JPH0599759A - Temperature sensor - Google Patents
Temperature sensorInfo
- Publication number
- JPH0599759A JPH0599759A JP3290954A JP29095491A JPH0599759A JP H0599759 A JPH0599759 A JP H0599759A JP 3290954 A JP3290954 A JP 3290954A JP 29095491 A JP29095491 A JP 29095491A JP H0599759 A JPH0599759 A JP H0599759A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- sensor
- temperature sensor
- light beam
- fullerenes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910003472 fullerene Inorganic materials 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims 1
- 239000011540 sensing material Substances 0.000 abstract description 7
- 239000004020 conductor Substances 0.000 abstract description 4
- 239000007788 liquid Substances 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000009529 body temperature measurement Methods 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 abstract 1
- 230000035515 penetration Effects 0.000 abstract 1
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、新規な温度検知材料を
用いた温度センサー、及び、温度測定方法に関するもの
である。さらに詳しく言えば、本発明は、光照射により
発生する光電流量が温度依存性を有する新規な温度検知
材料を用いた温度センサー、及び、温度測定方法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature sensor using a novel temperature detecting material and a temperature measuring method. More specifically, the present invention relates to a temperature sensor using a novel temperature sensing material having a photoelectric flow rate generated by light irradiation having temperature dependence, and a temperature measuring method.
【0002】[0002]
【従来の技術】これまで、温度センサーとしては、金属
の電気抵抗の温度依存性を利用した金属抵抗温度センサ
ー、2種の金属間の熱起電力の差を利用した熱電対、温
度によって電気抵抗が大幅に変化する半導体、すなわち
サーミスタを利用したセンサー、熱膨張係数が異なる2
枚の金属を接着してその湾曲度の温度依存性を利用した
バイメタル温度センサー、フェライトの磁気特性の温度
依存性を利用した感温フェライトセンサー、集電効果を
利用した集電型温度センサーなどが知られている。2. Description of the Related Art Heretofore, as a temperature sensor, a metal resistance temperature sensor utilizing the temperature dependence of electric resistance of a metal, a thermocouple utilizing a difference in thermoelectromotive force between two kinds of metals, and an electric resistance depending on temperature That changes significantly, that is, a sensor that uses a thermistor, different thermal expansion coefficient 2
A bimetal temperature sensor that uses the temperature dependence of the curvature of a piece of metal bonded together, a temperature-sensitive ferrite sensor that uses the temperature dependence of the magnetic properties of ferrite, and a current collection temperature sensor that uses the current collection effect Are known.
【0003】[0003]
【発明が解決しようとする課題】これまで知られている
多種多様の温度センサーは、それぞれ特有の特徴点を有
し、それらに適合した分野に利用されている。本発明
は、これら公知の温度センサーとは全く別異の温度検知
材料を開発し、それによって、温度センサーの利用範囲
をより拡大するためになされたものである。The various types of temperature sensors known so far have their own characteristic points and are used in fields suitable for them. The present invention has been made in order to develop a temperature sensing material which is completely different from these known temperature sensors, and thereby expand the range of use of the temperature sensor.
【0004】[0004]
【課題を解決するための手段】本発明者は、温度センサ
ーとして使用し得る新規な温度検知材料を開発するため
に鋭意研究を重ねた結果、炭素五員環と炭素六員環がサ
ッカーボール又はラグビーボール状に結合して構成され
た炭素60個又は70個のかご型化合物、いわゆるフラ
ーレン類に、光を照射したときに発生する光電流が温度
によって変化し、その光電流量と温度との間に一定の相
関性を示すことを見出し、この知見に基づいて本発明を
成すに至った。すなわち、本発明は、フラーレン類の中
から選ばれた少なくとも1種を温度検知材料として用い
たことを特徴とする温度センサー及びこれに光を照射
し、発生した光電流量を測定し、その測定量をあらかじ
め作成された光電流量と温度との間の相関データと対比
させて所要の温度を求めることを特徴とする温度測定方
法を提供するものである。Means for Solving the Problems As a result of earnest studies to develop a novel temperature sensing material which can be used as a temperature sensor, the present inventor has found that a carbon five-membered ring and a carbon six-membered ring are soccer balls or The photocurrent generated when irradiating light on a cage compound of 60 or 70 carbons, so-called fullerenes, which is formed by combining in a rugby ball shape, changes depending on the temperature, and between the photoelectric flow rate and the temperature. The present invention has been completed based on this finding. That is, the present invention relates to a temperature sensor characterized by using at least one kind selected from fullerenes as a temperature sensing material, and irradiating the temperature sensor with light to measure the generated photoelectric flow rate, and measuring the measured amount. The present invention provides a temperature measuring method, characterized in that a required temperature is obtained by comparing the above-mentioned correlation data with a correlation data between a photoelectric flow rate and temperature.
【0005】本発明で温度検知材料として用いるフラー
レン類としては、図1で示される化学構造を持つC60と
図2で示される化学構造を持つC70とが知られており、
いずれも市販品として入手可能である。本発明において
は、これらのC60及びC70をそれぞれ単独で用いても良
いし、又、両者の混合物として用いても良い。このフラ
ーレン類を用いて温度センサーを作製するには、例え
ば、石英、ガラスなどの電気絶縁性の基板上に、金、白
金、銅などの導電性材料により、くし形状電極を形成さ
せ、その上に全面にわたってフラーレン類を厚さ2〜1
5nmで蒸着させる。図3は、この際の絶縁性基板1の上
に導電性材料をもって、くし形状電極2を形成させた状
態を示す斜面図である。本発明における電極の形状は、
このような、くし形状に限られるものではなく、使用目
的に応じて任意な形状にすることができる。又、図4
は、この電極2を設けた基板1上に、フラーレン類の層
3を形成した状態を示す断面図である。次に、本発明の
温度センサーを用いて温度を測定する方法を図面に従っ
て説明する。図5は、この測定方法を説明するために用
いられる装置の1例を示す側面図であって、熱伝導性材
料、例えば銅で作製された支持板4に温度センサーAを
支持し、熱媒液留め6の温度を調節して、温度センサー
Aを所定の温度に保持しながら、支持体の貫通孔5を通
して光を照射する。この際の光の波長としては、通常6
00nm、400nmを用いるが、それ以外の波長のも
のでも良い。又、上記の熱媒液留め6は、他の温度制御
手段、例えば、電熱手段などに変えることもできる。こ
のようにして、光の照射により温度センサーAの電極間
に発生する光電気量を、電極に導線7を介して接続した
電流計8で検量し、各温度に対応した光電気量との間の
検量線を作製する。次いで、測定しようとする物体に温
度センサーを接触させ、光を照射して、上記と同様にし
て光電流量を測定し、上記の検量線と対比して温度を求
める。このようにして、C60を用いた場合は15〜30
℃の範囲の温度を高い精度をもって測定することができ
る。又、C60とC70の混合物を用いた場合も同様であ
る。As the fullerenes used as the temperature sensing material in the present invention, C 60 having the chemical structure shown in FIG. 1 and C 70 having the chemical structure shown in FIG. 2 are known.
Both are available as commercial products. In the present invention, these C 60 and C 70 may be used alone or as a mixture of both. To manufacture a temperature sensor using these fullerenes, for example, a comb-shaped electrode is formed on a substrate of an electrically insulating material such as quartz or glass with a conductive material such as gold, platinum or copper, 2-1 fullerene over the entire surface
Evaporate at 5 nm. FIG. 3 is a perspective view showing a state in which the comb-shaped electrode 2 is formed on the insulating substrate 1 with a conductive material at this time. The shape of the electrode in the present invention is
The shape is not limited to such a comb shape, but may be any shape according to the purpose of use. Also, FIG.
FIG. 3 is a cross-sectional view showing a state in which a layer 3 of fullerenes is formed on a substrate 1 provided with this electrode 2. Next, a method of measuring temperature using the temperature sensor of the present invention will be described with reference to the drawings. FIG. 5 is a side view showing an example of an apparatus used for explaining this measuring method, in which a temperature sensor A is supported by a support plate 4 made of a heat conductive material, for example, copper, and a heat medium is used. The temperature of the liquid stopper 6 is adjusted to maintain the temperature sensor A at a predetermined temperature, and light is emitted through the through hole 5 of the support. The wavelength of light at this time is usually 6
00 nm and 400 nm are used, but other wavelengths may be used. Further, the heat medium liquid retainer 6 may be replaced with another temperature control means, for example, an electric heating means. In this way, the photoelectric quantity generated between the electrodes of the temperature sensor A by the irradiation of light is calibrated by the ammeter 8 connected to the electrodes via the conducting wire 7, and the measured photoelectric quantity between the electrodes corresponds to each temperature. A calibration curve of is prepared. Next, a temperature sensor is brought into contact with the object to be measured, light is irradiated, the photoelectric flow rate is measured in the same manner as above, and the temperature is obtained by comparing with the above calibration curve. Thus, when C 60 is used, it is 15 to 30.
