SU456156A1 - Method for determining absolute thermo-emf - Google Patents

Method for determining absolute thermo-emf

Info

Publication number
SU456156A1
SU456156A1 SU1832276A SU1832276A SU456156A1 SU 456156 A1 SU456156 A1 SU 456156A1 SU 1832276 A SU1832276 A SU 1832276A SU 1832276 A SU1832276 A SU 1832276A SU 456156 A1 SU456156 A1 SU 456156A1
Authority
SU
USSR - Soviet Union
Prior art keywords
emf
thermo
absolute
determining absolute
conductor
Prior art date
Application number
SU1832276A
Other languages
Russian (ru)
Inventor
Константинас Константино Репшас
Виргиния Альгирдо Завистанавичюте
Original Assignee
Ордена Трудового Красного Знамени Институт Физики Полупроводников Ан Лит. Сср
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ордена Трудового Красного Знамени Институт Физики Полупроводников Ан Лит. Сср filed Critical Ордена Трудового Красного Знамени Институт Физики Полупроводников Ан Лит. Сср
Priority to SU1832276A priority Critical patent/SU456156A1/en
Application granted granted Critical
Publication of SU456156A1 publication Critical patent/SU456156A1/en

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

р - коэффициент, не завис щий от электрического пол . Из формулы (1) следует, что удельные сопротивлени  проводника при двух противоположных направлени х внешнего электрического пол  будут: Р, р„ (1 + + 8 + SEo), Ра ро (1 - , + р + е). Разница удельных сопротивлений :4ер„ „ г, а разница сопротивлении &R ±(x}o (X) Е, (X} EI (х} dx HT)9(.()E,(T)dT. При условии / const и при малых АГ в образце , разницу сопротивлений можно представить в следующем виде: Д/./а„рр(Г,-Г,). Абсолютна  термо-э. д. с. в проводнике 4/sp«(7-,-7,) Из формулы (6) видно, что при известных значени х функций р(Г) и Р(Г), измерив 5, 5 10 15 20 25 30 / и ДГ, можно определить абсолютную термо-э . д. с. проводника ао. Поскольку в предлагаемом способе определени  абсолютной термо-э. д. с. проводника исключаютс  контактные  влени , не нужны трудно достигаемые температуры, близки абсолютному нулю, и сам интервал температур , в котором провод тс  измерени , невелик , а методика измерени  физических величин , вход щих в формулу (6), в насто щее врем  хорощо разработана и обладает большой точностью, то точность определени - ао по предлагаемому способу больше, чем по известному, причем процесс определени  абсолютной термо-э. д. с. по предлагаемому способу значительно проще, так как исключаетс  необходимость температур, близких абсолютному нулю и проведени  измерений эффекта Томсона во всем интервале температур от абсолютного нул  до той, при которой определ етс  ао. Предмет изобретени  Способ измерени  абсолютной термоэ . д. с. проводника, заключающийс  в создании в нем градиента температуры и приложении вдоль него внешнего электрического пол , отличающийс  тем, что, с целью повышени  точности, в приконтактной области образца создают пониженное сопротивление , измер ют электропроводность проводника при двух противоположных направлени х тока, и по их разности определ ют значение абсолютной термо-э. д. с.p is a coefficient not dependent on the electric field. From formula (1) it follows that the resistivity of the conductor with two opposite directions of the external electric field will be: Р, р „(1 + + 8 + SEo), Рar po (1 -, + р + е). The difference of resistivity: 4er „„ g, and the difference of resistance & R ± (x} o (X) E, (X} EI (x} dx HT) 9 (. () E, (T) dT. Provided / const and for small AH in the sample, the difference in resistance can be represented as follows: D /./a „pr (G, -G,). Absolute thermo-emf in conductor 4 / sp“ (7-, -7,) From the formula (6) it can be seen that with the known values of the functions p (T) and P (T), by measuring 5, 5 10 15 20 25 30 / and DG, it is possible to determine the absolute thermal emf conductor ao. As in the proposed method for determining the absolute thermo-emf of a conductor, contact phenomena are excluded, it is not necessary to achieve temperatures are close to absolute zero, and the temperature range itself, in which the measurements are carried out, is small, and the method for measuring physical quantities included in formula (6) is now well developed and has great accuracy, then the accuracy of determination is the proposed method is larger than the known, and the process of determining the absolute thermo-emf by the proposed method is much simpler, since it eliminates the need for temperatures close to absolute zero and measuring the Thomson effect throughout temperature range from absolute zero to that at which ao is determined. The subject of the invention. A method for measuring absolute thermoelectric d. a conductor consisting in creating a temperature gradient in it and applying an external electric field along it, characterized in that, in order to improve the accuracy, a reduced resistance is created in the contact area of the sample, the conductor electrical conductivity is measured at two opposite current directions, and the absolute thermo-e value is determined. d.

SU1832276A 1972-09-29 1972-09-29 Method for determining absolute thermo-emf SU456156A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU1832276A SU456156A1 (en) 1972-09-29 1972-09-29 Method for determining absolute thermo-emf

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU1832276A SU456156A1 (en) 1972-09-29 1972-09-29 Method for determining absolute thermo-emf

Publications (1)

Publication Number Publication Date
SU456156A1 true SU456156A1 (en) 1975-01-05

Family

ID=20528102

Family Applications (1)

Application Number Title Priority Date Filing Date
SU1832276A SU456156A1 (en) 1972-09-29 1972-09-29 Method for determining absolute thermo-emf

Country Status (1)

Country Link
SU (1) SU456156A1 (en)

Similar Documents

Publication Publication Date Title
SU456156A1 (en) Method for determining absolute thermo-emf
Starr The pressure coefficient of thermal conductivity of metals
US2473627A (en) Thermocouple with radiating fins
SU661410A1 (en) Method of determining transient resistance of discontinuous-type contact couple
SU600481A1 (en) Temperature measuring method
SU432374A1 (en) METHOD FOR DETERMINING THE THERMAL CONDUCTIVITY COEFFICIENT OF IMPURITY SEMICONDUCTORS
SU873085A1 (en) Device for measuring material thermal physical characteristics
SU389452A1 (en)
SU932291A1 (en) Method of determination of heater heat losses in connecting wires
SU141938A1 (en) Method of measuring thermoelectromotive forces of semiconductor materials
SU1048386A1 (en) Material heat capacity, temperature conductivity and electrical conductivity complex determination method
RU2124707C1 (en) Method determining temperature of contact interaction for friction and cutting
SU1420548A1 (en) Method of measuring specific resistance
SU552578A1 (en) Magnetic field strength measurement method
SU769360A1 (en) Compensation wire
SU678338A1 (en) Temperature measuring device
SU763823A1 (en) Device for measuring magnetic field inductance and temperature
JPH0769221B2 (en) Temperature sensing material, temperature sensor and temperature measuring method
SU119253A1 (en) Method for determining surface conductivity of semiconductor crystals
SU411362A1 (en) METHOD OF MEASURING THE CONCENTRATION OF POLYMERS IN ELECTRIC CONDUCTING SOLUTIONS
SU857889A1 (en) Method of measuring charge carrier energy relaxation time in semiconductors
SU550882A1 (en) Method for determining effective temperature of hot current carriers in semiconductor
SU808871A1 (en) Method of measuring temperature of metal-reinforced articles
SU44367A1 (en) Device for measuring the magnitude of the speed of air or other flow
SU381987A1 (en) METHOD FOR DETERMINING THE PARAMETERS OF THE Squeezing Capacity of Metals and Alloys