JP2734846B2 - Thin film thermophysical property measurement method - Google Patents

Thin film thermophysical property measurement method

Info

Publication number
JP2734846B2
JP2734846B2 JP34233991A JP34233991A JP2734846B2 JP 2734846 B2 JP2734846 B2 JP 2734846B2 JP 34233991 A JP34233991 A JP 34233991A JP 34233991 A JP34233991 A JP 34233991A JP 2734846 B2 JP2734846 B2 JP 2734846B2
Authority
JP
Japan
Prior art keywords
thin film
thin
substrate
thin wire
thermophysical property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34233991A
Other languages
Japanese (ja)
Other versions
JPH05149900A (en
Inventor
修一 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP34233991A priority Critical patent/JP2734846B2/en
Publication of JPH05149900A publication Critical patent/JPH05149900A/en
Application granted granted Critical
Publication of JP2734846B2 publication Critical patent/JP2734846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、基板上に形成された薄
膜材料の熱物性値(熱伝導率,熱拡散率,熱容量)を測
定する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring thermophysical properties (thermal conductivity, thermal diffusivity, heat capacity) of a thin film material formed on a substrate.

【0002】[0002]

【従来の技術】薄膜の熱物性値の精密な測定方法とし
て、薄膜上に発熱源及び温度センサとして機能する細線
を形成し、該細線をパルス発生器によりステップ関数的
に通電加熱したときの細線の温度の時間変化を細線の抵
抗変化として観察することにより薄膜の熱物性値を測定
する方法が提案されている(特開平03−246351
号参照)。
2. Description of the Related Art As a precise method for measuring the thermophysical property value of a thin film, a thin wire which functions as a heat source and a temperature sensor is formed on the thin film, and the thin wire is heated by a pulse generator in stepwise function. There has been proposed a method of measuring the thermophysical property value of a thin film by observing the time change of the temperature as a resistance change of a thin wire (Japanese Patent Application Laid-Open No. 03-246351).
No.).

【0003】この方法では、細線の温度上昇ΔTの時間
変化を表す次の論理式と測定結果をフィッティングする
ことにより薄膜の熱物性値を測定する。
In this method, the thermophysical property value of a thin film is measured by fitting the following logical expression representing the time change of the temperature rise ΔT of the thin wire with the measurement result.

【0004】[0004]

【式1】 (Equation 1)

【0005】なお、(1)式において、λ,κは薄膜の
熱伝導率及び熱拡散率,qは細線の単位面積,単位時間
あたりの発熱量をそれぞれ表している。また、ρf,Cf
は薄膜の密度及び比熱を、ρ1,C1,dは細線の密度,
比熱及び厚さをそれぞれ示している。
In the equation (1), λ and κ represent the thermal conductivity and thermal diffusivity of the thin film, and q represents the heating value per unit area and unit time of the thin wire, respectively. Also, ρ f , C f
Is the density and specific heat of the thin film, ρ 1 , C 1 , and d are the densities of the fine wires,
Specific heat and thickness are shown, respectively.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、(1)
式は、基板の影響を無視した場合に成り立つ式であるの
で、細線に発生した熱が基板に伝わると成り立たなくな
ってしまう。その結果、熱伝導率の大きい薄膜や、膜厚
が非常に薄い薄膜のように、基板に早く熱が伝わる場合
には、フィッティングに用いることのできるデータの数
が限られてしまい、精度良く薄膜の熱物性値を測定する
ことが困難となっていた。
However, (1)
Since the equation holds when the influence of the substrate is neglected, it does not hold when the heat generated in the fine wire is transmitted to the substrate. As a result, when heat is quickly transmitted to the substrate, such as a thin film with a large thermal conductivity or a very thin film, the number of data that can be used for fitting is limited, and the thin film is accurately measured. It has been difficult to measure the thermophysical property value of the sample.

【0007】本発明の目的は、薄膜の熱伝導率が大きい
場合や、薄膜の膜厚が薄い場合にも、精度良く薄膜の熱
物性値を測定することのできる方法を提供することにあ
る。
An object of the present invention is to provide a method capable of accurately measuring a thermophysical property value of a thin film even when the thermal conductivity of the thin film is large or the thickness of the thin film is small.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明による薄膜熱物性値測定方法においては、基
板上に形成された薄膜上に細線を形成し、パルス発生器
により細線をステップ関数的に通電加熱し、該細線の温
度の時間的変化を細線の抵抗値の変化として観察して基
板上に形成された薄膜の熱物性値を測定する方法であっ
て、細線は、発熱源及び温度センサとして機能するもの
であり、薄膜を形成する基板の熱伝導率は、50W/m
・K以上である。
In order to achieve the above object, a thin-film thermophysical property measuring method according to the present invention comprises forming a thin line on a thin film formed on a substrate, and using a pulse generator to convert the thin line into a step function. A method of measuring the thermophysical property value of a thin film formed on a substrate by observing a temporal change in the temperature of the thin wire as a change in the resistance value of the thin wire, wherein the thin wire is a heat source and It functions as a temperature sensor, and the thermal conductivity of the substrate on which the thin film is formed is 50 W / m
-It is K or more.

【0009】[0009]

【作用】図1に示した試料において、細線を定常発熱さ
せた場合、基板の熱伝導率が50W/m・Kより大きい
場合、細線の温度変化は次の解析式で表すことができ
る。
In the sample shown in FIG. 1, when the thin wire is constantly heated, and when the thermal conductivity of the substrate is larger than 50 W / m · K, the temperature change of the thin wire can be expressed by the following analytical expression.

【0010】[0010]

【式2】 (Equation 2)

【0011】なお(2)式において、dfは、薄膜の膜
厚を示している。(2)式は、基板の影響も考慮してい
るので、細線で発生した熱が基板に伝わった後のデータ
もフィッティングに用いることができる。従って、薄膜
の熱伝導率が大きい場合や薄膜の膜厚が非常に薄い場合
にも、精度良く薄膜の熱物性値を測定することが可能と
なる。ただし、(2)式は、基板の熱伝導率が大きいこ
とにのみ成り立つ式であり、基板の熱伝導率が50W/
m・Kより小さいときには成立しない。
In the equation (2), d f indicates the thickness of the thin film. Since the expression (2) takes into account the influence of the substrate, the data after the heat generated in the fine wire is transmitted to the substrate can also be used for fitting. Therefore, even when the thermal conductivity of the thin film is large or the thickness of the thin film is very thin, the thermophysical property value of the thin film can be accurately measured. However, equation (2) is an equation that holds only when the thermal conductivity of the substrate is large, and the thermal conductivity of the substrate is 50 W /
It does not hold when it is smaller than m · K.

【0012】[0012]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図2は、本発明に係る薄膜熱物性地測定装
置の構成を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing a configuration of the thin-film thermophysical property measuring apparatus according to the present invention.

【0013】図1に示す細線1及び薄膜10は、細線1
を上層,薄膜10を下層とし、リソグラフィ等の方法に
よりパターニングされて基板11上に形成される。細線
1を加熱するための電圧2は、パルス発生器3によりス
テップ関数的に発生され、プローブ4より電圧供給用兼
電圧測定用パッド5を介して細線1に供給される。細線
部における電圧降下は、パッド5にプローブ4を接触さ
せることで、電圧測定装置7により測定され、電圧降下
を計算機8に取り込んで細線の抵抗変化を算出し、さら
に細線抵抗の温度計数より細線温度上昇を求める。
The thin wire 1 and the thin film 10 shown in FIG.
Is formed as an upper layer and the thin film 10 as a lower layer, and is patterned on a substrate 11 by a method such as lithography. A voltage 2 for heating the thin wire 1 is generated in a step function by a pulse generator 3, and is supplied from the probe 4 to the thin wire 1 via a voltage supply / voltage measurement pad 5. The voltage drop at the thin wire portion is measured by a voltage measuring device 7 by bringing the probe 4 into contact with the pad 5, and the voltage drop is taken into a computer 8 to calculate the change in the thin wire resistance. Find the temperature rise.

【0014】測定に際しては、140W/m・Kの熱伝
導率を有するシリコン基板11上にRFスパッタ法によ
り、厚さ50nmのZnS−SiO2薄膜10を形成
し、その上に線幅2μm,長さ200μm,厚さ80n
m,抵抗50Ωのアルミ細線1を形成した試料を用い
た。細線1の発熱量が1m当たり400Wとなる条件で
細線1に電圧を印加し、細線の温度変化を測定した。結
果を図3に示す。
In the measurement, a 50 nm thick ZnS-SiO 2 thin film 10 is formed on a silicon substrate 11 having a thermal conductivity of 140 W / m · K by RF sputtering, and a line width of 2 μm and a length of 2 nm is formed thereon. 200 μm thick, 80 n thick
A sample on which an aluminum thin wire 1 having a resistance of 50 m and a resistance of 50Ω was formed was used. A voltage was applied to the thin wire 1 under the condition that the calorific value of the thin wire 1 was 400 W per 1 m, and the temperature change of the thin wire 1 was measured. The results are shown in FIG.

【0015】(2)式は、基板の影響も考慮しているの
で、1μsecまでの測定データをフィッティングに用
いることができ、精度良く熱物性値を求めることができ
る。図3の測定結果と(2)式とのフィッティングから
求められたZnS−SiO2の熱物性値は、熱伝導率が
0.5W/m・K,熱容量が2.6×106J/m3Kで
あった。
Since the equation (2) also takes into account the influence of the substrate, measurement data up to 1 μsec can be used for fitting, and the thermophysical property value can be obtained with high accuracy. Measurement results (2) thermophysical properties of ZnS-SiO 2 obtained from fitting the type of FIG. 3 has a thermal conductivity of 0.5 W / m · K, heat capacity 2.6 × 10 6 J / m It was 3 K.

【0016】[0016]

【発明の効果】以上説明したように、熱伝導率が50W
/m・Kより大きいSiやAl,Au,Cu,Zn等の
基板を用いることにより、熱伝導率の大きな薄膜や、膜
厚の非常に薄い薄膜の熱物性値を精度良く測定すること
が可能となる。
As described above, the thermal conductivity is 50 W
By using substrates made of Si, Al, Au, Cu, Zn, etc., which are larger than / m · K, it is possible to accurately measure the thermophysical properties of thin films having a large thermal conductivity or very thin films. Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る熱物性測定用試料の断面図であ
る。
FIG. 1 is a cross-sectional view of a sample for measuring thermophysical properties according to the present invention.

【図2】本発明に係る熱物性値測定装置の構成を示す図
である。
FIG. 2 is a diagram showing a configuration of a thermophysical property measuring device according to the present invention.

【図3】本発明による細線の温度変化の測定結果であ
る。
FIG. 3 is a measurement result of a temperature change of a thin wire according to the present invention.

【符号の説明】[Explanation of symbols]

1 細線 2 電圧 3 パルス発生器 7 電圧測定装置 10 薄膜 11 基板 DESCRIPTION OF SYMBOLS 1 Thin wire 2 Voltage 3 Pulse generator 7 Voltage measuring device 10 Thin film 11 Substrate

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に形成された薄膜上に細線を形成
し、パルス発生器により細線をステップ関数的に通電加
熱し、該細線の温度の時間的変化を細線の抵抗値の変化
として観察して基板上に形成された薄膜の熱物性値を測
定する方法であって、 細線は、発熱源及び温度センサとして機能するものであ
り、 薄膜を形成する基板の熱伝導率は、50W/m・K以上
であることを特徴とする薄膜熱物性値測定方法。
1. A thin wire is formed on a thin film formed on a substrate, and the thin wire is electrically heated by a pulse generator in a step function, and a temporal change in the temperature of the thin wire is observed as a change in a resistance value of the thin wire. And measuring the thermophysical properties of the thin film formed on the substrate, wherein the thin line functions as a heat source and a temperature sensor, and the thermal conductivity of the substrate forming the thin film is 50 W / m A method for measuring thin-film thermophysical properties, characterized by being at least K.
JP34233991A 1991-11-30 1991-11-30 Thin film thermophysical property measurement method Expired - Lifetime JP2734846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34233991A JP2734846B2 (en) 1991-11-30 1991-11-30 Thin film thermophysical property measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34233991A JP2734846B2 (en) 1991-11-30 1991-11-30 Thin film thermophysical property measurement method

Publications (2)

Publication Number Publication Date
JPH05149900A JPH05149900A (en) 1993-06-15
JP2734846B2 true JP2734846B2 (en) 1998-04-02

Family

ID=18352965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34233991A Expired - Lifetime JP2734846B2 (en) 1991-11-30 1991-11-30 Thin film thermophysical property measurement method

Country Status (1)

Country Link
JP (1) JP2734846B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6923570B2 (en) * 2003-09-11 2005-08-02 Hewlett-Packard Development Company, L.P. Thermal interface material characterizing system
CN111795995A (en) * 2020-06-15 2020-10-20 上海超碳石墨烯产业技术有限公司 System and method for testing heat conductivity of ultrathin film heat dissipation material

Also Published As

Publication number Publication date
JPH05149900A (en) 1993-06-15

Similar Documents

Publication Publication Date Title
Olson et al. The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat capacity measurements of ultrathin films
US5411600A (en) Ultrathin film thermocouples and method of manufacture
Völklein et al. Measuring methods for the investigation of in‐plane and cross‐plane thermal conductivity of thin films
Wilson et al. Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3 ω mode and novel calibration strategies
US5291142A (en) Method and apparatus for measuring the resistance of conductive materials due to electromigration
Bosse et al. Nanothermal characterization of amorphous and crystalline phases in chalcogenide thin films with scanning thermal microscopy
Okuda et al. A novel method for measuring the thermal conductivity of submicrometre thick dielectric films
JP2734846B2 (en) Thin film thermophysical property measurement method
JP3687030B2 (en) Micro surface temperature distribution measurement method and apparatus therefor
Nandihalli A short account of thermoelectric film characterization techniques
Borca-Tasciuc et al. Experimental techniques for thin-film thermal conductivity characterization
JP2009105132A (en) Thermoelectric characteristic measuring sensor
KR100334131B1 (en) Apparatus for measuring thermal properties of a material surface and applying to thermomechanical modification using a peltier tip
JP2734831B2 (en) Thin film thermophysical property measurement method
JP2789882B2 (en) Thin film thermophysical property measurement method
JP3468300B2 (en) Method and apparatus for measuring thermal and electrical properties of thin film thermoelectric materials
JP2570478B2 (en) Thin film thermal conductivity measurement method
JPH0769221B2 (en) Temperature sensing material, temperature sensor and temperature measuring method
Burzo et al. Measurement of thermal conductivity of nanofluids and thermal interface materials using the laser-based transient thermoreflectance method
Barbosa III et al. Spatially and temporally resolved thermal imaging of cyclically heated interconnects by use of scanning thermal microscopy
JPH04273144A (en) Thin film temperature conductivity measuring system
JPH09257730A (en) Method and device for measuring heat resistance coefficient
SU808925A1 (en) Method of article thermotesting
Lugo et al. Methodology for thermal diffusivity determination of metallic films at room temperature
JPH04273049A (en) Method of measuring thin film thermal property value