Temperatures in the range of ° C can be measured with high accuracy. The same applies when a mixture of C 60 and C 70 is used.
【0006】[0006]
【実施例】次に、実施例により本発明をさらに詳細に説
明する。 実施例 縦25mm、横33mm、厚さ1mmの石英板上に金を、くし
形状に蒸着して、図3に示す電極を形成したのち、この
上にC60を厚さ5nmに蒸着し、温度センサーを作製し
た。この温度センサーを図5に示す装置に取付け、氷水
で温度調節しながら、温度を27℃から徐々に17℃に
まで降下させ、発生する光電流量を測定した。その結果
をグラフとして図6に示す。このグラフから明かなよう
に、光電流量の対数値は温度との関係で良好な直線性を
示している。従って、光電流量を読み取ることにより少
なくとも15〜30℃の温度範囲で高い精度の温度測定
ができることが分る。EXAMPLES Next, the present invention will be described in more detail by way of examples. Example Gold was vapor-deposited in the shape of a comb on a quartz plate having a length of 25 mm, a width of 33 mm, and a thickness of 1 mm to form the electrode shown in FIG. 3, and then C 60 was vapor-deposited thereon to a thickness of 5 nm. A sensor was made. This temperature sensor was attached to the apparatus shown in FIG. 5, and the temperature was gradually lowered from 27 ° C. to 17 ° C. while controlling the temperature with ice water, and the generated photoelectric flow rate was measured. The result is shown as a graph in FIG. As is clear from this graph, the logarithmic value of photoelectric flow shows good linearity in relation to temperature. Therefore, it can be seen that highly accurate temperature measurement can be performed in the temperature range of at least 15 to 30 ° C. by reading the photoelectric flow rate.
【0007】[0007]
【発明の効果】本発明は、温度のわずかな変化に対し
て、光電流量が著しく変化することから、電流計で光電
流量を読み取ることにより、高い精度での温度測定が可
能であり、微妙な温度制御を必要とする分野において好
適に利用することができる。According to the present invention, since the photoelectric flow rate remarkably changes in response to a slight change in temperature, it is possible to measure the temperature with high accuracy by reading the photoelectric flow rate with an ammeter. It can be preferably used in a field requiring temperature control.
【0008】[0008]
【図1】C60の化学構造を示す炭素結合図。FIG. 1 is a carbon bond diagram showing the chemical structure of C 60 .
【図2】C70の化学構造を示す炭素結合図。FIG. 2 is a carbon bond diagram showing the chemical structure of C 70 .
【図3】本発明の温度センサーの電極形状の1例を示す
斜面図。FIG. 3 is a perspective view showing an example of the electrode shape of the temperature sensor of the present invention.
【図4】本発明の温度センサーの1例を示す断面図。FIG. 4 is a sectional view showing an example of a temperature sensor of the present invention.
【図5】本発明方法を行うための装置の1例を示す側面
図。FIG. 5 is a side view showing an example of an apparatus for carrying out the method of the present invention.
【図6】C60の温度と光電流との関係を示すグラフ。FIG. 6 is a graph showing the relationship between C 60 temperature and photocurrent.
1..基板,2..電極,3..フラーレン層。 1. . Substrate, 2. . Electrodes, 3. . Fullerene layer.
Claims (3)
も1種を温度検知材料として用いたことを特徴とする温
度センサー。1. A temperature sensor comprising at least one kind selected from fullerenes as a temperature detecting material.
せ、その上にフラーレン類の中から選ばれた少なくとも
1種の薄膜層を形成させて成る請求項1記載の温度セン
サー。2. The temperature sensor according to claim 1, wherein a comb-shaped electrode is formed on an electrically insulating plate, and a thin film layer of at least one kind selected from fullerenes is formed thereon.
も1種を温度検知材料とし、これに光を照射し、発生し
た光電流量を測定し、その測定量をあらかじめ作成され
た光電流量と温度との間の相関データを対比させて、所
要の温度を求めることを特徴とする温度測定方法。3. At least one selected from fullerenes is used as a temperature detecting material, and this is irradiated with light to measure the generated photoelectric flow rate, and the measured amount is measured in advance with the photoelectric flow rate and temperature. A temperature measuring method, characterized in that a required temperature is obtained by comparing correlation data between the two.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3290954A JPH0769221B2 (en) | 1991-10-09 | 1991-10-09 | Temperature sensing material, temperature sensor and temperature measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3290954A JPH0769221B2 (en) | 1991-10-09 | 1991-10-09 | Temperature sensing material, temperature sensor and temperature measuring method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0599759A true JPH0599759A (en) | 1993-04-23 |
JPH0769221B2 JPH0769221B2 (en) | 1995-07-26 |
Family
ID=17762625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3290954A Expired - Lifetime JPH0769221B2 (en) | 1991-10-09 | 1991-10-09 | Temperature sensing material, temperature sensor and temperature measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0769221B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014003117A (en) * | 2012-06-18 | 2014-01-09 | Takaya Watanabe | Element-including fullerene thomson element |
JP2015511404A (en) * | 2012-02-24 | 2015-04-16 | オー−フレックス・テクノロジーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Thermoelectric element |
WO2021182907A1 (en) * | 2020-03-12 | 2021-09-16 | (주)아모레퍼시픽 | Sensor for measuring temperature change amount |
WO2023087057A1 (en) * | 2021-11-17 | 2023-05-25 | Caretech Services Pty Ltd | A temperature detector for a heat sensitive material |
-
1991
- 1991-10-09 JP JP3290954A patent/JPH0769221B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015511404A (en) * | 2012-02-24 | 2015-04-16 | オー−フレックス・テクノロジーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Thermoelectric element |
US9899588B2 (en) | 2012-02-24 | 2018-02-20 | O-Flexx Technologies Gmbh | Thermoelectric element |
JP2014003117A (en) * | 2012-06-18 | 2014-01-09 | Takaya Watanabe | Element-including fullerene thomson element |
WO2021182907A1 (en) * | 2020-03-12 | 2021-09-16 | (주)아모레퍼시픽 | Sensor for measuring temperature change amount |
WO2023087057A1 (en) * | 2021-11-17 | 2023-05-25 | Caretech Services Pty Ltd | A temperature detector for a heat sensitive material |
Also Published As
Publication number | Publication date |
---|---|
JPH0769221B2 (en) | 1995-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3175887B2 (en) | measuring device | |
Wilson et al. | Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3 ω mode and novel calibration strategies | |
JP2005331514A (en) | Nanocalorimeter device, related manufacture, and use | |
JP5395807B2 (en) | Thermal analysis method and apparatus | |
US6936496B2 (en) | Nanowire filament | |
JP3310430B2 (en) | Measuring device and measuring method | |
JPH07294541A (en) | Measurement device | |
JPH03225268A (en) | Direct heating type calorimetric instrument | |
JPH0599759A (en) | Temperature sensor | |
JP2003042985A (en) | Differential scanning calorimeter | |
CN109932356A (en) | A kind of measurement method of semiconductor carriers type judgement and forbidden bandwidth | |
Ding et al. | Design, fabrication, and characterization of a Pt/Au thin-film thermocouple array | |
KR100334131B1 (en) | Apparatus for measuring thermal properties of a material surface and applying to thermomechanical modification using a peltier tip | |
JP3468300B2 (en) | Method and apparatus for measuring thermal and electrical properties of thin film thermoelectric materials | |
JPH1026594A (en) | Thermal analysis element and its manufacture | |
JP2002340719A (en) | Vacuum gage using peltier element | |
KR101070998B1 (en) | Heat capacity measurement device at high temperature | |
Franke et al. | Quantifying DC differential scanning nanocalorimetry for determining heat capacities | |
JP2001165739A (en) | Operation method for measurement device | |
JPH0712771A (en) | Gas detector | |
Anderson et al. | High precision, semimicro, hydrostatic calorimeter for heats of mixing of liquids | |
US11674851B1 (en) | High-performance microbolometer using VOx, CNT and graphene for longwave infrared (LWIR) applications | |
JP3065862B2 (en) | Flow rate detecting device and flow rate detecting method | |
JPH01201147A (en) | Method and device for measuring heat conductivity and thermistor | |
JP2734846B2 (en) | Thin film thermophysical property measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |