JPH0769221B2 - Temperature sensing material, temperature sensor and temperature measuring method - Google Patents

Temperature sensing material, temperature sensor and temperature measuring method

Info

Publication number
JPH0769221B2
JPH0769221B2 JP3290954A JP29095491A JPH0769221B2 JP H0769221 B2 JPH0769221 B2 JP H0769221B2 JP 3290954 A JP3290954 A JP 3290954A JP 29095491 A JP29095491 A JP 29095491A JP H0769221 B2 JPH0769221 B2 JP H0769221B2
Authority
JP
Japan
Prior art keywords
temperature
temperature sensor
sensing material
electrode
measuring method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3290954A
Other languages
Japanese (ja)
Other versions
JPH0599759A (en
Inventor
信次 南
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP3290954A priority Critical patent/JPH0769221B2/en
Publication of JPH0599759A publication Critical patent/JPH0599759A/en
Publication of JPH0769221B2 publication Critical patent/JPH0769221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な温度検知材料、
それを用いた温度センサー、及び温度測定方法に関する
ものである。さらに詳しくいえば、本発明は、光照射に
より発生する光電流量が温度依存性を有する新規な温度
検知材料、それを用いた温度センサー、及び温度測定方
法に関するものである。
The present invention relates to a novel temperature sensing material,
The present invention relates to a temperature sensor using the same and a temperature measuring method. More specifically, the present invention relates to a novel temperature sensing material in which the photoelectric flow rate generated by light irradiation has temperature dependence, a temperature sensor using the same, and a temperature measuring method.

【0002】[0002]

【従来の技術】これまで温度センサーとしては、金属の
電気抵抗の温度依存性を利用した金属抵抗温度センサ
ー、2種の金属間の熱起電力の差を利用した熱電対、温
度によって電気抵抗が大幅に変化する半導体、すなわち
サーミスタを利用したセンサー、熱膨張係数が異なる2
枚の金属を接着してその湾曲度の温度依存性を利用した
バイメタル温度センサー、フェライトの磁気特性の温度
依存性を利用した感温フェライトセンサー、集電効果を
利用した集電型温度センサーなどが知られている。
2. Description of the Related Art Heretofore, as a temperature sensor, a metal resistance temperature sensor utilizing the temperature dependence of the electric resistance of metal, a thermocouple utilizing the difference in thermoelectromotive force between two kinds of metals, and an electric resistance depending on temperature A semiconductor that changes drastically, that is, a sensor that uses a thermistor, different thermal expansion coefficient 2
Bimetal temperature sensors that use the temperature dependence of the degree of curvature by adhering two sheets of metal, temperature-sensitive ferrite sensors that use the temperature dependence of the magnetic characteristics of ferrite, current-collecting temperature sensors that use the current collection effect, etc. Are known.

【0003】[0003]

【発明が解決しようとする課題】これまで知られている
多種多様の温度センサーは、それぞれ特有の特徴点を有
し、それらに適合した分野に利用されている。本発明
は、これら公知の温度センサーとは全く別異の温度検知
材料を開発するとともに、それを用いた温度センサーを
提供し、これらによって温度測定方法や温度センサーの
利用範囲をより拡大するためになされたものである。
Various types of temperature sensors known so far have their own characteristic points and are used in fields suitable for them. The present invention develops a temperature sensing material which is completely different from these known temperature sensors, and provides a temperature sensor using the same, in order to further expand the temperature measuring method and the range of use of the temperature sensor. It was made.

【0004】[0004]

【課題を解決するための手段】本発明者は、新規な温度
検知材料やそれを利用した新規な温度センサーを開発す
るために鋭意研究を重ねた結果、炭素五員環と炭素六員
環がサッカーボール又はラグビーボール状に結合して構
成された炭素60個又は70個のかご型化合物、いわゆ
るフラーレン類に、光を照射したときに発生する光電流
が温度によって変化し、その光電流量と温度との間に一
定の相関性を示すことを見出し、この知見に基づいて本
発明を完成するに至った。
Means for Solving the Problems The present inventor has conducted extensive studies to develop a novel temperature sensing material and a novel temperature sensor using the same, and as a result, a carbon five-membered ring and a carbon six-membered ring have been identified. Photocurrent generated when irradiating light on a cage compound of 60 or 70 carbons, so-called fullerenes, which is formed by bonding like a soccer ball or a rugby ball, changes depending on the temperature, and its photoelectric flow rate and temperature It was found that there is a certain correlation with the above, and the present invention has been completed based on this finding.

【0005】すなわち、本発明は、フラーレン類の中か
ら選ばれた少なくとも1種から成る温度検知材料、電気
絶縁板上に、電極を配設し、電極表面に前記温度検知材
料の薄膜層を設けて成る温度センサー、及び前記温度検
知材料に光を照射し、発生した光電流量を測定し、その
測定量をあらかじめ作製された光電流量と温度との間の
相関データと対比させて、所要の温度を求めることを特
徴とする温度測定方法を提供するものである。
That is, according to the present invention, an electrode is provided on a temperature detecting material or an electric insulating plate composed of at least one kind selected from fullerenes, and a thin film layer of the temperature detecting material is provided on the surface of the electrode. The temperature sensor formed by irradiating the temperature sensing material with light, measuring the generated photoelectric flow rate, and comparing the measured amount with the correlation data between the photoelectric flow rate and the temperature prepared in advance to obtain the required temperature. The present invention provides a temperature measuring method characterized by:

【0006】本発明の温度検知材料は、フラーレン類の
中から選ばれた少なくとも1種から成るものである。こ
のフラーレン類としては、図1で示される化学構造をも
つC60と図2で示される化学構造をもつC70とが知られ
ており、いずれも市販品として入手可能である。本発明
においては、これらのC60及びC70をそれぞれ単独で用
いてもよいし、また両者の混合物として用いてもよい。
本発明の温度センサーは、この温度検知材料を用いて、
これを薄膜層として、電気絶縁板上に配設した電極の表
面に設けて成るものである。この温度センサーを作製す
るには、例えば、石英、ガラスなどの電気絶縁性の基板
上に、金、白金、銅などの導電性材料により、電極を形
成させ、その上に全面にわたってフラーレン類を厚さ2
〜15nmで蒸着させる。図3は、この際に形成される
電極形状の1例を示す斜視図であって、該形状がくし形
状のものであり、絶縁性基板1の上に、導電性材料でく
し形状電極2を形成させた状態が示されている。本発明
における電極の形状は、このようなくし形状に限られる
ものではなく、使用目的に応じて任意な形状にすること
ができる。また、図4は、この電極2を設けた基板1上
に、フラーレン類の層3を形成した状態を示す断面図で
ある。次に、本発明の温度センサーを用いて温度を測定
する方法を図面に従って説明する。図5は、この測定方
法を説明するために用いられる装置の1例を示す側面図
であって、熱伝導性材料、例えば銅で作製された支持板
4に温度センサーAを支持し、熱媒液留め6の温度を調
節して、温度センサーAを所定の温度に保持しながら、
支持体の貫通孔5を通して光を照射する。この際の光の
波長としては、通常600nm、400nmを用いる
が、それ以外の波長のものでもよい。また、上記の熱媒
液留め6は、他の温度制御手段、例えば電熱手段などに
変えることもできる。このようにして、光の照射により
温度センサーAの電極間に発生する光電気量を、電極に
導線7を介して接続した電極計8で検量し、各温度に対
応した光電気量との間の検量線を作製する。次いで、測
定しようとする物体に温度センサーを接触させ、光を照
射して、上記と同様にして光電流量を測定し、上記の検
量線と対比して温度を求める。このようにして、C60
用いた場合は15〜80℃の範囲の温度を高い精度をも
って測定することができる。また、C60とC70の混合物
を用いた場合も同様である。
The temperature detecting material of the present invention comprises at least one selected from fullerenes. As the fullerenes, C 60 having the chemical structure shown in FIG. 1 and C 70 having the chemical structure shown in FIG. 2 are known, and both are commercially available. In the present invention, these C 60 and C 70 may be used alone or as a mixture of both.
The temperature sensor of the present invention, using this temperature sensing material,
This is provided as a thin film layer on the surface of the electrode provided on the electrical insulating plate. To manufacture this temperature sensor, for example, an electrode is formed on an electrically insulating substrate such as quartz or glass with a conductive material such as gold, platinum, or copper, and fullerenes are formed over the entire surface with an electrode. 2
Evaporate at ~ 15 nm. FIG. 3 is a perspective view showing an example of the electrode shape formed at this time, and the shape is a comb shape, and the comb-shaped electrode 2 is formed on the insulating substrate 1 with a conductive material. The state where it is made to show is shown. The shape of the electrode in the present invention is not limited to such a strip shape, but may be any shape according to the purpose of use. Further, FIG. 4 is a cross-sectional view showing a state in which a layer 3 of fullerenes is formed on the substrate 1 provided with the electrode 2. Next, a method of measuring temperature using the temperature sensor of the present invention will be described with reference to the drawings. FIG. 5 is a side view showing an example of an apparatus used for explaining this measuring method, in which a temperature sensor A is supported on a support plate 4 made of a heat conductive material, for example, copper, and a heat medium is used. While adjusting the temperature of the liquid stopper 6 to maintain the temperature sensor A at a predetermined temperature,
Light is irradiated through the through holes 5 of the support. The wavelength of light used at this time is usually 600 nm and 400 nm, but other wavelengths may be used. Further, the heat medium liquid retainer 6 may be replaced with another temperature control means, for example, an electric heating means. In this way, the photoelectric quantity generated between the electrodes of the temperature sensor A due to the irradiation of light is calibrated by the electrode meter 8 connected to the electrodes via the conducting wire 7, and the photoelectric quantity corresponding to each temperature is measured. A calibration curve of is prepared. Next, a temperature sensor is brought into contact with the object to be measured, light is irradiated, the photoelectric flow rate is measured in the same manner as above, and the temperature is obtained by comparing with the above calibration curve. Thus, when C 60 is used, the temperature in the range of 15 to 80 ° C. can be measured with high accuracy. The same applies when a mixture of C 60 and C 70 is used.

【0007】[0007]

【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明はこれらの例によって何ら限定される
ものではない。実施例縦25mm、横33mm、厚さ1
mmの石英板上に金を、くし形状に蒸着して、図3に示
す電極を形成したのち、この上にC60を厚さ5nmに蒸
着し、温度センサーを作製した。この温度センサーを図
5に示す装置に取付け、氷水で温度調節しながら、温度
を27℃から徐々に17℃にまで降下させ、発生する光
電流量を測定した。その結果をグラフとして図6に示
す。このグラフから明らかなように、光電流量の対数値
は温度との関係で良好な直線性を示している。従って、
光電流量を読み取ることにより少なくとも15〜30℃
の温度範囲で高い精度の温度測定ができることが分る。
The present invention will be described in more detail by way of examples, which should not be construed as limiting the invention thereto. Example length 25 mm, width 33 mm, thickness 1
Gold was vapor-deposited in a comb shape on a quartz plate of mm to form the electrode shown in FIG. 3, and then C 60 was vapor-deposited thereon to a thickness of 5 nm to manufacture a temperature sensor. This temperature sensor was attached to the apparatus shown in FIG. 5, and the temperature was gradually lowered from 27 ° C. to 17 ° C. while adjusting the temperature with ice water, and the generated photoelectric flow rate was measured. The result is shown as a graph in FIG. As is clear from this graph, the logarithmic value of photoelectric flow shows good linearity in relation to temperature. Therefore,
At least 15-30 ℃ by reading photoelectric flow rate
It can be seen that highly accurate temperature measurement can be performed in the temperature range of.

【0008】[0008]

【発明の効果】本発明の温度検知材料及びそれを用いた
温度センサーは、温度のわずかな変化に対して、光電流
量が著しく変化することから、電流計で光電流量を読み
取ることにより、高い精度での温度測定が可能であり、
微妙な温度制御を必要とする分野において好適に利用す
ることができる。
The temperature detecting material of the present invention and the temperature sensor using the same have a high accuracy by reading the photoelectric flow rate with an ammeter because the photoelectric flow rate remarkably changes with a slight change in temperature. It is possible to measure temperature at
It can be suitably used in a field that requires delicate temperature control.

【図面の簡単な説明】[Brief description of drawings]

【図1】 C60の化学構造を示す炭素結合図。FIG. 1 is a carbon bond diagram showing the chemical structure of C 60 .

【図2】 C70の化学構造を示す炭素結合図。FIG. 2 is a carbon bond diagram showing the chemical structure of C 70 .

【図3】 本発明の温度センサーの電極形状の1例を示
す斜視図。
FIG. 3 is a perspective view showing an example of the electrode shape of the temperature sensor of the present invention.

【図4】 本発明の温度センサーの1例を示す断面図。FIG. 4 is a sectional view showing an example of a temperature sensor of the present invention.

【図5】 本発明方法を行うための装置の1例を示す側
面図。
FIG. 5 is a side view showing an example of an apparatus for carrying out the method of the present invention.

【図6】 C60の温度と光電流との関係を示すグラフ。FIG. 6 is a graph showing the relationship between C 60 temperature and photocurrent.

【符号の説明】[Explanation of symbols]

1 基板 2 電極 3 フラーレン層 1 substrate 2 electrode 3 fullerene layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 フラーレン類の中から選ばれた少なくと
も1種から成る温度検知材料。
1. A temperature sensing material comprising at least one selected from fullerenes.
【請求項2】 電気絶縁板上に、電極を配設し、電極表
面に請求項1記載の温度検知材料の薄膜層を設けたこと
を特徴とする温度センサー。
2. A temperature sensor characterized in that an electrode is provided on an electrically insulating plate, and a thin film layer of the temperature sensing material according to claim 1 is provided on the surface of the electrode.
【請求項3】 電極がくし形状のものである請求項2記
載の温度センサー。
3. The temperature sensor according to claim 2, wherein the electrode has a comb shape.
【請求項4】 請求項1記載の温度検知材料に光を照射
し、発生した光電流量を測定し、その測定量をあらかじ
め作成された光電流量と温度との間の相関データと対比
させて、所要の温度を求めることを特徴とする温度測定
方法。
4. The temperature-sensing material according to claim 1 is irradiated with light, the generated photoelectric flow rate is measured, and the measured amount is compared with the correlation data between the photoelectric flow rate and the temperature, which are created in advance, A temperature measuring method characterized by obtaining a required temperature.
JP3290954A 1991-10-09 1991-10-09 Temperature sensing material, temperature sensor and temperature measuring method Expired - Lifetime JPH0769221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3290954A JPH0769221B2 (en) 1991-10-09 1991-10-09 Temperature sensing material, temperature sensor and temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3290954A JPH0769221B2 (en) 1991-10-09 1991-10-09 Temperature sensing material, temperature sensor and temperature measuring method

Publications (2)

Publication Number Publication Date
JPH0599759A JPH0599759A (en) 1993-04-23
JPH0769221B2 true JPH0769221B2 (en) 1995-07-26

Family

ID=17762625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3290954A Expired - Lifetime JPH0769221B2 (en) 1991-10-09 1991-10-09 Temperature sensing material, temperature sensor and temperature measuring method

Country Status (1)

Country Link
JP (1) JPH0769221B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012105367A1 (en) * 2012-02-24 2013-08-29 O-Flexx Technologies Gmbh Thermoelectric module and manufacturing process
JP2014003117A (en) * 2012-06-18 2014-01-09 Takaya Watanabe Element-including fullerene thomson element
KR20210115295A (en) * 2020-03-12 2021-09-27 (주)아모레퍼시픽 Sensor for measuring temperature variation
WO2023087057A1 (en) * 2021-11-17 2023-05-25 Caretech Services Pty Ltd A temperature detector for a heat sensitive material

Also Published As

Publication number Publication date
JPH0599759A (en) 1993-04-23

Similar Documents

Publication Publication Date Title
JP3175887B2 (en) measuring device
US6487515B1 (en) Method and apparatus for measuring thermal and electrical properties of thermoelectric materials
US6467951B1 (en) Probe apparatus and method for measuring thermoelectric properties of materials
US7294899B2 (en) Nanowire Filament
JPS61170618A (en) Semiconductor sensor for detecting flow rate
AU603918B2 (en) Mass air flow sensors
CN106768493A (en) A kind of film TR heat flow transducer of series-fed
JP3226715B2 (en) Measuring device
CA2011659A1 (en) Measuring sensor for fluid state determination and method for measurement using such sensor
Herin et al. Measurements on the thermoelectric properties of thin layers of two metals in electrical contact. Application for designing new heat-flow sensors
JP3310430B2 (en) Measuring device and measuring method
US4631350A (en) Low cost thermocouple apparatus and methods for fabricating the same
JPH0769221B2 (en) Temperature sensing material, temperature sensor and temperature measuring method
JP3468300B2 (en) Method and apparatus for measuring thermal and electrical properties of thin film thermoelectric materials
KR101070998B1 (en) Heat capacity measurement device at high temperature
JP2567441B2 (en) Measuring method of thermal conductivity, measuring device and thermistor
CN108508264B (en) Power sensor
JP3300110B2 (en) Gas detector
KR20010103898A (en) Apparatus for measuring thermal properties of a material surface and applying to thermomechanical modification using a peltier tip
JP2001165739A (en) Operation method for measurement device
JPH04235338A (en) Humidity sensor
RU2145135C1 (en) Thermistor-type semiconductor transducer
JPS645260B2 (en)
JPH0584867B2 (en)
JPH04116464A (en) Fluid velocity sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term