JPH03225268A - Direct heating type calorimetric instrument - Google Patents

Direct heating type calorimetric instrument

Info

Publication number
JPH03225268A
JPH03225268A JP1925590A JP1925590A JPH03225268A JP H03225268 A JPH03225268 A JP H03225268A JP 1925590 A JP1925590 A JP 1925590A JP 1925590 A JP1925590 A JP 1925590A JP H03225268 A JPH03225268 A JP H03225268A
Authority
JP
Japan
Prior art keywords
sample
heat
shields
temperature
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1925590A
Other languages
Japanese (ja)
Inventor
Hideaki Inaba
秀明 稲場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1925590A priority Critical patent/JPH03225268A/en
Publication of JPH03225268A publication Critical patent/JPH03225268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To accurately measure heat capacity by surrounding a sample by plural heat insulating shields consisting of the same material as the sample and supplying heating power proportional to the volume of the sample and the shields. CONSTITUTION:The cylindrical sample 1 is surrounded by the double cylindrical heat insulating shields 7a, 7b consisting of the same material as the sample and heated by supplying current from a DC power supply 8 through a variable resistor 8 and the shields 7a, 7b are directly heated by supplying current from a DC power supply 11. Power proportional to respective volume of the sample 1 and the shields 7a, 7b is supplied so that electric energy per unit volume of the sample 1 coincides with that of the shields 7a, 7b and the internal temperatures of the sample 1 and the inner shield 7b are measured through measuring holes 6, 15, 16 at the same period. consequently, the temperature difference between the sample 1 and the external can be reached to zero as close as possible and the heat capacity of the sample 1 can be accurately measured.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、直接加熱型熱量測定装置に係り、鉄鋼業、金
属工V、化学工業、原子カニ業、航空宇宙工業などにお
いて、特に、高温における金属および合金試料の熱容量
を測定するのに好適な直接加熱型熱量測定装置の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a direct heating type calorimeter, and is particularly useful in the steel industry, metal industry, chemical industry, atomic crab industry, aerospace industry, etc. This invention relates to an improvement in a direct heating type calorimeter suitable for measuring the heat capacity of metal and alloy samples.

〈従来の技術およびその解決しようとする課題〉近年、
広い温度幅に亘って正も■、精密に試料の熱定数を測定
する技術について高い関心が寄せられており、電子工業
あるいは光学の分野で種々の熱量測定法が提案されてい
る。
<Conventional technology and the problems it attempts to solve> In recent years,
There is a great deal of interest in technology for accurately measuring the thermal constant of a sample over a wide temperature range, and various calorimetry methods have been proposed in the fields of electronics and optics.

高温熱量測定装置としては、主として断熱型とレーザフ
ラッシュ法さらに直接加熱型の3種類がある。これら3
者の熱量測定装置の誤差要因として共通なものは、試料
と外界との間の熱交換量が温度と共に著しく増大するこ
とである。
There are mainly three types of high-temperature calorimeters: an adiabatic type, a laser flash method, and a direct heating type. These 3
A common source of error in conventional calorimeters is that the amount of heat exchanged between the sample and the outside world increases significantly with temperature.

いま、断熱型熱量計を例にとってこの量がどの程度のも
のか見積もってみる。熱の伝達は、伝導、対流、輻射に
よって行われるが、今、対流による寄与を一応無視(ガ
ス圧の関数で、大まかにはガス伝導の寄与にある1以上
の因子をかければよい)して考えると、総括熱伝達係数
には、K = Kr、十K s 十Kll      
−−−−−(Dで与えられる。ここで、K6、Kg、K
、lはそれぞれガス伝導、固体伝導、輻射による熱伝達
係数である。これらの係数は、試料容器と断熱シールド
の寸法、形状、表面の輻射率、ピータリー1゛線の大さ
、本数などによって決まるが、ある適当な仮定を置くこ
とによりそれぞれの寄与をR目γすると、第2図のよう
になる。すなわち、600に以下ではKGの寄与が一番
大きいが、600 Kを超えると1(8の寄与が一番大
きくなって′I゛3に比例して増加し、+0001<以
上では他の寄与がほとんど無視できる位になる。
Let's use an example of an adiabatic calorimeter to estimate how much this amount is. Heat transfer is carried out by conduction, convection, and radiation, but for now we will ignore the contribution of convection (it is a function of gas pressure, and roughly speaking, we can multiply the contribution of gas conduction by one or more factors). Considering, the overall heat transfer coefficient is K = Kr, 1K s 1Kll
------(Given by D. Here, K6, Kg, K
, l are the heat transfer coefficients due to gas conduction, solid conduction, and radiation, respectively. These coefficients are determined by the dimensions, shape, surface emissivity of the sample container and heat insulating shield, the size and number of Petery 1' lines, etc., but by making certain appropriate assumptions, the contribution of each can be expressed as Rth γ. , as shown in Figure 2. That is, below 600 K, the contribution of KG is the largest, but above 600 K, the contribution of 1 (8) becomes the largest and increases in proportion to 'I゛3, and above +0001, other contributions become It becomes almost negligible.

つぎに、この熱量計を用いて試11の熱容量を1%の精
度で測定しようとするとき、試料容器と断熱ソール1′
との平均温度差(−船釣には試t’tと外界との平均温
度差)Δ′F、かどの程度になるかを90γしてみる。
Next, when trying to measure the heat capacity of Sample 11 with an accuracy of 1% using this calorimeter, the sample container and the heat insulating sole 1'
(-for boat fishing, the average temperature difference between the test t't and the outside world) Δ'F, try multiplying it by 90γ to find out how much it is.

試11の温度T1(=Δ′F)に使われる熱量以外に、
熱リークQ° として消費されたとする。
In addition to the amount of heat used for the temperature T1 (=Δ'F) in Trial 11,
Assume that it is consumed as heat leak Q°.

Q=CΔTl−Q’            −(21
ここで、Cは試料の熱容量である。また熱リフQ′に関
しては、下記(3)弐 (3) が成り立つ。ここで、Δ゛1゛、は、Δ′F、の時間平
均、ΔL、は測定に要する時間である。
Q=CΔTl−Q′−(21
Here, C is the heat capacity of the sample. Regarding the heat riff Q', the following (3) and (3) hold true. Here, Δ゛1゛ is the time average of Δ′F, and ΔL is the time required for measurement.

そごで、相対誤差δは(2)、(3)式より、CΔ′r
     CへT となる。
So, from equations (2) and (3), the relative error δ is CΔ′r
It becomes T to C.

試t1の熱容量を5 J K−’、Δ1゛/ΔL、をI
KmIn −’と仮定して、δが0.01以下となるた
めには、Δ1゛、が50OKで0.04に、 100O
Kで0.01に、 2000にで0.002に以下でな
ければならない、断熱制御の最良の限界が0.002に
程度であることを考えると、この数字は高温では相当厳
しいものであることが分かる。高温では(4)式は近(
以的に、CΔ′■゛ と表・υる。ここで、εは試料または試料容器の輻射率
、Sはその表面積である。
The heat capacity of test t1 is 5 J K-', Δ1゛/ΔL, is I
Assuming KmIn -', in order for δ to be 0.01 or less, Δ1゛ becomes 0.04 at 50OK, and 100O
It must be less than 0.01 at K and 0.002 at 2000; considering that the best limit of adiabatic control is about 0.002, this number is quite severe at high temperatures. I understand. At high temperatures, equation (4) is close to (
Therefore, it is expressed as CΔ′■゛. Here, ε is the emissivity of the sample or sample container, and S is its surface area.

δを減少さ−l゛るためには、 ■ 輻射率の小さい試FI S器を選ぶこと、また試料
容器の表面が小さくなるようにすること。
In order to reduce δ, 1. Select a FIS instrument with low emissivity and keep the surface of the sample container small.

■ 試料容器部と断熱シールドとの平均温度差へT、が
小さくなるように断熱制御などを精密にやること。
■ Precisely control the insulation so that the average temperature difference T between the sample container and the insulation shield is small.

■ 測定時間Δし、が少なくて済むように、ヒータと試
料との熱接触を良好に保ったり、昇温速度を速くする。
■ Maintain good thermal contact between the heater and the sample and increase the temperature increase rate to reduce the measurement time Δ.

などの方法が考えられる。ただし−最に、■と■とは互
いに矛盾するとが多い。断熱型は、■を犠牲にして■を
重視し、フラッシュ法、直接加熱法などは、■を犠牲に
して■を重視する考え方といえろ。
Possible methods include: However, - lastly, ■ and ■ often contradict each other. The adiabatic type emphasizes ■ at the expense of ■, and the flash method, direct heating method, etc. emphasize ■ at the expense of ■.

しかしながら、現実には2000 K以上の高温では断
熱法は使えない。また、フラッシュ法では、薄い試料の
裏面で温度を測定することになるので温度の拡散に時間
を要し、測定時間ΔL、が小さ(ならないという問題が
ある。
However, in reality, the adiabatic method cannot be used at high temperatures of 2000 K or higher. In addition, in the flash method, since the temperature is measured on the back surface of a thin sample, it takes time for the temperature to diffuse, and there is a problem that the measurement time ΔL is short.

一方、直接加熱型熱量計では、導電性試料に直接通電す
ることによってエネルギーを投入し、その時の温度上1
を測定することによって熱容量を得るわけであるが、そ
の場合試料が一様であれば、試料の温度は一様にかつ瞬
時に上昇するので、電気エネルギーの投入さえ短時間に
行えればΔLいが非常に小さくて済む。
On the other hand, in a direct heating calorimeter, energy is applied by directly applying electricity to the conductive sample, and the temperature rises by 1
In this case, if the sample is uniform, the temperature of the sample will rise uniformly and instantaneously, so if electrical energy can be input in a short time, can be very small.

実際、米国N B S社のCezairlyanが開発
した熱量計(lligh Temperature 5
cience Vol、13 (1980)I’、11
3参照)では、金属試料に対して1000 Kの温度T
1を得るのに0.1−1.0程度度しか要しないと報告
している。
In fact, a calorimeter (lligh Temperature 5) developed by Cezairlyan of NBS Company in the United States
science Vol, 13 (1980) I', 11
3), a temperature T of 1000 K is applied to the metal sample.
It is reported that it takes only about 0.1-1.0 degrees to obtain 1.

この熱量51は、第3図に示すように、円筒状の試料l
の両端に一対の電極2.2によって直接通電して加熱す
る際に、試料lに投入される電圧を絶縁材3.3で保持
される電圧プローブ4.4で取り出し、また電極2.2
に埋め込まれた熱電対5.5で温度測定を行うとともに
、試料lの中央に空けられた測定孔6からの放射光を放
射温度計(図示せず)で測定するように構成されており
、測定時間ΔL、を非常に小さくできるのがこの熱量計
の大きな特徴である。なお、測定孔6はいわゆる馬体条
件を備えているから、より真温度に近い測定ができる。
As shown in FIG. 3, this amount of heat 51 is
When the sample L is heated by directly passing current through a pair of electrodes 2.2 to both ends of the sample, the voltage applied to the sample L is taken out by a voltage probe 4.4 held by an insulating material 3.3, and
It is configured to measure the temperature with a thermocouple 5.5 embedded in the sample 1, and to measure the emitted light from the measurement hole 6 made in the center of the sample 1 with a radiation thermometer (not shown). A major feature of this calorimeter is that the measurement time ΔL can be made extremely small. In addition, since the measurement hole 6 is equipped with so-called horse body conditions, it is possible to measure the temperature closer to the true temperature.

しかし、この熱量旧においても二人t1温度が3000
に程度の場合であっても周囲の温度は室温近傍であるご
とから、試11と試料の外界との温度差が大きくなり、
前記した(5)式における平均温度差へT、が非常に大
きくなることから、測定誤差の大きな要因となるという
欠点がある。
However, even with this heat value old, the t1 temperature for two people was 3000
Since the ambient temperature is close to room temperature even in cases where the temperature is about
Since the average temperature difference T in the above-mentioned equation (5) becomes very large, there is a drawback that it becomes a major cause of measurement error.

本発明は、上記のような従来技術の課題を解決すべくな
されたものであって、測定精度の品い直接加熱型熱量測
定装置を従供することを目的とする。
The present invention was made to solve the problems of the prior art as described above, and an object of the present invention is to provide a direct heating type calorimeter with high measurement accuracy.

〈課題を解決するだめの手段〉 本発明は、導電性試料に直接電力を投入して熱量を測定
する直接加熱型熱量測定装置であって、円筒状とされる
試料と、この試料を囲繞する該SIE料と同一材質とさ
れる円筒状の断熱シールミ′月と、この断熱シールドI
Aに、前記試料に投入される電力の単位体積当たりの量
と同じ割合の電力を投入する加熱手段と、これら試料お
よび断熱シールド材の温度をそれぞれ測定する測温手段
と、からなることを特徴とする直接加熱型熱量測定装置
である。
<Means for Solving the Problems> The present invention is a direct heating type calorimeter that measures the amount of heat by directly applying electric power to a conductive sample, and includes a cylindrical sample and a tube surrounding the sample. A cylindrical heat-insulating seal made of the same material as the SIE material, and this heat-insulating shield I.
A is characterized by comprising a heating means for inputting electric power in the same proportion as the amount of electric power per unit volume inputted to the sample, and a temperature measuring means for measuring the temperature of the sample and the heat insulating shield material, respectively. This is a direct heating type calorimeter.

〈作 用〉 n;l出第3図のような構成の熱量旧では、試料が高温
になった場合試料から直接放射によって熱■31の外壁
まで熱が漏れてしまうことになる。前出のCezair
lyanは、この熱り−クは必要悪と考えて品温からの
自然放熱曲線から熱り−ク量を推定し、補正することも
試み°ζいる。しかし、この方法によっても、周囲温度
は試tl温度が同じの場合、降温時の方が1話度が高い
と考えられ、熱リーク■も小さいと考えられることから
、昇温時と降温時で熱り−ク量が同しだという保証はな
く、かなりの測定誤差を含むことは避けられない。
<Function> In the case of the heat quantity of the configuration as shown in Figure 3, when the sample becomes high temperature, the heat will leak from the sample to the outer wall of the heat chamber 31 by direct radiation. Cezair mentioned above
LYAN considers this heat loss to be a necessary evil and attempts to estimate and correct the amount of heat loss from the natural heat radiation curve from the product temperature. However, even with this method, if the ambient temperature is the same as the test tl temperature, it is thought that the temperature will be higher when the temperature is lowered, and the heat leakage ■ will be smaller. There is no guarantee that the amount of heat will be the same, and it is inevitable that there will be considerable measurement error.

そこで、本発明では、第4図に示すように円筒形の断熱
シールド材7を設け、熱リーク量そのものを減少さl°
Δ′■゛、を減らすことによって測定誤差を減少させよ
うとするものである。ここで、前出(5)式からもわか
るように熱り−クによる誤差を減少させるためには、断
熱シールド材7の月質としては放射率の低い金属材料が
望ましい。放射率の低い高融点金属材料としては、7a
、 W、 r’t、 Nb。
Therefore, in the present invention, as shown in FIG. 4, a cylindrical heat insulating shield material 7 is provided to reduce the amount of heat leakage itself.
The purpose is to reduce measurement errors by reducing Δ′■゛. Here, as can be seen from equation (5) above, in order to reduce the error due to heat leakage, it is desirable to use a metal material with a low emissivity as the material of the heat insulating shield material 7. As a high melting point metal material with low emissivity, 7a
, W, r't, Nb.

Moあるいはそれらを含んだ合金などが望ましい。Mo or an alloy containing them is desirable.

このような断熱シールドは、−重円筒である必要はなく
、装置の配置の上から許されれば、二重、三重にする方
がむしろ望ましい、しかし、上記のような断熱シールド
材7を設けて熱リークを凍らず方法では、八T、を小さ
(することはできてもゼロにすることはできない。
Such a heat insulating shield does not need to be a heavy cylinder, and if permitted by the arrangement of the device, it is preferable to have double or triple layers. In the method of preventing heat leakage from freezing, it is possible to reduce 8T, but it is not possible to reduce it to zero.

そこで、本発明では、さらにこの断熱シールド材7を積
極的に加熱することにより、ΔT、をゼロにするように
したので、測定誤差を著しく小さくすることに成功した
。すなわち、本発明によれば、断熱シールド材7を試料
1と同一材質とするとともに、試料lを加熱するのに要
する単位体積当たりの電力と同量の電力を同時に投入す
るようにしたので、試料lと外界との温度差を限りなく
ゼロに近づけることが可能になり、これによって試料の
熱容量を正確に測定することが可能である。
Therefore, in the present invention, the heat insulating shield material 7 is further actively heated to reduce ΔT to zero, thereby successfully reducing the measurement error significantly. That is, according to the present invention, the heat insulating shield material 7 is made of the same material as the sample 1, and the same amount of power per unit volume as that required to heat the sample l is simultaneously input, so that the sample This makes it possible to bring the temperature difference between l and the outside world as close to zero as possible, making it possible to accurately measure the heat capacity of the sample.

〈実施例〉 以下に、本発明の実施例について、第1図を参照して説
明する。
<Example> Below, an example of the present invention will be described with reference to FIG.

図に示すように、円筒状の試料lは、試料1と同一材質
を有する円筒状の二重の断熱シールド材7a、7bで囲
繞されており、試料lは直流T4fA8によって可変抵
抗9を介して電極4から通電加熱され、断熱シールド材
7a、7bは直流電源10によって直接通電加熱される
As shown in the figure, a cylindrical sample 1 is surrounded by double cylindrical heat insulating shield members 7a and 7b made of the same material as sample 1, and the sample 1 is connected to a DC current T4fA8 through a variable resistor 9. The electrode 4 heats the heat insulating shields 7a and 7b, and the DC power supply 10 directly heats the heat insulating shields 7a and 7b.

試料1へ投入される電力は、電圧プローブ3に接続され
た電圧計12によって測定された電圧値と、電流811
3によって検出された電流(直の演算によって求められ
る。
The power input to the sample 1 is determined by the voltage value measured by the voltmeter 12 connected to the voltage probe 3 and the current 811.
The current detected by 3 (obtained by direct calculation).

そして、試料lおよび断熱シールド材7a、7bに供給
される電力は、それらの体積比に比例した量とされるが
、通電系の回路抵抗などに影響される場合は、予め直流
型′g11,10の電fA電圧および可変抵抗9によっ
て調節可能とされる。
The power supplied to the sample 1 and the heat insulating shield materials 7a and 7b is proportional to their volume ratio, but if it is affected by the circuit resistance of the current-carrying system, etc., It is made adjustable by an electric fA voltage of 10 and a variable resistor 9.

タイミング回路14は、試料1と断熱シールド材7a、
7bとに同時に通電する機能を有しており、通電のトリ
ガが±1μs程度の誤差内に収まるように調整される。
The timing circuit 14 connects the sample 1 and the heat insulating shield material 7a,
7b and 7b at the same time, and the trigger for energization is adjusted to within an error of approximately ±1 μs.

また、試料lの中央に設けられる測定孔6の直径は例え
ば2mmφとされるが、この測定孔6に対応して断熱シ
ールド材7a、7bに直径が例えば4 mmφとされる
測定孔15が貫通して設けられ、図示しない放射温度n
口こよって試料lの内部温度を例えば0.5+nsの周
期ごとにサンプリングされる。
Further, the diameter of the measurement hole 6 provided at the center of the sample l is, for example, 2 mmφ, and a measurement hole 15 having a diameter of, for example, 4 mmφ is penetrated through the heat insulating shield materials 7a and 7b corresponding to this measurement hole 6. radiant temperature n (not shown)
The internal temperature of the sample I is sampled every 0.5+ns, for example.

一方、断熱シールド材7a、7bの温度は、外側の断り
、サシールド’tA7aに直径が例えば2mmφの測定
孔16を設け、内側の断熱シールド材7bから発せられ
る放射光を別の放射温度別(図示せず)によって、同じ
周期で測定される。
On the other hand, the temperature of the heat insulating shield materials 7a and 7b can be measured by providing a measurement hole 16 with a diameter of, for example, 2 mm in the outer shield 'tA7a, and measuring the radiation light emitted from the inner heat insulating shield material 7b by different radiation temperatures (Fig. (not shown) at the same period.

試料lと断熱シールド材7の材質としてタンタルを用い
て、両者へ投入する単位体積当たりの電力比を第1表に
示すように与えて、2900 Kとしたときの比熱容量
を測定した。その結果を第1表に示した。なお、比較の
ために、断熱シールドをしない従来例の測定結果をも、
第1表に併−Uて示したー 第 表 この表から明らかなように、本発明例による4回の測定
の再現性は、いずれも平均値に対して±0.4%以内に
収まっていることから、比較例に比して、少なくとも1
/3以上よいことがわかる。
Using tantalum as the material for Sample 1 and the heat insulating shield material 7, the specific heat capacity was measured at 2900 K, with the power ratio per unit volume input to both being given as shown in Table 1. The results are shown in Table 1. For comparison, the measurement results for a conventional example without a heat shield are also shown.
As is clear from this table, the reproducibility of the four measurements according to the present invention was within ±0.4% of the average value. Therefore, compared to the comparative example, at least 1
/3 or better.

〈発明の効果〉 以上説明したように、本発明によれば、試料と同一材質
の断熱シールド材を用いて試料を囲繞し、かつ試料と同
じ単位体積当たりの加熱電力をその体積比に比例して投
入するようにしたので、試料と外界との温度差を限りな
くゼロに近づけることが可能となり、これによって試料
の熱容量を正値に測定することができる。
<Effects of the Invention> As explained above, according to the present invention, a heat insulating shield material made of the same material as the sample is used to surround the sample, and the heating power per unit volume of the sample is proportional to its volume ratio. Since the temperature difference between the sample and the outside world can be brought as close to zero as possible, the heat capacity of the sample can be measured as a positive value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例を一部断面を含んで示す測定
ブロンク図、第2図は、総括熱伝達係数にと温度Tとの
関係を示す特性図、第3図は、直接通電型熱m計の従来
例を示す概要図、第4図は、本発明の直接通電型熱量計
の構成を示す概要図である。 1・・・試料5   、 2・・・電極。 4・・・電圧プローブ1 6・・・測定孔。 7・・・断熱シールド材 0.11・・・直流電源(加熱手段)。 9・・・可変抵抗、!2・・・電圧計 13・・・電流計、14・・・タイミング回路。 15、16・・・測定孔。
Fig. 1 is a measurement bronch diagram showing an embodiment of the present invention including a partial cross section, Fig. 2 is a characteristic diagram showing the relationship between the overall heat transfer coefficient and temperature T, and Fig. 3 is a direct energization diagram. FIG. 4 is a schematic diagram showing a conventional example of a type calorimeter. FIG. 4 is a schematic diagram showing the configuration of a direct current type calorimeter of the present invention. 1... Sample 5, 2... Electrode. 4...Voltage probe 1 6...Measurement hole. 7... Heat insulation shield material 0.11... DC power supply (heating means). 9...Variable resistance! 2... Voltmeter 13... Ammeter, 14... Timing circuit. 15, 16...Measurement holes.

Claims (1)

【特許請求の範囲】[Claims] 導電性試料に直接電力を投入して熱量を測定する直接加
熱型熱量測定装置であって、円筒状とされる試料と、こ
の試料を囲繞する該試料と同一材質とされる円筒状の断
熱シールド材と、この断熱シールド材に、前記試料に投
入される電力の単位体積当たりの量と同じ割合の電力を
投入する加熱手段と、これら試料および断熱シールド材
の温度をそれぞれ測定する測温手段と、からなることを
特徴とする直接加熱型熱量測定装置。
This is a direct heating type calorimetry device that measures the amount of heat by directly applying power to a conductive sample, and includes a cylindrical sample and a cylindrical heat insulating shield made of the same material as the sample surrounding the sample. heating means for inputting electric power into the heat insulating shield material at the same rate as the amount of electric power per unit volume inputted into the sample, and temperature measuring means for measuring the temperature of the sample and the heat insulating shield material, respectively. A direct heating type calorimetry device characterized by comprising:
JP1925590A 1990-01-31 1990-01-31 Direct heating type calorimetric instrument Pending JPH03225268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1925590A JPH03225268A (en) 1990-01-31 1990-01-31 Direct heating type calorimetric instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1925590A JPH03225268A (en) 1990-01-31 1990-01-31 Direct heating type calorimetric instrument

Publications (1)

Publication Number Publication Date
JPH03225268A true JPH03225268A (en) 1991-10-04

Family

ID=11994322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1925590A Pending JPH03225268A (en) 1990-01-31 1990-01-31 Direct heating type calorimetric instrument

Country Status (1)

Country Link
JP (1) JPH03225268A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8898037B2 (en) 2010-04-28 2014-11-25 Nellcor Puritan Bennett Ireland Systems and methods for signal monitoring using Lissajous figures
US8932219B2 (en) 2009-03-05 2015-01-13 Nellcor Puritan Bennett Ireland Systems and methods for monitoring heart rate and blood pressure correlation
CN104422711A (en) * 2013-08-30 2015-03-18 国家纳米科学中心 Variable temperature sample platform and thermoelectric property measuring method
US9060695B2 (en) 2011-11-30 2015-06-23 Covidien Lp Systems and methods for determining differential pulse transit time from the phase difference of two analog plethysmographs
US9066660B2 (en) 2009-09-29 2015-06-30 Nellcor Puritan Bennett Ireland Systems and methods for high-pass filtering a photoplethysmograph signal
US9198582B2 (en) 2009-06-30 2015-12-01 Nellcor Puritan Bennett Ireland Determining a characteristic physiological parameter
US9220440B2 (en) 2009-09-21 2015-12-29 Nellcor Puritan Bennett Ireland Determining a characteristic respiration rate
US9259160B2 (en) 2010-12-01 2016-02-16 Nellcor Puritan Bennett Ireland Systems and methods for determining when to measure a physiological parameter
US9289136B2 (en) 2010-11-30 2016-03-22 Nellcor Puritan Bennett Ireland Methods and systems for recalibrating a blood pressure monitor with memory
US9301697B2 (en) 2008-09-30 2016-04-05 Nellcor Puritan Bennett Ireland Systems and methods for recalibrating a non-invasive blood pressure monitor
US9357934B2 (en) 2010-12-01 2016-06-07 Nellcor Puritan Bennett Ireland Systems and methods for physiological event marking
US9378332B2 (en) 2008-06-30 2016-06-28 Nellcor Puritan Bennett Ireland Processing and detecting baseline changes in signals
US9451887B2 (en) 2010-03-31 2016-09-27 Nellcor Puritan Bennett Ireland Systems and methods for measuring electromechanical delay of the heart
US9687161B2 (en) 2008-09-30 2017-06-27 Nellcor Puritan Bennett Ireland Systems and methods for maintaining blood pressure monitor calibration
US9949648B2 (en) 2003-07-07 2018-04-24 Nellcor Puritan Bennett Ireland Continuous non-invasive blood pressure measurement apparatus and methods providing automatic recalibration

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9949648B2 (en) 2003-07-07 2018-04-24 Nellcor Puritan Bennett Ireland Continuous non-invasive blood pressure measurement apparatus and methods providing automatic recalibration
US9378332B2 (en) 2008-06-30 2016-06-28 Nellcor Puritan Bennett Ireland Processing and detecting baseline changes in signals
US9301697B2 (en) 2008-09-30 2016-04-05 Nellcor Puritan Bennett Ireland Systems and methods for recalibrating a non-invasive blood pressure monitor
US9687161B2 (en) 2008-09-30 2017-06-27 Nellcor Puritan Bennett Ireland Systems and methods for maintaining blood pressure monitor calibration
US8932219B2 (en) 2009-03-05 2015-01-13 Nellcor Puritan Bennett Ireland Systems and methods for monitoring heart rate and blood pressure correlation
US9198582B2 (en) 2009-06-30 2015-12-01 Nellcor Puritan Bennett Ireland Determining a characteristic physiological parameter
US9220440B2 (en) 2009-09-21 2015-12-29 Nellcor Puritan Bennett Ireland Determining a characteristic respiration rate
US9066660B2 (en) 2009-09-29 2015-06-30 Nellcor Puritan Bennett Ireland Systems and methods for high-pass filtering a photoplethysmograph signal
US9649071B2 (en) 2009-09-29 2017-05-16 Nellcor Puritan Bennett Ireland Systems and methods for high-pass filtering a photoplethysmograph signal
US9451887B2 (en) 2010-03-31 2016-09-27 Nellcor Puritan Bennett Ireland Systems and methods for measuring electromechanical delay of the heart
US8898037B2 (en) 2010-04-28 2014-11-25 Nellcor Puritan Bennett Ireland Systems and methods for signal monitoring using Lissajous figures
US9289136B2 (en) 2010-11-30 2016-03-22 Nellcor Puritan Bennett Ireland Methods and systems for recalibrating a blood pressure monitor with memory
US10165953B2 (en) 2010-11-30 2019-01-01 Nellcor Puritan Bennett Ireland Methods and systems for recalibrating a blood pressure monitor with memory
US9357934B2 (en) 2010-12-01 2016-06-07 Nellcor Puritan Bennett Ireland Systems and methods for physiological event marking
US9259160B2 (en) 2010-12-01 2016-02-16 Nellcor Puritan Bennett Ireland Systems and methods for determining when to measure a physiological parameter
US9060695B2 (en) 2011-11-30 2015-06-23 Covidien Lp Systems and methods for determining differential pulse transit time from the phase difference of two analog plethysmographs
CN104422711A (en) * 2013-08-30 2015-03-18 国家纳米科学中心 Variable temperature sample platform and thermoelectric property measuring method

Similar Documents

Publication Publication Date Title
JPH03225268A (en) Direct heating type calorimetric instrument
JP4195935B2 (en) Thermophysical property measuring method and apparatus
US5258929A (en) Method for measuring thermal conductivity
Fu et al. Experimental research on the influence of surface conditions on the total hemispherical emissivity of iron-based alloys
JP3434694B2 (en) Differential scanning calorimeter
Jekel et al. The thermodynamic properties of high temperature aqueous solutions. VIII. Standard partial molal heat capacities of gadolinium chloride from 0 to 100°
Del Cerro et al. Flux calorimeter for measuring thermophysical properties of solids: study of TGS
Ziebland et al. The thermal conductivity of liquid and gaseous oxygen
Babu et al. Measurement of thermal conductivity of fluid using single and dual wire transient techniques
RU2654823C1 (en) Method of measuring thermal conductivity of solid materials
RU2510491C2 (en) Method of measuring emissivity factor
JPH09222404A (en) Method and device for measuring specific heat capacity
Churney et al. Studies in Bomb Calorimetry. A New Determination of the Energy of Combustion of Benzoic Acid in Terms of Electrical Units
JPS6119935B2 (en)
JP2949314B2 (en) Calorimeter and method
Failleau et al. Metal-carbon eutectic high temperature fixed points for in-situ calibration of radiation thermometers.
Schmon et al. Thermophysical properties of Manganin (Cu86Mn12Ni2) in the solid and liquid state
US2995708A (en) Dry static calorimeter for rf power measurement
RU2625599C9 (en) Method for determining thermal conductivity of solid bodies
Di Novi Application of the pulse method to a specific heat and density-independent measurement of thermal conductivity: extension of the method to very small specimens
Jain et al. An instrument for the measurement of thermal properties of gases and metal wires
Kanbour et al. Solution Calorimeter with Peltier Cooling for Operation at Constant Temperature
Whipp LXXI. Considerations on micro-calorimetry
Anderson et al. A calorimeter for measuring energy absorption from pile radiation
Aul et al. TEMPERATURE (K)