JPH01201147A - Method and device for measuring heat conductivity and thermistor - Google Patents

Method and device for measuring heat conductivity and thermistor

Info

Publication number
JPH01201147A
JPH01201147A JP2637388A JP2637388A JPH01201147A JP H01201147 A JPH01201147 A JP H01201147A JP 2637388 A JP2637388 A JP 2637388A JP 2637388 A JP2637388 A JP 2637388A JP H01201147 A JPH01201147 A JP H01201147A
Authority
JP
Japan
Prior art keywords
thermistor
single crystal
thermal conductivity
sample
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2637388A
Other languages
Japanese (ja)
Other versions
JP2567441B2 (en
Inventor
Yukihiro Ota
進啓 太田
Kazuo Tsuji
辻 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63026373A priority Critical patent/JP2567441B2/en
Publication of JPH01201147A publication Critical patent/JPH01201147A/en
Application granted granted Critical
Publication of JP2567441B2 publication Critical patent/JP2567441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily measure the heat conductivity of a body to be measured by bringing the heated thermistor made of diamond single crystal into contact with the body to be measured and measuring the heat conductivity of the body to be measured from variation in resistance due to the temperature drop of the thermistor. CONSTITUTION:The thermistor made of the diamond single crystal is applied with a DC voltage from a constant voltage power source 8 to generate heat and while the value of a current flowing to the thermistor 6 enters a constant stable state, an elevation member 5 is lowered to contact a sample 16. This contacting generate heat flux proportional to the heat conductivity of the sample 16 and the temperature of the thermistor 6 drops in proportion to the heat flux, so that its resistance value varies. This resistance value variation is read by a current variation measuring instrument 9 as the current value variation of a circuit and compared with an existent sample to determine the heat conductivity of the sample 16, thereby easily and accurately measuring the heat conductivity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱伝導率の測定方法、M1定装置およびサー
ミスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for measuring thermal conductivity, an M1 constant device, and a thermistor.

[従来の技術および発明が解決しようとする課題]熱伝
導率の測定には、大別して、動的測定法と静的測定法が
ある。静的測定法には、さらに、絶対測定法と比較測定
法とがある。
[Prior Art and Problems to be Solved by the Invention] Thermal conductivity measurements can be roughly divided into dynamic measurement methods and static measurement methods. Static measurement methods further include absolute measurement methods and comparative measurement methods.

動的M1定法とは、熱拡散率を測定して熱伝導率を算出
する方法で、たとえばレーザフラッシュ法が知られてい
る。この測定法は、原理的には簡単であるが、実際の測
定上困難な点も多く、また1測定試料の形状が限られ小
さいものでは測定できないという問題点がある。
The dynamic M1 method is a method of calculating thermal conductivity by measuring thermal diffusivity, and for example, the laser flash method is known. Although this measurement method is simple in principle, there are many difficulties in actual measurement, and there is also the problem that the shape of one measurement sample is limited and measurement cannot be performed on small objects.

絶対測定法とは、棒状あるいは板状の試料の一端に発熱
体を取付けてi!i度勾配を生じさせ、試料各点の78
度を測定してその勾配を決定し、熱流の測定と合わせて
熱伝導率を算出するものである。
The absolute measurement method involves attaching a heating element to one end of a rod-shaped or plate-shaped sample. 78 of each sample point to produce an i degree gradient.
The temperature is measured to determine its slope, and this is combined with the measurement of heat flow to calculate thermal conductivity.

この測定法においても、測定の難しさ、試料形状の限定
という問題が存在する。
This measurement method also has problems such as difficulty in measurement and limitations on sample shape.

これらに対し、熱伝導率既知の物質と比較する比較測定
法は、測定か簡便であるためよく使用されている。
On the other hand, comparative measurement methods that compare materials with known thermal conductivity are often used because they are easy to measure.

比較測定法としては、たとえば米国特許節3゜611.
786号に示されるように、加熱されたプローブの先に
付けたダイヤモンドチップを被測定物にある圧力で押し
つけ、プローブと彼M1定物の支持台との間の温度差か
ら彼M]定物の熱伝導率を推定する方法がある。この方
法では、プローブと支持台との温度を共に測定する必要
がある。しかも、プローブとダイヤモンドチップとの間
の接触熱抵抗も問題とちる。
Comparative measurement methods include, for example, U.S. Patent Section 3.611.
As shown in No. 786, the diamond tip attached to the tip of a heated probe is pressed against the object to be measured with a certain pressure, and the temperature difference between the probe and the support of the M1 constant is measured. There is a method to estimate the thermal conductivity of In this method, it is necessary to measure the temperature of both the probe and the support. Furthermore, contact thermal resistance between the probe and the diamond tip also poses a problem.

また、米国特許節885,502号には、同様に熱プロ
ーブを用いて熱伝導率を測定する方法が開示されている
。この方法は、抵抗ブリッジ回路の中に組込まれたサー
ミスタを熱プローブとして使用し、サーミスタを試料に
接触させた際の変化を抵抗変化として測定する方法であ
る。
US Patent No. 885,502 also discloses a method of measuring thermal conductivity using a thermal probe. This method uses a thermistor built into a resistance bridge circuit as a thermal probe, and measures changes in resistance when the thermistor is brought into contact with a sample.

さらに、特開昭56−500,100号には、同様の原
理に基づき、熱源となるサーミスタと温度測定用サーミ
スタとを設ける方法が開示されている。しかし、この方
法においても、サーミスタ部と測定端子部との間の接続
熱抵抗が問題となり、試料の熱的情報が精度良く測定で
きない。また、測定端子部の塑性変形や摩耗などが原因
となって再現性良く測定できない。
Furthermore, Japanese Patent Laid-Open No. 56-500,100 discloses a method of providing a thermistor serving as a heat source and a temperature measuring thermistor based on the same principle. However, even in this method, the connection thermal resistance between the thermistor section and the measurement terminal section poses a problem, making it impossible to accurately measure thermal information of the sample. Furthermore, plastic deformation or wear of the measurement terminal portion may cause poor reproducibility in measurement.

本発明の目的は、極めて簡便にかつ精度良く熱伝導率を
測定でき、かつ試料の形状・大きさにほぼ無関係に被測
定物の熱伝導率を測定できるようにすることにある。
An object of the present invention is to be able to measure thermal conductivity extremely simply and accurately, and to be able to measure the thermal conductivity of an object to be measured almost independently of the shape and size of the sample.

[課題を解決するための手段] 本発明に係る熱伝導率の測定方法は、加熱されたダイヤ
モンド単結晶からなるサーミスタを被測定物に接触させ
、その接触の際に生じるサーミスタの温度降ドによるサ
ーミスタの抵抗変化を測定し、その抵抗変化の大きさに
より1)1111定物の熱伝導率を測定する方法である
[Means for Solving the Problems] The method for measuring thermal conductivity according to the present invention involves bringing a thermistor made of a heated diamond single crystal into contact with an object to be measured, and measuring the temperature drop of the thermistor that occurs during the contact. This method measures the resistance change of the thermistor and measures the thermal conductivity of the 1111 constant object based on the magnitude of the resistance change.

本発明に係る熱伝導率測定装置は、被測定物に接触させ
られるダイヤモンド単結晶からなるサーミスタと、前記
i、、1−ミスタを加熱するための加熱手段と、前記す
〜ミス7の抵抗変化を測定するための抵抗変化測定手段
とを含むものである。
The thermal conductivity measuring device according to the present invention includes a thermistor made of a diamond single crystal that is brought into contact with an object to be measured, a heating means for heating the i, 1-mister, and the resistance change of the and resistance change measuring means for measuring.

本発明に係るサーミスタは、IIb型ダイヤモンド単結
晶、lb型とIIb型とが複合したダイヤモンド単結晶
およびUa型とIIb型とか複合したダイヤモンド単結
晶の群から選ばれた1つのダ・fヤモンド単結晶からな
るサーミスタ本体と、前記サーミスタ本体のうち少なく
ともIIb型単結晶の部分に形成された電圧印加用の1
対の電極とを含むものである。
The thermistor according to the present invention is a diamond single crystal of type IIb, a composite diamond single crystal of type lb and type IIb, and a composite diamond single crystal of type Ua and type IIb. a thermistor main body made of a crystal; and a voltage applying unit formed on at least a IIb type single crystal portion of the thermistor main body.
and a counter electrode.

[作用コ 加熱された状態のサーミスタを被測定物に接触させると
、被測定物の熱伝導率に比例して熱流束が生じる。さら
に、この熱流束の大きさに比例してサーミスタの温度が
降下し、その抵抗値が変化する。この抵抗値変化を測定
し、その測定値に基づいて既知の試料と比較することに
より彼Wl定物の熱伝導率を決定する。サーミスタを構
成するダイヤモンドは物質中最高の熱伝導率を有してい
るので、サーミスタの温度勾配は極めて小さくなる。
[Operation] When a heated thermistor is brought into contact with an object to be measured, a heat flux is generated in proportion to the thermal conductivity of the object to be measured. Furthermore, the temperature of the thermistor decreases in proportion to the magnitude of this heat flux, and its resistance value changes. The thermal conductivity of the Wl constant is determined by measuring this change in resistance value and comparing it with a known sample based on the measured value. Since the diamond that constitutes the thermistor has the highest thermal conductivity of all materials, the temperature gradient of the thermistor is extremely small.

そして、ダイヤモンドはほぼ完全弾性体であると考えら
れるので、被測定物にサーミスタを接触させたときのサ
ーミスタにかかる応力と接触面積とは再現性良く対応す
る。この結果、極めて簡便に精度良く熱伝導率を測定で
き、かつ試料の形状・大きさに関係なく熱伝導率が測定
できる。
Since diamond is considered to be an almost perfectly elastic body, the stress applied to the thermistor when the thermistor is brought into contact with the object to be measured corresponds to the contact area with good reproducibility. As a result, the thermal conductivity can be measured extremely easily and accurately, and the thermal conductivity can be measured regardless of the shape and size of the sample.

【実施例] 本発明に係る熱伝導率Mj定装置の一実施例を第1図に
示す。
[Example] FIG. 1 shows an example of a device for determining thermal conductivity Mj according to the present invention.

第1図において、真空チャンバ1には、配管2を介して
、真空チャンバ1内を真空状態にするためのロータリポ
ンプ3が接続されている。真空チャンバ1は、このロー
タリポンプ3によって、たとえば約lXl0−3Tor
rの真空度に保たれ得るようになっている。
In FIG. 1, a rotary pump 3 is connected to a vacuum chamber 1 via a pipe 2 to bring the inside of the vacuum chamber 1 into a vacuum state. The vacuum chamber 1 is heated to about 1X10-3 Tor by this rotary pump 3, for example.
The vacuum level can be maintained at r.

真空チャンバ1内には、その下部に試料台4が配置され
ている。試料台4の上方には昇降部材5が配置されてい
る。昇降部材5の下端部にはサーミスタ6が取付けられ
ている。また昇降部材5には、サーミスタ6に適度な荷
重をかけるためのウェイト7が搭載されている。
A sample stage 4 is arranged in the vacuum chamber 1 at its lower part. An elevating member 5 is arranged above the sample stage 4. A thermistor 6 is attached to the lower end of the lifting member 5. Further, a weight 7 is mounted on the elevating member 5 for applying an appropriate load to the thermistor 6.

真空チャンバ1の外部には、定電圧電源8と電流変化計
測装置9とが配置され、両者はサーミスタ6に直列に電
気的に接続されている。電流変化計測装置9は、たとえ
ば1Ωの抵抗10と、それに並列に接続された電流計付
レコーダ11とを備えている。
A constant voltage power source 8 and a current change measuring device 9 are arranged outside the vacuum chamber 1, and both are electrically connected to the thermistor 6 in series. The current change measuring device 9 includes a resistor 10 of, for example, 1Ω, and a recorder 11 with an ammeter connected in parallel to the resistor 10.

前記サーミスタ6は、第2図に示すように、概ね円柱状
のサーミスタ本体12と、サーミスタ本体12の側面部
に形成された1対の電極13.14とを有している。サ
ーミスタ本体12は下端部に、半球状に下方に突出する
半球状部分12aを有している。サーミスタ本体12は
、たとえば、直径1mm、高さ1.5mmの大きさを有
しており、半球部分12aは半径Q、5mmの球面状に
なっている。また、サーミスタ本体12はIIb型ダイ
ヤモンド単結晶から構成されている。
As shown in FIG. 2, the thermistor 6 has a generally cylindrical thermistor body 12 and a pair of electrodes 13 and 14 formed on the side surfaces of the thermistor body 12. The thermistor body 12 has a hemispherical portion 12a at its lower end that protrudes downward in a hemispherical shape. The thermistor body 12 has, for example, a diameter of 1 mm and a height of 1.5 mm, and the hemispherical portion 12a has a spherical shape with a radius Q of 5 mm. Further, the thermistor body 12 is made of a IIb type diamond single crystal.

前記電極13.14としては、IIb型ダイヤモンドと
オーミックに接合可能な金属が使用される。
As the electrodes 13 and 14, a metal that can be ohmically bonded to type IIb diamond is used.

金属膜としての電極13.14を作成するには、真空蒸
着法、スパッタリング法などの物理的薄膜形成法や、め
っき法などの化学的形成法が採用される。画電極13.
14にはそれぞれ1対のリード線15が半田付けによっ
て接続されている。両リード線15は、たとえば細い銅
線である。両リード線15の一方は、第1図に示す定電
圧電源8に接続され、他方は電流変化計測装置9に接続
されている。
In order to create the electrodes 13 and 14 as metal films, a physical thin film forming method such as a vacuum evaporation method or a sputtering method, or a chemical forming method such as a plating method is employed. Picture electrode 13.
A pair of lead wires 15 are connected to each of the wires 14 by soldering. Both lead wires 15 are, for example, thin copper wires. One of both lead wires 15 is connected to the constant voltage power supply 8 shown in FIG. 1, and the other is connected to the current change measuring device 9.

なお、前記試料台4上には、試料16が載置される。こ
の試料16は、たとえば、na型ダイヤモンド、Ia型
ダイヤモンドおよびIb型ダイヤモンドである。また、
試料16は、たとえば、3mmX 3mmX2mmの大
きさの直方体である。
Note that a sample 16 is placed on the sample stage 4. This sample 16 is, for example, an na-type diamond, a type Ia diamond, and a type Ib diamond. Also,
The sample 16 is, for example, a rectangular parallelepiped with dimensions of 3 mm x 3 mm x 2 mm.

次に、前記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

定電圧電源8によりサーミスタ6に直流電圧を印加する
とサーミスタ6は加熱され、しばらくするとサーミスタ
6を流れる電流値は一定値に安定する。この加熱された
状態のサーミスタ6を、昇降部材5を下降させることに
よって試料16に接触させる。この接触によって、試料
16の熱伝導率に比例した熱流束が生じる。さらに、こ
の熱流束の大きさに比例してサーミスタ6の温度が降下
し、その抵抗値が変化する。この抵抗値変化を、回路の
電流値変化として電流変化計測装置9で読取る。この電
流値変化を既知の試料と比較することにより、試料6の
熱伝導率を決定することができる。
When a DC voltage is applied to the thermistor 6 by the constant voltage power supply 8, the thermistor 6 is heated, and after a while, the value of the current flowing through the thermistor 6 stabilizes at a constant value. The heated thermistor 6 is brought into contact with the sample 16 by lowering the elevating member 5. This contact creates a heat flux that is proportional to the thermal conductivity of the sample 16. Further, the temperature of the thermistor 6 decreases in proportion to the magnitude of this heat flux, and its resistance value changes. This change in resistance value is read by a current change measuring device 9 as a change in current value of the circuit. By comparing this current value change with a known sample, the thermal conductivity of the sample 6 can be determined.

このような場合に、試料16と接触するサーミスタ6の
熱伝導が良いことが必要となる。サーミスタ6の部分で
大きい熱抵抗があると、精度良く試料16の熱伝導率を
検出しにくくなる。また、サーミスタ6が塑性変形しや
すいものであれば、多数の試料16を測定している間に
接触面積が変化して熱流束に影響を与えるため、安定し
た測定ができなくなる。さらに、従来の13aTiO,
系の材料を用いたサーミスタの場合には、その温度変化
と被測定物の熱伝導率との関係は必ずしも直線関係とな
らず、何らかの補正を必要とする。
In such a case, it is necessary that the thermistor 6 in contact with the sample 16 has good thermal conductivity. If there is a large thermal resistance in the thermistor 6, it becomes difficult to accurately detect the thermal conductivity of the sample 16. Further, if the thermistor 6 is easily plastically deformed, the contact area changes while measuring a large number of samples 16, affecting the heat flux, making stable measurement impossible. Furthermore, conventional 13aTiO,
In the case of a thermistor using a material of the same type, the relationship between the temperature change and the thermal conductivity of the object to be measured is not necessarily a linear relationship and requires some kind of correction.

ところが、この実施例ではサーミスタ6のサーミスタ本
体12としてIIb型ダイヤモンド単結晶を用いている
。ダイヤモンドは物質中最高の熱伝導率を有しているの
で、サーミスタ6の温度勾配は極めて小さくなる。また
、この実施例におけるサーミスタ6はプローブを兼ねて
いるので、熱伝導率の低い接続物質(半田など)をサー
ミスタとプローブとの間に介在させる必要がなく、高い
感度を得ることができる。
However, in this embodiment, type IIb diamond single crystal is used as the thermistor body 12 of the thermistor 6. Since diamond has the highest thermal conductivity among materials, the temperature gradient in the thermistor 6 is extremely small. Furthermore, since the thermistor 6 in this embodiment also serves as a probe, there is no need to interpose a connecting substance with low thermal conductivity (such as solder) between the thermistor and the probe, and high sensitivity can be obtained.

ダイヤモンドはほぼ完全弾性体であると考えられるので
、サーミスタ6にかかる応力と接触面積とは再現性良く
対応する。すなわち、サーミスタ6に一定の荷重をかけ
ることにより、サーミスタ6と試料16との接触面積が
絶えず一定となる。
Since diamond is considered to be a nearly perfectly elastic body, the stress applied to the thermistor 6 corresponds to the contact area with good reproducibility. That is, by applying a constant load to the thermistor 6, the contact area between the thermistor 6 and the sample 16 remains constant.

しかも、サーミスタ6の先端部の形状を球面状にしであ
るので、たとえばサーミスタ本体12の直径が1mmの
場合には、必要な荷重が数十g程度であり、特別な加珪
装置は不要である。
Moreover, since the tip of the thermistor 6 is spherical, for example, if the thermistor body 12 has a diameter of 1 mm, the required load is about several tens of grams, and a special siliconizing device is not required. .

さらに、IIb型ダイヤモンドはNTC(Negati
ve−Temperature−Coefficien
t)の性質をqしており、温度が低上すると抵抗が1.
かる。まfコ、その温度変化と試料16の熱伝導率とが
良い直線関係にあることが確認されており、補正のため
の特別の回路は不要である。
Furthermore, type IIb diamonds are NTC (Negati)
ve-Temperature-Coefficien
The property of t) is q, and as the temperature decreases, the resistance decreases to 1.
Karu. It has been confirmed that there is a good linear relationship between the temperature change and the thermal conductivity of the sample 16, and a special circuit for correction is not required.

前記第1図および第2図に示す熱伝導率測定装置を用い
て、la型ダイヤモンド、Ila型ダイヤモンドおよび
Ib型ダイヤモンドからなる試料ISの熱伝導率をMj
定した結果を第3図に示す。第3図から明らかなように
、前記実施例に係る熱伝導率測定装置によって得られた
値は、各ダイヤモンドの既知の熱伝導率と良い一致を示
した。
Using the thermal conductivity measurement apparatus shown in FIGS. 1 and 2, the thermal conductivity of the sample IS consisting of la-type diamond, Ila-type diamond, and Ib-type diamond was determined by Mj
The determined results are shown in Figure 3. As is clear from FIG. 3, the values obtained by the thermal conductivity measuring device according to the example described above showed good agreement with the known thermal conductivity of each diamond.

[他の実施例] (a)  サーミスタ6としては、サーミスタ本体12
の全体がIIb型ダイヤモンド単結晶でのみ構成されて
いるものに限られることはなく、たとえばIb型とII
b型とが複合したダイヤモンド単結晶や、IIa型とI
Ib型とが複合したダイヤモンド単結晶を用いて構成す
ることもできる。これら複合型の場合には、電極13.
14が設けられる円柱状部分をIIb型のダイヤモンド
単結晶とし、半球状部分12aをIb型あるいはIIa
型のダイヤモンド単結晶とすることが好ましい。
[Other Examples] (a) As the thermistor 6, the thermistor body 12
It is not limited to the case where the whole is composed only of type IIb diamond single crystal, for example, type Ib and type II
Diamond single crystals are a composite of type b and type IIa and I.
It can also be constructed using a diamond single crystal composite with type Ib. In the case of these composite types, electrode 13.
The cylindrical portion 14 provided with diamond single crystal is of type IIb, and the hemispherical portion 12a is of type Ib or IIa.
It is preferable to use a type diamond single crystal.

このような複合型のダイヤモンド単結晶を製造する場合
には、IIa型あるいはlb型ダイヤモンド単結晶上に
IIb型ダイヤモンド単結晶を成長させたり、あるいは
、■b型ダイヤモンド単結晶−Fにna型あるいはIb
型ダイヤモンド単結晶を成長させることにより製造する
ことができる。
When producing such a composite type diamond single crystal, a type IIb diamond single crystal is grown on a type IIa or lb type diamond single crystal, or a type IIb diamond single crystal is grown on a type B diamond single crystal -F. Ib
It can be manufactured by growing a diamond single crystal.

このような複合型ダイヤモンド単結晶をサーミスタ6と
し、前記試料16の熱伝導率を測定したところ、前記測
定結果とほぼ同様の結果が得られた。
When such a composite diamond single crystal was used as the thermistor 6 and the thermal conductivity of the sample 16 was measured, almost the same results as the above measurement results were obtained.

(b)  前記実施例では、定電圧電i1j!8からの
電流をサーミスタ6の加熱のためと抵抗/iI+]定の
ための両方に利用したが、加熱手段と抵抗測定手段とを
別々に設けて、それぞれ別の回路によりサーミスタ6の
加熱とサーミスタ6の抵抗測定とを行なう構成を採用し
、でもよい。
(b) In the above embodiment, constant voltage electricity i1j! The current from the thermistor 6 is used both for heating the thermistor 6 and for determining the resistance /iI+], but the heating means and the resistance measuring means are provided separately, and separate circuits are used to heat the thermistor 6 and to measure the resistance. 6 may be adopted.

(c)  前記実施例では電流変化計aJ装置9により
電流変化を、’1?1定し、そのIJI定値に基づいて
熱伝導率を求めたが、廿−ミスタ6と並列に抵抗を接続
し、その抵抗間のfi II変化を計測し、その計測結
果から熱伝導率を求める構成としてもよい。
(c) In the above embodiment, the current change was fixed by the current change meter aJ device 9 to 1?1, and the thermal conductivity was determined based on the constant IJI value. , the change in fi II between the resistances may be measured, and the thermal conductivity may be determined from the measurement results.

(d) 試料16と”−では、非常に高範囲な物質が採
用され得る。特に、本発明に係るサーミスタは測定精度
が高いので、窒化硼素や酸化ベリリウムなどの熱伝導率
−′、+4めて大きいものを測定するのに適している。
(d) For samples 16 and ``-'', a very wide range of materials can be used.In particular, since the thermistor according to the present invention has high measurement accuracy, materials with thermal conductivities of -', +4, such as boron nitride and beryllium oxide, can be used. Suitable for measuring large objects.

[発明の効果] 以上説明し5た4′、“)−〇、本発明に係る熱伝導率
の1制定方法、測定装置およびサーミスタによれば、極
めて簡便に精度良く熱伝導率を測定でき、かつ試料の形
状・入きさと関係なく熱伝導率が測定できるようになる
。このため、本発明は、工業上の生産管理やダイヤモン
ドの鑑定等の分野で効果的に実施され得る。
[Effects of the Invention] As explained above, according to the method for determining thermal conductivity, the measuring device, and thermistor according to the present invention, thermal conductivity can be measured extremely easily and with high accuracy. In addition, thermal conductivity can be measured regardless of the shape and depth of the sample.Therefore, the present invention can be effectively implemented in fields such as industrial production control and diamond appraisal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、熱伝導率測定装置の一実施例の概略図である
。第2図は、サーミスタの側面図である。 ′243図は、熱伝導率の測定結果を示すグラフである
。 6はサーミスタ、8は定電圧電源、9は計測装置、13
.14は電極である。 第1図 第3図 ↑
FIG. 1 is a schematic diagram of an embodiment of a thermal conductivity measuring device. FIG. 2 is a side view of the thermistor. Figure '243 is a graph showing the measurement results of thermal conductivity. 6 is a thermistor, 8 is a constant voltage power supply, 9 is a measuring device, 13
.. 14 is an electrode. Figure 1 Figure 3 ↑

Claims (3)

【特許請求の範囲】[Claims] (1)加熱されたダイヤモンド単結晶からなるサーミス
タを被測定物に接触させ、その接触の際に生じるサーミ
スタの温度降下によるサーミスタの抵抗変化を測定し、
その抵抗変化の大きさにより被測定物の熱伝導率を測定
する熱伝導率測定方法。
(1) A thermistor made of a heated single crystal diamond is brought into contact with the object to be measured, and the change in resistance of the thermistor due to the temperature drop of the thermistor that occurs during the contact is measured,
A thermal conductivity measurement method that measures the thermal conductivity of the object to be measured based on the magnitude of the resistance change.
(2)被測定物に接触させられるダイヤモンド単結晶か
らなるサーミスタと、 前記サーミスタを加熱するための加熱手段と、前記サー
ミスタの抵抗変化を測定するための抵抗変化測定手段と
、 を含む熱伝導率測定装置。
(2) Thermal conductivity including: a thermistor made of a diamond single crystal that is brought into contact with an object to be measured; a heating means for heating the thermistor; and a resistance change measuring means for measuring a change in resistance of the thermistor. measuring device.
(3)IIb型ダイヤモンド単結晶、 I b型とIIb型と
が複合したダイヤモンド単結晶およびIIa型とIIb型と
が複合したダイヤモンド単結晶の群から選ばれた1つの
ダイヤモンド単結晶からなるサーミスタ本体と、 前記サーミスタ本体のうち少なくともIIb型ダイヤモン
ド単結晶部分に形成された電圧印加用の1対の電極と、 を含むサーミスタ。
(3) A thermistor body made of one diamond single crystal selected from the group of IIb type diamond single crystal, Ib type and IIb type composite diamond single crystal, and IIa type and IIb type composite diamond single crystal. A thermistor comprising: a pair of electrodes for voltage application formed on at least a IIb type diamond single crystal portion of the thermistor body.
JP63026373A 1988-02-05 1988-02-05 Measuring method of thermal conductivity, measuring device and thermistor Expired - Fee Related JP2567441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63026373A JP2567441B2 (en) 1988-02-05 1988-02-05 Measuring method of thermal conductivity, measuring device and thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63026373A JP2567441B2 (en) 1988-02-05 1988-02-05 Measuring method of thermal conductivity, measuring device and thermistor

Publications (2)

Publication Number Publication Date
JPH01201147A true JPH01201147A (en) 1989-08-14
JP2567441B2 JP2567441B2 (en) 1996-12-25

Family

ID=12191709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63026373A Expired - Fee Related JP2567441B2 (en) 1988-02-05 1988-02-05 Measuring method of thermal conductivity, measuring device and thermistor

Country Status (1)

Country Link
JP (1) JP2567441B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0452141A2 (en) * 1990-04-12 1991-10-16 De Beers Industrial Diamond Division (Proprietary) Limited The determination of a characteristic of a medium
JPH07146265A (en) * 1993-11-24 1995-06-06 Nec Corp Apparatus and method for measuring heat conductivity
US20110268148A1 (en) * 2008-08-20 2011-11-03 King William P Device for Calorimetric Measurement
CN104914129A (en) * 2015-04-29 2015-09-16 河北普莱斯曼金刚石科技有限公司 Diamond film thermal conductivity detection method
WO2017073479A1 (en) * 2015-10-30 2017-05-04 三菱電機株式会社 Thermal conductivity measurement apparatus and thermal conductivity measurement method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611786A (en) 1969-05-23 1971-10-12 Bell Telephone Labor Inc Measurement of thermal conductivity of hard crystalline bodies
US3668927A (en) 1970-10-16 1972-06-13 Atlantic Richfield Co Borehole thermal conductivity measurements

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0452141A2 (en) * 1990-04-12 1991-10-16 De Beers Industrial Diamond Division (Proprietary) Limited The determination of a characteristic of a medium
EP0452141A3 (en) * 1990-04-12 1992-05-06 De Beers Industrial Diamond Division (Proprietary) Limited The determination of a characteristic of a medium
JPH07146265A (en) * 1993-11-24 1995-06-06 Nec Corp Apparatus and method for measuring heat conductivity
US20110268148A1 (en) * 2008-08-20 2011-11-03 King William P Device for Calorimetric Measurement
US8931950B2 (en) * 2008-08-20 2015-01-13 The Board Of Trustees Of The University Of Illinois Device for calorimetric measurement
CN104914129A (en) * 2015-04-29 2015-09-16 河北普莱斯曼金刚石科技有限公司 Diamond film thermal conductivity detection method
CN104914129B (en) * 2015-04-29 2017-10-10 河北普莱斯曼金刚石科技有限公司 A kind of Thermal Conductivity for Diamond Films detection method
WO2017073479A1 (en) * 2015-10-30 2017-05-04 三菱電機株式会社 Thermal conductivity measurement apparatus and thermal conductivity measurement method
JPWO2017073479A1 (en) * 2015-10-30 2018-07-12 三菱電機株式会社 Thermal conductivity measuring device and thermal conductivity measuring method
US10768127B2 (en) 2015-10-30 2020-09-08 Mitsubishi Electric Corporation Thermal conductivity measurement apparatus and thermal conductivity measurement method

Also Published As

Publication number Publication date
JP2567441B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
JP2797198B2 (en) Method and apparatus for measuring thermal conductivity and specific heat of fluid
US4344315A (en) Method and device for distinguishing material by thermal conductivity
Sample et al. Low‐temperature thermometry in high magnetic fields. V. Carbon‐glass resistors
US4783174A (en) Differential isoperibol scanning calorimeter
CN103293184B (en) Experimental device for testing heat conductivity coefficient of building material based on quasi steady state and unsteady state methods
JPH03175334A (en) Method of measuring gravity of fluid
US6919729B2 (en) Corrosivity measuring device with temperature compensation
US5044767A (en) Device for measuring thermal properties of a test substance-the transient plane source (TPS) method
US3238775A (en) Heat flux responsive device
Sajben Hot wire anemometer in liquid mercury
Davis et al. Non‐steady‐state, hot wire, thermal conductivity apparatus
US5035514A (en) Thermal probe for measuring thermal properties of a flowing medium
JPH01201147A (en) Method and device for measuring heat conductivity and thermistor
EP0052857B1 (en) Hardness tester
CN106813718B (en) A kind of device and method measuring thin film strain and thermal conductivity
Johnson et al. The Stability of Carbon Resistance Thermometers
Belloni et al. On the experimental calibration of a potential drop system for crack length measurements in a compact tension specimen
US4266187A (en) Method and apparatus for measuring effectiveness of a corrosion inhibitor
JPH0285770A (en) Parallel-plate dielectric analyzer
KR100334131B1 (en) Apparatus for measuring thermal properties of a material surface and applying to thermomechanical modification using a peltier tip
Choi et al. Thermoelectric power measurement under hydrostatic pressure using a self-clamped pressure cell
CN108051476B (en) Independent type 3 omega thermophysical property measuring device and method based on sapphire substrate
US4545690A (en) Temperature measurement probe for chemical reactions and method of use thereof
WO1980001414A1 (en) Method and device for distinguishing materials by thermal conductivity
RU2784681C2 (en) Apparatus for measuring the thermophysical properties of plastic materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees