電容器Cx係用於施行偏壓調整及可變 阻抗量之調整,各元件(電阻Rxl、Rx2及電容器Cx)之電阻 值、電容值被設定於適當值。 (第14實施形態) -24- 200303647 (21) 其次,圖15係表示第14實施形態。本第14實施形態係設 有第一基極電壓供應電路1 5 1與第二基極電壓供應電路1 52 ’以取代圖12所示之第11實施形態之基極電壓供應電路12 i 。又,在本第14實施形態中,係設有可變阻抗電路153 ,以 取代圖12之可變阻抗電路〖22。 在本第14實施形態中,係以可變阻抗元件作為雙極性電 晶體Qx。此雙極性電晶體Qx之發射極連接於基極偏壓供應 端子VB,集極連接於第二基極電壓供應電路1 52。又,此 雙極性電晶體Qx之基極係經由電阻RX11連接於第一基極 電壓供應電路151。又,在上述基極與電阻RxHi連接點 Pxll與接地之間串聯連接有電阻Rx22與電容器Cxx。 在圖1 5所示之構成例中,可變阻抗元件雖係由雙極性電 晶體Q X之基極一發射極接合所構成,但雙極性電晶體q χ之 基極連接於第一基極電壓供應電路151 ’集極連接於第二基 極電壓供應電路152之點異於圖14之構成例。在本第丨4實施 形態中’供應至基極偏壓供應端子VB之電流可由直接連接 於雙極性電晶體Qxl之集極之第二基極電壓供應電路152供 應。因此,對電力放大器Amp 1之圖1所示之電力玫大用電 晶體Q 1之基極電流供應能力較高,可抑制高輸出時之增益 壓縮。 又,在圖12〜圖1 5所示之第^--〜第14實施形態中,雖 設有如圖1所示之第1實施形態之電力放大器,作為電力放 大器Ampl,但此電力放大器Ampi也可使用圖2〜圖1〇所示 之第二〜第1 〇實施形態中之任一種電力放大器。 200303647In the thirteenth embodiment, the variable impedance element is composed of a base-emitter junction of a bipolar transistor Qx. The emitter of this bipolar transistor QX is connected to the base bias supply terminal VB, and the collector is connected to the base voltage supply circuit 121 of the base voltage supply means via a resistor Rx1. The base of the bipolar transistor Qx is connected to the collector. The connection point Px 1 of the collector and the resistor Rx 1 is connected to the connection point Px2 of the collector and the base, and a resistor Rx2 and a capacitor Cx are connected in series between the connection point Px2 and the ground. The resistors Rxl, Rx2, and capacitor Cx are used for bias adjustment and variable impedance adjustment. The resistance and capacitance of each element (resistors Rxl, Rx2, and capacitor Cx) are set to appropriate values. (14th embodiment) -24- 200303647 (21) Next, Fig. 15 shows a 14th embodiment. The fourteenth embodiment is provided with a first base voltage supply circuit 1 51 and a second base voltage supply circuit 1 52 'instead of the base voltage supply circuit 12 i of the eleventh embodiment shown in FIG. 12. In the fourteenth embodiment, a variable impedance circuit 153 is provided instead of the variable impedance circuit 22 of FIG. In the fourteenth embodiment, a variable impedance element is used as the bipolar transistor Qx. The emitter of this bipolar transistor Qx is connected to the base bias supply terminal VB, and the collector is connected to the second base voltage supply circuit 152. The base of the bipolar transistor Qx is connected to the first base voltage supply circuit 151 via a resistor RX11. A resistor Rx22 and a capacitor Cxx are connected in series between the base and the resistor RxHi connection point Px11 and the ground. In the configuration example shown in FIG. 15, although the variable impedance element is composed of the base-emitter junction of the bipolar transistor QX, the base of the bipolar transistor q χ is connected to the first base voltage. The point where the collector 151 ′ is connected to the second base voltage supply circuit 152 is different from the configuration example of FIG. 14. In the fourth embodiment, the current supplied to the base bias supply terminal VB can be supplied by the second base voltage supply circuit 152 directly connected to the collector of the bipolar transistor Qxl. Therefore, the base current supply capability of the power transistor Q 1 shown in FIG. 1 of the power amplifier Amp 1 is high, and the gain compression at high output can be suppressed. In addition, although the power amplifier of the first embodiment shown in FIG. 1 is provided as the power amplifier Ampl in the 14th to 14th embodiments shown in FIGS. 12 to 15, the power amplifier Ampi also has Any of the second to tenth power amplifiers shown in FIGS. 2 to 10 can be used. 200303647

發明之功效 由以上之說明可知’本發明之電力放大器係將阻抗電路 部並聯連接在發射極接地型雙極性電晶體之基極端子與基 極偏壓供應端子之間所連接之電阻,使其對直流成分開放 ,並對交流成分導通,且將此阻抗電路部構成對交流訊號 ,可旁通上述電阻之旁路路徑。藉以將由基極偏壓供應端 子向上述電阻之基極电之乂流成分之一部分分配至上 述旁路路徑。因此,可有效地抑制在上述電阻之電壓下降 之增大’並可抑制上述增益壓縮,以施行電力放大器之低 失真動作。 又’因上述阻抗電路部對直流成分開放,並對交流成分 導通,故可藉在上述電阻之電壓下降,抑制溫度上升所引 起之基極電流之增大,其結果,可抑制集極電流之增大, 並可兼顧熱的穩定動作與低失真動作。 在一實施形態中,在雙極性電晶體之基極端子與基極偏 壓供應端子之間所連接之電阻之兩端,形成有關經由第一 及第二阻抗電路之高頻成分之旁路路徑。因此,可將由基 極偏壓供應端子流向上述電阻之基極電流之交流成分之一 部分分配至上述旁路路徑。因此,可有效地抑制在上述電 阻之電壓下降之增大,並可抑制上述增益壓縮,以施行電 力放大器之低失真動作。 又,由於上述第一及第二阻抗電路之至少一方之阻抗對 直流成分開放,並對交流成分導通,故可藉在上述電阻之 電壓下降’抑制溫度上升所引起之基極電流之增大,其結 200303647Efficacy of the Invention From the above description, it can be known that the power amplifier of the present invention is a resistor connected in parallel with the impedance circuit portion between the base terminal of the emitter-grounded bipolar transistor and the base bias supply terminal to make It is open to the DC component and turned on the AC component, and this impedance circuit part constitutes the AC signal, which can bypass the bypass path of the above resistor. As a result, a portion of the current component of the base current supplied from the base bias supply terminal to the resistor is distributed to the bypass path. Therefore, it is possible to effectively suppress the increase in the voltage drop of the above-mentioned resistor 'and to suppress the above-mentioned gain compression to perform a low distortion operation of the power amplifier. Since the impedance circuit section is open to the DC component and is turned on to the AC component, the increase in the base current caused by the temperature rise can be suppressed by the voltage drop of the resistor, and as a result, the collector current can be suppressed. Increased, and can take into account thermal stable action and low distortion action. In one embodiment, at both ends of the resistor connected between the base terminal of the bipolar transistor and the base bias supply terminal, a bypass path related to the high-frequency component through the first and second impedance circuits is formed. . Therefore, a part of the AC component of the base current flowing from the base bias supply terminal to the resistor can be distributed to the bypass path. Therefore, it is possible to effectively suppress an increase in the voltage drop of the above-mentioned resistor, and to suppress the above-mentioned gain compression, so as to perform a low distortion operation of the power amplifier. In addition, since the impedance of at least one of the first and second impedance circuits is open to the DC component and turned on to the AC component, the increase in the base current caused by the temperature rise can be suppressed by the voltage drop of the resistor, Its knot 200303647

(23) 果,可抑制集極電流之增大,並可兼顧熱的穩定動作與低 失真動作。 又,一實施形態係包含由上述發射極接地型雙極性電晶 體、上述電阻與上述第一阻抗電路所構成之多數個放大部 ,且將上述發射極接地型雙極性電晶體多數個並聯連接所 構成而構成電力放大器。此時,也可利用對直流開放之第 一阻抗電路或第二阻抗電路之至少一方構成在交流訊號中 旁通上述電阻之旁路路徑。 利用此構成,可將上述基極偏壓供應端子與各雙極性電 晶體之基極端子之間之基極電流之交流成分之一部分分配 至上述旁路路徑。因此,可有效地抑制在各電阻之電壓下 降之增大,並可抑制上述以往例所見之增益壓縮,以施行 電力放大器之低失真動作。 又,由於可藉在各電阻之電壓下降,抑制溫度上升所引 起之基極電流之增大,因此,其結果,可抑制各雙極性電 晶體之集極電流之增大,並可兼顧熱的均勻且穩之定動作 與低失真動作。 又,在一實施形態中,上述阻抗電路係具有一方端子連 接於上述基極偏壓供應端子,他方端子連接於上述基極端 子之第二阻抗電路,上述第二阻抗電路對直流成分開放, 並對交流成分導通。 因此,上述第二阻抗電路係構成對交流訊號,可直接旁 通上述電阻之旁路路徑。藉以將由上述基極偏壓供應端子 流向上述電阻之基極電流之交流成分之一部分分配至上述 200303647(23) As a result, it is possible to suppress an increase in the collector current, and to achieve both a stable thermal operation and a low distortion operation. Furthermore, an embodiment includes a plurality of amplifying sections composed of the emitter-grounded bipolar transistor, the resistor, and the first impedance circuit, and a plurality of the emitter-grounded bipolar transistor are connected in parallel. The structure constitutes a power amplifier. At this time, at least one of the first impedance circuit or the second impedance circuit open to DC may be used to constitute a bypass path for bypassing the above-mentioned resistor in the AC signal. With this configuration, a part of the AC component of the base current between the base bias supply terminal and the base terminal of each bipolar transistor can be distributed to the bypass path. Therefore, the increase in the voltage drop of each resistor can be effectively suppressed, and the gain compression seen in the above-mentioned conventional example can be suppressed to implement the low distortion operation of the power amplifier. In addition, the increase in the base current caused by the temperature rise can be suppressed by the voltage drop of each resistor. As a result, the increase of the collector current of each bipolar transistor can be suppressed, and the thermal Uniform and stable motion and low distortion motion. Furthermore, in one embodiment, the impedance circuit has a second impedance circuit having one terminal connected to the base bias supply terminal and the other terminal connected to the base terminal, and the second impedance circuit is open to a DC component, and Turn on the AC component. Therefore, the second impedance circuit constitutes a bypass path for the AC signal and can directly bypass the resistor. A part of the AC component of the base current flowing from the base bias supply terminal to the resistor is distributed to the above 200303647.

(24) 旁路路徑。因此,可有效地抑制在上述電阻之電壓下降之 * 增大’並可抑制上述增益壓縮,以施行電力放大器之低失 真動作。 又’上述第二阻抗電路因對直流成分開放,並對交流成 分導通,故可藉在上述電阻之電壓下降,抑制溫度上升所 引起之基極電流之增大,因此,其結果,可抑制集極電流 之增大,並可兼顧熱的穩定動作與低失真動作。 φ 又’在一實施形態中,係包含多數個放大部,其係由上 述發射極接地型雙極性電晶體、上述電阻、上述第一阻抗 电路及上述第二阻抗電路所構成;且上述多數個放大部之 上述第二阻抗電路係對直流成分開放,並對交流成分導通 者。 因此,上述第二阻抗電路係構成對交流訊號,可直接旁 通上述電阻之旁路路徑。藉以將由上述基極偏壓供應端子 流向上述電阻之基極電流之交流成分之一部分分配至上述 旁路路徑。因此,可有效地抑制在上述電阻之電壓下降之 · 增大,並可抑制上述增益壓縮,以施行電力放大器之低失 真動作。 又’上述第*一阻抗電路因對直流成分開放,並對交流成 分導通,故可藉在上述電阻之電壓下降,抑制溫度上升所 · 引起之基極電流之增大,因此,其結果,可抑制集極電流 ’ 之增大,並可兼顧熱的穩定動作與低失真動作。 在本實施形態中,上述第一或第二阻抗電路_至少一方 包含電容器,可利用此電容器,對直流成分開放,並對交 -28- 200303647(24) The bypass path. Therefore, it is possible to effectively suppress * increase 'in the voltage drop of the resistor, and to suppress the gain compression described above, so as to perform a low distortion operation of the power amplifier. Since the second impedance circuit is open to the DC component and is conductive to the AC component, the increase in the base current caused by the temperature rise can be suppressed by the voltage drop of the resistor, and as a result, the current can be suppressed. The increase of the pole current can take into account both the thermal stable operation and the low distortion operation. φ In one embodiment, it includes a plurality of amplifying sections, which are composed of the emitter-grounded bipolar transistor, the resistor, the first impedance circuit, and the second impedance circuit; and the plurality of The aforesaid second impedance circuit of the amplifying section is open to the DC component and is conductive to the AC component. Therefore, the second impedance circuit constitutes a bypass path for the AC signal and can directly bypass the resistor. A part of the AC component of the base current flowing from the base bias supply terminal to the resistor is distributed to the bypass path. Therefore, it is possible to effectively suppress the increase and decrease in the voltage of the resistor, and it is possible to suppress the above-mentioned gain compression to perform a low distortion operation of the power amplifier. The above-mentioned * first impedance circuit is open to the DC component and is conductive to the AC component, so that the increase in the base current caused by the temperature rise can be suppressed by the voltage drop of the resistor, and as a result, the Suppresses the increase of the collector current, and can take into account thermal stable operation and low distortion operation. In this embodiment, at least one of the above-mentioned first or second impedance circuits includes a capacitor, and this capacitor can be used to open the DC component and to the AC -28- 200303647.

(25) 流成分導通。因此,可藉簡單之電路構成,實現上述第一 或第二阻抗電路中至少一方。 又’在一實施形態中,上述第二阻抗電路包含電容器, 可利用此電容器構成對直流成分開放,並對交流成分導通 。因此,可藉簡單之電路構成,實現上述第二阻抗電路。 圖式之簡單說明 圖1係表示本發明之電力放大器之第1實施形態之電路圖。 圖2係表示本發明之電力放大器之第2實施形態之電路圖β 圖3係表示本發明之電力放大器之第3實施形態之電路圖。 圖4係表示本發明之電力放大器之第4實施形態之電路圖。 圖5係表示本發明之電力放大器之第5實施形態之電路圖。 圖6係表示本發明之電力放大器之第6實施形態之電路圖。 圖7係表示本發明之電力放大器之第7實施形態之電路圖。 圖8係表示本發明之電力放大器之第8實施形態之電路圖β 圖9係表示本發明之電力放大器之第9實施形態之電路圖。 圖10係表示本發明之電力放大器之第1〇實施形態之電路 圖。 圖11係表示以往之電力放大器之電路圖。 圖12係表示本發明之電力放大器之第11實施形態之電路 圖。 圖13係表示本發明之電力放大器之第12實施形態之電路 圖。 圖14係表示本發明之電力放大器之第1 3實施形態之電路 圖0 -29- 200303647(25) The flow component is conducting. Therefore, at least one of the first or second impedance circuits can be realized by a simple circuit configuration. In still another embodiment, the second impedance circuit includes a capacitor, and the capacitor can be used to open the DC component and conduct the AC component. Therefore, the above-mentioned second impedance circuit can be realized by a simple circuit configuration. Brief Description of the Drawings Fig. 1 is a circuit diagram showing a first embodiment of the power amplifier of the present invention. Fig. 2 is a circuit diagram showing a second embodiment of the power amplifier of the present invention. Fig. 3 is a circuit diagram showing the third embodiment of the power amplifier of the present invention. Fig. 4 is a circuit diagram showing a fourth embodiment of the power amplifier of the present invention. Fig. 5 is a circuit diagram showing a fifth embodiment of the power amplifier of the present invention. Fig. 6 is a circuit diagram showing a sixth embodiment of the power amplifier of the present invention. Fig. 7 is a circuit diagram showing a seventh embodiment of the power amplifier of the present invention. Fig. 8 is a circuit diagram showing an eighth embodiment of the power amplifier of the present invention. Fig. 9 is a circuit diagram showing the ninth embodiment of the power amplifier of the present invention. Fig. 10 is a circuit diagram showing a tenth embodiment of the power amplifier of the present invention. FIG. 11 is a circuit diagram showing a conventional power amplifier. Fig. 12 is a circuit diagram showing an eleventh embodiment of the power amplifier of the present invention. Fig. 13 is a circuit diagram showing a twelfth embodiment of the power amplifier of the present invention. Fig. 14 is a circuit showing the 13th embodiment of the power amplifier of the present invention. Fig. 0-29-200303647

(26) 圖15係表示本發明之電力放大器之第14實施形態之電路 圖。 圖式代表符號說明 Q1〜Qn···發射極接地型雙極性電晶體、 Q X…雙極性電晶體、 D X _ · ·二極體、(26) Fig. 15 is a circuit diagram showing a fourteenth embodiment of the power amplifier of the present invention. Symbols of the drawings: Q1 ~ Qn ... Emitter grounded bipolar transistor, Q X ... Bipolar transistor, D X _ · · Diode,

Z1〜Zn···第一阻抗電路、 ZZ,Zxl〜Zxn…第二阻抗電路、 RFIN···訊號輸入端子、RFOUT…訊號輸出端子、 VB···基極偏壓供應端子、 B,B1〜Bn···基極端子、Co, Col〜Con·.·集極端子、 RB,RB1〜RBn,Rxl,Rxii,RX2, Rx22·.·電阻、Z1 ~ Zn ... First impedance circuit, ZZ, Zxl ~ Zxn ... Second impedance circuit, RFIN ... Signal input terminal, RFOUT ... Signal output terminal, VB ... Base bias supply terminal, B, B1 ~ Bn ··· base terminal, Co, Col ~ Con ··· set terminal, RB, RB1 ~ RBn, Rxl, Rxii, RX2, Rx22, etc., resistance,

Cl 〜Cn ; Cal,Cax,Cxi 〜Cxn,Cx,Cxx···電容器、 121,151,152···基極電壓供應電路、Cl to Cn; Cal, Cax, Cxi to Cxn, Cx, Cxx ... capacitors, 121, 151, 152 ... base voltage supply circuits,

122, 1 32, 142, 1 53···可變阻抗電路 β Pa, Pb,Pal,Pb卜·端子 Ampl…電力放大器 -30-122, 1 32, 142, 1 53 ··· Variable impedance circuit β Pa, Pb, Pal, Pb · Terminal Ampl… Power amplifier -30-

Claims (1)

200303647 拾、申請專利範圍 L 一種電力放大器,其特徵在於包含: - 發射極接地型雙極性電晶體,其集極端子連接於訊號 · 輸出端子; 電阻’其係連接於上述發射極接地型雙極性電晶體之 基極端子與基極偏壓供應端子之間者;及 阻抗電路部,其係在上述發射極接地型雙極性電晶體 之基極端子與上述基極偏壓供應端子之間,並聯連接於 · 上述電阻,且對直流成分開放,對交流成分導通者。 2.如申請專利範圍第1項之電力放大器,其中 上述阻抗電路部係包含: 第一阻抗電路,其係一方端子連接於上述發射極接地 型雙極性電晶體之基極端子,他方端子連接於訊號輸入 端子者;與 第二阻抗電路,其係一方端子連接於上述訊號輸入端 子,他方端子連接於上述基極偏壓供應端子者; 0 上述第一阻抗電路或上述第二阻抗電路之至少一方 對直流成分開放,並對交流成分導通者。 3·如申請專利範圍第2項之電力放大器,其中包含: 多數個放大部,其係由上述發射極接地型雙極性電晶 · 體、上述電阻、及上述第一阻抗電路所構成者;且 上述多數個放大部之上述第一阻抗電路或上述第二 阻抗電路之至少一方係對直流成分開放,並對交流成分 導通者^200303647 Patent application scope L A power amplifier, which is characterized by:-an emitter-grounded bipolar transistor whose collector terminal is connected to the signal and output terminals; a resistor 'which is connected to the above-mentioned emitter-grounded bipolar Between the base terminal of the transistor and the base bias supply terminal; and an impedance circuit section connected in parallel between the base terminal of the emitter-grounded bipolar transistor and the base bias supply terminal Connected to the above resistor, and open to the DC component, and conductive to the AC component. 2. The power amplifier according to item 1 of the patent application scope, wherein the impedance circuit unit includes: a first impedance circuit having one terminal connected to the base terminal of the emitter-grounded bipolar transistor and the other terminal connected to Signal input terminal; and the second impedance circuit, one terminal is connected to the signal input terminal, the other terminal is connected to the base bias supply terminal; 0 at least one of the first impedance circuit or the second impedance circuit Open to the DC component and conductive to the AC component. 3. The power amplifier according to item 2 of the scope of patent application, which includes: a plurality of amplifying sections composed of the above-mentioned emitter-grounded bipolar transistor, the above-mentioned resistor, and the above-mentioned first impedance circuit; At least one of the first impedance circuit or the second impedance circuit of the plurality of amplifying sections is open to a DC component and is conductive to an AC component ^ 如申請專利範圍第I項之電力放大器,其中 上述阻抗電路部係包含: 第一阻抗電路,其係一方端子連接於訊號輸入端子, 他方端子連接於上述發射極接地型雙極性電晶體之基 極端子者;與 第一阻抗電路,其係一方端子連接於上述基極偏壓供 應端子’他方端子連接於上述基極端子者; 上述第二阻抗電路對直流成分開放,並對交流成分導 通者。 如申請專利範圍第4項之電力放大器,其中包含: 多數個放大部,其係由上述發射極接地型雙極性電晶 體、上述電阻、上述第一阻抗電路及上述第二阻抗電路 所構成者;且 上述多數個放大部之上述第二阻抗電路係對直流成 分開放,並對交流成分導通者。 如申請專利範圍第2或3項之電力放大器,其中 上述第一或第二阻抗電路中至少一方包含電容器, 可利用此電容器構成對直流成分開放,並對交流成分 導通。 如申請專利範圍第4或5項<電力放大器,其中 上述第二阻抗電路包含電容器,可利用此電容器構成 對直流成分開放,並對交流成分導通。 如申請專利範圍第1項之電力放大器,其令 包含:基極電壓供應手段, 200303647For example, the power amplifier of the first patent application range, wherein the above-mentioned impedance circuit unit includes: a first impedance circuit having one terminal connected to a signal input terminal and the other terminal connected to the base terminal of the above-mentioned emitter-grounded bipolar transistor And the first impedance circuit, which is one terminal connected to the base bias supply terminal, and the other terminal is connected to the base terminal; the second impedance circuit is open to the DC component and is conductive to the AC component. For example, the power amplifier of the fourth scope of the patent application includes: a plurality of amplifying sections composed of the above-mentioned emitter-grounded bipolar transistor, the above-mentioned resistor, the above-mentioned first impedance circuit, and the above-mentioned second impedance circuit; In addition, the second impedance circuits of the plurality of amplifying sections are open to a DC component and are conductive to an AC component. For example, the power amplifier of the second or third patent application scope, wherein at least one of the first or second impedance circuits includes a capacitor, the capacitor can be used to open the DC component and conduct the AC component. For example, if the fourth or fifth item of the patent application < power amplifier, wherein the second impedance circuit includes a capacitor, the capacitor can be used to open the DC component and conduct the AC component. For example, the power amplifier of the scope of patent application, the order includes: base voltage supply means, 200303647 在上述基極電壓供應端子與上述基極電壓供應手段 之間連接可變阻抗電路者。 9, 如申請專利範圍第8項之電力放大器,其中 上述可變阻抗電路係包含二極體或雙極性電晶體。A variable impedance circuit is connected between the base voltage supply terminal and the base voltage supply means. 9. The power amplifier according to item 8 of the patent application, wherein the variable impedance circuit includes a diode or a bipolar transistor.
TW92101829A 2002-02-27 2003-01-28 Electric power amplifier TW580786B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002051600 2002-02-27
JP2002273169A JP4287116B2 (en) 2002-02-27 2002-09-19 Power amplifier

Publications (2)

Publication Number Publication Date
TW200303647A true TW200303647A (en) 2003-09-01
TW580786B TW580786B (en) 2004-03-21

Family

ID=27790924

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92101829A TW580786B (en) 2002-02-27 2003-01-28 Electric power amplifier

Country Status (3)

Country Link
JP (1) JP4287116B2 (en)
CN (2) CN1838527B (en)
TW (1) TW580786B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112005002800B4 (en) * 2004-11-29 2012-06-06 Murata Manufacturing Co., Ltd. High frequency circuit and power amplifier with the same
JP4155326B2 (en) 2004-11-29 2008-09-24 株式会社村田製作所 Semiconductor device and power amplifier
WO2006057077A1 (en) * 2004-11-29 2006-06-01 Murata Manufacturing Co., Ltd. Semiconductor device and power amplifier
JP4142660B2 (en) 2005-03-23 2008-09-03 松下電器産業株式会社 High frequency power amplifier
JP2006325096A (en) * 2005-05-20 2006-11-30 Matsushita Electric Ind Co Ltd High-frequency power amplifier
JP4535983B2 (en) * 2005-10-24 2010-09-01 パナソニック株式会社 High frequency power amplifier
JP4699204B2 (en) * 2005-12-28 2011-06-08 新日本無線株式会社 High frequency amplifier circuit
JP4332570B2 (en) 2006-09-29 2009-09-16 シャープ株式会社 Bias circuit and power amplifier
JP2008147869A (en) * 2006-12-07 2008-06-26 Matsushita Electric Ind Co Ltd Semiconductor amplifier circuit
CN101453196B (en) * 2007-12-03 2011-01-12 联阳半导体股份有限公司 Amplifier circuit
JP4560573B2 (en) 2008-09-18 2010-10-13 シャープ株式会社 Power amplifier, power amplifier control method, and radio communication apparatus
JP2010124433A (en) 2008-11-21 2010-06-03 Panasonic Corp High-frequency power amplifier
JP5253221B2 (en) 2009-02-17 2013-07-31 キヤノン株式会社 Image processing apparatus, image processing method, and program
CN101924522A (en) * 2010-09-07 2010-12-22 沈阳中科微电子有限公司 Radio-frequency power amplifier with adaptive linear biasing circuit
CN103095225A (en) * 2011-11-03 2013-05-08 中国科学院微电子研究所 Power amplification transistor circuit and method for improving stability of circuit
US9768729B2 (en) 2014-11-12 2017-09-19 Murata Manufacturing Co., Ltd. Power amplifier
KR101793237B1 (en) * 2016-08-19 2017-11-02 부산대학교 산학협력단 Linear HBT based power amplifier using parallel-combined transistors with IMD3 cancellation
TWI647905B (en) * 2017-02-15 2019-01-11 立積電子股份有限公司 Pre-compensator for compensating the linearity of the amplifier
JP2018142833A (en) 2017-02-27 2018-09-13 株式会社村田製作所 Power amplifier circuit
JP2020027992A (en) 2018-08-10 2020-02-20 株式会社村田製作所 Power amplifier circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3668099B2 (en) * 2000-04-28 2005-07-06 シャープ株式会社 Power amplifier
JP2001332935A (en) * 2000-05-19 2001-11-30 Fujitsu Ltd Microwave amplifier

Also Published As

Publication number Publication date
CN1838527A (en) 2006-09-27
JP2003324325A (en) 2003-11-14
JP4287116B2 (en) 2009-07-01
TW580786B (en) 2004-03-21
CN1838527B (en) 2010-09-29
CN1255936C (en) 2006-05-10
CN1441545A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
TW200303647A (en) Electric power amplifier
Minaei et al. A new CMOS electronically tunable current conveyor and its application to current-mode filters
CN105052036B (en) Envelope tracks modulator and tracks the method that the resonance of modulator inhibits for envelope
US2794076A (en) Transistor amplifiers
US8994453B2 (en) Power amplifier
US6930555B2 (en) Amplifier power control circuit
EP0888670B1 (en) Linear high-frequency amplifier with high input impedance and high power efficiency
JP2004282130A (en) Bias current supply circuit and amplification circuit
Liu et al. A multi-loop-controlled AC-coupling supply modulator with a mode-switching CMOS PA in an EER system with envelope shaping
JP3854840B2 (en) Power amplification circuit and communication apparatus using the same
Yu et al. A 68.5~ 90 GHz high-gain power amplifier with capacitive stability enhancement technique in 0.13 μm SiGe BiCMOS
US20100013562A1 (en) Circuit with single-ended input and differential output
GB2477572A (en) A class AB wideband high-power current output push-pull amplifier
US6664842B1 (en) FET active load and current source
JPWO2020110252A1 (en) Active circulator
JP2000261261A (en) Differential amplifier
Kim et al. Analysis of far-out spurious noise and its reduction in envelope-tracking power amplifier
JPH0832367A (en) Push-pull amplifier
TW201421900A (en) Electronic system, RF power amplifier and temperature compensation method thereof
JP4027349B2 (en) Power amplifier
JP2007259419A (en) High-frequency power amplifying circuit and high-frequency component using the same
CN103066935A (en) High-gain level switching circuit
Hilbourne et al. Transistor power amplifiers
US4935704A (en) Low distortion linear amplifier with high-level output
US8933754B2 (en) Linear differential amplifier with high input impedance

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees